WorldWideScience

Sample records for rock pore space

  1. X-ray microtomography application in pore space reservoir rock.

    Science.gov (United States)

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. X-ray microtomography application in pore space reservoir rock

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.S.; Lima, I. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil); Borghi, L. [Geology Department, Geosciences Institute, Federal University of Rio de Janeiro, Brazil. (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil)

    2012-07-15

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. - Highlights: Black-Right-Pointing-Pointer This study is about porosity parameter in carbonate rocks by 3D X-Ray Microtomography. Black-Right-Pointing-Pointer This study has become useful as data input for modeling reservoir characterization. Black-Right-Pointing-Pointer This technique was able to provide pores, grains and mineralogical differences among the samples.

  3. Analyzer for measuring gas contained in the pore space of rocks

    Science.gov (United States)

    Kudasik, Mateusz; Skoczylas, Norbert

    2017-10-01

    In the present paper, the authors discussed the functioning of their own analyzer for measuring gas contained in the pore space of high strength rocks. A sample is placed inside a hermetic measuring chamber, and then undergoes impact milling as a result of colliding with the vibrating blade of a knife which is rotationally driven by a high-speed brushless electric motor. The measuring chamber is equipped with all the necessary sensors, i.e. gas, pressure, and temperature sensors. Trial tests involving the comminution of dolomite and anhydrite samples demonstrated that the constructed device is able to break up rocks into grains so fine that they are measured in single microns, and the sensors used in the construction ensure balancing of the released gas. The tests of the analyzer showed that the metrological concept behind it, together with the way it was built, make it fit for measurements of the content and composition of selected gases from the rock pore space. On the basis of the conducted tests of balancing the gases contained in the two samples, it was stated that the gas content of Sample no. 1 was (0.055  ±  0.002) cm3 g-1, and Sample no. 2 contained gas at atmospheric pressure, composed mostly of air.

  4. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  5. Modeling of carbonate reservoir variable secondary pore space based on CT images

    Science.gov (United States)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  6. Pore Space Connectivity and the Transport Properties of Rocks

    Directory of Open Access Journals (Sweden)

    Bernabé Yves

    2016-07-01

    Full Text Available Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. In this study, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability, which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011 model, which does [Bernabé Y., Li M., Maineult A. (2010 Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011 Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Although we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis

  7. Pore space quantification of carbonate rocks before-after supercritical CO2 interaction by optical image analysis

    Science.gov (United States)

    Berrezueta, Edgar; José Domínguez-Cuesta, María

    2017-04-01

    The aim of this research is to show an experimental application of an automated quantification process of optical porosity in thin sections. Petrographic studies using scanning electronic microscopy, optical microscopy (OpM) and optical image analysis (OIA) could provide a reproducible pore characterization of carbonate rocks in applications related to the geological storage of CO2. This research is focused on i) the quantification of optical pores in a carbonate rock before and after supercritical CO2-rich brine (P ≈ 7.5 MPa and T ≈ 35 °C) and ii) the description of the process followed to guarantee the reproducibility of the OIA method on images acquired with high-resolution scanner. Mineral images were acquired from thin sections using a high-resolution scanner (HRS). Digital images were geo-referenced by using geographic information system to ensure correct spatial correlation and superposition. The optical measures of porosity by image analysis on the carbonates thin sections showed an effective pore segmentation considering different cross-polarized light conditions (90°/0°; 120°/30°) and plane-polarized light conditions (90°/-) of the same petrographic scene. The pore characterization by OpM and OIA-HRS has allowed a preliminary approximation of pore evolution in carbonate rocks under the supercritical CO2-rich brine. This study shows a fast, effective and reproducible methodology that allowed a preliminary characterization (changes in the pore network) of the samples studied. The procedure carried out could be applied to similar experimental injection tests.

  8. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  9. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Rahimpour-Bonab, H; Aliakbardoust, E

    2014-01-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  10. Multiscale characterization of pore spaces using multifractals analysis of scanning electronic microscopy images of carbonates

    Directory of Open Access Journals (Sweden)

    M. S. Jouini

    2011-12-01

    Full Text Available Pore spaces heterogeneity in carbonates rocks has long been identified as an important factor impacting reservoir productivity. In this paper, we study the heterogeneity of carbonate rocks pore spaces based on the image analysis of scanning electron microscopy (SEM data acquired at various magnifications. Sixty images of twelve carbonate samples from a reservoir in the Middle East were analyzed. First, pore spaces were extracted from SEM images using a segmentation technique based on watershed algorithm. Pores geometries revealed a multifractal behavior at various magnifications from 800x to 12 000x. In addition, the singularity spectrum provided quantitative values that describe the degree of heterogeneity in the carbonates samples. Moreover, for the majority of the analyzed samples, we found low variations (around 5% in the multifractal dimensions for magnifications between 1700x and 12 000x. Finally, these results demonstrate that multifractal analysis could be an appropriate tool for characterizing quantitatively the heterogeneity of carbonate pore spaces geometries. However, our findings show that magnification has an impact on multifractal dimensions, revealing the limit of applicability of multifractal descriptions for these natural structures.

  11. Research and development on groundwater dating. Part 6. Extraction of pore water from low permeability rocks

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Oyama, Takahiro; Higashihara, Tomohiro; Hasegawa, Takuma; Kitsukawa, Takashi

    2007-01-01

    The squeezing method is one of the most promising methods to obtain the pore water from rock cores. However, in previous studies, ion composition of squeezed water was found to have dependency on squeezing pressure. In this study, squeezing method was applied to both natural and artificial standard samples and concentration of Cl ion in squeezed water and basal spacing of smectite included in samples were investigated as a function of squeezing pressure. Furthermore, bentonite sample was prepared by suspending the bentonite powder in NaCl solution and supplied for squeezing. The relation between concentration of Cl ion in squeezed water and the amount of inter-layer water squeezed from smectite was discussed quantitatively, for this bentonite sample. The concentration of Cl ion in squeezed water was found to decrease with increase of squeezing pressure. The inter-layer water from smectite is assumed to be one of the most effective cause of the decrease of Cl ion with increase of squeezing pressure, because of following 3 reasons; 1) Basal spacing of smectite included in rocks decreased with increase of squeezing pressure, 2) The decrease of Cl ion strongly depended on the amount of smectite included in rocks and no decrease was observed in glass filter sample in which no smectite is included, 3) The agreement between concentration of Cl estimated from obtained pore water and that calculated with basal spacing and amount of pore water was obtained in bentonite sample. These results indicated squeezing pressure should be limited so that basal spacing of smectite do not change during squeezing to estimate the concentration of Cl in pore water precisely. (author)

  12. Pore connectivity effects on solute transport in rocks

    International Nuclear Information System (INIS)

    Hu, Qinhong; Ewing, Robert P.

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.5 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuff; and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  13. Pore Connectivity Effects on Solute Transport in Rocks

    International Nuclear Information System (INIS)

    Oinhong Hu

    2001-01-01

    Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time 0.26 , while tuff and Berea sandstone showed the more classical scaling with time 0.05 ; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuft and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low

  14. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  15. Estimating the Permeability of Carbonate Rocks from the Fractal Properties of Moldic Pores using the Kozeny-Carman Equation

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2018-02-01

    Full Text Available Reservoir modeling of carbonate rocks requires a proper understanding of the pore space distribution and its relationship to permeability. Using a pigeonhole fractal model we characterize the fractal geometry of moldic pore spaces and extract the fractal dimension. We apply the Kozeny-Carman equation and equations relating the tortuosity and the porosity to the fractal dimension to derive an empirical relationship between permeability and porosity.

  16. Grimsel test site. Investigation phase VI. Pore space geometry project. Characterisation of pore space geometry by 14C-MMA impregnation

    International Nuclear Information System (INIS)

    Kelokaski, M.; Siitari-Kauppi, M.; Kauppi, I.; Hellmuth, K.-H.; Moeri, A.; Inderbitzin, L.; Biggin, C.; Kickmaier, W.; Martin, A.

    2010-04-01

    In Finland high-level radioactive waste is planned to be disposed of in a deep geological repository within a crystalline host rock. The potential role of the geosphere as a safety barrier in repository performance assessment is well established. However, uncertainties in both transport pathway definition and pore space characterisation of crystalline rock still exist and the repository safety evaluation today requires going from laboratory and surface-based field work to the underground repository level. Little is known about the changes to rock transport properties during sampling and decompression. Recent investigations using resin impregnation of the rock matrix at the Grimsel Test Site imply that non-conservative errors in calculated transport properties derived from laboratory data may reach factors of two to three. Due to the potentially great significance of pore space characterisation to safety analysis calculations, it was decided to study the rock matrix characteristics in situ using methylmethacrylate (MMA) resin labelled with 14 C. During the last decade, the poly-methylmethacrylate (PMMA) method has been developed for characterising the porosity of low permeable granitic rocks in the laboratory. Impregnation with 14 C-labelled methylmethacrylate ( 14 C-MMA) and autoradiography allows investigation of the spatial distribution of accessible porosity at the centimetre scale. Quantitative measurements of total or mineral-specific local porosities have been obtained using image analysis tools. Electron microscopy examinations and mercury porosimetry measurements have provided detailed information on pore and fissure apertures. The objective of this work was to develop an in situ application of the PMMA impregnation technique. The changes in rock porosity due to stress relaxation when overcoring the samples from the bedrock for the laboratory studies were examined. The concept behind the work was to inject 14 C-MMA from a central borehole at a depth of

  17. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  18. Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach

    Science.gov (United States)

    Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof

    2018-04-01

    In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.

  19. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  20. Analysis of the effect of pore geometry in the physical properties of rocks

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-12-01

    Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.

  1. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    Science.gov (United States)

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore.

  2. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  3. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  4. Study on investigation and evaluation methods of deep seated sedimentary rocks. Chemical weathering, pore water squeezing and relationships of physical properties of sedimentary rocks

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Suzuki, Koichi

    2006-01-01

    Chemical weathering, porewater squeezing and physical properties for the sedimentary rocks were examined. Chemical weathering potential of rocks was described by the sulfur as a acceleration factor of weathering and carbonate contents as a neutralization factor of it. The carbonate contents in the rocks were measured accurately by the gas pressure measurement method. Pore water squeezing method was applied for the semi-hard sedimentary rocks (Opalinusclay). The chemical change of extracted pore water under high pressure conditions was estimated. Physical property of sedimentary rocks have relationship among the porosity and permeability and resistivity coefficient in the same rock types. It is possible to estimate the water permeability from the geophysical tests. (author)

  5. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  6. Effect of diagenesis on pore pressures in fine-grained rocks in the Egersund Basin, Central North Sea

    OpenAIRE

    Kalani, Mohsen; Zadeh, Mohammad Koochak; Jahren, Jens; Mondol, Nazmul Haque; Faleide, Jan Inge

    2015-01-01

    - Pore pressure in fine-grained rocks is important with respect to drilling problems such as kicks, blowouts, borehole instability, stuck pipe and lost circulation. In this study, a succession of overpressured, fine-grained, sedimentary rocks located in the Egersund Basin, Central North Sea, was analysed with respect to mineralogical composition, source-rock maturation and log-derived petrophysical properties to highlight the effect of diagenetic processes on the pore pressure. Pe...

  7. Hydromechanical Rock Mass Fatigue in Deep-Seated Landslides Accompanying Seasonal Variations in Pore Pressures

    Science.gov (United States)

    Preisig, Giona; Eberhardt, Erik; Smithyman, Megan; Preh, Alexander; Bonzanigo, Luca

    2016-06-01

    The episodic movement of deep-seated landslides is often governed by the presence of high pore pressures and reduced effective stresses along active shear surfaces. Pore pressures are subject to cyclic fluctuation under seasonal variations of groundwater recharge, resulting in an intermittent movement characterized by acceleration-deceleration phases. However, it is not always clear why certain acceleration phases reach alarming levels without a clear trigger (i.e., in the absence of an exceptional pore pressure event). This paper presents a conceptual framework linking hydromechanical cycling, progressive failure and fatigue to investigate and explain the episodic behavior of deep-seated landslides using the Campo Vallemaggia landslide in Switzerland as a case study. A combination of monitoring data and advanced numerical modeling is used. The principal processes forcing the slope into a critical disequilibrium state are analyzed as a function of rock mass damage and fatigue. Modeling results suggest that during periods of slope acceleration, the rock slope experiences localized fatigue and gradual weakening through slip along pre-existing natural fractures and yield of critically stressed intact rock bridges. At certain intervals, pockets of critically weakened rock may produce a period of enhanced slope movement in response to a small pore pressure increase similar to those routinely experienced each year. Accordingly, the distribution and connectivity of pre-existing permeable planes of weakness play a central role. These structures are often related to the rock mass's tectonic history or initiate (and dilate) in response to stress changes that disturb the entire slope, such as glacial unloading or seismic loading via large earthquakes. The latter is discussed in detail in a companion paper to this (Gischig et al., Rock Mech Rock Eng, 2015). The results and framework presented further demonstrate that episodic movement and progressive failure of deep

  8. Complex resistivity spectra in relation to multiscale pore geometry in carbonates and mixed-siliciclastic rocks

    Science.gov (United States)

    Norbisrath, Jan Henrik

    Carbonate rocks are known to have complex and heterogeneous pore structures, which result from their biogenic origin and strong affinity for diagenetic processes that change their pore structure after burial. The combination of sheer endless variations of precursor biogenic material, depositional environments, and diagenetic effects results in rocks that are interesting to study but intricate to understand. Many schemes to categorize the diversity of carbonate rocks are in use today; most are based on the macropore structure and qualitative thin-section analysis. Many studies, however, acknowledge that micropores have a significant influence on the macroscopic petrophysical rock properties, which are essential to determine reservoir quality. Micropores are, by definition, smaller than the thickness of a thin-section (four major carbonate microporosity types: (1) small intercrystalline, (2) large inter-crystalline, (3) intercement, and (4) micromoldic. Each microporosity type shows a distinct capacity to conduct electrical charge, which largely controls the magnitude and range of cementation factors (m) in rocks with such microporosity type. The BIB-SEM method is also used on a dataset of mixed carbonate-siliciclastic (mudrock) samples with high kerogen and pyrite content. Results show that the nanopore geometry here has little influence on cementation factors, and instead porosity is the main control on m in mudrocks. Cementation factors are crucial for estimates of oil-in-place and water saturation in a wireline application, and a slight change of (assumed) cementation factor can change the interpreter's evaluation from dry hole to discovery. Therefore, accurate determination of cementation factors is a critical task in formation evaluation, similar to accurate estimates of permeability. To achieve this goal, this dissertation utilizes a new approach of using complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical and fluid flow

  9. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Science.gov (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  10. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    Science.gov (United States)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  11. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    Science.gov (United States)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG

  12. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  13. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang

    2018-01-01

    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  14. High-resolution 3D X-ray microtomography as tool to investigate size distribution of grain phase and pore space in sandstones

    Science.gov (United States)

    Kahl, Wolf-Achim; Holzheid, Astrid

    2013-04-01

    Rotliegend sandstone exhibits a size distribution that is shifted to higher values than the size distribution observed in the unfilled pore space: Here, the anhydrite cementation inhibited compaction, which was only active in the uncemented regions of the rock. In general, for quality prediction of sandstone reservoirs, high-resolution microtomography offers a great potential to quantify important rock properties but also to deduce the formation history of sandstones. References Kahl, W.-A., Holzheid, A. (2010) Estimated and "true" geometric surfaces and their possible impact on experimentally and thermodynamically derived mineral dissolution and precipitation rates in CO2-brine-mineral reactions. DMG Tagung, Münster 19.09.-22.09.2010, Presentation S04-T02, p. 43.

  15. Pore water pressure response to small and large openings in argillaceous rocks

    International Nuclear Information System (INIS)

    Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.

    2012-01-01

    Document available in extended abstract form only. In the last decade an important amount of piezometers have been installed in the Bure Underground Rock Laboratory (URL) in the vicinity of ongoing works involving gallery excavations and drilling of boreholes and alveoles both in the major and minor stress directions. Relatively far field piezometers (placed one to four diameters from the excavation wall) showed a qualitatively consistent response at different scales. Here, we investigate whether the pore water pressure response around openings of different scales may be up-scaled. An attempt is made to find a common set of parameters that explains quantitatively the rock response at the different scales. The mechanisms underlying the pore water pressure response around an underground opening are twofold. The first class of mechanisms is usually associated with nearly undrained behaviour and the related pore water pressure changes are induced by the stress redistribution triggered by the creation of the tunnel opening causing a reorientation of the principal stresses and influenced by the initial stress anisotropy. These pore water pressure changes are closely linked to the mechanical constitutive law of the rock and to the damage zone around the opening. The second class of mechanisms is related to the drainage of excess pore water pressure relative to a state governed by the atmospheric water pressure condition prescribed at gallery wall and the water flow law, usually Darcy's. Strong anisotropy effects on the hydraulic response of Callovo-Oxfordian Clay can be observed with reference to Figure 1 that shows the pore pressure response to the drilling of a 150 mm-diameter borehole performed to install a heater for the TER thermal experiment. The borehole is aligned with the major horizontal principal stress. Therefore, in principle, the stress state should be approximately isotropic in a cross section of the borehole. As a matter of fact, however, a degree of

  16. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Characterizing gas permeability and pore properties of Czech granitic rocks

    Czech Academy of Sciences Publication Activity Database

    Konečný, Pavel; Kožušníková, Alena

    2016-01-01

    Roč. 13, č. 4 (2016), s. 331-338 ISSN 1214-9705 R&D Projects: GA ČR GA105/09/0089; GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : granitic rocks * permeability * pore properties Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.699, year: 2016 https://www.irsm.cas.cz/materialy/acta_content/2016_doi/Konecny_AGG_2016_0015.pdf

  18. X-ray Tomography and Impregnation Methods to Analyze Pore Space Hetrerogeneities at the Hydrated State

    International Nuclear Information System (INIS)

    Pret, D.; Ferrage, E.; Tertre, E.; Robinet, J.C.; Faurel, M.; Hubert, F.; Pelletier, M.; Bihannic, I.

    2013-01-01

    environmental conditions and preparations are used. In case of methods able to deal with wet atmospheres and nanometre resolution, sub-sampling millimetre or micrometre size hydrated samples without inducing shearing or fractures is also not still proven. Optimization of impregnation procedure for water saturated clay samples still plays a pivotal role for applying the most advanced imaging techniques at the nanometre scale. In addition, natural clay rocks in sedimentary basins or engineered barriers in deep repositories could not swell or shrink by changing their macroscopic volume. Such case corresponds to constrained swelling conditions that implies a distribution of pore and water highly contrasting with dry state and hydrated state in free swelling conditions. Moreover, swelling rate could potentially be limited down to the crystal scale. As probing in-situ the organization of hydrated and compacted clay materials into an odometer set-up is challenging, it is really poorly documented in literature. Note that opening an odometer setup and analyzing a sample is not a constrained swelling condition: immediate swelling and change of pore space occurs. Natural clayey rocks in sedimentary basins display additional spatial variations of mineral and porosity distributions with contrasted spatial frequencies or gradual evolutions due to sedimentation cycles, temporal evolutions of climate, variations of sources, diagenesis, etc. At the scale of a laboratory sample, geological history still imposes a heterogeneous spatial distribution of mineral and pore space down-scaling to the crystal scale. Localizing samples with a millimetre size or less against the heterogeneities encountered at larger scale is thus important before analyzing it with a nanometre resolution. The best is to follow a continuous down-scaling approach all along the characterization of the organization, keeping the sample in a similar state between each technique. Here we propose a method to fully impregnate up to

  19. A mathematical study of the influence of pore geometry on diffusion

    International Nuclear Information System (INIS)

    Melnyk, T.W.; Skeet, A.M.M.

    1987-01-01

    Diffusion into the pore space of plutonic rock matrices is an important phenomenon that can affect the migration of radionuclides and other contaminants in groundwater systems. The effects of irregular pore geometry on rates of diffusive transport are examined in this report. Approximate equations describing steady-state diffusive transport in pores of variable geometry are presented and indicate a strong dependence of the diffusion rates on the geometry of the pore space. Finite-element diffusion calculations were carried out for a series of pores containing storage spaces with rectangular cross-sections. The calculations showed the time taken to reach steady-state is affected by the pore geometry. The results of these calculations were used to simulate typical laboratory diffusion experiments and to evaluate the interpretation of effective diffusion parameters obtained from analysis of the simulated experiments using both capillary and dead-end pore models of the pore space. A capillary model of the pore space requires two independent parameters to characterize the pore space, and is shown, in general, to be inadequate to describe the pre-steady-state regime. The diffusion of radionuclides in groundwater systems lies in this non-steady-state regime. More complex mathematical descriptions of the pore space, using more variables and parameters, can accurately describe the non-steady-state transport. The capillary model, with effective parameter values, gives reasonable results when the size of the dead-end pore space is small relative to the overall diffusion distance under consideration

  20. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  1. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    Science.gov (United States)

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  2. Digital Rock Studies of Tight Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-07

    This technical report summarizes some recently developed approaches to studies of rock properties at a pore scale. Digital rock approach is complementary to laboratory and field studies. It can be especially helpful in situations where experimental data are uncertain, or are difficult or impossible to obtain. Digitized binary images of the pore geometries of natural rocks obtained by different imaging techniques are the input data. Computer-generated models of natural rocks can be used instead of images in a case where microtomography data are unavailable, or the resolution of the tools is insufficient to adequately characterize the features of interest. Simulations of creeping viscous flow in pores produce estimates of Darcy permeability. Maximal Inscribed Spheres calculations estimate two-phase fluid distribution in capillary equilibrium. A combination of both produce relative permeability curves. Computer-generated rock models were employed to study two-phase properties of fractured rocks, or tight sands with slit-like pores, too narrow to be characterized with micro-tomography. Various scenarios can simulate different fluid displacement mechanisms, from piston-like drainage to liquid dropout at the dew point. A finite differences discretization of Stokes equation is developed to simulate flow in the pore space of natural rocks. The numerical schemes are capable to handle both no-slip and slippage flows. An upscaling procedure estimates the permeability by subsampling a large data set. Capillary equilibrium and capillary pressure curves are efficiently estimated with the method of maximal inscribed spheres both an arbitrary contact angle. The algorithms can handle gigobytes of data on a desktop workstation. Customized QuickHull algorithms model natural rocks. Capillary pressure curves evaluated from computer-generated images mimic those obtained for microtomography data.

  3. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  4. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  5. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.

    Science.gov (United States)

    Wigger, Cornelia; Van Loon, Luc R

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks

    Science.gov (United States)

    Wigger, Cornelia; Van Loon, Luc R.

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.

  7. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    Science.gov (United States)

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  8. Microtomography and pore-scale modeling of two-phase Fluid Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.

    2010-10-19

    Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.

  9. A physico-chemical characterisation technique for determining the pore-water chemistry in argillaceous rocks

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1991-09-01

    A prerequisite for carrying out credible sorption studies is the definition of an aqueous phase composition which is in equilibrium with the solid phase. Experimental methods and data analysis procedures are described which enable an equilibrium water composition to be produced for argillaceous rocks which is not dependent on liquid to solid (L:S) ratios. Since a Valanginian marl formation is under consideration by Nagra as a potential rock for the disposal of low and short-lived medium level radioactive waste in Switzerland, samples of this material were chosen for this investigation. Aqueous phase and nickel ethylenediamine extraction experiments were carried out at different L:S ratios under controlled atmosphere conditions (P CO 2 =10 -2 bar, O 2 ≤ 5 ppm ). The results from these tests and petrographical examinations were combined to define the system in terms of the physico-chemical characteristics of the clay mineral component (CEC and cation occupancies) and the identities of highly soluble and solubility limited phases in the marl. The geochemical code PHREEQE was used in conjunction with the Gapon equations to calculate the pore water composition. This work clearly showed that pore water chemistries obtained from aqueous extracts alone may lead to an arbitrary water chemistry in argillaceous rock systems, particularly with respect to ionic composition and ionic strength, which may have important consequences for radionuclide speciation and sorption studies. (author) 11 figs., 12 tabs., 25 refs

  10. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under

  11. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  12. Pore Effect on the Occurrence and Formation of Gas Hydrate in Permafrost of Qilian Mountain, Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Gao, H.; Lu, H.; Lu, Z.

    2014-12-01

    Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.

  13. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  14. Pore Space investigation in natural and artificial materials: POSINAM (FP7-MC-IAPP) project (15.10.2009-14.10.2013)

    International Nuclear Information System (INIS)

    Parneix, J.C.; Bouchet, A.; Mazurier, A.; Ramirez, S.; Rassineux, F.; Siitari-Kauppi, M.; Ikonen, J.; Sammaljaervi, J.; Helariutta, K.; Sardini, P.; Bonifait, T.; Hellmuth, K.H.; Pret, D.; Gallier, J.; Shroff Rama, M.

    2012-01-01

    Document available in extended abstract form only. Waste storage requires the analysis of various types of materials in order to measure spatial relationship and connectivity of their pores as well as quantity, shape, and size. It is necessary to describe pore space, to model fluid transport and to identify the material composition in order to understand the 3D organisation of the solids and the pores, and to stabilise the structure of this material for its observation. To characterise heterogeneous spatial porosities of these materials a saturation technique with a 14 C- or 3 H PMMA resin was developed at HYRL. The method includes saturation of matrices with radiolabelled un-viscous methylmethacrylate MMA, irradiation polymerisation and auto-radiographic detection of the sawn surfaces. POSINAM project has been proposed by the SME called ERM due to the increasing need of porosity characterisation of geo-materials by large industrial companies. These demands consist of research applications that will be based on the enhancement of the knowledge on altered natural rocks or materials as well as, saturation and imaging techniques for characterising the porosity of these materials. Thus, there is an essential need for a transfer of technology and knowledge between HYDRASA/HYRL labs and ERM. The combination of developed skills by private and academic partner labs along with ERM represents an innovative means to solve industrial issues on quantification of porosity in materials. The objective of the research program is to produce realistic 3D models of natural and artificial materials including porosity distribution. To achieve this goal it is necessary: To improve knowledge of petrography on rocks, cements and soils, etc. related to porosity organization (HYDRASA). To characterize heterogeneous spatial porosities of these materials using a saturation technique with 14 C- or 3 H doped PMMA resin. To provide service for industries which need 3D models of their materials

  15. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  16. Migration of radionuclides in fissured rock

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1982-01-01

    Some computed results of radionuclide migration in fissured rock are presented. The computations are based on a model which describes flow as occurring in a multitude of independent fissures (stratified flow). This gives rise to strong dispersion of channeling. The radionuclide migration in the individual fissures is modelled by the advection equation on a parallel walled channel with porous walls. The nuclides may diffuse into the pores and sorb reversibly on the pore surfaces. The effluent rates of 23 important nuclides are presented as functions of distance and time for various of important parameters such as rock permeability, diffusion coefficients, release rates, time of first release, fissure spacing and fissure width distribution. (Author)

  17. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  18. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    Science.gov (United States)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  19. Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry

    International Nuclear Information System (INIS)

    Schlueter, E.M.; Cook, N.G.W.

    1991-02-01

    The determination of hydrologic parameters that characterize fluid flow through rock masses on a large scale (e.g., hydraulic conductivity, capillary pressure, and relative permeability) is crucial to activities such as the planning and control of enhanced oil recovery operations, and the design of nuclear waste repositories. Hydraulic permeability and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. The cross-sectional areas and perimeters of the individual pores are estimated from two-dimensional scanning electron micrographs of rock sections. The hydraulic and electrical conductivities of the individual pores are determined from these geometrical parameters, using Darcy's law and Ohm's law. Account is taken of the fact that the cross-sections are randomly oriented with respect to the channel axes, and for possible variation of cross-sectional area along the length of the pores. The effective medium theory from solid-state physics is then used to determine an effective average conductance of each pore. Finally, the pores are assumed to be arranged on a cubic lattice, which allows the calculation of overall macroscopic values for the permeability and the electrical conductivity. Preliminary results using Berea, Boise, Massilon and Saint-Gilles sandstones show reasonably close agreement between the predicted and measured transport properties. 12 refs., 5 figs., 1 tab

  20. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    Science.gov (United States)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this

  1. Pore Scale Investigation of Wettability Alteration Through Chemically-Tuned Waterflooding in Oil-Wet Carbonate Rocks Using X-Ray Micro-Ct Imaging

    Science.gov (United States)

    Tawfik, M. S.; Karpyn, Z.

    2017-12-01

    Carbonate reservoirs host more than half of the remaining oil reserves worldwide. Due to their complex pore structure and intermediate to oil-wet nature, it is challenging to produce the remaining oil from these formations. For two decades, chemically tuned waterflooding (CTWF) has gained the attention of many researchers. Experimental, numerical, and field studies suggest that changes in ion composition of injected brine can increase oil recovery in carbonate reservoirs via wettability alteration. However, previous studies explaining the improvement in oil recovery by wettability alteration deduce wettability based on indirect measurements, including sessile drop contact angle measurements on polished rocks, relative permeability, chromatographic separation of SCN- and potential determining ions (PDIs), etc. CTWF literature offers no direct measurement of wettability alteration at the pore scale. This study proposes a direct pore-scale measurement of changes in interfacial curvatures before and after CTWF. Micro-coreflood experiments are performed to investigate the effect of injection brine salinity, ion composition and temperature on rock wettability at the pore scale. X-ray micro-CT scanning is used to obtain 3D image sets to calculate in-situ contact angle distributions. The study also aims to find a correlation between the magnitude of improvement in oil recovery at the macro-scale and the corresponding contact angle distribution at the pore-scale at different experimental conditions. Hence, macro-scale coreflood experiments are performed using the same conditions as the micro-corefloods. Macro-scale coreflood experiments have shown that brines with higher concentration of Ca2+, Mg2+ and SO42- ions have higher recoveries compared to standard seawater. This translates to wettability alteration into a more intermediate-wet state. This study enhances the understanding of the pore-scale physico-chemical mechanisms controlling wettability alteration via CTWF

  2. Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure

    Science.gov (United States)

    Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.

    2017-12-01

    Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.

  3. Matrix diffusion of simple cations, anions, and neutral species in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Sato, Haruo

    1999-01-01

    The diffusion of radionuclides into the pore spaces of a rock matrix and the pore properties in fractured crystalline rocks were studied. The work concentrated on the predominant water-conducting fracture system in the host granodiorite of the Kamaishi In Situ Test Site, which consists of fracture fillings and altered grandodiorite. Through-diffusion experiments to obtain effective and apparent diffusion coefficients (De and Da, respectively) for Na + , Cs + , HTO, Cl - , and SeO 3 2- as a function of ionic charge were conducted through the fracture fillings and altered and intact granodiorite. The total porosity φ, density, pore-size distribution, and specific surface area of the pores of the rocks were also determined by a water saturation method and Hg porosimetry. The average φ is, in the order from highest to lowest, as follows: fracture fillings (5.6%) greater than altered granodiorite (3.2%) greater than intact granodiorite (2.3%), and gradually it decreases into the matrix. The pore sizes of the intact and altered granodiorite range from 10 nm to 200 microm, and the fracture fillings from 50 nm to 200 microm, but almost all pores are found around 0.1 and 200 microm in the fracture fillings. The De values for all species are in the following order: fracture fillings greater than altered granodiorite greater than intact granodiorite, as with the rock porosity. In addition. no effect of ionic charge on De is found. No significant dependence for Da values on the rock porosity is found. The formation factors FF and geometric factors G of the rocks were evaluated by normalizing the free water diffusion coefficient Do for each species. The FF decreased with decreasing rock porosity, and an empirical equation for the rock porosity was derived to be FF = φ 1.57±0.02 . The G values showed a tendency to slightly decrease with decreasing rock porosity, but they were approximately constant (0.12 to 0.19) in this porosity range. This indicates that accessible pores

  4. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    Science.gov (United States)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence

  5. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    Science.gov (United States)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  6. Pore size determination using normalized J-function for different hydraulic flow units

    Directory of Open Access Journals (Sweden)

    Ali Abedini

    2015-06-01

    Full Text Available Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies. Precise estimation of this parameter leads to enhance the reservoir simulation, process evaluation, and further forecasting of reservoir behavior. Hence, it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy. In the present study, a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East. The capillary pressure data vs. water saturation (Pc–Sw as well as routine reservoir core analysis include porosity (φ and permeability (k were used to develop the J-function. First, the normalized porosity (φz, the rock quality index (RQI, and the flow zone indicator (FZI concepts were used to categorize all data into discrete hydraulic flow units (HFU containing unique pore geometry and bedding characteristics. Thereafter, the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU. The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry. Eventually, the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU. The proposed equation is a function of reservoir rock characteristics including φz, FZI, lithology index (J*, and pore size distribution index (ɛ. This methodology used, the reservoir under study was classified into five discrete HFU with unique equations for permeability, normalized J-function and pore size. The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock, specially the one with high range of heterogeneity in the reservoir rock properties.

  7. Rock Pore Structure as Main Reason of Rock Deterioration

    Directory of Open Access Journals (Sweden)

    Ondrášik Martin

    2014-03-01

    Full Text Available Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite.

  8. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  9. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-05-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  10. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-01-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  11. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    Science.gov (United States)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  12. Mechanical Properties of Rocks: Pore Pressure and Scale Effects Propriétés mécaniques des roches : pression de pore et effets d'échelle

    Directory of Open Access Journals (Sweden)

    Gueguen Y.

    2006-12-01

    Full Text Available Pore pressure plays a major role when considering rocks mechanical properties. In that field, the concept of effective pressure is a key one to deal with fluids mechanical effects. However, its frequent use has been the source of frequent confusing statements. Because of the various meanings which have been attached to that concept, an attempt is made in this paper to clarify it and examine the validity of its various uses relative to rock mechanical behaviour or rock properties. At a macroscopic scale, thermodynamics provides a powerful tool to investigate this. Reversible or irreversible thermodynamics provide general relationships of great interest. But because real rocks are non homogeneous systems, a microscopic approach is also required in order to analyze the mechanical properties from a description of the small scale processes. The microscopic approach is complementary of the macroscopic thermodynamic one as it leads to the calculation of the effective properties of the medium. In this last approach, effective medium theory is a powerful tool. The effective properties as derived from the microscale can be nicely combined to thermodynamic relations to interpret pore fluid pressure effects and scale effects. The example of elastic properties of porous rocks is more specifically emphasized to illustrate this because of both its intrinsic interest and importance as far as applications are concerned. La pression de pore joue un rôle de première importance dans la considération des propriétés mécaniques des roches. Dans ce domaine, le concept de contrainte effective est essentiel pour aborder les effets mécaniques. Toutefois, son utilisation fréquente a conduit à de nombreuses affirmations trompeuses. Compte tenu des significations diverses accordées à ce concept, nous tentons ici de le clarifier et examinons le domaine d'application de ses divers emplois dans le cadre du comportement mécanique ou des propriétés des roches. À l

  13. Discussion on the origin of sedimentary rock resistivity

    International Nuclear Information System (INIS)

    Dong Gangjian

    2012-01-01

    Conduction current way of sedimentary rock sedimentary rock is caused by the internal structure of sedimentary rock sedimentary rock pore resistance depends on the salinity of pore water and clay content and distribution. Resistivity of sedimentary rock sedimentary rock major factor in mineral composition, water resistance, oil resistance. and sedimentary structures. In practice, we should give full attention to the difference between lithology and physical properties. (author)

  14. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  15. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  16. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  17. Modelling of tracer profiles in pore water of argillaceous rocks in the Benken borehole

    International Nuclear Information System (INIS)

    Gimmi, T.; Waber, H. N.

    2004-12-01

    Isotope tracers offer unique possibilities for analysing flow and transport processes over large scales of time and space. This is especially relevant for low-permeability media like clay stones, where transport is typically very slow and, consequently, difficult to investigate. Such lithologies are currently being investigated in several countries as potential host rocks for the disposal of radioactive or other hazardous waste. In the deep borehole at Benken (north-eastern Switzerland), a sequence of aquifers and argillaceous aquitards was investigated. Water samples were obtained from four formations (Malm, Keuper, Muschelkalk, and Buntsandstein). The Malm and the Keuper aquifer delimit a sequence of clay stones and marls at depth from about 400 to 700 m with hydraulic conductivities generally below 10 -13 m s -1 . Profiles of δ 18 O, δ 2 H, chloride, and δ 37 Cl in pore fluids of these formations were obtained. The chemical, isotopic, and noble gas composition of the ground water samples indicated that no cross-formation flow occurred, but that - with the exception of the Malm - the waters evolved geochemically within the formation from which they were sampled. Infiltration conditions could also be inferred from the data. The pore water profiles in the low-permeability zone show clear trends that hint at diffusion-dominated transport processes. To evaluate possible mechanisms and time scales of evolution of the profiles, a series of advective-dispersive model calculations was performed. Varying initial conditions as well as the type and concentration values of boundary conditions revealed the following: (i), molecular diffusion to the underlying aquifer can explain the general features of the isotope profiles, (ii), no signatures of advective flow could be detected, (iii), the evolution time is in the order of 0.5 to 1 Ma (relying on laboratory diffusion coefficients) with a possible range of about 0.2 to 2 Ma, which is geologically plausible, and, (iv

  18. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  19. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  20. Determination of Pore Pressure from Sonic Log: a Case Study on One of Iran Carbonate Reservoir Rocks

    Directory of Open Access Journals (Sweden)

    Morteza Azadpour

    2015-07-01

    Full Text Available Pore pressureis defined as the pressure of the fluid inside the pore space of the formation, which is also known as the formation pressure. When the pore pressure is higher than hydrostatic pressure, it is referred to as overpressure. Knowledge of this pressure is essential for cost-effective drilling, safe well planning, and efficient reservoir modeling. The main objective of this study is to estimate the formation pore pressure as a reliable mud weight pressure using well log data at one of oil fields in the south of Iran. To obtain this goal, the formation pore pressure is estimated from well logging data by applying Eaton’s prediction method with some modifications. In this way, sonic transient time trend line is separated by lithology changes and recalibrated by Weakley’s approach. The created sonic transient time is used to create an overlay pore pressure based on Eaton’s method and is led to pore pressure determination. The results are compared with the pore pressure estimated from commonly used methods such as Eaton’s and Bowers’s methods. The determined pore pressure from Weakley’s approach shows some improvements in comparison with Eaton’s method. However, the results of Bowers’s method, in comparison with the other two methods, show relatively better agreement with the mud weight pressure values.

  1. Convex hull approach for determining rock representative elementary volume for multiple petrophysical parameters using pore-scale imaging and Lattice-Boltzmann modelling

    Science.gov (United States)

    Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.

    2017-06-01

    In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  2. What Happens Where the Water and the Rock Touch in Small Space Bodies

    Science.gov (United States)

    Byrne, P. K.; Regensburger, P. V.; Klimczak, C.; Bohnenstiehl, D. R.; Dombard, A. J.; Hauck, S. A., II

    2017-12-01

    There are several small space bodies that go around bigger worlds that might have a layer of water under a layer of ice. Lots of study has been done to understand the outside ice layer of these small space bodies, because the ice can tells us important things about the big water layer under it. Some of these small space bodies are very interesting because the right things for life—water, hot rock, and food—might be at the bottom of the water layer, where it touches the top of the next layer down, which is made of rock. But it is very hard to understand what this rock at the bottom of the water is like, because we can't see it. So, we are imagining what this rock is like by thinking about what the rock is like under the water layer on our own world. If hot rock comes out of the rock layer through cracks under the water, the cold of the water makes the hot rock go very cold very fast, and it makes funny rolls as it does so. This might happen on some small space bodies that are hot enough on the inside to make hot rock. We know that on our own world the rock layer under the water is wet to as far down as cracks can go, so it makes sense that this is true for small space bodies, too. We did some thinking about numbers and found out that the cracks can go a few ten hundred steps into the rock layer on small space bodies, but for bigger (well, not quite so small) space bodies, the cracks can go at least tens of ten hundred steps into the rock layer. This means that water goes into the rock layer this much, too. But get this: some small bodies are not really that small—one of them is bigger than the first world from the Sun! And on a few of these big (small) bodies, the layer of water is so heavy that the bottom of that water is pushed together from all sides and turns into a type of hot ice. This means that, for these big (small) worlds, the water can't get into the rock layer through cracks (since there is a layer of hot ice in the way), and so these bodies are

  3. The RRP Project: investigating radionuclide retardation in the host rock

    International Nuclear Information System (INIS)

    Alexander, W.R.; Frieg, B.; Ota, K.; Bossart, P.

    1996-01-01

    The Radionuclide Retardation Project (RRP), which is a joint Nagra/PNC (Power Reactor and Nuclear Fuel Development Corp.) project, has two components: the first (the Excavation Project, EP) looks at the behaviour of radionuclides which are so strongly retarded in the experimental shear zone that they cannot pass through the zones in experimentally reasonable times. In order to determine where radionuclide retardation has occurred in the pore space, as well as the flowpath geometry in the shear zone, the entire injection zone has to be excavated and taken back to the laboratory for analysis of the sites of retardation of the radionuclides. This approach has the advantage of allowing a detailed 3D description of the experimental shear zone. The aim of the second component of the project (Connected Porosities, CP) is to examine the fate of those radionuclides which diffuse out of the main water-conducting features in the shear zone and into the pore spaces of the rock matrix, where they become trapped. This represents a potentially significant retardation mechanism in a repository host rock. (author) 8 figs., refs

  4. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  5. Densification and Grain Growth in Polycrystalline Olivine Rocks Synthesized By Evacuated Hot-Pressing

    Science.gov (United States)

    Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.

    2017-12-01

    Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on

  6. Retardation of radionuclide transport by fracture flow in granite and argillaceous rocks

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Green, A.

    1985-11-01

    Laboratory techniques have been developed for the measurement of diffusion rates and permeabilities through highly consolidated rock samples. The work has predominantly concentrated on the generation of diffusion data for slates and granites in particular. Rock properties fundamental to mass transfer processes have been obtained. Diffusion rates have been measured through weathered granite fissure surfaces and as a function of distance from such surfaces on core samples obtained from Troon, Cornwall. Pore connectivity over metre distances in granite cores has been shown to exist and diffusion coefficients were measured as a function of confining pressure in a specially designed rig. The Dsub(i) (intrinsic diffusion coefficient) values determined at ambient pressure were approximately a factor of 2 greater than those measured at pressures equivalent to 500 m of rock overburden. Some initial experiments on the accessibility of the pore space in granites to colloids based on a permeability technique indicated that such particles neither blocked pores nor penetrated through 15 mm thick samples over times of the order 2 to 3 thousand hours. Diffusion rates through samples of Canadian granites, some of which contained weathered fissure surfaces, were measured. (author)

  7. Effect of pore structure on chemico-osmotic, diffusion and hydraulic properties of mud-stones

    International Nuclear Information System (INIS)

    Takeda, M.; Manaka, M.; Ito, K.; Miyoshi, S.; Tokunaga, T.

    2012-01-01

    account for a large portion of total pore spaces, the large size pores can inhibit the chemical osmosis potentially induced by the small pore spaces. The experimental approach adopted in this study is quite simple, and hence, the experimental data can be interpreted by straightforward manner to approximate the chemico-osmotic, diffusion and hydraulic parameters from a same rock sample. The experimental protocol presented here will be useful to collect fundamental parameters necessary for researches related to chemical osmosis in sedimentary formations, which remain to be investigated

  8. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs

    OpenAIRE

    FOURNIER , François; Pellerin , Matthieu; Villeneuve , Quentin; Teillet , Thomas; Hong , Fei; Poli , Emmanuelle; Borgomano , Jean; Léonide , Philippe; Hairabian , Alex

    2018-01-01

    International audience; The equivalent pore aspect ratios (EPAR) provide a tool to detect pore types by combining P-and S-wave velocities, porosity, bulk density and mineralogical composition of carbonate rocks. The integration of laboratory measurements, well log data and petrographic analysis of 468 carbonate samples from various depositional and diagenetic settings (Lower Cretaceous pre-salt non-marine carbonates from offshore Brazil, Lower Cretaceous shallow-water platform carbonates from...

  9. Petrophysical examination of CO₂-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir (central Poland) for CO₂ storage.

    Science.gov (United States)

    Tarkowski, Radosław; Wdowin, Magdalena; Manecki, Maciej

    2015-01-01

    The objective of the study was determination of experiment-induced alterations and changes in the properties of reservoir rocks and sealing rocks sampled from potential reservoir for CO₂. In the experiment, rocks submerged in brine in specially constructed reactors were subjected to CO₂ pressure of 6 MPa for 20 months at room temperature. Samples of Lower Jurassic reservoir rocks and sealing rocks (sandstones, claystones, and mudstones) from the Zaosie Anticline (central Poland) were analysed for their petrophysical properties (specific surface area, porosity, pore size and distribution) before and after the experiment. Comparison of the ionic composition the brines before and after the experiment demonstrated an increase in total dissolved solids as well as the concentration of sulphates and calcium ions. This indicates partial dissolution of the rock matrix and the cements. As a result of the reaction, the properties of reservoir rocks did not changed significantly and should not affect the process of CO₂ storage. In the case of the sealing rocks, however, the porosity, the framework density, as well as the average capillary and threshold diameter increased. Also, the pore distribution in the pore space changed in favour of larger pores. The reasons for these changes could not be explained by petrographic characteristics and should be thoroughly investigated.

  10. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  11. Pore-scale analysis of electrical properties in thinly bedded rock using digital rock physics

    International Nuclear Information System (INIS)

    Sun, Jianmeng; Zhao, Jianpeng; Liu, Xuefeng; Chen, Hui; Jiang, LiMing; Zhang, JinYan

    2014-01-01

    We investigated the electrical properties of laminated rock consist of macro-porous layers and micro-porous layers based on digital rock technology. Due to the bedding effect and anisotropy, traditional Archie equations cannot well describe the electrical behavior of laminated rock. The RI-Sw curve of laminated rock shows a nonlinear relationship. The RI-Sw curve can be divided into two linear segments with different saturation exponent. Laminated sand-shale sequences and laminated sands of different porosity or grain size will yield macroscopic electrical anisotropy. Numerical simulation and theoretical analysis lead to the conclusion that electrical anisotropy coefficient of laminated rock is a strong function of water saturation. The function curve can be divided into three segments by the turning point. Therefore, the electrical behavior of laminated rock should be considered in oil exploration and development. (paper)

  12. Investigation of porosity and pore structure adjacent to fractures by PMMA method. Samples taken from drill cores at Olkiluoto

    International Nuclear Information System (INIS)

    Siitari-Kauppi, M.; Ikonen, J.; Kauppi, L.; Lindberg, A.

    2010-10-01

    The porosity, pore structure and micro fracturing of 18 rock cores from drill holes OLKR4, OL-KR11, OL-KR13, OL-KR14, OL-KR15, OL-KR20 and OL-KR25. The porosity was investigated by the C-14-PMMA autoradiographic method. The main focus was to analyse the changes in porosity and mineralogy adjacent to the typical fractures in the bedrock of Olkiluoto as a mean of porosity profiles. The method makes it possible to study the spatial distribution of the pore space in rock, and the heterogeneity of rock matrices is revealed at the sub micrometre to the centimetre scale. Subsequent autoradiography and digital image analysis make it possible to analyse features limited in size by the range of C-14 beta radiation. The description of the method was given in Posiva working report 2009-03. The samples for this work were chosen in April 2008. The C-14-PMMA method involves the impregnation of centimetre-scale rock cores with C-14 labelled methylmethacrylate (C-14-MMA) in a vacuum, irradiation polymerisation, autoradiography and optical densitometry using digital image-processing techniques. Impregnation with C-14-MMA, a labelled low-molecular-weight and lowviscosity monomer which wets the silicate surfaces well and which can be fixed by polymerisation provides information about the accessible pore space in crystalline rock that cannot be obtained using other methods. The microscopy analyses for mineral identification were done for every PMMA impregnated sample in Geological Survey of Finland. The total porosities of the studied rock cores varied between 0.1 % and 8 %. However, spatially the porosities of 30 - 40 % were determined for the minerals that were strongly altered. The porosity changes were observed adjacent to the fracture surfaces forming from a few to several millimetres porous zones. The heterogeneity of the porosity patterns adjacent to the fracture surfaces was abundant due to mineral alteration. (orig.)

  13. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.; Katsube, T.J.; Sanford, W.E.; Univ. of Tennessee, Knoxville, TN; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method

  14. Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation.

    Science.gov (United States)

    Munawar, Muhammad Jawad; Lin, Chengyan; Cnudde, Veerle; Bultreys, Tom; Dong, Chunmei; Zhang, Xianguo; De Boever, Wesley; Zahid, Muhammad Aleem; Wu, Yuqi

    2018-03-26

    Pore scale flow simulations heavily depend on petrographic characterizing and modeling of reservoir rocks. Mineral phase segmentation and pore network modeling are crucial stages in micro-CT based rock modeling. The success of the pore network model (PNM) to predict petrophysical properties relies on image segmentation, image resolution and most importantly nature of rock (homogenous, complex or microporous). The pore network modeling has experienced extensive research and development during last decade, however the application of these models to a variety of naturally heterogenous reservoir rock is still a challenge. In this paper, four samples from a low permeable to tight sandstone reservoir were used to characterize their petrographic and petrophysical properties using high-resolution micro-CT imaging. The phase segmentation analysis from micro-CT images shows that 5-6% microporous regions are present in kaolinite rich sandstone (E3 and E4), while 1.7-1.8% are present in illite rich sandstone (E1 and E2). The pore system percolates without micropores in E1 and E2 while it does not percolate without micropores in E3 and E4. In E1 and E2, total MICP porosity is equal to the volume percent of macrospores determined from micro-CT images, which indicate that the macropores are well connected and microspores do not play any role in non-wetting fluid (mercury) displacement process. Whereas in E3 and E4 sandstones, the volume percent of micropores is far less (almost 50%) than the total MICP porosity which means that almost half of the pore space was not detected by the micro-CT scan. PNM behaved well in E1 and E2 where better agreement exists in PNM and MICP measurements. While E3 and E4 exhibit multiscale pore space which cannot be addressed with single scale PNM method, a multiscale approach is needed to characterize such complex rocks. This study provides helpful insights towards the application of existing micro-CT based petrographic characterization methodology

  15. Non disturbing characterization and quantification of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electro-spray and atmospheric pressure chemical ionization modes

    International Nuclear Information System (INIS)

    Huclier-Markai, S.; Landesman, C.; Grambow, B.; Rogniaux, H.; Monteau, F.; Vinsot, A.

    2010-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian formation (COx) rock may contain up to 1% w/w of organic Carbon. Most of the Organic Matter (OM) is attached to the mineral particles whereas a small portion is present as Dissolved Organic Matter (DOM) in the pore water. In environmental studies, Natural Organic Matter (NOM) plays a key role on the bioavailability and the toxicity of metallic compounds. It is necessary to know the structure of any organic substance in order to assess which chemical and biological reactions occur under environmentally relevant conditions. The 150 Myears solid-bound organic matter of the COx (kerogen) has been already investigated in several studies and originates from a mixture of marine and terrestrial sources. In addition to this, the CCl 4 soluble organic fraction (bitumen) has been already characterized by liquid and gas chromatography coupled to mass spectrometry. It allows proportion and distribution of biological markers to be determined as polar compounds with aromatic and saturated hydrocarbons. DOM was extracted from a crushed clay rock of the COx formation with a high rock/water ratio of about 1500 g/L. Part of the OM from the COx is known to be sensitive to air oxidation which can significantly modify the nature of the bitumen by an overall shift towards lower molecular weight compounds. Therefore, the characteristics of the DOM must be determined in in-situ like conditions if one wants to assess the mobility of DOM in the clay pore space and to evaluate the mobility of heavy metals/ radionuclides. Due to their high binding capacity with metal ions and their colloidal sizes in natural waters, these macromolecules, through complexation reactions, might either enhance the mobility of trace elements, or reduce their migration rates by sorption processes in relation with their size and that of the porous medium. Consequently, the characterization of DOM in anoxic pore water samples from the COx

  16. Multiscale pore structure and constitutive models of fine-grained rocks

    Science.gov (United States)

    Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.

    2017-12-01

    A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  17. Biogeochemical environments of streambed-sediment pore waters withand without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA

    Science.gov (United States)

    Mumford, Adam C.; Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Blum, Alex E.; Young, Lily Y.

    2015-01-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run.

  18. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    Science.gov (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    cementation in a 2D hypothetical core flooding experiment. With this new approach cementation patterns observed in the Allermöhe core samples can be explained now. The obtained results show that the variation of fluid supersaturation within a pore governs spatially heterogeneous anhydrite cementation. This variation and the fluid velocity determine the precipitation. Our numerical simulation results clearly emphasize the necessity to consider the spatial variation of supersaturation on the pore scale. References Baermann A., Kroeger J., Taugs R., Wuestenhagen K., Zarth M. (2000) Anhydrite cementation in Rhaetian Sandstone in Hamburg - Morphology and Structures, Zeitschrift für Angewandte Geologie, 46(3), 138-143 (in German). Clauser C. (2003) Numerical Simulation of Reactive Flow in Hot Aquifers. SHEMAT and processing SHEMAT, Springer Publishers, Heidelberg. Emmanuel S., Berkowitz B. (2007) Effects of pore size controlled solubility on reactive transport in heterogeneous rock, Geophysical Research Letters, 34, L06404. Putnis A., Mauthe G. (2001) The effect of pore size on cementation in porous rocks, Geofluids, 1, 37-41. Wagner R., Kühn M., Meyn V., Pape H., Vath U., Clauser C. (2005) Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite. International Journal of Rock Mechanics and Mining Sciences 42, 1070-1081, doi: 10.1016/ j.ijrmms.2005.05.008.

  19. The connectivity of pore space in mudstones: insights from high-pressure Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry

    NARCIS (Netherlands)

    Klaver, J.; Hemes, S.; Houben, M.; Desbois, G.; Radi, Z.; Urai, J.L.

    2015-01-01

    Study of the pore space in mudstones by mercury intrusion porosimetry is a common but indirect technique and it is not clear which part of the pore space is actually filled with mercury. We studied samples from the Opalinus Clay, Boom Clay, Haynesville Shale, and Bossier Shale Formations using

  20. An Examination of the Space Weathering Patina of Lunar Rock 76015

    Science.gov (United States)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  1. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    Science.gov (United States)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  2. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  3. Pore fluids from the argillaceous rocks of the Harwell region

    International Nuclear Information System (INIS)

    Brightman, M.A.; Bath, A.H.; Cave, M.R.; Darling, W.G.

    1985-06-01

    The aim of this work was to obtain samples of pore water from argillaceous formations in the Harwell area for chemical analysis to provide a background for radionuclide migration studies and regional groundwater flow pattern. This report describes the samples, development of a pore-water squeezing cell and its operation. Chemical and analytical studies are summarized. (UK)

  4. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  5. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  6. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  7. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  8. STUDY ON THE BLASTING SEISMIC DAMAGE CONTROL TECHNOLOGY FOR SMALL SPACING SOFT ROCK TUNNEL

    Directory of Open Access Journals (Sweden)

    Yang Chengzhong

    2017-07-01

    Full Text Available With a lot construction of transportation infrastructure in Chinese mountainous area, because of its unique advantages such as less land occupation, beautiful appearance and convenient route planning, small spacing tunnels are widely used. The shallow buried tunnel with small spacing, the blasting excavation will lead to tunnel surrounding rock especially in the middle rock wall damage and reduce the self-bearing capacity of surrounding rock. Through detecting and analyzing by the geological radar of the excavated red layer soft rock tunnel surrounding rock found that the middle rock wall loose circle thickness of the tunnel reaches to 1.8 m, the vault and sidewall loose circle thickness is about 1.2 m. Through selection of rational strengthening measures and blasting design scheme to improve drilling parameters and methods, as far as possible to protect the integrity and self-bearing capacity of the surrounding rock, the deformation and vibration of the tunnel would be controlled in reasonable limits and ensure the safety of tunnel construction.

  9. The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures

    Science.gov (United States)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-12-01

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.

  10. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  11. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marschall, P.; Horseman, S.; Gimmi, T.

    2005-01-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10 -20 to 10 -21 m 2 and a moderate anisotropy ratio ≤ 10. Porosity depends on clay content and burial depth; values of ∼ 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30% of voids can be classed as macro-pores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drill-cores demonstrate that gas transport through the rock is accompanied by pore water displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macro-pores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gas-fractures). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance. (authors)

  12. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  13. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  14. Physical properties of uranium host rocks and experimental drilling at Long Park, Montrose County, Colorado. Final report

    International Nuclear Information System (INIS)

    Manger, G.E.; Gates, G.L.; Cadigan, R.A.

    1975-01-01

    A core-drilling study in uranium host rocks of the Jurassic Morrison Formation in southwestern Colorado attempted to obtain samples of host rock in its natural state. Three holes were drilled, holes and core were logged for radioactivity and electrical properties. Samples were analyzed for physical and chemical properties. Drilling results suggest that drilling with dried air yields core with least contamination at least cost. Drilling with oil results in maximum core recovery but also maximum cost and significant core contamination. Drilling with water results in contamination and loss of original pore water. A factor group of variables present are: Those positively related to uranium mineralization are poor sorting, percent by weight clay, percent of pore space containing water; negatively related variables are median grain size (mm), electrical resistivity, permeability. Optimum depth to locate ore seems to be at the top of the pore water capillary circulation zone, below the dehydrated no-capillary-circulation zone

  15. Effect of CT image size and resolution on the accuracy of rock property estimates

    Science.gov (United States)

    Bazaikin, Y.; Gurevich, B.; Iglauer, S.; Khachkova, T.; Kolyukhin, D.; Lebedev, M.; Lisitsa, V.; Reshetova, G.

    2017-05-01

    In order to study the effect of the micro-CT scan resolution and size on the accuracy of upscaled digital rock property estimation of core samples Bentheimer sandstone images with the resolution varying from 0.9 μm to 24 μm are used. We statistically show that the correlation length of the pore-to-matrix distribution can be reliably determined for the images with the resolution finer than 9 voxels per correlation length and the representative volume for this property is about 153 correlation length. Similar resolution values for the statistically representative volume are also valid for the estimation of the total porosity, specific surface area, mean curvature, and topology of the pore space. Only the total porosity and the number of isolated pores are stably recovered, whereas geometry and the topological measures of the pore space are strongly affected by the resolution change. We also simulate fluid flow in the pore space and estimate permeability and tortuosity of the sample. The results demonstrate that the representative volume for the transport property calculation should be greater than 50 correlation lengths of pore-to-matrix distribution. On the other hand, permeability estimation based on the statistical analysis of equivalent realizations shows some weak influence of the resolution on the transport properties. The reason for this might be that the characteristic scale of the particular physical processes may affect the result stronger than the model (image) scale.

  16. An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.

    Science.gov (United States)

    2014-07-01

    The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...

  17. Étude de la mouillabilité des roches réservoir à l'échelle du pore par cryomicroscopie électronique à balayage Wettability of Reservoir Rock At the Pore Scale: Contribution of Cryo-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Fassi-Fihri O.

    2006-11-01

    éralogie qui est plutôt homogène. Wettability is generally considered to be one of the principal parameters influencing the distribution, saturation and flow of fluids in porous media. Reservoir rock wettability has long been approached by overall or indirect methods [1] (capillary pressure or relative permeability curves, contact angle, fluid displacement, etc. . Few studies until now have led to a detailed description of porous media with intermediate wettability. - Is there any evidence of an intermediate behavior of fluids in contact with minerals distributed homogeneously throughout the medium, or is there a heterogeneous distribution of water- and oil-wettabilities within the porous medium?- What influence does the local heterogeneity of the minerals (size, geometry, surface chemistry, etc. have on fluid distribution [2 to 7]?The answer to these questions requires a microscopic-scale description of saturated porous media [8 to 11]. By using the imaging and analytical capabilities of a scanning electron microscope coupled with a cold stage unit, fluids can be visualized and identified by detection of their natural tracer element (sulfur for oil and chlorine for brine, and their relative distribution within the pore space can be analyzed in terms of wettability. Results presented here illustrate both the interest of the method and its applicability to actual reservoir rocks. Small cores of the chosen porous media were first saturated with brine, flooded to irreducible water saturation by centrifuging in oil, aged in oil for one month and finally flooded to residual oil saturation by centrifuging in brine. Samples were then frozen in nitrogen slush, freeze fractured and coated before being transferred to the cold stage of the microscope for observation. Experiments were first conducted on porous media with controlled wettability : model sintered glass media, natural clean sandstone (Fontainebleau and clayey sandstones (Vosges, Velaines. All these porous media are

  18. Pore to core scale simulation of the mass transfer with mineral reaction in porous media

    International Nuclear Information System (INIS)

    Bekri, S.; Renard, S.; Delprat-Jannaud, F.

    2015-01-01

    Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff's laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/ permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damkohler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted. (authors)

  19. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-01-01

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  20. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  1. Direct observations of the 3D pore network of a Callovo-Oxfordian clay-stone

    International Nuclear Information System (INIS)

    Robinet, J.C.; Talandier, J.; Davy, C.A.; Ghayaza, M.; Skoczylas, F.; Troadec, D.; Sardini, P.

    2012-01-01

    Document available in extended abstract form only. Long term deep underground storage of radioactive nuclear waste is planned in the East of France within an argillaceous rock layer (the host rock), also called argillite, situated at ca. 450-500 m depth. Andra, the French national agency for nuclear waste management, is in charge of assessing the feasibility, the safety and the performance of this underground disposal. The drilling of storage tunnels generates an Excavated Damaged Zone (EDZ), where argillite is macro-cracked in various locations. This requires strengthening by different means, e.g. shotcrete or pre-fabricated concrete arches. It is also expected that underground water seepage will contribute to argillite sealing: mainly self-sealing, and sealing at the interface with concrete. Sealing phenomena include crystalline swelling of smectitic clay components of argillite and inter-particle swelling of clay minerals due to osmosis mechanisms. Small scale pores and mineral organisation of the COx clay-stone are widely acknowledged to control transfer properties of water, gas and varied solutes. In order to assess these properties, the COx small-scale structure has been imaged down to micrometric resolution by various means, including classical Scanning Electron Microscopy (SEM), X-ray computed microtomography and autoradiography. To go further into pore and mineral characterisation of COx clay-stone, the following investigations are currently under way: (i) acquiring/quantifying the 3D geometry of the pore network of undisturbed COx with a nano-metric resolution and (ii) imaging/quantifying the small-scale (mm-nm) structure of self-sealed volumes. The FIB (Focused Ion Beam) /SEM technique allows performing 3D observations of solid volumes of ca. a few microns, with a resolution of about ten nanometers, by acquiring and computing regularly spaced 2D SEM images. This technique provides quantification of the 3D spatial distribution mainly of macro- and meso-pores

  2. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  3. Characterization and Upscaling of Pore Scale Hydrodynamic Mass Transfer

    Science.gov (United States)

    Gouze, P.; Roubinet, D.; Dentz, M.; Planes, V.; Russian, A.

    2017-12-01

    Imaging reservoir rocks in 3D using X-ray microtomography with spatial resolution ranging from about 1 to 10 mm provides us a unique opportunity not only to characterize pore space geometry but also for simulating hydrodynamical processes. Yet, pores and throats displaying sizes smaller than the resolution cannot be distinguished on the images and must be assigned to a so called microporous phase during the process of image segmentation. Accordingly one simulated mass transfers caused by advection and diffusion in the connected pores (mobile domain) and diffusion in the microporous clusters (immobile domain) using Time Domain Random Walk (TDRW) and developed a set of metrics that can be used to monitor the different mechanisms of transport in the sample, the final objective being of proposing a simple but accurate upscaled 1D model in which the particle travel times in the mobile and immobile domain and the number of mobile-immobile transfer events (called trapping events) are independently distributed random variables characterized by PDFs. For TDRW the solute concentration is represented by the density distribution of non-interacting point-like solute particles which move due to advection and dispersion. The set of metrics derives from different spatial and temporal statistical analyses of the particle motion, and is used for characterizing the particles transport (i) in the mobile domain in relation with the velocity field properties, (ii) in the immobile domain in relation with the structure and the properties of microporous phase and at the mobile-immobile interface. We specifically focused on how to model the trapping frequency and rate into the immobile domain in relation with the structure and the spatial distribution of the mobile-immobile domain interface. This thorough analysis of the particle motion for both simple artificial structures and real rock images allowed us to derive the parametrization of the upscaled 1D model.

  4. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    Science.gov (United States)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  5. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  6. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    Science.gov (United States)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  7. Experimental Methods and Development of Models on Diffusion of Nuclides onto Rocks

    International Nuclear Information System (INIS)

    Park, Chung-Kyun; Lee, Jae-Kwang; Baik, Min-Hoon

    2007-01-01

    In the context of nuclear waste repositories, the rock matrix can act as a barrier against radionuclide migration and matrix diffusion can be an important mechanism for delaying the arrival times to the biosphere. It takes a growing interest whether matrix diffusion is an important retarding and dispersing transport mechanism for solutes carried by groundwater in fractured porous media. It can retard solutes by spreading them from the flowing groundwater into the diluting reservoir of the interconnected pore space of the rock matrix, and providing an increased surface for sorption processes. Diffusion experiments has been carried in crystalline rocks to determine the diffusivities of some radionuclides either by through-diffusion cells or in-diffusion setups. We'd like to compare the experimental methods and their functions according to sorption properties of species

  8. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  9. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  10. An investigation into the effects of pore connectivity on T2 NMR relaxation

    Science.gov (United States)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  11. Measurements of thermal properties of rocks

    International Nuclear Information System (INIS)

    Kumada, Toshiaki

    2001-02-01

    The report concerns the measurement of thermal conductivity and specific heat of supplied sedimental rock B and Funyu rock. The method of measurement of these properties was done with the method which was developed at 1997 and improved much in its accuracy by the present author et al. The porosity of sedimental rock B is 0.55, which is deduced from the density of rock (the porosity deduced from the difference between dry and water filled conditions is 0.42) and the shape and size of pores in rock are much different. Its thermal conductivity is 0.238 W/mK in dry and 1.152 W/mK in water filled conditions respectively, while the thermal conductivity of bentonite is 0.238 W/mK in dry and 1.152 W/mK in water saturated conditions. The difference of thermal conductivity between dry and water saturated conditions is little difference in sedimental rock B and bentonite at same porosity. The porosity of Funyu rock is 0.26 and the shape and size of pores in the rock are uniform. Its thermal conductivity is 0.914 W/mK in dry and 1.405 W/mK in water saturated conditions, while the thermal conductivity of bentonite is 0.606 W/mK in dry and 1.591 W/mK in water saturated conditions respectively. The correlation estimating thermal conductivity of rocks was derived based on Fricke correlation by presuming rocks as a suspension. (author)

  12. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  13. Theoretical Analysis of Pore Pressure Diffusion in Some Basic Rock Mechanics Experiments

    Science.gov (United States)

    Braun, Philipp; Ghabezloo, Siavash; Delage, Pierre; Sulem, Jean; Conil, Nathalie

    2018-05-01

    Non-homogeneity of the pore pressure field in a specimen is an issue for characterization of the thermo-poromechanical behaviour of low-permeability geomaterials, as in the case of the Callovo-Oxfordian claystone ( k radioactive waste disposal in France. In tests with drained boundary conditions, excess pore pressure can result in significant errors in the measurement of material parameters. Analytical solutions are presented for the change in time of the pore pressure field in a specimen submitted to various loading paths and different rates. The pore pressure field in mechanical and thermal undrained tests is simulated with a 1D finite difference model taking into account the dead volume of the drainage system of the triaxial cell connected to the specimen. These solutions provide a simple and efficient tool for the estimation of the conditions that must hold for reliable determination of material parameters and for optimization of various test conditions to minimize the experimental duration, while keeping the measurement errors at an acceptable level.

  14. Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space

    Directory of Open Access Journals (Sweden)

    Seyed Ahmadi

    2014-06-01

    Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm  integral  equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.

  15. Determining Representative Elementary Volume For Multiple Petrophysical Parameters using a Convex Hull Analysis of Digital Rock Data

    Science.gov (United States)

    Shah, S.; Gray, F.; Yang, J.; Crawshaw, J.; Boek, E.

    2016-12-01

    Advances in 3D pore-scale imaging and computational methods have allowed an exceptionally detailed quantitative and qualitative analysis of the fluid flow in complex porous media. A fundamental problem in pore-scale imaging and modelling is how to represent and model the range of scales encountered in porous media, starting from the smallest pore spaces. In this study, a novel method is presented for determining the representative elementary volume (REV) of a rock for several parameters simultaneously. We calculate the two main macroscopic petrophysical parameters, porosity and single-phase permeability, using micro CT imaging and Lattice Boltzmann (LB) simulations for 14 different porous media, including sandpacks, sandstones and carbonates. The concept of the `Convex Hull' is then applied to calculate the REV for both parameters simultaneously using a plot of the area of the convex hull as a function of the sub-volume, capturing the different scales of heterogeneity from the pore-scale imaging. The results also show that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size suggesting a computationally efficient way to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.

  16. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  17. Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Pore Space

    Science.gov (United States)

    Fan, M.; McClure, J. E.; Han, Y.; Chen, C.

    2016-12-01

    In the oil and gas industry, the performance of proppant pack in hydraulically created fractures has a significant influence on fracture conductivity. A better understanding of proppant transport and deposition pattern in a hydraulic fracture is vital for effective and economical production within oil and gas reservoirs. In this research, a numerical modeling approach, combining Particle Flow Code (PFC) and GPU-enhanced lattice Boltzmann simulator (GELBS), is adopted to advance the understanding of the interaction between proppant particle packing, depletion of reservoir formation, and transport of reservoir flow through the pore space. In this numerical work flow, PFC is used to simulate effective stress increase and proppant particle movement and rearrangement under increasing mechanical loading. The pore structure of the proppant pack evolves subsequently and the geometrical data are output for lattice Boltzmann (LB) simulation of proppant pack permeability. Three different proppant packs with fixed particle concentration and 12/18, 16/30, and 20/40 mesh sizes are generated. These proppant packs are compressed with specified loading stress and their subsequent geometries are used for fluid flow simulations. The simulation results are in good agreement with experimental observations, e.g., the conductivity of proppant packs decreases with increasing effective stress. Three proppant packs with the same average diameter were generated using different coefficients of variation (COVs) for the proppant diameter (namely cov5%, cov20%, and cov30%). By using the coupled PFC-LBM work flow, the proppant pack permeability as functions of effective stress and porosity is investigated. The results show that the proppant pack with a higher proppant diameter COV has lower permeability and porosity under the same effective stress, because smaller particles fill in the pore space between bigger particles. The relationship between porosity and permeability is also consistent with

  18. Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones

    Science.gov (United States)

    Zimmerman, R. W.; David, E. C.

    2011-12-01

    During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always

  19. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  20. X-ray computed microtomography integrated to petrography for the three-dimensional study of rock porosity; A microtomografia computadorizada de raios x integrada a petrografia no estudo tridimensional de porosidade em rochas

    Energy Technology Data Exchange (ETDEWEB)

    Reis Neto, Joss Manoel dos; Fiori, Alberto Pio; Lopes, Angela Pacheco; Pinto-Coelho, Cristina Valle; Vasconcellos, Eleonora Maria Gouvea; Silva, Gabriel Fischer da [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Geologia; Marchese, Clarice; Secchi, Rodrigo, E-mail: jmreis@ufpr.br, E-mail: fiori@ufpr.br, E-mail: angelalopes@ufpr.br, E-mail: cristinavpc@ufpr.br, E-mail: eleonora@ufpr.br, E-mail: fischergab@hotmail.com, E-mail: clamarchese@hotmail.com, E-mail: rosecchi@yahoo.com.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Lab. de Analise de Minerais e Rochas

    2011-09-15

    The porosity contained in rocks is object of study by geoscientists due to the various genetic implications of these features. However, what have been motivating the search for new analytical techniques to study pores are the petrophysical analyses. The experimental techniques for porosity analysis, such as mercury or gas injection, allow a quantitative approach, but do not allow the visualization of the porous framework. Petrographic analysis by optical microscopy allows the visualization and quantification of intergranular pores, but it is restricted to the two-dimensional space and quantifications are less representative. Technological advances in X-ray computed microtomography (micro-CT) allowed three-dimensional analysis of pore geometry in microscale, in addition to automated volume measurements. The analyses of marble, quartzite, sandstone and dolomite breccia represented in this work and performed under the Project Falhas/ PETROBRAS/UFPR, show the shape, size, connectivity, tortuosity, pore volume and distribution in these rocks, demonstrating the differences in the rocks' porous frameworks. The integration of micro-CT to petrography allows the identification of mineral phases with attenuation of contrasting X-rays, placing the incidence of porosity in the mineralogical context in three dimensions, in addition to the contribution to the consistency of the method. Although the resolution is limited in the X-ray microtomography that was used (the Skyscan model 1172), which does not reach the smallest pore size of some rocks, the integration of both techniques provides new information, of extreme importance for the research about micro-features related to the pores in rocks, helping in genetic interpretations and significantly contributing for the analyses of reservoirs. (author)

  1. The effective stress concept in a jointed rock mass. A literature survey

    International Nuclear Information System (INIS)

    Olsson, Roger

    1997-04-01

    The effective stress concept was defined by Terzaghi in 1923 and was introduced 1936 in a conference at Harvard University. The concept has under a long time been used in soil mechanics to analyse deformations and strength in soils. The effective stress σ' is equal to the total stress σ minus the pore pressure u (σ'=σ-u). The concepts's validity in a jointed rock mass has been investigated by few authors. A literature review of the area has examined many areas to create an overview of the use of the concept. Many rock mechanics and rock engineering books recommend that the expression introduced by Terzaghi is suitable for practical purpose in rock. Nevertheless, it is not really clear if they mean rock or rock mass. Within other areas such as porous rocks, mechanical compressive tests on rock joints and determination of the permeability, a slightly changed expression is used, which reduces the acting pore pressure (σ'=σ-α·u). The α factor can vary between 0 and 1 and is defined differently for different areas. Under assumption that the pore system of the rock mass is sufficiently interconnected, the most relevant expression for a jointed rock mass, that for low effective stresses should the Terzagi's original expression with α=1 be used. But for high normal stresses should α=0.9 be used

  2. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  3. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    Science.gov (United States)

    Fernandes, J. S.; Lima, F. A.; Vieira, S. F.; Reis, P. J.; Appoloni, C. R.

    2015-07-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones.

  4. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    International Nuclear Information System (INIS)

    Fernandes, J S; Lima, F A; Vieira, S F; Reis, P J; Appoloni, C R

    2015-01-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones. (paper)

  5. Stochastic generation of explicit pore structures by thresholding Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)

    2014-11-15

    We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.

  6. Burial stress and elastic strain of carbonate rocks

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2014-01-01

    Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...... the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation...

  7. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Puukko, E.; Heikkinen, T.; Hakanen, M.

    1993-10-01

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  8. Exact effective-stress rules in rock mechanics

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1992-01-01

    The standard paradigm for analysis of rock deformation arises from postulating the existence of ''an equivalent homogeneous porous rock.'' However, data on the pore-pressure dependence of fluid permeability for some rocks cannot be explained using any equivalent homogeneous porous medium. In contrast, a positive result shows that deformation measurements on both high-porosity sandstones and low-porosity granites can be explained adequately in terms of an equivalent two-constituent model of porous rocks, for which exact results have recently been discovered

  9. Pore network quantification of sandstones under experimental CO2 injection using image analysis

    Science.gov (United States)

    Berrezueta, Edgar; González-Menéndez, Luís; Ordóñez-Casado, Berta; Olaya, Peter

    2015-04-01

    Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. Our case study is focused on the application of these techniques to study the evolution of rock pore network subjected to super critical CO2-injection. We have proposed a Digital Image Analysis (DIA) protocol that guarantees measurement reproducibility and reliability. This can be summarized in the following stages: (i) detailed description of mineralogy and texture (before and after CO2-injection) by optical and scanning electron microscopy (SEM) techniques using thin sections; (ii) adjustment and calibration of DIA tools; (iii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers); (iv) study and quantification by DIA that allow (a) identification and isolation of pixels that belong to the same category: minerals vs. pores in each sample and (b) measurement of changes in pore network, after the samples have been exposed to new conditions (in our case: SC-CO2-injection). Finally, interpretation of the petrography and the measured data by an automated approach were done. In our applied study, the DIA results highlight the changes observed by SEM and microscopic techniques, which consisted in a porosity increase when CO2 treatment occurs. Other additional changes were minor: variations in the roughness and roundness of pore edges, and pore aspect ratio, shown in the bigger pore population. Additionally, statistic tests of pore parameters measured were applied to verify that the differences observed between samples before and after CO2-injection were significant.

  10. The role of an evolving porosity in fluid-rock interaction - a synthesis of insights gained in six years of in-situ 4D microtomography experiments

    Science.gov (United States)

    Fusseis, Florian

    2017-04-01

    Effective fluid rock interaction relies on permeable pore space for fluid to move in. In dynamic (tectono-)metamorphic environments, pore space will be transient and subject to continuous modification. As a consequence, transport properties of rocks evolve throughout their metamorphic history, which complicates the interpretation of fossilised traces of fluid-rock interaction in natural rock samples. Thankfully, a large body of processes involved in fluid-rock interaction occur on time scales accessible in experiments, and over the past decades significant insights were gained in many now classical laboratory investigations. Until recently though, fluid-rock interaction could not be observed directly, and processes and rates were inferred through indirect measurements or post-mortem analyses. Studies that utilise x-rays or neutrons to continuously image fluid-mediated processes inside experimental vessels allow, on the one hand, to quantify their rates but also to assess and characterise transient porosity on the grain scale. In this presentation, I will synthesize the findings from several collaborative experimental studies that documented and quantified fluid-rock interaction in 4-dimensional x-ray microtomographic datasets. Most of these experiments were conducted in bespoke x-ray transparent vessels built in Edinburgh and all of them involved a dynamically evolving porosity as a key element of the studied processes. The latter are 1) the dehydration of gypsum single crystals and alabaster, 2) the carbonation of olivine aggregates, 3) pressure solution in polycrystalline salt, and 4) the dolomitisation of various carbonates. The microtomographic time series data enabled the direct observation of the above processes on the grain scale and were used to quantify their advance using sophisticated image analytical workflows. Each of the studies characterised porosity formation or alteration by a particular mechanism relevant to geological scenarios and it became

  11. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    Science.gov (United States)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  12. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  13. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    International Nuclear Information System (INIS)

    Jiang, Meijuan; Spikes, Kyle T

    2016-01-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V _P/V _S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization. (paper)

  14. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  15. Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4)

    Science.gov (United States)

    Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya

    2008-07-01

    Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.

  16. Movement of fossil pore fluids in granite basement, Illinois

    International Nuclear Information System (INIS)

    Couture, R.A.; Seitz, M.G.

    1986-01-01

    The compositions of pore fluids in granite cores from the Precambrian basement in northern Illinois were determined. The estimated chloride concentration in the aqueous phase increases from near zero at the upper contact with sandstone to 2.7 M at 624 m below the contact. Traces of aliphatic oil are present in the overlying sandstone and the upper 516 m of granite, and oil occupies most of the pore space in one sample of unaltered granite 176 m below the contact. The oil has a Δ 13 C of -25%, about the same as average petroleum. The high concentrations of salt more than 500 m below the contact imply that little or no fresh water has reached these levels of the granite by flow. Lower concentrations near the contact are consistent with replacement of brine in the sandstone by fresh water at least 11 m.y. ago and subsequent upward diffusion of salt from the granite. Geologic data suggest that the time of replacement was about 130 Ma. The purpose of the investigation is to study the record of movement of intergranular fluids within a granite pluton. The composition and movement of ground waters can determine the extent that hazardous or radioactive wastes disposed in igneous rock will remain isolated

  17. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    Science.gov (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    Science.gov (United States)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  19. Volcanic instability: the effects of internal pressurisation and consideration of rock mass properties

    Science.gov (United States)

    Thomas, M.; Petford, N.; Bromhead, E. N.

    2003-04-01

    Since the events at mount St Helens during May 1980, there has been considerable attention focused on the mechanisms and consequences of volcanic edifice collapse. As a result catastrophic edifice failure is now recognised as perhaps the most socially devastating natural disaster associated with volcanic activity. The tendency of volcanic edifices to fail appears ubiquitous behaviour, and a number of failure precursors and more importantly triggers have been suggested, of which magmagenic (e.g. thermal and mechanical pore pressure increases) and seismogenic (e.g. tectonic or volcanic earthquakes) are common. Despite the increased interest in this field, large-scale, deep seated catastrophic edifice failure has still only be successfully modelled in the most extreme of cases, which does not account for the volume of field evidence of edifice collapse. One possible reason for this is the way that pore pressures are considered. For pore fluids that are entering the system from the surface (e.g. rain water) there is a set volume and therefore a set pressure that the system can accommodate, as once the edifice becomes saturated, any new fluids to fall on the surface of the edifice simply run off. If we consider internal pore fluid pressurisation from magmatic gasses, then the pressurising fluid is already in the system and the only limit to how much pressure can be accommodated is the strength of the edifice itself. The failure to fully consider the strength and deformability of a rock mass compared to an intact laboratory sample of a volcanic rock may result in a misleading assessment of edifice strength. An intact laboratory sample of basalt may yield a strength of 100--350 MPa (from uniaxial compression tests), a volcanic edifice however is not an intact rock, and is cut through by many discontinuities, including; faults, fractures and layering from discrete lava flows. A better approximation of the true strength can be determined from the rock mass rating (RMR

  20. X-Ray Computed Tomography of Tranquility Base Moon Rock

    Science.gov (United States)

    Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno

    2016-01-01

    X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.

  1. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    Science.gov (United States)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  2. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock

    International Nuclear Information System (INIS)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P.; Mazurek, M.; Gimmi, T.; Maeder, U.

    2014-01-01

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed

  3. Passive detection of Pb in water using rock phosphate agarose beads.

    Science.gov (United States)

    Edenborn, Harry M; Howard, Bret H; Sams, James I; Vesper, Dorothy J; Edenborn, Sherie L

    2017-08-15

    In this study, passive detectors for Pb were prepared by immobilizing powdered rock phosphate in agarose beads. Rock phosphate has been used to treat Pb-contaminated waters and soil by fixing the metal as an insoluble pyromorphite mineral. Under lab conditions, Pb was rapidly adsorbed from aqueous solution by the beads over time, consistent with the acidic dissolution of rock phosphate, the precipitation of pyromorphite within the pore space of the agarose gel matrix, and surface exchange reactions. Net accumulation of Pb occurred when beads were exposed to simulated periodic releases of Pb over time. Under field conditions, beads in mesh bags were effective at detecting dissolved Pb being transported as surface runoff from a site highly contaminated with Pb. Rates of Pb accumulation in beads under field conditions appeared to be correlated with the frequency of storm events and total rainfall. The rock phosphate agarose bead approach could be an inexpensive way to carry out source-tracking of Pb pollution, to verify the successful remediation of sites with Pb-contaminated soil, and to routinely monitor public water systems for potential Pb contamination. Published by Elsevier B.V.

  4. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    K.M. SCOFIELD

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes

  5. Influence of pore fluid and frequency on elastic properties of greensand as interpreted using NMR data

    DEFF Research Database (Denmark)

    Hossain, Zakir; Mukerj, Tapan; Fabricius, Ida Lykke

    2011-01-01

    dispersion. However, Biot’s theory does not fully explain the frequency dispersion of sedimentary rocks. Greensands are composed of a mixture of quartz and micro-porous glauconite grains. In greensand, it is possible that the contrast between flow in macro-pores and micro-pores within glauconites gives rise....... Biot’s critical frequency and NMR (nuclear magnetic resonance) T2 spectrum were combined to describe the differences in fluid flow within macro-pores and within micro-pores. NMR data show that Biot’s flow should occur only in large pores in the greensand while, Biot’s flow should not occur in micro-pores....... Differences of fluid flow in macro-pores and micro-pores pores are described as high frequency squirt flow in greensand....

  6. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage

    International Nuclear Information System (INIS)

    Aranda, Suzan; Borrok, David M.; Wanty, Richard B.; Balistrieri, Laurie S.

    2012-01-01

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ 66 Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰ ± 0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ 66 Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰ ± 0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. - Highlights: ► Zinc isotopes of water were measured in

  7. Studies of in Situ Pore Pressure Fluctuations At Various Scales Études des fluctuations in situ de la pression de pore à différentes échelles

    Directory of Open Access Journals (Sweden)

    Kümpel H. J.

    2006-12-01

    Full Text Available Pore pressure fluctuations in fluid saturated geological formations, either of natural or anthropogenic origin, can be observed at different scales. Natural fluctuations, e. g. , due to tidal, barometric or seismogenic forcing, or man-made effects as through use of underground fluid reservoirs, or initial filling and cyclic loading of lake reservoirs may have wavelengths from meters to kilometers. In situ monitoring of processes, in which both rock deformation and pore pressure changes are significant, improves our knowledge on the mechanical behaviour and the role of pore pressure in porous rocks and sedimentary layers. Pressure transducers for continuous recording of fluid level variations in wells, reflecting pore pressure changes at depth, or borehole tiltmeters that are sensitive to ground deformation caused by gradients of pore pressure fluctuations are relatively simple means to trace the dynamics of such rock-fluid interactions. The obtained data series are usually interpreted in two ways: by application of analytical solutions-adopting homogeneous poroelastic conditions or single fracture models in a uniform, elastic medium-and by simulation through numerical calculations allowing for some heterogeneity in the model volume. Field cases presented in this article include tilt measurements in the vicinity of pumped wells (1 to 100 m scale, fluid level monitoring in wells (borehole scale, and studies of pore pressure effects induced by seismic events (1 to 100 km scale. Specific rock parameters that can be constrained are the Skempton ratio, the hydraulic diffusivity, and the type of the effective rheology. In cases of tiltmeter studies, anisotropy of pore fluid flow can also be detected. Keywords: fluids in rocks, pore pressure, poroelasticity, hydrology. Les fluctuations de la pression de pore dans les formations géologiques saturées en fluides, d'origine naturelle ou anthropogéniques, peuvent être observées à différentes

  8. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  9. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  10. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  11. Using Neutrons to Study Fluid-Rock Interactions in Shales

    Science.gov (United States)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  12. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  13. Nitrogen availability, water-filled pore space, and N2O-N fluxes after biochar application and nitrogen fertilization

    NARCIS (Netherlands)

    Carvalho, Márcia Thaís De Melo; Madari, Beáta Emoke; Bastiaans, Lammert; Oort, Pepijn Adrianus Johannes Van; Leal, Wesley Gabriel De Oliveira; Souza, Diego Mendes De; Santos, Roberto Carlos Dos; Matsushige, Iva; Maia, Aline De Holanda Nunes; Heinemann, Alexandre Bryan; Meinke, Holger

    2016-01-01

    The objective of this work was to investigate the impact of the application of wood biochar, combined with N fertilizations, on N2O-N fluxes, nitrogen availability, and water-filled pore space (WFPS) of a clayey Oxisol under rice (wet season) and common bean (dry season) succession. Manual static

  14. Fluids and the evolution of rock mechanical properties

    International Nuclear Information System (INIS)

    Reuschle, Thierry

    1989-01-01

    This research thesis reports the study of the various phenomena of fluid-solid interaction (mechanical or chemical interaction with fracturing by fluid overpressure, slow crack propagation, and pore deformation by transfer in solution) which may occur in the interaction of fluids with rocks. The author first presents the formalism of slow crack propagation based on the generalisation of the Griffith criterion. The model results are compared with experimental results obtained on four materials (glass, quartz, sandstone, and micrite) by using the double-torsion test. In the second part, the author addresses the issue of pore deformation by transfer in solution: dissolution and crystallisation under stress. The Gibbs chemical potential equation is firstly generalised to the case of a circular pore, and a formalism combining mechanics and thermodynamics is then proposed. A set of simulations highlights important parameters. In the third part, the author addresses the problem of fluid-rock mechanical interaction by studying the mechanical role of fluid pressure in crack initiation and propagation [fr

  15. Total porosity of carbonate reservoir rocks by X-ray microtomography in two different spatial resolutions

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos R.; Marques, Leonardo C.; Fernandes, Celso P.

    2011-01-01

    Carbonate reservoir rocks contain more than 50% of world's petroleum. To know carbonate rocks' structural properties is quite important to petroleum extraction. One of their main structural properties is the total porosity, which shows the rock's capacity to stock petroleum. In recent years, the X-ray microtomography had been used to analyze the structural parameters of reservoir rocks. Such nondestructive technique generates images of the samples' internal structure, allowing the evaluation of its properties. The spatial resolution is a measurement parameter that indicates the smallest structure size observable in a sample. It is possible to measure one sample using two or more different spatial resolutions in order to evaluate the samples' pore scale. In this work, two samples of the same sort of carbonate rock were measured, and in each measurement a different spatial resolution (17 μm and 7 μm) was applied. The obtained results showed that with the better resolution it was possible to measure 8% more pores than with the poorer resolution. Such difference provides us with good expectations about such approach to study the pore scale of carbonate rocks. (author)

  16. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir

    Directory of Open Access Journals (Sweden)

    Dan-Dan Yin

    2014-01-01

    Full Text Available Long core flow experiment was conducted to study problems like excessive injection pressure and effective lag of oil wells during the polymer flooding in Honggang reservoir in Jilin oilfield. According to the changes in viscosity and hydrodynamic dimensions before and after polymer solution was injected into porous media, the compatibility of polymer hydrodynamic dimension and the pore throat size was studied in this experiment. On the basis of the median of radius R of pore throats in rocks with different permeability, dynamic light scattering method (DLS was adopted to measure the hydrodynamic size Rh of polymer solution with different molecular weights. The results state that three kinds of 1500 mg/L concentration polymer solution with 2000 × 104, 1500 × 104, and 1000 × 104 molecular weight matched well with the pore throat in rocks with permeability of 300 mD, 180 mD, and 75 mD in sequence. In this case, the ratios of core pore throat radius median to the size of polymer molecular clew R/Rh are 6.16, 5.74, and 6.04. For Honggang oil reservoir in Jilin, when that ratio ranges from 5.5 to 6.0, the compatibility of polymer and the pore structure will be relatively better.

  17. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    Science.gov (United States)

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  18. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  19. Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions

    Science.gov (United States)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst

    2018-01-01

    The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.

  20. Pore Structures in the Biomineralized Byssus of Anomia simplex

    DEFF Research Database (Denmark)

    Frølich, Simon; Leemreize, Hanna; Thomsen, Jesper Skovhus

    2016-01-01

    that uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space...... is the main focus of the present work. We characterize the three dimensional distribution of pore spaces in the byssus using micro-computed tomography (µCT) through a combination of in house CT and high-resolution synchrotron CT. The pore structures are observed to fall into distinct categories in various...

  1. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    Science.gov (United States)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  2. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  3. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  4. Investigating textural controls on Archie's porosity exponent using process-based, pore-scale modelling

    Science.gov (United States)

    Niu, Q.; Zhang, C.

    2017-12-01

    Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.

  5. NMR studies of the molecules dynamics to the solid-liquid interfaces: from graded porous materials to oil rocks; Etudes RMN de la dynamique des molecules aux interfaces solide-liquide: des materiaux poreux calibres aux roches petroliferes

    Energy Technology Data Exchange (ETDEWEB)

    Godefroy, S

    2001-11-01

    Low field NMR relaxation for laboratory or in-situ applications provides critical information for oil recovery such as porosity, saturation, and permeability of rocks. In addition, pore size distribution and wettability can also be obtained in some cases. The technique relies on the measurement of proton longitudinal (T{sub 1}) or transverse (T{sub 2}) nuclear relaxation times. For better predictions, the surface micro-dynamics and the chemical properties of the liquids entrapped in the pore space are important and must be characterized. It is well known that the NMR relaxation is enhanced by the paramagnetic impurities at the pore surface but many other parameters influence the relaxation time distributions. These parameters are used to derive the petrophysical properties of the rocks. We propose here an original method to probe the dynamics of water and oil at the pore surface. In the present study, we used both nuclear relaxation at 2.2 MHz and field cycling Nuclear Magnetic Relaxation Dispersion (NMRD) techniques. We applied these two techniques to different kinds of water or oil saturated macroporous media (grain packings, outcrop and reservoir rocks with SiO{sub 2} or CaCO{sub 3} surfaces). We studied the dependence of NMR relaxation on pore size, magnetic field and temperature. Varying the pore size and the surface density of paramagnetic impurities of water saturated grain packings allowed experimental evidence for the two limiting regimes of the water relaxation in pores (surface- and diffusion-limited regimes). NMRD technique (evolution of 1/T{sub 1} with the magnetic field) allowed us to probe liquid surface dynamics in water or oil fully saturated grain packing, outcrop rocks or reservoir rocks (water- and oil-wet surfaces). We evidenced a two-dimensional molecular surface diffusion and directly estimated important parameters such as correlation times, residence times and molecular self-diffusion on the surface. Finally, we proved that the temperature

  6. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  7. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, Suzan [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States); Borrok, David M., E-mail: dborrok@utep.edu [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States); Wanty, Richard B. [US Geological Survey, MS 964d, Denver Federal Center, Denver, CO 80225 (United States); Balistrieri, Laurie S. [U.S. Geological Survey, University of Washington, School of Oceanography, Seattle, WA 98195 (United States)

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the {delta}{sup 66}Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30 Per-Mille-Sign {+-} 0.09 Per-Mille-Sign 2{sigma}). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The {delta}{sup 66}Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80 Per-Mille-Sign {+-} 0.09 Per-Mille-Sign 2{sigma}. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in

  8. Simultaneous measurements of transport and poroelastic properties of rocks.

    Science.gov (United States)

    Hasanov, Azar K; Prasad, Manika; Batzle, Michael L

    2017-12-01

    A novel laboratory apparatus has been developed for simultaneous measurements of transport and poroelastic rock properties. These transport and poroelastic properties at reservoir pressure and temperature conditions are required inputs for various geoscience applications, such as reservoir simulation, basin modeling, or modeling of pore pressure generation. Traditionally, the transport and poroelastic properties are measured separately using, for example, the oscillating pore pressure method to measure hydraulic transport properties, static strain measurements for elastic properties, and pore volumometry for storage capacity. In addition to time, the separate set of measurements require either aliquot cores or subjecting the same core to multiple pressure tests. We modified the oscillating pore pressure method to build an experimental setup, capable of measuring permeability, storage capacity, and pseudo-bulk modulus of rocks simultaneously. We present here the test method, calibration measurements (capillary tube), and sample measurements (sandstone) of permeability and storage capacity at reservoir conditions. We establish that hydraulically measured storage capacities were overestimated by an order of magnitude when compared to elastically derived ones. Our concurrent measurement of elastic properties during the hydraulic experiment provides an independent constraint on storage capacity.

  9. Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations

    Science.gov (United States)

    Ghanbarian, Behzad; Berg, Carl F.

    2017-09-01

    Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.

  10. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    Science.gov (United States)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  11. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  12. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    Science.gov (United States)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our

  13. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  14. Final Report for Subcontract B541028,Pore-Scale Modeling to Support 'Pore Connectivity' Research Work

    International Nuclear Information System (INIS)

    Ewing, R.P.

    2008-01-01

    A central concept for the geological barrier at the proposed Yucca Mountain radioactive waste repository is diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. The original concept of diffusive retardation required knowledge only of the fracture conductivity and the matrix diffusion. But that simple concept is unavoidably complicated by other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. Some of these issues have been examined by other projects. This particular project is motivated by a simple fact: Yucca Mountain tuff has low pore connectivity. This fact is not widely recognized, nor are its implications widely appreciated. Because low pore connectivity affects many processes, it may invalidate many assumptions that are basic (though perhaps not stated) to other investigations. The overall project's objective statement (from the proposal) was: This proposal aims to improve our understanding of diffusive retardation of radionuclides due to fracture/matrix interactions. Results from this combined experimental/modeling work will (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) evaluate the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. An obvious data gap addressed by the project was that there were only a few limited measurements of the diffusion coefficient of the rock at the repository level. That is, at the time we wrote

  15. Rock properties influencing impedance spectra (IS) studied by lab measurements on porous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Volkmann, J.; Klitzsch, N.; Mohnke, O. [RWTH Aachen Univ. (Germany). Applied Geophysics and Geothermal Energy; Schleifer, N. [Wintershall Holding GmbH, Barnstorf (Germany)

    2013-08-01

    The wetting condition of reservoir rocks is a crucial parameter for the estimation of reservoir characteristics like permeability and saturation with residual oil or water. Since standard methods are often costly, at least in terms of time, we aim at assessing wettability of reservoir rocks using impedance spectroscopy (IS), a frequency dependent measurement of complex electric resistivity. This approach is promising, because IS is sensitive to the electrochemical properties of the inner surface of rocks which, on the other hand, are decisively influencing wettability. Unfortunately, there is large number of rock parameters - besides wettability - influencing the impedance spectra often not exactly known for natural rock samples. Therefore, we study model systems to improve the understanding of the underlying mechanisms and to quantify the influencing parameters. The model systems consist of sintered porous silica beads of different sizes leading to samples with different pore sizes. The main advantage of these samples compared to natural rocks is their well-defined and uniform mineralogical composition and thus their uniform electrochemical surface property. In order to distinguish pore geometry and fluid electrochemistry effects on the IS properties we measured the IS response of the fully water saturated model systems in a wide frequency range - from 1 mHz to 35 MHz - to capture different often overlapping polarization processes. With these measurements we study the influence of pore or grain size, fluid conductivity, and wettability (contact angle) on the impedance spectra. The influence of wettability was studied by modifying the originally hydrophilic inner surface into a hydrophobic state. The wettability change was verified by contact angle measurements. As results, we find pore size dependent relaxation times and salinity dependent chargeabilities for the hydrophilic samples in the low frequency range (< 10 kHz), whereas for the hydrophobic samples

  16. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  17. Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock

    Science.gov (United States)

    Morshed, S.; Chesnokov, E.

    2017-12-01

    Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA

  18. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  19. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  20. Wettability of Oil-Producing Reservoir Rocks as Determined from X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Toledo; Araujo; Leon

    1996-11-10

    Wettability has a dominant effect in oil recovery by waterflooding and in many other processes of industrial and environmental interest. Recently, the suggestion has been made that surface science analytical techniques (SSAT) could be used to rapidly determine the wettability of reservoir materials. Here, we bring the capability of X-ray photoelectron spectroscopy (XPS) to bear on the wettability evaluation of producing reservoir rocks. For a suite of freshly exposed fracture surfaces of rocks we investigate the relationship between wettability and surface composition as determined from XPS. The classical wettability index as measured with the Amott-Harvey test is used here as an indicator of the wettability of natural sandstones. The XPS spectra of oil-wet surfaces of rocks reveal the existence of organic carbon and also of an "organic" silicon species, of the kind Si-CH relevant to silanes, having a well-defined binding energy which differs from that of the Si-O species of mineral grains. We provide quantifiable evidence that chemisorbed organic material on the pore surfaces defines the oil-wetting character of various reservoir sandstones studied here which on a mineralogic basis are expected to be water-wet. This view is supported by a strong correlation between C content of pore surfaces and rock wettability. The results also suggest a correlation between organic silicon content on the pore surfaces and rock hydrophobicity.

  1. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  2. Rock mechanics related to Jurassic underburden at Valdemar oil field

    DEFF Research Database (Denmark)

    Foged, Niels

    1999-01-01

    .It has been initiated as a feasibility study of the North Jens-1 core 12 taken in the top Jurassic clay shale as a test specimens for integrated petrological, mineralogical and rock mechanical studies. Following topics are studied:(1) Pore pressure generation due to conversion of organic matter...... and deformation properties of the clay shale using the actual core material or outcrop equivalents.(3) Flushing mechanisms for oil and gas from source rocks due to possibly very high pore water pressure creating unstable conditions in deeply burried sedimentsThere seems to be a need for integrating the knowledge...... in a number of geosciences to the benefit of common understanding of important reservoir mechanisms. Rock mechanics and geotechnical modelling might be key points for this understanding of reservoir geology and these may constitute a platform for future research in the maturing and migration from the Jurassic...

  3. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  4. Diffusion-controlled cementation experiments in porous rock analogues using potash alum and halite

    Energy Technology Data Exchange (ETDEWEB)

    Hufe, A.; Hilgers, C. [RWTH Aachen Univ. (Germany). Inst. of Reservoir-Petrology; Stanjek, H. [RWTH Aachen Univ. (Germany). Inst. of Interface and Clay Mineralogy

    2013-08-01

    A good understanding of cementation is critical for reservoir quality predictions. However, studies of core material have shown that cementation may be driven by variations in pore size of the host rock. To better understand the underlying process, we developed a transparent microreactor for diffusion-controlled cementation experiments under the microscope. We studied the effect of different pore sizes and surface charges of solid material at different pH, using rock analogs. High-resolution videos allowed to analyze the nucleation from solution, pore cementation and growth rates of cements. Diffusion - considered the major mass transport during burial diagenesis - was driven along a temperature gradient across the microreactor. Pores were cemented with salt, which is well known to form pore-size dependent seals in silicilastic reservoirs. While halite precipitated primarily in pores bigger than 200 {mu}m, alum nucleated in smaller pores. The growth rate of alum (10{sup -5} mm/s) was one order of magnitude higher than that of halite. However, the dissolution rates of both minerals was similar at about 10{sup -6} mm/s. Authigenic euhdral halite migrated against the bulk diffusion transport and towards the higher-temperature reservoir. Halite growth rates increased by one order of magnitude to 1.8 x 10{sup -5} mm/s, if the phase boundary was vapor-liquid. A comparison nucleation in a 2-phase porous rock analog showed no difference in cementation pattern at a pH 7. However, at a pH of 10.5 the surface energies of the two different solids are altered, and porosity was reduced 60% more by cements in the phase-1 porous layers. Our experiments showed that pore size dependent nucleation and cementation is a process, which may also take place in complex reservoirs. With the successful pore clogging of halite we can now bring our experimental setup to reservoir conditions and establish the processes at elevated p-T conditions. (orig.)

  5. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  7. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  8. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  9. Imaging of forced-imbibition in carbonate rocks using synchrotron X-ray micro-tomography

    Science.gov (United States)

    Singh, K.; Menke, H. P.; Andrew, M. G.; Lin, Q.; Saif, T.; Al-Khulaifi, Y.; Reynolds, C. A.; Bijeljic, B.; Rau, C.; Blunt, M. J.

    2016-12-01

    We have investigated the pore-scale behavior of brine-oil systems and oil trapping during forced-imbibition in a water-wet carbonate rock in a capillary-dominated flow regime at reservoir pressure conditions. To capture the dynamics of the brine-oil front progression and snap-off process, real-time tomograms with a time resolution of 38 s (24 s for imaging and 14 s for recording the data) and a spatial resolution of 3.28 µm were acquired at Diamond Light Source (UK). The data were first analyzed at global scale (complete imaged rock) for overall front behavior. From the saturation profiles, we obtain the location of the tail of the desaturation front that progresses with a velocity of 13 µm/min. This velocity is smaller than average flow velocity 16.88 µm/min, which explains why it needs slightly more than 1 pore volume of brine injection to reach the residual saturation of oil in a water-wet rock. The data were further analyzed at local scale to investigate the pore-scale mechanisms of oil trapping during brine flooding. We isolated various trapping events which resulted in the creation of discrete oil ganglia occupying one to several pore bodies. We perform pore-scale curvature analysis of brine-oil interfaces to obtain local capillary pressure that will be related to the shape and the size of throats in which ganglia were trapped.

  10. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  11. ISS Assessment of the Influence of Nonpore Surface in the XPS Analysis of Oil-Producing Reservoir Rocks

    Science.gov (United States)

    Leon; Toledo; Araujo

    1997-08-15

    The application of X-ray photoelectron spectroscopy (XPS) to oil-producing reservoir rocks is new and has shown that pore surface concentrations can be related to rock wettability. In the preparation of fresh fractures of rocks, however, some nonpore surface corresponding to the connection regions in the rocks is created and exposed to XPS. To assess the potential influence of this nonpore surface in the XPS analysis of rocks here we use ion scattering spectroscopy (ISS), which has a resolution comparable to the size of the pores, higher than that of XPS, with an ion gun of He+ at maximum focus. Sample charging effects are partially eliminated with a flood gun of low energy electrons. All the ISS signals are identified by means of a formula which corrects any residual charging on the samples. Three rock samples are analyzed by XPS and ISS. The almost unchanged ISS spectra obtained at different points of a given sample suggest that the nonpore surface created in the fracture process is negligibly small, indicating that XPS data, from a larger surface spot, represents the composition of true pore surfaces. The significant changes observed in ISS spectra from different samples indicate that ISS is sample specific. Copyright 1997Academic Press

  12. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  13. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  14. Prospect of shale gas recovery enhancement by oxidation-induced rock burst

    Directory of Open Access Journals (Sweden)

    Lijun You

    2017-11-01

    Full Text Available By horizontal well multi-staged fracturing technology, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water phase trapping damage caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to “break” shale rocks via hydraulic force and to “burst” shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

  15. Role of rock texture and mineralogy on the hydrology and geochemistry of three neutral-drainage mesoscale experimental waste rock piles at the Antamina Mine, Peru

    Science.gov (United States)

    Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.

    2009-12-01

    An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas

  16. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    Science.gov (United States)

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal; Caracterisation des proprietes des argiles d'Opalinus (roche d'accueil potentielle pour un stockage de dechets radioactifs) relatives au transport des gaz

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, P. [Nagra - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Horseman, S. [British Geological Survey, Kingsley Dunham Centre, Keyworth (United Kingdom); Gimmi, T. [Bern Univ. (Switzerland); Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2005-07-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10{sup -20} to 10{sup -21} m{sup 2} and a moderate anisotropy ratio {<=} 10. Porosity depends on clay content and burial depth; values of {approx} 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30% of voids can be classed as macro-pores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drill-cores demonstrate that gas transport through the rock is accompanied by pore water displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macro-pores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gas-fractures). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance. (authors)

  18. Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Bernier-Latmani, R.; Bagnoud, A. [Swiss Federal Office of Technology EPFL, Lausanne (Switzerland); Moors, H.; Leys, N.; Wouters, K. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Stroes-Gascoyne, S. [University of Saskatchewan, Saskatoon (Canada)

    2017-04-15

    Microbiological studies related to the geological disposal of radioactive waste have been conducted at the Mont Terri rock laboratory in Opalinus Clay, a potential host rock for a deep geologic repository, since 2002. The metabolic potential of microorganisms and their response to excavation-induced effects have been investigated in undisturbed and disturbed claystone cores and in pore- (borehole) water. Results from nearly 15 years of research at the Mont Terri rock laboratory have shown that microorganisms can potentially affect the environment of a repository by influencing redox conditions, metal corrosion and gas production and consumption under favourable conditions. However, the activity of microorganisms in undisturbed Opalinus Clay is limited by the very low porosity, the low water activity, and the largely recalcitrant nature of organic matter in the claystone formation. The presence of microorganisms in numerous experiments at the Mont Terri rock laboratory has suggested that excavation activities and perturbation of the host rock combined with additional contamination during the installation of experiments in boreholes create favourable conditions for microbial activity by providing increased space, water and substrates. Thus effects resulting from microbial activity might be expected in the proximity of a geological repository i.e., in the excavation damaged zone, the engineered barriers, and first containments (the containers). (authors)

  19. Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Leupin, O.X.; Bernier-Latmani, R.; Bagnoud, A.; Moors, H.; Leys, N.; Wouters, K.; Stroes-Gascoyne, S.

    2017-01-01

    Microbiological studies related to the geological disposal of radioactive waste have been conducted at the Mont Terri rock laboratory in Opalinus Clay, a potential host rock for a deep geologic repository, since 2002. The metabolic potential of microorganisms and their response to excavation-induced effects have been investigated in undisturbed and disturbed claystone cores and in pore- (borehole) water. Results from nearly 15 years of research at the Mont Terri rock laboratory have shown that microorganisms can potentially affect the environment of a repository by influencing redox conditions, metal corrosion and gas production and consumption under favourable conditions. However, the activity of microorganisms in undisturbed Opalinus Clay is limited by the very low porosity, the low water activity, and the largely recalcitrant nature of organic matter in the claystone formation. The presence of microorganisms in numerous experiments at the Mont Terri rock laboratory has suggested that excavation activities and perturbation of the host rock combined with additional contamination during the installation of experiments in boreholes create favourable conditions for microbial activity by providing increased space, water and substrates. Thus effects resulting from microbial activity might be expected in the proximity of a geological repository i.e., in the excavation damaged zone, the engineered barriers, and first containments (the containers). (authors)

  20. Applying squeezing technique to clay-rocks: lessons learned from ten years experiments at Mont Terri

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Melon, A.; Sanchez-Ledesma, D.M.; Tournassat, C.; Gaucher, E.; Astudillo, J.; Vinsot, A.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in several countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. The migration of radionuclides through the geosphere will occur predominantly in the aqueous phase, and hence the pore water chemistry plays an important role in determining ion diffusion characteristics in argillaceous formations. Consequently, a great effort has been made to characterise the pore water chemistry in clay-rocks formations. In the last 10 years various techniques were developed for determining pore water composition of clay-rocks including both direct and indirect methods: 1) In situ pore water sampling (water and gas) from sealed boreholes (Pearson et al., 2003; Vinsot et al. 2008); 2) Laboratory pore water sampling from unaltered core samples by the squeezing technique at high pressures (Fernandez et al., 2009); and 3) Characterization of the water chemistry by geochemical modelling (Gaucher et al. 2009). Pore water chemistry in clay-rocks and extraction techniques were documented and reviewed in different studies (Sacchi et al., 2001). Recovering pristine pore water from low permeable and low water content systems is very difficult and sometimes impossible. Besides, uncertainties are associated to each method used for the pore water characterization. In this paper, a review about the high pressure squeezing technique applied to indurate clay-rocks was performed. For this purpose, the experimental work on Opalinus Clay at the Mont Terri Research Laboratory during the last ten years was evaluated. A complete discussion was made about different issues such as: a) why is necessary to obtain the pore water by squeezing in the context of radioactive waste

  1. Reconstruction of 3D Micro Pore Structure of Coal and Simulation of Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Guang-zhe Deng

    2017-01-01

    Full Text Available This article takes the low permeability coal seam in the coalfield of South Judger Basin in Xinjiang, as a research object. The pore structure characteristics of coal rock mass in low permeability coal seam were analyzed quantitatively using scanning electron microscopy (SEM through the methods of statistics and digital image analysis. Based on the pore structure parameters and the distribution function of the coal rock mass, a three-dimensional porous cylinder model with different porosity was reconstructed by FLAC3D. The numerical simulation study of reconstructed pore model shows that (1 the porosity and the compressive strength have obvious nonlinear relation and satisfy the negative exponential relation; (2 the porosity significantly affects the stress distribution; with the increase of micro porosity, the stress distribution becomes nonuniform; (3 the compressive failures of different models are mainly shear failures, and the shape of fracture section is related to porosity; (4 the variation of seepage coefficient of the pore reconstruction model is consistent with the development of micro cracks. The micro mechanism of the deformation and failure of coal and the interaction of multiphase flow with porosity are revealed, which provides a theoretical reference for the clean development of the low permeability coal seam.

  2. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  3. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  4. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    Science.gov (United States)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  5. Distribution of uranium in the carbonate rock of Um Bogma formation, Southwest, Sinai, Egypt

    International Nuclear Information System (INIS)

    El-AAssy, I.E.; Ahmed, F.Y.; Morsy, A.M.; El-Fawal, F.M.; Mansour, M.Gh.

    1998-01-01

    The lower carboniferous Um bogma Formation is a potential source for Mn, Cu and U. it is mainly composed of dolostone and limestone with few clastic different interbeds of clay stone, siltstone and sandstone. The different diagenetic processes which affected this formation are mainly, compaction, cementation, neomorphism, dissolution, dolomitization, silicification and filling the veins and pores. The distribution of uranium and thorium within the three members and their correlation with the iron oxides and organic matter, were studied. The channel porosity and intercrystalline spaces which resulted from dolomitization acted as pathways for uraniferous solutions in the carbonate rocks. On the other hand, the shales and clay stones underneath the carbonates of Um bogma formation acted as barriers and good depositional environment for the accumulation of uranium on the surfaces of joints and fractures.The accumulated uranium minerals in the carbonate rocks are most likely of the efflorescent deposits

  6. Three dimensional rock microstructures: insights from FIB-SEM tomography

    Science.gov (United States)

    Drury, Martyn; Pennock, Gill; de Winter, Matthijs

    2016-04-01

    Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved

  7. Isotopic composition of pore water in the Tournemire argilites (Aveyron, France): inter-comparison study of analytical methods and relations with petrophysical parameters

    International Nuclear Information System (INIS)

    Altinier, M.V.

    2006-06-01

    Stable isotope profiles of pore water in argillaceous rocks are used to characterize fluid migration through these rocks. However, the very low water contents, less than 5% by wet weight, and the small pore sizes (<10 nm) make difficult the access to pore water. In order to assess the representativeness of stable isotopes data in pore water from Tournemire shale (IRSN experimental facility), we made a comparative study by using vacuum distillation at 50 deg. C and 150 deg. C, diffusion in liquid phase and diffusive exchange in vapour phase, together with a study of petrophysical and mineralogical properties of the rock. The results show a good agreement between the water contents determined by heating and vacuum distillation at 150 deg. C and by equilibration techniques. On the other hand, vacuum distillation at 50 deg. C allows to extract less than 90% of the extractable water by heating at 150 deg. C; leading to a depletion in heavy isotopes of extracted water, which can be corrected by using a Rayleigh-type model. Finally, we studied a perpendicular profile to a fracture in order to determine the origin of heavy isotope enrichment of pore water that was observed, in previous works, in the vicinity of fractures (less than one meter). It seems that water content, which increases near the fracture, associated with a more important proportion of bigger pores (φ ∼ 10 - 180 nm), would be at the origin of the isotopic anomalies determined by vacuum distillation at 50 deg. C. Preponderance of bigger pores near the fractures would facilitate mobilization of pore water and its extraction by vacuum distillation at 50 deg. C, reducing the effects of incomplete distillation. (author)

  8. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    Science.gov (United States)

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  9. Lithology, microstructures, fluid inclusions, and geochemistry of rock salt and of the cap-rock contact in Oakwood Dome, East Texas: significance for nuclear waste storage. Report of investigations No. 120

    International Nuclear Information System (INIS)

    Dix, O.R.; Jackson, M.P.A.

    1982-01-01

    Oakwood salt dome in Leon and Freestone Counties, Texas, has a core composed of a diapiric salt stock at a depth of 355 m. A vertical borehole in the center of the salt stock yielded 57.3 m of continuous rock-salt core overlain by 137 m of anhydrite-calcite cap rock. The lower 55.3 m of rock salt exhibits a strong, penetrative schistosity and parallel cleavage dipping at 30 to 40 0 and more than 60 variably dipping layers of disseminated anhydrite. Anhydrite constitutes 1.3 +- 0.7 percent of the rock-salt core. The upper 2 m of rock salt is unfoliated, comprising a lower 1.4-m interval of medium-grained granoblastic rock salt and an upper 0.6-m interval of coarse-grained granoblastic rock salt. An abrupt, cavity-free contact separates rock salt from laminated cap rock consisting of granoblastic-polygonal anhydrite virtually devoid of halite or pore space. Microstructures and concentration gradients of fluid inclusions suggest that the unfoliated rock salt at the crest of the salt stock was once strongly foliated, but that this fabric was destroyed by solid-state recrystallization. Downward movement of brine from the rock-salt - cap-rock contact was apparently accompanied by two recrystallization fronts. Dissolution of halite at the contact released disseminated anhydrite that presumably accumulated as sand on the floor of the dissolution cavity. Renewed rise of the salt stock closed the cavity, and the anhydrite sand was accreted against the base of the cap rock. Much, if not all, of the lamination in the 80 m of anhydrite cap rock may result from cycles of dissolution, recrystallization, and upward movement in the salt stock, followed by accretion of anhydrite residuum as laminae against the base of the cap rock. These processes, which are strongly influenced by fluids, act both to breach waste repositories and to geologically isolate them

  10. In-situ, real time micro-CT imaging of pore scale processes, the next frontier for laboratory based micro-CT scanning

    OpenAIRE

    Boone, Marijn; Bultreys, Tom; Masschaele, Bert; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-01-01

    Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex reservoir rocks, improving the understanding of pore scale processes and providing crucial information for pore scale modelling. Especially in-situ imaging using X-ray optimized Hassler type cells has enabled the direct visualization of fluid distributions at the pore scale under reservoir conditions. While sub-micrometre spatial resolutions are achi...

  11. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  12. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, northern Spain)

    Science.gov (United States)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2016-01-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-rich brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and pore network distribution. Complementary chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analyzed before and after the experiment.The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages to rock-block scale. These results

  13. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  14. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  15. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  16. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Han, Eric; Gao, Yu; Nguyen, Kim-Lien; Finn, J Paul; Hu, Peng

    2017-08-01

    To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P ROCK-MUSIC in the other anatomic locations. ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    Science.gov (United States)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  18. Numerical Simulation and Optimization of Hole Spacing for Cement Grouting in Rocks

    Directory of Open Access Journals (Sweden)

    Ping Fu

    2013-01-01

    Full Text Available The fine fissures of V-diabase were the main stratigraphic that affected the effectiveness of foundation grout curtain in Dagang Mountain Hydropower Station. Thus, specialized in situ grouting tests were conducted to determine reasonable hole spacing and other parameters. Considering time variation of the rheological parameters of grout, variation of grouting pressure gradient, and evolution law of the fracture opening, numerical simulations were performed on the diffusion process of cement grouting in the fissures of the rock mass. The distribution of permeability after grouting was obtained on the basis of analysis results, and the grouting hole spacing was discussed based on the reliability analysis. A probability of optimization along with a finer optimization precision as 0.1 m could be adopted when compared with the accuracy of 0.5 m that is commonly used. The results could provide a useful reference for choosing reasonable grouting hole spacing in similar projects.

  19. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    Science.gov (United States)

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship...... between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types...

  1. Applying Squeezing Technique to Clayrocks: Lessons Learned from Experiments at Mont Terri Rock Laboratory

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez-Ledesma, D. M.; Tournassat, C.; Melon, A.; Gaucher, E.; Astudillo, E.; Vinsot, A.

    2013-01-01

    Knowledge of the pore water chemistry in clay rock formations plays an important role in determining radionuclide migration in the context of nuclear waste disposal. Among the different in situ and ex-situ techniques for pore water sampling in clay sediments and soils, squeezing technique dates back 115 years. Although different studies have been performed about the reliability and representativeness of squeezed pore waters, more of them were achieved on high porosity, high water content and unconsolidated clay sediments. A very few of them tackled the analysis of squeezed pore water from low-porosity, low water content and highly consolidated clay rocks. In this work, a specially designed and fabricated one-dimensional compression cell two directional fluid flow was used to extract and analyse the pore water composition of Opalinus Clay core samples from Mont Terri (Switzerland). The reproducibility of the technique is good and no ionic ultrafiltration, chemical fractionation or anion exclusion was found in the range of pressures analysed: 70-200 MPa. Pore waters extracted in this range of pressures do not decrease in concentration, which would indicate a dilution of water by mixing of the free pore water and the outer layers of double layer water (Donnan water). A threshold (safety) squeezing pressure of 175 MPa was established for avoiding membrane effects (ion filtering, anion exclusion, etc.) from clay particles induced by increasing pressures. Besides, the pore waters extracted at these pressures are representative of the Opalinus Clay formation from a direct comparison against in situ collected borehole waters. (Author)

  2. Applying Squeezing Technique to Clayrocks: Lessons Learned from Experiments at Mont Terri Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A. M.; Sanchez-Ledesma, D. M.; Tournassat, C.; Melon, A.; Gaucher, E.; Astudillo, E.; Vinsot, A.

    2013-07-01

    Knowledge of the pore water chemistry in clay rock formations plays an important role in determining radionuclide migration in the context of nuclear waste disposal. Among the different in situ and ex-situ techniques for pore water sampling in clay sediments and soils, squeezing technique dates back 115 years. Although different studies have been performed about the reliability and representativeness of squeezed pore waters, more of them were achieved on high porosity, high water content and unconsolidated clay sediments. A very few of them tackled the analysis of squeezed pore water from low-porosity, low water content and highly consolidated clay rocks. In this work, a specially designed and fabricated one-dimensional compression cell two directional fluid flow was used to extract and analyse the pore water composition of Opalinus Clay core samples from Mont Terri (Switzerland). The reproducibility of the technique is good and no ionic ultrafiltration, chemical fractionation or anion exclusion was found in the range of pressures analysed: 70-200 MPa. Pore waters extracted in this range of pressures do not decrease in concentration, which would indicate a dilution of water by mixing of the free pore water and the outer layers of double layer water (Donnan water). A threshold (safety) squeezing pressure of 175 MPa was established for avoiding membrane effects (ion filtering, anion exclusion, etc.) from clay particles induced by increasing pressures. Besides, the pore waters extracted at these pressures are representative of the Opalinus Clay formation from a direct comparison against in situ collected borehole waters. (Author)

  3. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    Karimpouli, Sadegh; Hassani, Hossein; Nabi-Bidhendi, Majid; Khoshdel, Hossein; Malehmir, Alireza

    2013-01-01

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  4. The Effect of Heat Transfer and Polymer Concentration on Non-Newtonian Fluid from Pore-Scale Simulation of Rock X-ray Micro-CT

    Directory of Open Access Journals (Sweden)

    Moussa Tembely

    2017-10-01

    Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.

  5. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  6. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  7. Comparative sound velocity measurements between porous rock and fully-dense material under crustal condition: The cases of Darley Dale sandstone and copper block

    Science.gov (United States)

    Kung, J.; Chien, Y. V.; Wu, W.; Dong, J.; Chang, Y.; Tsai, C.; Yang, M.; Wang, K.

    2012-12-01

    Previous studies showed that the voids and their geometry in the sedimentary rocks have great influence on the compressibility of rock, which reflects on its elastic velocities. Some models were developed to discuss the relations among velocity, porosity and void geometry. Therefore, the information of porosity, and void geometry and its distribution in rock is essential for understanding how the elastic properties of porous rocks affected by their poregeometry. In this study, we revisited a well-studied porous rock, Darley Dale sandstone, which has been studied by different groups with different purposes. Most of them are the deformation experiments. Different from previous studies, we measured the sound velocity of Darley dale sandstone under hydrostatic conditions. Also, we employed different techniques to investigate the pore geometry and porosity of Darley Dale sandstone to gain the insight of velocity changing behavior under the crustal conditions. Here, we measured a fully-dense copper block for a comparison. We performed X-ray CT scanning (XCT) to image the pore space of sandstone to construct the 3-D image of pore geometry, distribution and the pore size. The CT image data are allowed us to estimate the porosity of sandstone, too. One the other hand, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa). A set of specimens were cored from Darley Dale sandstone block. P and S wave velocities of specimens were measured at ambient conditions. We also performed high pressure velocity measurements on a selected rock specimen and a copper block up to 150 MPa under dry condition. Porosity of a set of rock specimens measured by imbibitions method was spanned from 6% to 15%, largely distributed within a range of 8%-11%. Compared the porosity obtained from three different techniques, imbibitions method, helium porosimeter and XCT, values from those measurements are in good agreement

  8. New Techniques for Monitoring and Analyzing the Stability of Steep Cliffs against Rock Falls

    OpenAIRE

    Fujii, Yoshiaki; Maeda, S; Sugawara, T; Kodama, N; Miyashita, N

    2016-01-01

    Mechanisms of joint opening leading to the formation of unstable rock blocks, such as thermal deformation, water-mineral reaction, pore pressure, freeze-thaw cycle, intrusion of wood roots etc. have been more or less clarified; however, the triggering mechanisms of rock falls remain to be elucidated. The problems which prevent the understanding of the mechanisms are (1) difficulty in installation of sensors to very unstable rock blocks, (2) thermoelastic deformation of sensors and attachments...

  9. Aqueous phase transport through granitic rocks

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Green, A.

    1984-03-01

    Using Scottish granites of UK origin it has been established that : (1) pore connectivity exists over metre distances and does not vary significantly with distance. (2) The formation factor may show an increase by a factor of approx. 2 for thin samples (approx. 1 cm). Since diffusion samples are of this order of thickness, laboratory measurements may be overestimating the diffusion coefficient appropriate for use in migration model calculations by a factor of approx. 2. (3) The effect of confining pressures up to approx. 16 MPa is to reduce diffusion coefficients by 50 to 60%. This implies that diffusion coefficients appropriate to granite at depths of approx. 500 m are approximately a factor of two lower than those obtained in the laboratory. (4) Diffusion rates through weathered fissure surfaces can be significantly greater (up to approx. 200 times) than through 'good' rock and are strongly dependent on the severity of the weathering. No evidence for pore blocking by weathering products was found. (5) Latex colloids having a diameter of 0.312 μm neither cause pore blocking nor do they penetrate the pore structure. (author)

  10. Experimental study of very low permeability rocks using a high accuracy permeameter

    International Nuclear Information System (INIS)

    Larive, Elodie

    2002-01-01

    The measurement of fluid flow through 'tight' rocks is important to provide a better understanding of physical processes involved in several industrial and natural problems. These include deep nuclear waste repositories, management of aquifers, gas, petroleum or geothermal reservoirs, or earthquakes prevention. The major part of this work consisted of the design, construction and use of an elaborate experimental apparatus allowing laboratory permeability measurements (fluid flow) of very low permeability rocks, on samples at a centimetric scale, to constrain their hydraulic behaviour at realistic in-situ conditions. The accuracy permeameter allows the use of several measurement methods, the steady-state flow method, the transient pulse method, and the sinusoidal pore pressure oscillation method. Measurements were made with the pore pressure oscillation method, using different waveform periods, at several pore and confining pressure conditions, on different materials. The permeability of one natural standard, Westerly granite, and an artificial one, a micro-porous cement, were measured, and results obtained agreed with previous measurements made on these materials showing the reliability of the permeameter. A study of a Yorkshire sandstone shows a relationship between rock microstructure, permeability anisotropy and thermal cracking. Microstructure, porosity and permeability concepts, and laboratory permeability measurements specifications are presented, the permeameter is described, and then permeability results obtained on the investigated materials are reported [fr

  11. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 3D Printing and Digital Rock Physics for Geomaterials

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  13. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    Energy Technology Data Exchange (ETDEWEB)

    Boone, M.A., E-mail: marijn.boone@ugent.be [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium); Unit Sustainable Materials Management, VITO, Boerentang 200, 2400 Mol (Belgium); De Kock, T.; Bultreys, T. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium); De Schutter, G. [Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904, 9052 Ghent (Belgium); Vontobel, P. [Spallation Neutron Source Division, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Van Hoorebeke, L. [Department of Physics and Astronomy—UGCT, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); Cnudde, V. [Department of Geology and Soil Science—UGCT, Ghent University, Krijgslaan 281 S8, 9000 Ghent (Belgium)

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  14. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  15. Studies of electrical properties of low-resistivity sandstones based on digital rock technology

    Science.gov (United States)

    Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin

    2018-02-01

    Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.

  16. Capillary pressure across a pore throat in the presence of surfactants

    KAUST Repository

    Jang, Junbong

    2016-11-22

    Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.

  17. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.

    Science.gov (United States)

    Song, Rui; Liu, Jianjun; Cui, Mengmeng

    2016-01-01

    Due to the intricate structure of porous rocks, relationships between porosity or saturation and petrophysical transport properties classically used for reservoir evaluation and recovery strategies are either very complex or nonexistent. Thus, the pore network model extracted from the natural porous media is emphasized as a breakthrough to predict the fluid transport properties in the complex micro pore structure. This paper presents a modified method of extracting the equivalent pore network model from the three-dimensional micro computed tomography images based on the maximum ball algorithm. The partition of pore and throat are improved to avoid tremendous memory usage when extracting the equivalent pore network model. The porosity calculated by the extracted pore network model agrees well with the original sandstone sample. Instead of the Poiseuille's law used in the original work, the Lattice-Boltzmann method is employed to simulate the single- and two- phase flow in the extracted pore network. Good agreements are acquired on relative permeability saturation curves of the simulation against the experiment results.

  18. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity

    Science.gov (United States)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad

    2018-02-01

    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  19. Qualitative and Quantitative Changes of Carbonate Rocks Exposed to SC CO2 (Basque-Cantabrian Basin, Northern Spain

    Directory of Open Access Journals (Sweden)

    Edgar Berrezueta

    2017-11-01

    Full Text Available This study aims at the qualitative and quantitative determination of porosity, mineralogical and textural changes in carbonate rock samples after injection of (i supercritical CO2-rich brine and (ii dry supercritical CO2, under similar experimental conditions (P ≈ 75 bar, T ≈ 35 °C, 970 h exposure time and no CO2 flow. The studied rocks were sampled in the western Basque-Cantabrian Basin, North Spain, and consist of vuggy carbonates (“Carniolas” of the Puerto de la Palombera formation (Hettangian. Mineralogical and pore space characterization is completed using optical microscopy, scanning electron microscopy and optical image analysis. In addition, X-ray fluorescence analyses are performed to refine the mineralogical information and to obtain whole rock geochemical data and the brine composition is analysed before and after the experiment. Mineralogical and chemical results indicate that the carbonate rocks exposed to supercritical CO2 in dry conditions do not suffer significant changes. However, the injection of supercritical CO2-rich brine induces chemical and physical changes in the rock due to the high reactivity of calcite at the low pH conditions produced by the acidified brine. Numerical modelling validates the experimental observations. These results can be used to characterize the behaviour of carbonate rocks under conditions similar to the vicinity of a CO2 injection well. The results should be considered only at the scale of the studied samples and not at reservoir scale.

  20. Experimental and numerical study on the fracture of rocks during injection of CO2-saturated water

    Science.gov (United States)

    Li, Qi; Wu, Zhishen; Lei, Xing-Lin; Murakami, Yutaka; Satoh, Takashi

    2007-02-01

    Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.

  1. Study on Relationship between Dielectric Constant and Water Content of Rock-Soil Mixture by Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Daosheng Ling

    2016-01-01

    Full Text Available It is important to test water content of rock-soil mixtures efficiently and accurately to ensure both the quality control of compaction and assessment of the geotechnical engineering properties. To overcome time and energy wastage and probe insertion problems when using the traditional calibration method, a TDR coaxial test tube calibration arrangement using an upward infiltration method was designed. This arrangement was then used to study the influence of dry density, pore fluid conductivity, and soil/rock ratio on the relationship between water content and the dielectric constant of rock-soil mixtures. The results show that the empirical calibration equation forms for rock-soil mixtures can be the same as for soil materials. The effect of dry density on the calibration equation has the most significance and the influence of pore fluid conductivity can be ignored. The impact of variation of the soil/rock ratio can be neutralized by considering the effect of dry density in the calibration equation for the same kind of soil and rock. The empirical equations proposed by Zhao et al. show a good accuracy for rock-soil mixtures, indicating that the TDR method can be used to test gravimetric water content conveniently and efficiently without calibration in the field.

  2. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  3. Study on characteristics of sedimentary rock at the Horonobe site. Report of collaboration research between CRIEPI and JAEA

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Oyama, Takahiro; Suzuki, Koichi; Nakata, Eiji; Tanaka, Shiro; Miyakawa, Kimio; Ishii, Eiichi; Takahashi, Kazuharu; Kunimaru, Takanori; Tsukui, Rota; Fukushima, Tatsuo; Seya, Masami; Hama, Katsuhiro; Aoki, Kazuhiro

    2006-01-01

    CRIEPI (Central Research Institute of Electric Power Industry) and JAEA (Japan Atomic Energy Agency) have been conducting a collaboration research to develop methodology for the characterization of geological environment since FY 2002. This report describes the results of the collaboration research in mainly FY 2003. As the collaboration research, the following research results were obtained. (1) Study on the diagenesis of the sedimentary rock of the Noegene Tertiary. The maximum burial depth of the formation can be estimated. (2) Study on the chemical weathering of the soft sedimentary rock. The acidic water can be caused by the chemical weathering of the rock in the Koetoi formation. (3) Study on the pore water extraction. The hydrochemical condition at the Horonobe site can be estimated by the results of the chemical analyses of extracted pore water, and the different pressure of the extraction results the different chloride contents of the pore water. (4) Study on exploration method considering the physical property of the rock. The depth profile of the mechanical properties can be estimated by the results of physical logging in the borehole. (5) Study on the applicability of the controlled drilling system to the Horonobe site. The controlled drilling system can be applicable to drill the directional borehole. (author)

  4. X-ray CT analysis of pore structure in sand

    Science.gov (United States)

    Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika

    2016-06-01

    The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.

  5. Analysis of the temperature and pore water pressure field in the TED heating experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Vaunat, J.; Gens, A.; Conil, N.; Armand, G

    2012-01-01

    Document available in extended abstract form only. The TED experiment is a heating experiment in Callovo-Oxfordian Clay performed in the Meuse Haute Marne underground research laboratory. It was set up by Andra to confirm the results obtained in a previous thermal experiment (TER). The main objectives are: characterisation of the thermal properties of intact argillite, identification of the Thermo-Hydro-Mechanical (THM) coupling parameters, improvement of the understanding of THM behaviour and comparison of parameters measured in-situ and in the laboratory. The three heaters in the TED experiment were installed parallel at a distance of about 2.7 m to reproduce as closely as possible the real storage case (HA cells). This arrangement should allow the verification of: i) the superposition of several temperature fields generated by the three heaters and ii) the overpressure generated in the symmetry planes between the three heaters. Three heaters 4 m long and 0.143 m diameter have been installed in parallel boreholes drilled form GED gallery. To limit the influence of the conditions prevailing in the gallery, a distance of 12 m have been left between the GED wall and the closest extremity of the heaters. Rock has been intensively instrumented within a zone of 15 m around the heaters. There are 108 thermal sensors, 10 pore pressure sensors, 2 extensometers/inclinometers, placed in 13 different small diameter boreholes (56 mm). 11 boreholes were filled with bentonite (those containing thermal and pore pressure sensors) and 2 of them left open (those equipped with extensometer/inclinometers). First heating started on 22 January 2010 at the central heater and consists of three steps: 120 days at 180 W, 150 days at 300 W and one last period at 600 W. The two lateral heaters have been switched on after 14 months following the same heating sequence. The concept and the results of the TED experiment are fully described in a companion paper. Concerning heat transport

  6. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  7. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  8. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.; Kallivokas, L. F.

    2016-01-01

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  9. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.

    2016-07-04

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  10. Matrix diffusion: heavy-tailed residence time distributions and their influence on radionuclide retention

    International Nuclear Information System (INIS)

    Haggerty, R.

    2002-01-01

    Matrix diffusion in rocks is frequently assumed to be both Fickian and effectively homogeneous over space- and time-scales relevant to radionuclide retention. This paper discusses some cases of rocks where one or both of these assumptions may be invalid and what the consequences may be for modeling and performance assessment: a single pore diffusivity and matrix block size which is not representative of the diffusion process at all time- or space-scales, a scale-dependent diffusion rate coefficient which decreases with time- and space-scales, a retention capacity of host rocks that may be smaller than apparent in laboratory and field tests because all of the pore space is not accessible via diffusion over the performance assessment-scale transport time. (J.S.)

  11. Analysis of over-pressure mechanisms in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, B.; Bredehoeft, J. [Geological Survey, Menlo Park, CA (United States)

    1995-03-01

    Extremely high pore fluid pressures exist in the area of the Altamount/Bluebell oil field in the Uinta basin, Utah. We discuss two possible mechanisms for the cause of these over-pressures in this paper: (1) compaction disequilibrium, and (2) conversion of kerogen to liquid hydrocarbon (oil). Compaction disequilibrium occurs during periods of rapid sedimentation. If the permeability of deeply buried strata is low, then connate water within the rock matrix does not escape rapidly enough as compaction occurs; as sedimentary deposition continues, high pore fluid pressures develop. Conversion of solid kerogen to a liquid generates both a liquid and additional pore space for the liquid to occupy. If the volume of the liquid generated is just sufficient to fill the pore space generated, then there will be no accompanying effect on the pore pressure. If the liquid is less dense than the solid it replaces, then there is more liquid than pore space created; pore pressure will increase, causing flow away from the area of the reaction. Pore pressure is a sensitive measure of the balance between hydrocarbon generation and expulsion from the source into adjacent strata. If high pore pressures exist only where source rocks are thought to be generating oil, then kerogen conversion is a likely over-pressure mechanism. However, if over-pressures are found in low-permeability strata regardless of source rock proximity, then sedimentary compaction is probably a more dominant mechanism.

  12. THM-issues in repository rock. Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoekmark, Harald; Loennqvist, Margareta; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-05-15

    The present report addresses aspects of the Thermo-Hydro-Mechanical (THM) evolution of the repository host rock that are of potential importance to the SR-Site safety assessment of a KBS-3 type spent nuclear fuel repository. The report covers the evolution of rock temperatures, rock stresses, pore pressures and fracture transmissivities during the excavation and operational phase, the temperate phase and a glacial cycle on different scales. The glacial cycle is assumed to include a period of pre-glacial permafrost with lowered temperatures and with increased pore pressures in the rock beneath the impermeable permafrost layer. The report also addresses the question of the peak temperature reached during the early temperate phase in the bentonite buffer surrounding the spent fuel canisters. The main text is devoted exclusively to the projected THM evolution of the rock at the Forsmark site in central Sweden. The focus is on the potential for stress-induced failures, i.e. spalling, in the walls of the deposition holes and on changes in the transmissivity of fractures and deformation zones. All analyses are conducted by a combination of numerical tools (3DEC) and analytical solutions. All phases are treated separately and independently of each other, although in reality construction will overlap with heat generation because of the step-by-step excavation/deposition approach with some 50 years between deposition of the first and last canisters. It is demonstrated here that the thermal and thermo-mechanical evolution of the near-field will be independent of heat generated by canisters that were deposited in the past, provided that deposition is made in an orderly fashion, deposition area by deposition area. Peak temperatures and near-field stresses can, consequently, be calculated as if all canisters were deposited simultaneously. The canister and tunnel spacing is specified such that the peak buffer temperature will not exceed 100 deg C in any deposition hole, i.e. not

  13. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  14. Old flying ice-rock body in space allows a glance at its inner working.

    Science.gov (United States)

    Bieler, A. M.

    2015-12-01

    I am studying old, cold bodies of rock and ice flying through space, usually far, far away from the Sun. They are even behind the last of the big 8 balls we call our home worlds. (There were 9 balls a few yearsago, but then one of the balls was not considered a ball anymore by some people and he/she had to leave the group.)Because they are so far away from the Sun, they remain dark and very cold for the most part of their life.That is why even most of the very nervous stuff sticks on them ever since. With stuff I mean the little things that the Sun, the big 8 balls, we humans and everything else that is flying around the Sun ismade of. The nervous ones quickly change into something wind like andcan get lost. But the cold on the ice-rock bodies slows this down andthey stick around. This makes those ice-rock bodies interesting tostudy, they did not change too much since they were made.I study news sent back from a computer controlled box flying around oneof those rock-ice things that is now closer to the Sun. When thespace between such a body and the Sun gets smaller, it warms up andsome of the ice changes into wind like things. We find out how muchof what stuff is flying away from that body and at what time.Then I and my friends put those numbers into a big ass computer to findout more on how those rock-ice bodies work. Where does the wind comefrom? Do they all come from the same place or only some? Is it really the Sun's fault? How many cups of ice change into wind each day? Many questions.

  15. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  16. Pore opening dynamics in the exocytosis of serotonin

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.

    2015-03-01

    The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.

  17. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    Science.gov (United States)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14

  18. Pore volume is most highly correlated with the visual assessment of skin pores.

    Science.gov (United States)

    Kim, S J; Shin, M K; Back, J H; Koh, J S

    2014-11-01

    Many studies have been focused on evaluating assessment techniques for facial pores amid growing attention on skin care. Ubiquitous techniques used to assess the size of facial pores include visual assessment, cross-section images of the skin surface, and profilometric analysis of silicone replica of the facial skin. In addition, there are indirect assessment methods, including observation of pores based on confocal laser scanning microscopy and the analysis of sebum secretion and skin elasticity. The aim of this study was to identify parameters useful in estimating pore of surface in normal skin. The severity of pores on the cheek area by frontal optical images was divided on a 0-6 scale with '0' being faint and small pore and '6' being obvious and large pore. After the photos of the frontal cheek of 32 women aged between 35 and 49 were taken, the size of their pores was measured on a 0-6 scale; and the correlation between visual grading of pore and various evaluations (pore volume by 3-D image, pore area and number by Optical Image Analyzer) contributing to pore severity investigated using direct, objective, and noninvasive evaluations. The visual score revealed that the size of pores was graded on a 1-6 scale. Visual grading of pore was highly correlated with pore volume measured from 3-D images and pore area measured from 2-D optical images in the order (P pore was also slightly correlated with the number of pores in size of over 0.04 mm(2) (P pore score and pore volume can be explained by 3-D structural characteristics of pores. It is concluded that pore volume and area serve as useful parameters in estimating pore of skin surface. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    Science.gov (United States)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  20. Experimental study of very-low permeability rocks by the implementation of a precision permeameter

    International Nuclear Information System (INIS)

    Larive, E.

    2002-12-01

    The measurement of fluid flow through 'tight' rocks is important to provide a better understanding of physical processes involved in several industrial and natural problems. These include deep nuclear waste repositories, management of aquifers, gas, petroleum or geothermal reservoirs, or earthquakes prevention. The major part of this work consisted of the design, construction and use of an elaborate experimental apparatus allowing laboratory permeability measurements (fluid flow) of very low permeability rocks, on samples at a centimetric scale, to constrain their hydraulic behaviour at realistic in-situ conditions.The accuracy permeameter allows the use of several measurement methods, the steady-state flow method, the transient pulse method and the sinusoidal pore pressure oscillation method. Measurements were made with the pore pressure oscillation method, using different waveform periods, at several pore and confining pressure conditions on different materials. The permeability of one natural standard, Westerly granite, and an artificial one, a micro-porous cement, were measured and results obtained agreed with previous measurements made on these materials showing the reliability of the permeameter. A study of a Yorkshire sandstone shows a relationship between rock microstructure, permeability anisotropy and thermal cracking. Microstructure, porosity and permeability concepts, and laboratory permeability measurements specifications are presented, the permeameter is described, and then permeability results obtained on the investigated materials are reported. (author)

  1. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  2. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    Science.gov (United States)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  3. pH controlled gating of toxic protein pores by dendrimers

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  4. Multiscale modeling of fluid flow and mass transport

    Science.gov (United States)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  5. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    International Nuclear Information System (INIS)

    Waber, H.N.; Hobbs, M.Y.; Frape, S.K.

    2013-01-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ 37 Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  6. Nuclear fuel waste management program geotechnical studies of Eye-Dashwa Lakes research area rock properties

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1992-05-01

    The Eye-Dashwa Lakes pluton near Atikokan Ontario has been used as a study area for the Canadian nuclear fuel waste management research program. The pluton consists predominately of granite. Fractures formed during cooling of the pluton were filled with a succession of different materials at different times. Measurements of a series of geophysical and geotechnical properties of rock samples are published here in this report, including especially microcrack and pore structures. An indication has been found that a larger proportion of the porosity of Whiteshell and Atikokan samples is contained in connecting pores, compared to other rocks. This may seem surprising in view of the finding that approximately 70% of the effective porosity of Atikokan samples is contained in pockets

  7. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  8. Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes

    Science.gov (United States)

    Ghorbani, A.; Revil, A.; Coperey, A.; Soueid Ahmed, A.; Roque, S.; Heap, M. J.; Grandis, H.; Viveiros, F.

    2018-05-01

    Induced polarization measurements can be used to image alteration at the scale of volcanic edifices to a depth of few kilometers. Such a goal cannot be achieved with electrical conductivity alone, because too many textural and environmental parameters influence the electrical conductivity of volcanic rocks. We investigate the spectral induced polarization measurements (complex conductivity) in the frequency band 10 mHz-45 kHz of 85 core samples from five volcanoes: Merapi and Papandayan in Indonesia (32 samples), Furnas in Portugal (5 samples), Yellowstone in the USA (26 samples), and Whakaari (White Island) in New Zealand (22 samples). This collection of samples covers not only different rock compositions (basaltic andesite, andesite, trachyte and rhyolite), but also various degrees of alteration. The specific surface area is found to be correlated to the cation exchange capacity (CEC) of the samples measured by the cobalthexamine method, both serving as rough proxies of the hydrothermal alteration experienced by these materials. The in-phase (real) conductivity of the samples is the sum of a bulk contribution associated with conduction in the pore network and a surface conductivity that increases with alteration. The quadrature conductivity and the normalized chargeability are two parameters related to the polarization of the electrical double layer coating the minerals of the volcanic rocks. Both parameters increase with the degree of alteration. The surface conductivity, the quadrature conductivity, and the normalized chargeability (defined as the difference between the in-phase conductivity at high and low frequencies) are linearly correlated to the CEC normalized by the bulk tortuosity of the pore space. The effects of temperature and pyrite-content are also investigated and can be understood in terms of a physics-based model. Finally, we performed a numerical study of the use of induced polarization to image the normalized chargeability of a volcanic edifice

  9. Impact of Pore-Scale Wettability on Rhizosphere Rewetting

    Directory of Open Access Journals (Sweden)

    Pascal Benard

    2018-04-01

    Full Text Available Vast amounts of water flow through a thin layer of soil around the roots, the rhizosphere, where high microbial activity takes place—an important hydrological and biological hotspot. The rhizosphere was shown to turn water repellent upon drying, which has been interpreted as the effect of mucilage secreted by roots. The effects of such rhizosphere water dynamics on plant and microbial activity are unclear. Furthermore, our understanding of the biophysical mechanisms controlling the rhizosphere water repellency remains largely speculative. Our hypothesis is that the key to describe the emergence of water repellency lies within the microscopic distribution of wettability on the pore-scale. At a critical mucilage content, a sufficient fraction of pores is blocked and the rhizosphere turns water repellent. Here we tested whether a percolation approach is capable to predict the flow behavior near the critical mucilage content. The wettability of glass beads and sand mixed with chia seed mucilage was quantified by measuring the infiltration rate of water drops. Drop infiltration was simulated using a simple pore-network model in which mucilage was distributed heterogeneously throughout the pore space with a preference for small pores. The model approach proved capable to capture the percolation nature of the process, the sudden transition from wettable to water repellent and the high variability in infiltration rates near the percolation threshold. Our study highlights the importance of pore-scale distribution of mucilage in the emergent flow behavior across the rhizosphere.

  10. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    International Nuclear Information System (INIS)

    Deo, Omkar; Neithalath, Narayanan

    2010-01-01

    Research highlights: → Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. → A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. → Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  11. Elastic behaviour of North Sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke; Mukerji, T.

    2007-01-01

    -consistent approximation, which here represents the unrelaxed scenario where the pore spaces of the rock are assumed to be isolated, and the Gassmann theory, which assumes that pore spaces are connected, as tools for predicting the effect of hydrocarbons from the elastic properties of brine-saturated North Sea reservoir...

  12. Loading-unloading pressure-volume curves for rocks

    International Nuclear Information System (INIS)

    Stephens, D.R.; Lilley, E.M.

    1970-01-01

    The stress-strain codes (SOC and TENSOR) used to calculate phenomenology of nuclear explosion for the Plowshare Program require inter alia the pressure-volume relationships of the earth media. In this paper we describe a rapid and accurate method to obtain pressure-volume data to 40 kb at 25 deg. C for rocks. These experimental results may also be related to the in situ elastic properties of the rock and to other laboratory measurement of properties, such as ultrasonic experiments with pressure and Hugoniot determinations. Qualitative features of the pressure-volume curves can be related to the initial porosity of the rock. A porous rock is usually quite compressible at low pressures. If the porosity is in the form of narrow cracks, the cracks are closed at a pressure of about 3 to 6 kb, after which the rock is much less compressible. If the porosity is in the form of spherical pores, it is not necessarily removed even at pressures of 40 kb, depending on the strength of the rock, and the compressibility is higher at all pressures than for a similar rock containing no porosity. Data for water-saturated samples show the phase transformation due to free water at about 10 and 22 kb. However, the presence of 'nonliquid' water, which is loosely contained within the lattice of clay or zeolitic minerals or adsorbed on particle surfaces, is also observed. (author)

  13. Loading-unloading pressure-volume curves for rocks

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, D R; Lilley, E M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The stress-strain codes (SOC and TENSOR) used to calculate phenomenology of nuclear explosion for the Plowshare Program require inter alia the pressure-volume relationships of the earth media. In this paper we describe a rapid and accurate method to obtain pressure-volume data to 40 kb at 25 deg. C for rocks. These experimental results may also be related to the in situ elastic properties of the rock and to other laboratory measurement of properties, such as ultrasonic experiments with pressure and Hugoniot determinations. Qualitative features of the pressure-volume curves can be related to the initial porosity of the rock. A porous rock is usually quite compressible at low pressures. If the porosity is in the form of narrow cracks, the cracks are closed at a pressure of about 3 to 6 kb, after which the rock is much less compressible. If the porosity is in the form of spherical pores, it is not necessarily removed even at pressures of 40 kb, depending on the strength of the rock, and the compressibility is higher at all pressures than for a similar rock containing no porosity. Data for water-saturated samples show the phase transformation due to free water at about 10 and 22 kb. However, the presence of 'nonliquid' water, which is loosely contained within the lattice of clay or zeolitic minerals or adsorbed on particle surfaces, is also observed. (author)

  14. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    Science.gov (United States)

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  15. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  16. The Applicability of Different Fluid Media to Measure Effective Stress Coefficient for Rock Permeability

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available Effective stress coefficient for permeability (ESCK is the key parameter to evaluate the properties of reservoir stress sensitivity. So far, little studies have clarified which ESCK is correct for a certain reservoir while rock ESCK is measured differently by different fluid media. Thus, three different fluids were taken to measure a fine sandstone sample’s ESCK, respectively. As a result, the ESCK was measured to be the smallest by injecting nitrogen, the largest by injecting water, and between the two by brine. Besides, those microcharacteristics such as rock component, clay mineral content, and pore structure were further analyzed based on some microscopic experiments. Rock elastic modulus was reduced when water-sensitive clay minerals were encountered with aqua fluid media so as to enlarge the rock ESCK value. Moreover, some clay minerals reacting with water can spall and possibly block pore throats. Compared with water, brine can soften the water sensitivity; however, gas has no water sensitivity effects. Therefore, to choose which fluid medium to measure reservoir ESCK is mainly depending on its own exploitation conditions. For gas reservoirs using gas to measure ESCK is more reliable than water or brine, while using brine is more appropriate for oil reservoirs.

  17. Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Waber, H.N. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Hobbs, M.Y. [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern (Switzerland); Nuclear Waste Management Organization (NWMO), 22 St. Clair Avenue East, M4T 2S3 Toronto, Ontario (Canada); Frape, S.K. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-01

    Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of δ{sup 37}Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence. (authors)

  18. 3D Printing and Digital Rock Physics for the Geosciences

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  19. Microbiologically mediated processes in a repository sited in a clay host rock

    International Nuclear Information System (INIS)

    Schwyn, B.; Leupin, O. X.; Bagnoud, A.; Bernier-Latmani, R.

    2012-01-01

    Document available in extended abstract form only. Because of their favourable retention properties for radionuclides, clay-rich sediments are being considered in Switzerland as host rocks for the geological disposal of high, intermediate- and low-level radioactive waste. Compacted bentonite is foreseen as backfill material in the high level waste repository whereas for intermediate- and low-level waste the near field will mainly consist of cementitious material. The evolution of both types of repositories, which includes re-saturation, heat generation (only high level waste), near field degradation, gas production and radionuclide release may be impacted by microbial activity and vice versa. In this respect questions arise such as: - Are microorganisms present in a repository and its host rock? - Under which condition are microorganisms active in and around a repository? - In which processes are microorganisms involved? Various in situ experiments in a wide range of geological environments have evidenced the presence of microorganisms. Whether the microorganisms found in these in situ experiments are indigenous or introduced by drilling or/and excavation activities is still controversial. However, recent findings suggest the presence of indigenous microorganisms in Opalinus Clay. To conclusively answer the question about the origin of microorganisms, an international investigation programme has been launched to probe rock samples from the Underground Rock Laboratory at Mont Terri. So far, no metabolic activity has been observed in undisturbed clay rocks. Such activity may have ceased during diagenetic compaction of the sediment as suggested by the pore water composition measured in the Callovian-Oxfordian clayey formation of Bure (France). For the safety case of a repository the origin of microorganisms is of minor importance compared to the understanding of the conditions under which they might be metabolically active. Pore size distribution and connectivity can

  20. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  1. Performance of the Opalinus Clay under thermal loading: experimental results from Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Gens, A. [Universitat Politència de Catalunya, Barcelona (Spain); Wieczorek, K. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Braunschweig (Germany); Gaus, I. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); and others

    2017-04-15

    The paper presents an overview of the behaviour of Opalinus Clay under thermal loading as observed in three in situ heating tests performed in the Mont Terri rock laboratory: HE-B, HE-D and HE-E. The three tests are summarily described; they encompass a broad range of test layouts and experimental conditions. Afterwards, the following topics are examined: determination of thermal conductivity, thermally-induced pore pressure generation and thermally-induced mechanical effects. The mechanisms underlying pore pressure generation and dissipation are discussed in detail and the relationship between rock damage and thermal loading is examined using an additional in situ test: SE-H. The paper concludes with an evaluation of the various thermo-hydro-mechanical (THM) interactions identified in the heating tests. (authors)

  2. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Science.gov (United States)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang

    2017-12-01

    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  3. The influence of environment on the inelastic behavior of rocks

    International Nuclear Information System (INIS)

    Heard, Hugh C.

    1970-01-01

    The mechanical response of earth materials are demonstrably dependent upon the environment during deformation as well as the physical properties of the rock masses themselves. Among the most important of these environmental parameters are mean pressure, pore fluid pressure, temperature, strain rate, and the relative magnitude of the intermediate principal stress (σ 2 ) compared to the maximum (σ 1 ) and minimum (σ 3 ) stresses. Important inherent properties of rocks include anisotropy, homogeneity, porosity, permeability, grain size, and mineral composition. Calculation of the response of rocks to a nearby nuclear detonation requires knowledge of the deviatoric stress-strain behavior as well as the resulting mechanisms of deformation: fracture or flow. For calculations beginning at times of the order of 10 -3 sec after detonation, that is, when peak pressures are ∼10 6 bars and lasting to ∼10 2 sec when cavity pressures have decayed to ∼10 2 bars, broad limitations may be imposed on the possible deformation environment. Here, mean pressures range from 10 6 to 10 2 bars, pore pressures from 10 6 to 1 bar, temperatures from 1500 deg. to 50 deg. C, and strain rates from 10 6 to 10 -3 per sec; σ 2 may range in value from that of σ 3 on loading to that of σ 1 on unloading. Using present technology, it is virtually impossible to measure the mechanical behavior of rock materials under controlled conditions over much of the above range. This behavior must be largely inferred from data gathered at less extreme conditions. Quantitative data illustrating the effect of the deformation environment upon the strength and brittle-ductile behavior are presented for a suite of rocks of interest to the Plowshare program; among these are limestone, quartzite, granite, sandstone and 'oil-shale'. More limited results are also presented illustrating the effect of planar anisotropies as well as of grain size upon mechanical properties. The available data then may be used to

  4. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria

    Science.gov (United States)

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; Marsh, Terence L.; Hildebrandt, Britton; Rivers, Mark L.

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C

  5. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria.

    Science.gov (United States)

    Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C

  6. Pore system characteristics of the Permian transitional shale reservoir in the Lower Yangtze Region, China

    Directory of Open Access Journals (Sweden)

    Taotao Cao

    2016-10-01

    Full Text Available The Permian shale, a set of transitional shale reservoir, is considered to be an important shale gas exploration target in the Lower Yangtze region. Due to little research conducted on the pore system characteristic and its controlling factors of the shale gas reservoir, SEM, FE-SEM, low-pressure N2 adsorption, and mercury intrusion tests were carried out on the Permian shales from the outcrop and HC well in the southern Anhui. The results show that the Permian shales mainly consist of organic matter, quartz, illite, calcite, and pyrite, of which pyrite occurs as framboids coexisting with organic matter and the organic matter is distributed in shales in stripped, interstitial, thin film and shell shapes. The basic pore types are inorganic mineral pore (intercrystalline pore, intergranular edge pore, intergranular pore, and interlayer pore in clay minerals and the organic pore and microfracture, of which organic pore and microfracture are the dominating pore types. In shale, organic pores are not developed at all in some organic grains but are well developed in others, which may be related to the types of and maceral compositions of kerogen. Under tectonic stress, shale rocks could develop mylonitization phenomenon exhibiting organic grains well blend with clay minerals, and produce a mass of microfractures and nanopores between organic matter grains and clay minerals. Mercury intrusion tests show that the shale is mainly composed of micropore and transition pore with high porosity, good pore connectivity and high efficiency of mercury withdraw, while the shale that mainly dominated by mesopore and macropore has a low porosity, poor pore connectivity, and low efficiency of the mercury withdraw. The volume percentage of mesopore and marcopore is increasing with the increase of quartz, and that of micropore and transition pore has a decreased tendency along with the increase of soluble organic matter (S1. Organic matter is the main contributor to

  7. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  8. Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone

  9. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar

    DEFF Research Database (Denmark)

    Petersen, C. T.; Hansen, E.; Larsen, H. H.

    2016-01-01

    Sustainable agricultural production on coarse sandy soil is constrained by the restricted growth of roots, and poor water and nutrient retention. Amending the soil with biochar can reduce these problems, but the processes involved are not known in detail. We investigated in the laboratory...... the effects of two fine-grained gasification biochars made of straw (LTST) and other materials (LTSN) and of one fast pyrolysis straw biochar (FPST) on pore-size distribution and soil compressibility when added to coarse sandy subsoil. Water retention and therefore pore-size distribution were affected...... systematically. All biochars converted drainable pore space with pore diameters in the range 60–300 µm into water-retaining pores of size 0.2–60 µm, which was taken as an estimate of available water capacity (AWC). Effects were linear over the whole range of biochar (0–4% by mass). The effect of LTST and LTSN...

  10. Stress dependent fluid flow in porous rock: experiments and network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Flornes, Olav

    2005-07-01

    During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the

  11. On the predictivity of pore-scale simulations: estimating uncertainties with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo

    2016-02-08

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [2015. https://bitbucket.org/micardi/porescalemc.], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers

  12. Impact of Diagenetic Alterations on the Petrophysical and Multiphase Flow Properties of Carbonate Rocks Using a Reactive Pore Network Modeling Approach Impact des altérations diagénétiques sur les propriétés pétrophysiques et d’écoulement polyphasique de roches carbonates en utilisant une modélisation par l’approche réseau de pores

    Directory of Open Access Journals (Sweden)

    Algive L.

    2012-02-01

    Full Text Available Sedimentary reservoir rocks generally have complex and heterogeneous pore networks that are related to the original depositional rock texture and subsequent diagenetic alterations. Such alterations are in part controlled by the original mineralogy and sedimentological facies, the compaction history, the involved fluids (and rock/fluid interactions, the flow history and the related physico-chemical conditions. During the diagenetic evolution (paragenesis, cycles of alternating dissolution (porosity enhancement and precipitation (porosity destruction caused by changes in chemical and thermodynamic conditions may lead to heterogeneous rock structure at both local and reservoir scale. In the absence of cored plugs to measure the petrophysical properties (i.e. porosity, permeability and formation factor and multiphase flow properties (i.e. capillary pressure, relative permeability and resistivity index, a numerical tool that calculates these properties from pore structure data by predicting its evolution during the diagenetic cycle is of great interest for the petroleum industry and reservoir characterization studies. A Pore Network Model (PNM provides opportunities to study transport phenomena in fundamental ways because detailed information is available at the pore scale. It has been used over the last decades to understand basic phenomena such as capillarity, multiphase flow or coupled phenomena. In particular, this modeling approach is appropriate to study the rock/fluid interactions since the mass exchange at surfaces can be modeled explicitly. It can provide quantitative information both on the effective transport property modifications due to the reactions and on the structure evolution resulting from dissolution/precipitation mechanisms. In the present paper, this approach is used to study the effect of the diagenetic cycle on the petrophysical properties of carbonate rocks. It involves three discrete steps. The first step consists of

  13. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  14. Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones

    Science.gov (United States)

    Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2013-12-01

    One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into

  15. Rock glaciers, Central Andes, Argentina, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary rock glaciers are fed by avalanche chutes. At the El Salto rock glacier, surveys have been undertaken in order to determine the creep rate. Between 1981 and...

  16. A study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sato, Haruo

    1998-01-01

    This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. (J.P.N.). 117 refs

  17. Mechanical Aqueous Alteration Dominates Textures of Gale Crater Rocks: Mars Hand Lens Imager (MAHLI) Results

    Science.gov (United States)

    Aileen Yingst, R.; Minitti, Michelle; Edgett, Kenneth; McBride, Marie; Stack, Kathryn

    2015-04-01

    The Mars Hand Lens Imager (MAHLI) acquired sub-mm/pixel scale color images of over 70 individual rocks and outcrops during Curiosity's first year on Mars, permitting the study of textures down to the distinction between silt and very fine sand. We group imaged rock textures into classes based on their grain size, sorting, matrix characteristics, and abundance of pores. Because the recent campaign at Pahrump Hills acquired many more MAHLI images than elsewhere along the rover traverse [6], textural analysis there is more detailed and thus types observed there are sub-divided. Mudstones: These rocks contain framework grains smaller than the highest resolution MAHLI images (16 μm/pixel), and thus are interpreted to consist of grains that are silt-sized or smaller. Some rocks contain nodules, sulfate veins, and Mg-enriched erosionally-resistant ridges. The Pahrump Hills region contains mudstones of at least four different sub-textures: recessive massive, recessive parallel-laminated, resistant laminated-to-massive, and resistant cross-stratified. Recessive mudstones are slope-forming; parallel-laminated recessive mudstones display mm-scale parallel (and in some cases rhythmic) lamination that extends laterally for many meters, and are interbedded with recessive massive mudstones. Coarse cm- to mm-scale laminae appear within resistant mudstones though some portions are more massive; laminae tend to be traceable for cm to meters. Well-sorted sandstones: Rocks in this class are made of gray, fine-to-medium sand and exhibit little to no porosity. Two examples of this class show fine lineations with sub-mm spacing. Aillik, a target in the Shaler outcrop, shows abundant cross-lamination. The Pahrump Hills region contains a sub-texture of well-sorted, very fine to fine-grained cross-stratified sandstone at the dune and ripple-scale. Poorly-sorted sandstones. This class is subdivided into two sub-classes: rounded, coarse-to-very coarse sand grains of variable colors and

  18. The Time-Dependency of Deformation in Porous Carbonate Rocks

    Science.gov (United States)

    Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.

  19. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    Science.gov (United States)

    Sarin, Hemant

    2010-08-11

    . Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the

  20. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB (Sweden))

    2010-11-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  1. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  2. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2010-11-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  3. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    Directory of Open Access Journals (Sweden)

    T. K. D. Weber

    2017-12-01

    Full Text Available In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten–Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of >  300, 300–30, and 30–10 µm, respectively.

  4. Current results of an arachnological survey of some sandstone rock sites in Bohemia (so-called "rock cities"

    Directory of Open Access Journals (Sweden)

    Růžička, Vlastimil

    1992-07-01

    Full Text Available The spider fauna of the Adrspach-Teplice rockswas investigated. Some records on spider fauna of other nine sandstone rock areas are included. The phenomenon of "rock cities" manifests itself in three aspects: (1 In the bottom parts are microclimatically cold spaces, frequently hosting northern ot mountain species of invertebrates, which here have an azonal occurence. (2 the sun exposed tops of rocks can host thermophilous species. (3 Some species are limited to the surface of rocks and boulders. These are referred to as lithophilous or lithobiont species.

  5. Friction of hard surfaces and its application in earthquakes and rock slope stability

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  6. The use of magnetic resonance sounding for quantifying specific yield and transmissivity in hard rock aquifers: The example of Benin

    Science.gov (United States)

    Vouillamoz, J. M.; Lawson, F. M. A.; Yalo, N.; Descloitres, M.

    2014-08-01

    Hundreds of thousands of boreholes have been drilled in hard rocks of Africa and Asia for supplying human communities with drinking water. Despite the common use of geophysics for improving the siting of boreholes, a significant number of drilled holes does not deliver enough water to be equipped (e.g. 40% on average in Benin). As compared to other non-invasive geophysical methods, magnetic resonance sounding (MRS) is selective to groundwater. However, this distinctive feature has not been fully used in previous published studies for quantifying the drainable groundwater in hard rocks (i.e. the specific yield) and the short-term productivity of aquifer (i.e. the transmissivity). We present in this paper a comparison of MRS results (i.e. the water content and pore-size parameter) with both specific yield and transmissivity calculated from long duration pumping tests. We conducted our experiments in six sites located in different hard rock groups in Benin, thus providing a unique data set to assess the usefulness of MRS in hard rock aquifers. We found that the MRS water content is about twice the specific yield. We also found that the MRS pore-size parameter is well correlated with the specific yield. Thus we proposed two linear equations for calculating the specific yield from the MRS water content (with an uncertainty of about 10%) and from the pore-size parameter (with an uncertainty of about 20%). The later has the advantage of defining a so-named MRS cutoff time value for indentifying non-drainable MRS water content and thus low groundwater reserve. We eventually propose a nonlinear equation for calculating the specific yield using jointly the MRS water content and the pore-size parameters, but this approach has to be confirmed with further investigations. This study also confirmed that aquifer transmissivity can be estimated from MRS results with an uncertainty of about 70%. We conclude that MRS can be usefully applied for estimating aquifer specific yield and

  7. NMR Pore Structure and Dynamic Characteristics of Sandstone Caused by Ambient Freeze-Thaw Action

    Directory of Open Access Journals (Sweden)

    Bo Ke

    2017-01-01

    Full Text Available For a deeper understanding of the freeze-thaw weathering effects on the microstructure evolution and deterioration of dynamic mechanical properties of rock, the present paper conducted the nuclear magnetic resonance (NMR tests and impact loading experiments on sandstone under different freeze-thaw cycles. The results of NMR test show that, with the increase of freeze-thaw cycles, the pores expand and pores size tends to be uniform. The experimental results show that the stress-strain curves all go through four stages, namely, densification, elasticity, yielding, and failure. The densification curve is shorter, and the slope of elasticity curve decreases as the freeze-thaw cycles increase. With increasing freeze-thaw cycles, the dynamic peak stress decreases and energy absorption of sandstone increases. The dynamic failure form is an axial splitting failure, and the fragments increase and the size diminishes with increasing freeze-thaw cycles. The higher the porosity is, the more severe the degradation of dynamic characteristics is. An increase model for the relationships between the porosity or energy absorption and freeze-thaw cycles number was built to reveal the increasing trend with the freeze-thaw cycles increase; meanwhile, a decay model was built to predict the dynamic compressive strength degradation of rock after repeated freeze-thaw cycles.

  8. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    Science.gov (United States)

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  9. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  10. A computational geometry approach to pore network construction for granular packings

    Science.gov (United States)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  11. Changes in Specific Surface as observed by NMR, caused by saturation of Chalk with porewater bearing divalent Ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) spectrometry has proved to be a good technique for determining the petrophysical properties of reservoir rocks; such as porosity and pore size distribution. We investigated how pore water rich in divalent ions affect the NMR signal from chalk with two different de......-to-volume ratio of the pore space. The results of this work could benefit the ongoing study on the optimization of the water composition for Enhanced Oil Recovery (EOR) methods and shed light on how it can affect the mechanical and physical properties of the rock....

  12. Remarks on some rock neutron parameters

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1983-01-01

    A method to calculate the thermal neutron parameters (absorption cross-section, diffusion coefficient and diffusion length) of rocks is given. It is based on a proper energy averaging of cross-sections for all rock matrix and rock saturating liquid constituents. Special emphasis is given to the presence of hydrogen. The diffusion lengths in different lithologies in the function of the variable rock porosity have been calculated. An influence of the thermal neutron spectrum on the shape of the porosity calibration curves for the dual spacing neutron method is shown. This influence has been estimated on two porosity units, on average. (author)

  13. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics

    International Nuclear Information System (INIS)

    Czaikowski, Oliver

    2012-01-01

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  14. A study on the stochastic model for nuclide transport in the fractured porous rock using continuous time Markov process

    International Nuclear Information System (INIS)

    Lee, Youn Myoung

    1995-02-01

    As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured

  15. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  16. PolyA Single Strand DNA Translocation Through an Alpha-Hemolysin Pore Stem

    Science.gov (United States)

    OKeeffe, James; Cozmuta, Ioana; Stolc, Viktor

    2003-01-01

    A new model for the polymer-pore interaction energy is introduced, based on an atomic-scale description of coulombic polymer-pore interaction. The enhanced drift velocity, experimentally observed for short polymers, is successfully accounted for, using this interaction energy model. For R/R(sub 0)>4 (R(sub 0)=7 angstroms) the translocation velocity approaches the free space drift velocity v(sub 0). This motivates the need to appropriately derivatize artificial nanopores, where R>R(sub 0).

  17. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  18. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  19. Thermo-hydro-mechanical coupling in long-term sedimentary rock response

    Science.gov (United States)

    Makhnenko, R. Y.; Podladchikov, Y.

    2017-12-01

    Storage of nuclear waste or CO2 affects the state of stress and pore pressure in the subsurface and may induce large thermal gradients in the rock formations. In general, the associated coupled thermo-hydro-mechanical effect on long-term rock deformation and fluid flow have to be studied. Principles behind mathematical models for poroviscoelastic response are reviewed, and poroviscous model parameter, the bulk viscosity, is included in the constitutive equations. Time-dependent response (creep) of fluid-filled sedimentary rocks is experimentally quantified at isotropic stress states. Three poroelastic parameters are measured by drained, undrained, and unjacketed geomechanical tests for quartz-rich Berea sandstone, calcite-rich Apulian limestone, and clay-rich Jurassic shale. The bulk viscosity is calculated from the measurements of pore pressure growth under undrained conditions, which requires time scales 104 s. The bulk viscosity is reported to be on the order of 1015 Pa•s for the sandstone, limestone, and shale. It is found to be decreasing with the increase of pore pressure despite corresponding decrease in the effective stress. Additionally, increase of temperature (from 24 ºC to 40 ºC) enhances creep, where the most pronounced effect is reported for the shale with bulk viscosity decrease by a factor of 3. Viscous compaction of fluid-filled porous media allows a generation of a special type of fluid flow instability that leads to formation of high-porosity, high-permeability domains that are able to self-propagate upwards due to interplay between buoyancy and viscous resistance of the deforming porous matrix. This instability is known as "porosity wave" and its formation is possible under conditions applicable to deep CO2 storage in reservoirs and explains creation of high-porosity channels and chimneys. The reported experiments show that the formation of high-permeability pathways is most likely to occur in low-permeable clay-rich materials (caprock

  20. The influence of environment on the inelastic behavior of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Heard, Hugh C [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The mechanical response of earth materials are demonstrably dependent upon the environment during deformation as well as the physical properties of the rock masses themselves. Among the most important of these environmental parameters are mean pressure, pore fluid pressure, temperature, strain rate, and the relative magnitude of the intermediate principal stress ({sigma}{sub 2}) compared to the maximum ({sigma}{sub 1}) and minimum ({sigma}{sub 3}) stresses. Important inherent properties of rocks include anisotropy, homogeneity, porosity, permeability, grain size, and mineral composition. Calculation of the response of rocks to a nearby nuclear detonation requires knowledge of the deviatoric stress-strain behavior as well as the resulting mechanisms of deformation: fracture or flow. For calculations beginning at times of the order of 10{sup -3} sec after detonation, that is, when peak pressures are {approx}10{sup 6} bars and lasting to {approx}10{sup 2} sec when cavity pressures have decayed to {approx}10{sup 2} bars, broad limitations may be imposed on the possible deformation environment. Here, mean pressures range from 10{sup 6} to 10{sup 2} bars, pore pressures from 10{sup 6} to 1 bar, temperatures from 1500 deg. to 50 deg. C, and strain rates from 10{sup 6} to 10{sup -3} per sec; {sigma}{sub 2} may range in value from that of {sigma}{sub 3} on loading to that of {sigma}{sub 1} on unloading. Using present technology, it is virtually impossible to measure the mechanical behavior of rock materials under controlled conditions over much of the above range. This behavior must be largely inferred from data gathered at less extreme conditions. Quantitative data illustrating the effect of the deformation environment upon the strength and brittle-ductile behavior are presented for a suite of rocks of interest to the Plowshare program; among these are limestone, quartzite, granite, sandstone and 'oil-shale'. More limited results are also presented illustrating the effect

  1. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  2. Transport upscaling from pore- to Darcy-scale: Incorporating pore-scale Berea sandstone Lagrangian velocity statistics into a Darcy-scale transport CTRW model

    Science.gov (United States)

    Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe

    2017-04-01

    For the past several years a lot of attention has been given to pore-scale flow in order to understand and model transport, mixing and reaction in porous media. Nevertheless we believe that an accurate study of spatial and temporal evolution of velocities could bring important additional information for the upscaling from pore to higher scales. To gather these pieces of information, we perform Stokes flow simulations on pore-scale digitized images of a Berea sandstone core. First, micro-tomography (XRMT) imaging and segmentation processes allow us to obtain 3D black and white images of the sample [1]. Then we used an OpenFoam solver to perform the Stokes flow simulations mentioned above, which gives us the velocities at the interfaces of a cubic mesh. Subsequently, we use a particle streamline reconstruction technique which uses the Eulerian velocity field previously obtained. This technique, based on a modified Pollock algorithm [2], enables us to make particle tracking simulations on the digitized sample. In order to build a stochastic pore-scale transport model, we analyze the Lagrangian velocity series in two different ways. First we investigate the velocity evolution by sampling isochronically (t-Lagrangian), and by studying its statistical properties in terms of one- and two-points statistics. Intermittent patterns can be observed. These are due to the persistance of low velocities over a characteristic space length. Other results are investigated, such as correlation functions and velocity PDFs, which permit us to study more deeply this persistence in the velocities and to compute the correlation times. However, with the second approach, doing these same analysis in space by computing the velocities equidistantly, enables us to remove the intermittency shown in the temporal evolution and to model these velocity series as a Markov process. This renders the stochastic particle dynamics into a CTRW [3]. [1] Gjetvaj, F., A. Russian, P. Gouze, and M. Dentz (2015

  3. Studies of ionic diffusion in crystalline rock

    International Nuclear Information System (INIS)

    Ohlsson, Yvonne

    2001-01-01

    Matrix diffusion is of great importance in delaying radionuclides escaping from a deep geologic repository, on their way to the biosphere. There are, however, poorly understood mechanisms related to transport in pores with charged pore surfaces. Ions are affected by this charge and may be repelled or attracted by it. The rate of transport may be reduced, or even enhanced, as a result of this. Transport of ions is studied by traditional diffusion experiments, but mainly by a faster electrical conductivity method. With this method the pore connectivity, the formation factor variability and its relation to the porosity, as well as the surface conductivity are investigated. The method is compared. with traditional diffusion experiments, and an in-situ application is suggested and qualitatively tested. Furthermore, surface diffusion is studied by evaluating literature data and recently developed diffusion models. The pore connectivity reached to a depth of at least 15 cm in the rocks studied. The formation factor did not generally decrease with increasing sample length. It was also found that not only cations in the free pore water add to the electrical conductivity, but also at least part of those sorbed to the pore surfaces of the minerals. This surface conductivity influences the determination of the formation factor in low ionic strength pore waters, and was also found to be a function of the formation factor. It was furthermore dependent on the type of ion at the surface, giving for example a higher conductivity for Na + than for Cs + . It is not fully understood which part of the sorbed ions that are mobile. A simple model was developed assigning the mobile ions to the diffuse layer, and this model explained experimental data for diffusion of Cs + in clay well. This is contradicted by surface conductivity measurements that have shown that most mobile ions are found behind the Stern layer. The in-situ formation factor determination method seems promising. The most

  4. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2016-01-01

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  5. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee

    2016-08-11

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  6. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  7. Matrix diffusion in crystalline rocks: coupling of anion exclusion, surface diffusion and surface complexation

    International Nuclear Information System (INIS)

    Olin, M.; Valkiainen, M.; Aalto, H.

    1997-12-01

    This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments

  8. Matrix diffusion in crystalline rocks: coupling of anion exclusion, surface diffusion and surface complexation

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Valkiainen, M.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    1997-12-01

    This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments. 21 refs.

  9. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.

    Science.gov (United States)

    Wrona, Artur; Kubica, Krystian

    2017-07-10

    The molecular bases of pore formation in the lipid bilayer remain unclear, as do the exact characteristics of their sizes and distributions. To understand this process, numerous studies have been performed on model lipid membranes including cell-sized giant unilamellar vesicles (GUV). The effect of an electric field on DPPC GUV depends on the lipid membrane state: in the liquid crystalline phase the created pores have a cylinder-like shape, whereas in the gel phase a crack has been observed. The aim of the study was to investigate the geometry of pores created in a lipid bilayer in gel and liquid crystalline phases in reference to literature experimental data. A mathematical model of the pore in a DPPC lipid bilayer developed based on the law of conservation of mass and the assumption of constant volume of lipid molecules, independent of their conformation, allows for analysis of pore shape and accompanying molecular rearrangements. The membrane area occupied by the pore of a cylinder-like shape is greater than the membrane area occupied by lipid molecules creating the pore structure (before pore appearance). Creation of such pores requires more space, which can be achieved by conformational changes of lipid chains toward a more compact state. This process is impossible for a membrane in the most compact, gel phase. We show that the geometry of the pores formed in the lipid bilayer in the gel phase must be different from the cylinder shape formed in the lipid bilayer in a liquid crystalline state, confirming experimental studies. Furthermore, we characterize the occurrence of the 'buffer' zone surrounding pores in the liquid crystalline phase as a mechanism of separation of neighbouring pores.

  10. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  11. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  12. Development of a X-ray micro-tomograph and its application to reservoir rocks characterization

    International Nuclear Information System (INIS)

    Ferreira de Paiva, R.

    1995-10-01

    We describe the construction and application to studies in three dimensions of a laboratory micro-tomograph for the characterisation of heterogeneous solids at the scale of a few microns. The system is based on an electron microprobe and a two dimensional X-ray detector. The use of a low beam divergence for image acquisition allows use of simple and rapid reconstruction software whilst retaining reasonable acquisition times. Spatial resolutions of better than 3 microns in radiography and 10 microns in tomography are obtained. The applications of microtomography in the petroleum industry are illustrated by the study of fibre orientation in polymer composites, of the distribution of minerals and pore space in reservoir rocks, and of the interaction of salt water with a model porous medium. A correction for X-ray beam hardening is described and used to obtain improved discrimination of the phases present in the sample. In the case of a North Sea reservoir rock we show the possibility to distinguish quartz, feldspar and in certain zone kaolinite. The representativeness of the tomographic reconstruction is demonstrated by comparing the surface of the reconstructed specimen with corresponding images obtained in scanning electron microscopy. (author). 58 refs., 10 tabs., 71 photos

  13. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  14. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  15. Thermophysical properties of rocks: a perspective on data needs, sources and accuracy

    International Nuclear Information System (INIS)

    Stephens, H.P.; Sinnock, S.

    1979-01-01

    Recent emphasis on research in geologic isolation of nuclear wastes and geoenergy resource development has created a renewed demand for engineering thermophysical property data for rocks and other geologic materials at elevated pressures and temperatures. In contrast to fabricated engineering materials, with properties which can be specified, rocks used in engineering design are complex, naturally occurring materials having properties which must be characterized, rather than specified, for engineering studies. Much difficulty in measuring, reporting, and using thermophysical properties of rocks results from (1) rock inhomogeneity and anisotropy on both microscopic and macroscopic scales; (2) inclusion of pore fluids, such as water; and (3) measurement of laboratory properties under conditions quite different from those of in situ material. Because measurements on in situ materials are scarce, many analyses must depend on extrapolated values of uncertain accuracy. A survey of thermophysical property data available for geologic thermal transport studies indicates that caution must be taken to effectively match data abstracted from the literature with project objectives

  16. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-01-01

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  17. Origin of melting point depression for rare gas solids confined in carbon pores

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki [Department of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  18. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  19. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  20. EXPERIMENTAL STUDY OF DECOMPRESSION, PERMEABILITY AND HEALING OF SILICATE ROCKS IN FAULT ZONES

    Directory of Open Access Journals (Sweden)

    V. Ya. Medvedev

    2014-01-01

    Full Text Available The article presents results of petrophysical laboratory experiments in studies of decompression phenomena associated with consequences of abrupt displacements in fault zones. Decompression was studied in cases of controlled pressure drop that caused sharp changes of porosity and permeability parameters, and impacts of such decompression were analyzed. Healing of fractured-porous medium by newly formed phases was studied. After experiments with decompression, healing of fractures and pores in silicate rock samples (3×2×2 cm, 500 °C, 100 MPa took about 800–1000 hours, and strength of such rocks was restored to 0.6–0.7 of the original value. In nature, fracture healing is influenced by a variety of factors, such as size of discontinuities in rock masses, pressure and temperature conditions, pressure drop gradients, rock composition and saturation with fluid. Impacts of such factors are reviewed.

  1. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    Science.gov (United States)

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  2. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-08-01

    Full Text Available Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  3. The effects of impure CO2 on reservoir sandstones: results from mineralogical and geomechanical experiments

    Science.gov (United States)

    Marbler, H.; Erickson, K. P.; Schmidt, M.; Lempp, Ch.; Pöllmann, H.

    2012-04-01

    An experimental study of the behaviour of reservoir sandstones from deep saline aquifers during the injection and geological storage of CO2 with the inherent impurities SOX and NOX is part of the German national project COORAL*. Sample materials were taken from outcrops of possible reservoir formations of Rotliegend and Bunter Sandstones from the North German Basin. A combination of mineralogical alteration experiments and geomechanical tests was carried out on these rocks to study the potential effects of the impurities within the CO2 pore fluid. Altered rock samples after the treatment with CO2 + SOX/NOX in an autoclave system were loaded in a triaxial cell under in-situ pressure and temperature conditions in order to estimate the modifications of the geomechanical rock properties. Mineralogical alterations were observed within the sandstones after the exposure to impure supercritical (sc)CO2 and brine, mainly of the carbonatic, but also of the silicatic cements, as well as of single minerals. Besides the partial solution effects also secondary carbonate and minor silicate mineral precipitates were observed within the pore space of the treated sandstones. These alterations affect the grain structure of the reservoir rock. Results of geomechanical experiments with unaltered sandstones show that the rock strength is influenced by the degree of rock saturation before the experiment and the chemical composition of the pore fluid (scCO2 + SOX + NOX). After long-term autoclave treatment with impure scCO2, the sandstone samples exhibit modified strength parameters and elastic deformation behaviour as well as changes in porosity compared to untreated samples. Furthermore, the injected fluid volume into the pore space of sandstones from the same lithotype varies during triaxial loading depending on the chemistry of the pore fluid. CO2 with NOX and SOX bearing fluid fills a significantly larger proportion of the sandstone pore space than brine with pure scCO2. * The

  4. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock; SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage -- Geologische Grundlagen -- Dossier VI -- Barriereneigenschaften der Wirt- und Rahmengesteine

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mazurek, M.; Gimmi, T.; Maeder, U. [Institute of Geological Sciences, University of Berne, Berne (Switzerland)

    2014-12-15

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed.

  5. Experimental Rock Deformation under micro-CT: ERDμ

    Science.gov (United States)

    Tisato, Nicola; Zhao, Qi; Biryukov, Anton; Grasselli, Giovanni

    2015-04-01

    Typically, the static elastic moduli of a rock differ from the corresponding dynamic rock-moduli. Such frequency-dependent characteristic, called modulus dispersion, implies also velocity dispersion (i.e. Vp- and Vs-dispersion). Velocity dispersion can be seen, in fact, as the result of a viscoelastic response of the geo-material to the externally imposed stress (e.g. seismic wave). Viscoelasticity can be conveniently expressed as attenuation (1/Q), which describes the loss of elastic energy for each stress cycle and comprises the measurement of the complex elastic modulus. As 1/Q at frequencies important seismic attribute as it can aid the subsurface imaging accuracy. For instance, the study of 1/Q is fundamental for the oil and gas industry as valuable natural resources, such as oil-sands or gas-shales, exhibit significant attenuation (e.g. 1/Q ~ 0.3 at 1 Hz), or for volcanic and earthquake related studies as fluids are often involved in those natural processes. In the last five years, employing the Broad Band Attenuation Vessel (BBAV), the attenuation of partially saturated rocks has been investigated along with the fluid pressure transient caused by a sudden increase of stress. In particular, those studies shed light on the relationships between 1/Q and i) saturation, ii) confining pressure, and iii) strain. The combination of laboratory and numerical results helped demonstrating that wave induced fluid flow (WIFF) on the mesoscopic scale is responsible for the large and frequency-dependent attenuation observed in the laboratory measurements of a partially saturated sandstone. However, these studies lay bare limitations: the behavior of attenuation as a function of i) the distribution of fluids in the pore space and ii) the role of dissolution-precipitation of new mineral phases are still unclear. For instance, when CO2 is injected in the Earth's crust to pursuit carbon sequestration it would be extremely useful understanding the impact of the gas-water-rock

  6. Concerning a mechanism for removing clay particles of washing liquids from pores

    Energy Technology Data Exchange (ETDEWEB)

    Badzhurak, R F

    1982-01-01

    Examined is a mechanism for removing the clay particles of washing liquids from a pore space. All the experiments are conducted in 1-% clay, water and polymer solutions (with a viscosity of 120 in accordance with SPV-5), made of clay powder of the Makharadz'ye deposit with a particle size of 40-60 mkm, sorted by a screen method. The polymer solutions were made on the basis of hypane, metas, polyacrylamide, KMTs-500, KhS-1 biopolymer, modified and clusterized by an alkaline (NaOH) of cornstarch. Studied is the process of removal of the solid phase from an ''ideal pore'', that is, a quartz capillary. It is demonstrated that the break away of the basic mass of the bentonite particles sedimented from the washing liquids on the quartz surface from the capillary and the formation by them of ''suspended flocules'' occurs at a water current speed in the pore equal to 2.5-4.0 times 10/sup -3/m/s. The carry away of the particles sedimented from the polymer solutions of metase, hypane, clusterized and modified starch, KMTs-500 and water occurs at a stream speed above 5.4 times 10/sup -3/m/s. The greatest speeds are required for the removal of clay particles more than 15 mkm in size from the pore space. The complete removal of these particles from the capillary is observed at a current speed above 40 times 10/sup -3/m/s.

  7. Surveying for migration pathways in the granitic rock using nuclear track detectors, autoradiography and digital image analysis as an aid to construct the basis for heterogeneous diffusion modeling

    International Nuclear Information System (INIS)

    Kemppainen, M.; Oila, E.; Siitari-Kauppi, M.

    2001-01-01

    Radioelement migration within a rock matrix under natural long-term conditions is a complex process controlled by various parameters. Pure physical parameters such as porosity, hydraulic conductivity and diffusivity are usually sufficient to describe transport in well-defined laboratory systems. In natural rock matrices transport is influenced by physical pore properties such as pore size distribution, connectivity, tortuosity, constrictivity and petrological and chemical nature and charge on the fluid-rock interface. The overall characterization of heterogeneous rock structures is needed for the accurate heterogeneous diffusion modeling. Here we describe a method for the detection of α-particles from uranium in cm-scale rock samples based on the analysis of the tracks formed in organic polymer, CR-39. On the other hand the uranium tracks were compared with the migration pathways and porosity distribution produced with the 14 C-polymethylmethacrylate impregnation method ( 14 C-PMMA). For analyzing mineral specific uranium occurrence and porosities the staining methods were used to produce the mineral map of the rock sample. Digital image analysis techniques were applied to the different cm-scale pictures of rock samples. Scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS) were performed in order both to study the pore apertures of grain boundaries and fissures in greater detail and to detect the uranium phases. The high uranium content was found to be congruent with the porous mineral phases; altered plagioclase and biotite grains, and the intra- and intergranular fissures detected with the 14 C-PMMA technique. Plenty of microfractures transsecting potassium feldspar and quartz grains were filled with calcite together with precipitated uranium. Copyright (2001) Material Research Society

  8. Silicon pore optics for the international x-ray observatory

    Science.gov (United States)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  9. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  10. A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Chen

    2017-02-01

    Full Text Available The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains (oolites coated by a matrix. Two distinct classes of pores, i.e. micropores or intra oolitic pores (oolite porosity and mesopores or inter oolitic pores (inter oolite porosity, are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage (CSA models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme (SCS. At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme (GSCS and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.

  11. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    International Nuclear Information System (INIS)

    Smellie, John A.T.; Waber, H. Niklaus; Frape, Shaun K.

    2003-06-01

    is mainly by small-scale advection via an interconnected micro fracture network and by diffusion. Over repository timescales diffusion of pore fluid/water from the rock matrix to the adjacent micro fracture groundwaters will become more important depending on the nature of existing chemical gradients. At Aespoe, permeable bedrock at all scales has facilitated the continuous removal and replacement of the interconnected pore space waters over relatively short periods of geological time, probably hundreds to a few thousands of years

  12. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences

    2003-06-01

    through the rock matrix is mainly by small-scale advection via an interconnected micro fracture network and by diffusion. Over repository timescales diffusion of pore fluid/water from the rock matrix to the adjacent micro fracture groundwaters will become more important depending on the nature of existing chemical gradients. At Aespoe, permeable bedrock at all scales has facilitated the continuous removal and replacement of the interconnected pore space waters over relatively short periods of geological time, probably hundreds to a few thousands of years.

  13. Elasticity of water-saturated rocks as a function of temperature and pressure.

    Science.gov (United States)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  14. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  15. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  16. Paradise regained: older adult rock climbers turning space into place in the natural environment

    Directory of Open Access Journals (Sweden)

    Mark Hickman

    2015-12-01

    Full Text Available At the time of writing there are over 10 million people aged over 65 living in the UK, and by 2050 the number is predicted to rise to 19 million. This expansion of the ageing population is mirrored worldwide, and over the past ten years has stimulated a growth in age-related studies. However, the idea of a social gerontology of the outdoors is yet to take root. Yet, with the maturing of those born between the years 1946 and 1964, and increased participation in adventurous activities, we suggest that the time is right for scholarship in this specific direction. Accordingly, the aim of this study was to discover how older adult rock climbers perceived their relationship with the natural environment to have changed over the period of their involvement with rock climbing. The investigation used a purposive sample of rock climbers in the north-west of England (n=10 aged between 65 and 74 years (av=69.6 identifying them as ‘young-old’ adults. Oral testimony was collected over two phases, the first with interview-questionnaires, and the second with targeted semi-structured interviews. In order to give a clear voice to participants, manual data handling using was used to establish raw data that were then sorted into themes and verified against internal and external checkers. These were then organized around Peace, Wahl, Mollenkopf and Oswald’s (2014 concept of an ‘environment’ considered within three dimensions: the physical/material, including the natural landscape; the psychological, and the meaning attributed to the place, its evolution across the life course, and how it makes people feel about themselves; and the social/cultural, involving the engagement of people to places, including how the space is used and remembered.

  17. Pore pressure control on faulting behavior in a block-gouge system

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides

  18. Rock glaciers on South Shetland Islands, Antarctic Peninsula, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — In the South Shetland Islands the investigators found eight active rock glaciers, no relict or fossil examples, and seven protalus ramparts. The rock glaciers are...

  19. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  20. Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.

    1985-11-01

    Pore-fluid chemical interactions on both short and long time scales can significantly change the permeability of a rock. Measurement of the permeability variations requires adaption and modification on standard measurement systems, with special attention given to pore-fluid flow rates and metal corrosion of system components. In this report, system requirements and capabilities are reviewed, analyzed, and recommendations made. Special attention is given to the choice of corrosion resistant metals, fluid-flow systems, back-pressure systems, jacketing materials, and flow-rate measurement. On the basis of this study, an economical, highly flexible, permeability system was designed and built. The system allows measurement of permeability over the darcy to nanodarcy range, using geologically meaningful, chemically reactive, pore fluids under constant volume flow rates as small as 0.2 ml/day at temperatures in excess of 300C, fluid pressures to 20 MPa, and confining pressures to 100 MPa. 7 refs., 3 figs., 1 tab.

  1. Quantification of pore size distribution in reservoir rocks using MRI logging: A case study of South Pars Gas Field.

    Science.gov (United States)

    Ghojogh, Jalal Neshat; Esmaili, Mohammad; Noruzi-Masir, Behrooz; Bakhshi, Puyan

    2017-12-01

    Pore size distribution (PSD) is an important factor for controlling fluid transport through porous media. The study of PSD can be applicable in areas such as hydrocarbon storage, contaminant transport, prediction of multiphase flow, and analysis of the formation damage by mud infiltration. Nitrogen adsorption, centrifugation method, mercury injection, and X-ray computed tomography are commonly used to measure the distribution of pores. A core sample is occasionally not available because of the unconsolidated nature of reservoirs, high cost of coring operation, and program limitations. Magnetic resonance imaging logging (MRIL) is a proper logging technique that allows the direct measurement of the relaxation time of protons in pore fluids and correlating T 2 distribution to PSD using proper mathematical equations. It is nondestructive and fast and does not require core samples. In this paper, 8 core samples collected from the Dalan reservoir in South Pars Gas Field were studied by processing MRIL data and comparing them by PSD determined in the laboratory. By using the MRIL method, variation in PSD corresponding to the depth for the entire logged interval was determined. Moreover, a detailed mineralogical composition of the reservoir samples related to T 2 distribution was obtained. A good correlation between MRIL and mercury injection data was observed. High degree of similarity was also observed between T 2 distribution and PSD (R 2 = 0.85 to 0.91). Based on the findings from the MRIL method, the obtained values for clay bond water varied between 1E-6 and 1E-3µm, a range that is comprehended from an extra peak on the PSD curve. The frequent pore radius was determined to be 1µm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR

  3. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  4. Drying-induced deformation of Horonobe sedimentary rock in the Koetoi and Wakkanai formations

    International Nuclear Information System (INIS)

    Illankoon, Thilini Nuwanradha; Yee, Suu Mon; Osada, Masahiko; Maekawa, Keisuke; Tada, Hiroyuki; Kumasaka, Hiroo

    2013-01-01

    In order to increase the long-term safety of geological disposal sites, knowledge of the drying-induced deformation characteristics of the rock mass in underground ventilated galleries is necessary to understand its cracking susceptibility and the chance of further propagation of the excavation damaged zone. Hence, strain was measured in ten cylindrical mudstone specimens (4 from Koetoi formation and 6 from Wakkanai formation respectively) cored at Horonobe Underground Research Laboratory (URL), an off-site (generic) URL, to examine deformation behavior during desiccation. The specimens were prepared in one-dimensional drying conditions in a 25degC or 40degC climatic chamber with 50% relative humidity. Mercury intrusion porosimetry (MIP) was also conducted to measure the pore size distributions of each formation. The recorded data showed that the Koetoi formation specimens generated smaller maximum shrinkage values (10,000 μ) compared to those from the Wakkanai formation (13,000 μ and 24,000 μ for Wakkanai groups I and II respectively). Wakkanai formation specimens were divided into two groups (Wakkanai groups I and II) according to their strain behavior. The porosity of the Koetoi formation was 54% whereas that of the Wakkanai formation was 27 - 38%. MIP results clearly indicate that the Wakkanai formation has a greater mesopore volume (63% and 73% of porosity for Wakkanai groups I and II respectively) than the Koetoi formation (8% of porosity) which contributes to its greater shrinkage. In addition, Wakkanai groups I and II have different pore size distribution patterns. Therefore, Wakkanai groups I and II exhibit distinct strain behaviors during drying. Similarities in grain density, a decrease in porosity and a gradual increase in mesopore volume with depth confirm the progressive hardening of Horonobe sedimentary rock. The pore volume in the 0.013 - 0.025 μm pore radius range exerts a strong influence on shrinkage generation in the Wakkanai formation

  5. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    Science.gov (United States)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  6. Final Report for Subcontract B541028, Pore-Scale Modeling to Support 'Pore Connectivity' Research Work

    International Nuclear Information System (INIS)

    Ewing, R.P.

    2009-01-01

    This report covers modeling aspects of a combined experimental and modeling task in support of the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian Radioactive Waste Management (OCRWM). Research Objectives The research for this project dealt with diffusive retardation: solute moving through a fracture diffuses into and out of the rock matrix. This diffusive exchange retards overall solute movement, and retardation both dilutes waste being released, and allows additional decay. Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a given fracture may or may not flow depending on the volume of flow and the fracture's connection to the overall fracture network, the matrix imbibes water during flow episodes and dries between episodes, and so on. The objective of the project was to improve understanding of diffusive retardation of radionuclides due to fracture / matrix interactions. Results from combined experimental/modeling work were to (1) determine whether the current understanding and model representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of episodic fracture flow and pore connectivity in Yucca Mountain tuffs. Questions explored included the following: (1) What is the relationship between the diffusion coefficient measured at one scale, to that measured or observed at a different scale? In classical materials this relationship is trivial; in low-connectivity materials it is not. (2) Is the measured diffusivity insensitive to the shape of the sample? Again, in classical materials there should be no sample shape effect. (3) Does sorption affect diffusive exchange in low-connectivity media differently than in classical media? (4) What is the effect of matrix

  7. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  8. Rock glaciers in the Pyrenees, Spain and France, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This study and inventory of active rock glaciers was carried out by means of the usual techniques used in the study of alpine permafrost. First, the rock glaciers...

  9. Study of capillary absorption kinetics by X-ray CT imaging techniques: a survey on sedimentary rocks of Sicily

    Directory of Open Access Journals (Sweden)

    Tiziano Schillaci

    2008-04-01

    Full Text Available Sedimentary rocks are natural porous materials with a great percent of microscopic interconnected pores: they contain fluids, permitting their movement on macroscopic scale. Generally, these rocks present porosity higher then metamorphic rocks. Under certain points of view, this feature represents an advantage; on the other hand, this can constitute an obstacle for cultural heritage applications, because the porosity grade can lead to a deterioration of the lapideous monument for water capillary absorption. In this paper, CT (Computerized Tomography image techniques are applied to capillary absorption kinetics in sedimentary rocks utilized for the Greek temples as well as baroc monuments, respectively located in western and southeastern Sicily. Rocks were sampled near the archaeological areas of Agrigento, Segesta, Selinunte and Val di Noto. CT images were acquired at different times, before and after the water contact, using image elaboration techniques during the acquisition as well as the post-processing phases. Water distribution into porous spaces has been evaluated on the basis of the Hounsfield number, estimated for the 3-D voxel structure of samples. For most of the considered samples, assumptions based on Handy model permit to correlate the average height of the wetting front to the square root of time. Stochastic equations were introduced in order to describe the percolative water behavior in heterogeneous samples, as the Agrigento one. Before the CT acquisition, an estimate of the capillary absorption kinetics has been carried out by the gravimetric method. A petrographical characterization of samples has been performed by stereomicroscope observations, while porosity and morphology of porous have been surveyed by SEM (Scanning Electron Microscope images. Furthermore, the proposed methods have also permitted to define penetration depth as well as distribution uniformity of materials used for restoration and conservation of historical

  10. Processes of cation migration in clay-rocks: Final Scientific Report of the CatClay European Project

    International Nuclear Information System (INIS)

    Altmann, S.; Aertsens, M.; Appelo, T.; Bruggeman, C.; Gaboreau, S.; Glaus, M.; Jacquier, P.; Kupcik, T.; Maes, N.; Montoya, V.; Rabung, T.; Robinet, J.-C.; Savoye, S.; Schaefer, T.; Tournassat, C.; Van Laer, L.; Van Loon, L.

    2015-07-01

    illite and clay rocks, even though some assumptions made have to be verified. In parallel, actual 3D geometrical pore size distributions of compacted illite, and in less extent, clay rock samples, were successfully determined by combining TEM and FIB-nt analyses on materials maintained in a water-like saturation state by means of an extensive impregnation step. Based on this spatial distribution of pores, first numerical diffusion experiments were carried at the pore scale through virtual illite, enabling a better understanding of how transfer pathways are organized in the porous media. Finally, the EC CatClay project allowed a better understanding of the migration of strongly sorbing tracers through low permeability 'clay rock' formations, increasing confidence in our capacity to demonstrate that the models used to predict radionuclide migration through these rocks are scientifically sound. (authors)

  11. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Characterization of pore system and their influence on decay rates caused by salt weathering on limestones and dolostones quarried in Abanto (Zaragoza, Spain

    Directory of Open Access Journals (Sweden)

    Gisbert, J.

    2010-06-01

    Full Text Available The Abanto natural stone is a rock used in modern constructions and currently quarried as an ornamental rock in Abanto, Zaragoza. The varieties described here are a limestone with depositional texture and a crystalline limestone. In this work we have carried out a detailed study of the mineralogy, texture, hydric behaviour, pore system characteristics, dynamic behaviour and behaviour against the effects of salt crystallisation. After 30 cycles of salts crystallization, the weight loss in these rocks is lower than 0.5%. This low weathering is a consequence of the configuration of their pore system, characterised by a low open porosity and high percentages of microporosity with pore-throat sizes on average of less than a 0.2 µm. The petrographical and physical characteristics, as well as its high resistance against salt crystallisation confer these rocks a high technical quality for their use as building stones in modern construction.

    La piedra natural de Abanto es un material utilizado en obra civil moderna y explotado como roca Ornamental en Abanto (Zaragoza. Las variedades caracterizadas son una caliza con textura deposicional y una caliza cristalina. En este trabajo se ha realizado un detallado estudio de su mineralogía, textura, características del sistema poroso, comportamiento hídrico, comportamiento dinámico y de su comportamiento frente a la cristalización de sales. La pérdida en peso en estas rocas es inferior al 0,5% tras realizar 30 ciclos de cristalización de sales. Esta baja alterabilidad es consecuencia de la configuración del sistema poroso, caracterizado por presentar una baja porosidad abierta y porcentajes elevados de microporosidad con tamaños de radios de acceso de poro preferentemente inferiores a 0,2 µm. Sus características petrográficas y físicas, así como su elevada resistencia frente a la cristalización de sales, les confieren unas buenas cualidades técnicas para su utilización como

  13. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M.E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Quinten; Carone, A.; Liu, Y.; de Winter, D.A.M.; Peach, C.J.; Drury, M.R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  14. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M. E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Q.D.; Carone, A.; Liu, Y.; de Winter, D. A.M.; Peach, C. J.; Drury, M. R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  15. Analysis of pore pressure response of Callovo Oxfordian clay-stone to heating

    International Nuclear Information System (INIS)

    Jobmann, M.; Polster, M.; Li, S.; Schlegel, R.; Will, J.; Vymlatil, P.; Conil, N.

    2012-01-01

    assigned process-level code ANSYS (Figure 2). As a result of this analysis, a best design of a parameter set can be defined based on the minimal Euclidian distance between the measured and calculated values. The constitutive models applied consider anisotropic THM behavior (e.g. thermal and hydraulic conductivity) of the rock and the hydraulic parameters are dependent on rock stress and plastic strain. The initial values for the THM input parameters have been taken from laboratory investigations on drill core samples as well as from former in-situ experiments at the Meuse/Haute-Marne URL. As a first step, an automatic sensitivity analysis was performed to identify the most significant thermal hydraulic and mechanical parameters that have the greatest impact on the modelling results regarding the pore water pressure development. Focussing on these parameters, a further calibration of the model was performed by fitting the measured and calculated values which resulted in a 'best design' parameter set. The analysis covers both, the excavation induced pore water pressure change due to stress redistribution and damage and the pore pressure change due to the heating and thermal expansion of the pore water and the clay matrix. The paper will present the methodology and the analysis results obtained in detail. (authors)

  16. PERMEATION OF POLYELECTROLYTES AND OTHER SOLUTES INTO THE PORE SPACES OF WATER-SWOLLEN CELLULOSE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2009-08-01

    Full Text Available The rate and extent of transport of macromolecules and other solutes into cellulosic materials and fibers have important applications in such fields as papermaking, textiles, medicine, and chromatography. This review considers how diffusion and flow affect permeation into wood, paper, and other lignocellulosic materials. Because pore sizes within such materials can range from nanometers to millimeters, a broad perspective will be used, also considering some publications related to other porous materials. Factors that limit the rate or extent of polymer or other solute transport into pores can involve thermodynamics (affecting the driving motivation for permeation, kinetics (if there is insufficient time for the system to come to equilibrium, and physical barriers. Molecular flow is also affected by the attributes of the solute, such as molecular mass and charge, as well as those of the substrate, such as the pore size, interconnectedness, restricted areas, and surface characteristics. Published articles have helped to clarify which of these factors may have a controlling influence on molecular transport in different situations.

  17. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the southern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Xianqing Li

    2016-06-01

    Full Text Available Data was acquired from both the drillings and core samples of the Lower Paleozoic Qiongzhusi and Longmaxi Formations' marine shale gas reservoirs in the southern Sichuan Basin by means of numerous specific experimental methods such as organic geochemistry, organic petrology, and pore analyses. Findings helped determine the characteristics of organic matter, total porosity, microscopic pore, and pore structure. The results show that the Lower Paleozoic marine shale in the south of the Sichuan Basin are characterized by high total organic carbon content (most TOC>2.0%, high thermal maturity level (RO = 2.3%–3.8%, and low total porosity (1.16%–6.87%. The total organic carbon content and thermal maturity level of the Qiongzhusi Formation shale are higher than those of the Longmaxi Formation shale, while the total porosity of the Qiongzhusi Formation shale is lower than that of the Longmaxi Formation shale. There exists intergranular pore, dissolved pore, crystal particle pore, particle edge pore, and organic matter pore in the Lower Paleozoic Qiongzhusi Formation and Longmaxi Formation shale. There are more micro-nano pores developed in the Longmaxi Formation shales than those in the Qiongzhusi Formation shales. Intergranular pores, dissolved pores, as well as organic matter pores, are the most abundant, these are primary storage spaces for shale gas. The microscopic pores in the Lower Paleozoic shales are mainly composed of micropores, mesopores, and a small amount of macropores. The micropore and mesopore in the Qiongzhusi Formation shale account for 83.92% of the total pore volume. The micropore and mesopore in the Longmaxi Formation shale accounts for 78.17% of the total pore volume. Thus, the micropores and mesopores are the chief components of microscopic pores in the Lower Paleozoic shale gas reservoirs in the southern Sichuan Basin.

  18. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  19. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    Science.gov (United States)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  20. Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petford, N. [Kingston Univ., Centre for Earth and Environmental Science Research, Kingston (United Kingdom); Davidson, G. [University Coll., Dept. of Electronic and Electrical Engineering, London (United Kingdom); Miller, J.A. [Cambridge Univ., Dept. of Earth Sciences, Cambridge (United Kingdom)

    2001-05-01

    Confocal scanning laser microscopy (CSLM) is used to produce images of the two- and three-dimensional distribution and geometry of pore space in a reservoir sandstone and measure the 2D distribution of pore throat radii. Non-destructive serial sectioning of the rock using laser light at 100% illumination, combined with image thresholding and histogram equalization techniques allow the pore volume structure of the uppermost 100 {mu}m of the sample to be reconstructed. Negative imaging of the pore volume gave superior depth and feature resolution compared to positive (reflection) imaging. Artefacts encountered in applying classical Medial Axial Transforms to CSLM images include branch networks dominated by coordination numbers of 3. Skeletonization using Euclidean distance maps gives increased accuracy in the description of the pore network. Measured pore throat size distribution in the rock is strongly exponential and described by the expression y 219e{sup -0.25x} where y is the number of pore throats. (Author)

  1. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  2. Using BIB-SEM to determine pore morphology and pore size distributions in coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, S.; Littke, R. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Klaver, J.; Urai, J.L. [RWTH Aachen Univ. (Germany). Structural Geology, Tectonics and Geomechanics

    2013-08-01

    The composition of coalbeds is considerably heterogeneous, affecting the transport pathways for fluids within the coal. Transport pathways include cleats and larger pores. However, only a few clues exist as the nature of these pores. This study examines the morphology and distribution of macro- and mesopores in coal samples, using broad ion beam (BIB) milling to prepare relief- and damage-free polished surfaces of coal samples for high-resolution SEM imaging. Broad ion beam milling is advantageous to focused ion beam milling in that a larger surface area can be milled. Combining that with SEM imaging results in a useful tool to study pore morphology and distributions in the size range between 10 nm and 10 {mu}m. Since BIB-sections of a few square millimeters are not large enough to be statistically representative, results cannot be easily interpreted from a coal seam standpoint. Therefore, porosity was investigated as a function of maceral type to characterize pore morphologies. Macerals from the vitrinite and inertinite groups were selected with a known relationship to bedding. BIB-sections were milled parallel to bedding and perpendicular to bedding, and the pores were evaluated in each section. The goal of this study is to (1) qualitatively describe pore morphology with respect to maceral type and (2) quantitatively characterize pore size distributions with respect to maceral and in relationship to bedding. Our results lead to a better understanding of bulk coal porosity due to the visual, spatial representation and quantification of pores in individual macerals. (orig.)

  3. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  4. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  5. Rock physical aspects of CO{sub 2} injection in chalk

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M.M.

    2011-04-15

    Impact of supercritical CO{sub 2} on the petrophysical and rock-mechanics properties of Ekofisk Formation and Tor Formation chalk from South Arne field, Danish North Sea, chalk was investigated. A series of laboratory experiments was performed on core material collected from the reservoir zone of the South Arne field in order to reveal the changes with respect to porosity, specific surface, pore stiffness, wettability, mineralogy and mechanical failure. In addition, a theoretical rock physical background was also established in order to be able to make sensible interpretation of laboratory data. Sound wave velocity was used as the central tool to study any change in petrophysical and rock mechanical properties. The main focus was to achieve a better understanding of effective stress coefficient (also known as Biot's coefficient); by means of which effective stress can be predicted more accurately. Independent theoretical studies were made on diagenesis, surface properties and stiffness of chalk and their relation with sonic velocity (or Biot's coefficient calculated from sonic velocity). The knowledge and experience from these studies was combined to achieve the main research objective of monitoring changes in hydrocarbon reservoirs in chalk due to CO{sub 2} injection. In order to understand the development of chalk from calcareous ooze and achieving pore stiffness, the diagenesis process of a sedimentary sequence from Kerguelen Plateau in the Indian Ocean was studied. The principal objective of the study was to explore how different porosity reduction mechanisms change the strength of these deep sea carbonate-rich sediments and how these mechanisms can be traced from the change in Biot's coefficient, alpha. In calcareous ooze, alpha was found close to one. Mechanical compaction reduces porosity, but only leads to a minor decrease in alpha. Recrystallization process renders particles smoother, but do not lead to reduction in alpha unless it gives

  6. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  7. Long-term Differences in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity

    International Nuclear Information System (INIS)

    Kravchenko, A.N.; Wang, A.N.W.; Smucker, A.J.M.; Rivers, M.L.

    2011-01-01

    Recent advances in computed tomography provide measurement tools to study internal structures of soil aggregates at micrometer resolutions and to improve our understanding of specific mechanisms of various soil processes. Fractal analysis is one of the data analysis tools that can be helpful in evaluating heterogeneity of the intra-aggregate internal structures. The goal of this study was to examine how long-term tillage and land use differences affect intra-aggregate pore heterogeneity. The specific objectives were: (i) to develop an approach to enhance utility of box-counting fractal dimension in characterizing intra-aggregate pore heterogeneity; (ii) to examine intra-aggregate pores in macro-aggregates (4-6 mm in size) using the computed tomography scanning and fractal analysis, and (iii) to compare heterogeneity of intra-aggregate pore space in aggregates from loamy Alfisol soil subjected to 20 yr of contrasting management practices, namely, conventional tillage (chisel plow) (CT), no-till (NT), and native succession vegetation (NS). Three-dimensional images of the intact aggregates were obtained with a resolution of 14.6 (micro)m at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL. Proposed box-counting fractal dimension normalization was successfully implemented to estimate heterogeneity of pore voxel distributions without bias associated with different porosities in soil aggregates. The aggregates from all three studied treatments had higher porosity associated with large (>100 (micro)m) pores present in their centers than in their exteriors. Pores 15 to 60 (micro)m were equally abundant throughout entire aggregates but their distributions were more heterogeneous in aggregate interiors. The CT aggregates had greater numbers of pores 15 to 60 (micro)m than NT and NS. Distribution of pore voxels belonging to large pores was most heterogeneous in the aggregates from NS, followed by NT and by CT. This result was consistent with presence of

  8. Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks

    Directory of Open Access Journals (Sweden)

    Chengbo Yu

    2016-02-01

    Full Text Available The generalized mixture rule (GMR is used to provide a unified framework for describing Young's (E, shear (G and bulk (K moduli, Lame parameter (λ, and P- and S-wave velocities (Vp and Vs as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and λ of each material are systematically different and display consistent correlations with the Poisson's ratio of the nonporous material (ν0. For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson's ratio (ν remains constant is at ν0 = 0.2, and J(G > J(E > J(K > J(λ and J(G  0.2 and ν0  J(Vp and J(Vs  0.2 and ν0  0.2 and ν0 = 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the ν fixed point decreases nonlinearly with decreasing pore aspect ratio (α: width/length. With increasing depth or pressure, cracks with smaller α values are progressively closed, making the ν fixed point rise and finally reach to the point at ν0 = 0.2.

  9. Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Vinsot, A.; Lundy, M. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne Center, Bure (France); Appelo, C.A.J. [Dr C.A.J. Appelo, Hydrochemical Consultant, Amsterdam (Netherlands); and others

    2017-04-15

    Two experiments have been installed at Mont Terri in 2004 and 2009 that allowed gas circulation within a borehole at a pressure between 1 and 2 bar. These experiments made it possible to observe the natural gases that were initially dissolved in pore-water degassing into the borehole and to monitor their content evolution in the borehole over several years. They also allowed for inert (He, Ne) and reactive (H{sub 2}) gases to be injected into the borehole with the aim either to determine their diffusion properties into the rock pore-water or to evaluate their removal reaction kinetics. The natural gases identified were CO{sub 2}, light alkanes, He, and more importantly N{sub 2}. The natural concentration of four gases in Opalinus Clay pore-water was evaluated at the experiment location: N{sub 2} 2.2 mmol/L ± 25%, CH{sub 4} 0.30 mmol/L ± 25%, C{sub 2}H{sub 6} 0.023 mmol/L ± 25%, C{sub 3}H{sub 8} 0.012 mmol/L ± 25%. Retention properties of methane, ethane, and propane were estimated. Ne injection tests helped to characterize rock diffusion properties regarding the dissolved inert gases. These experimental results are highly relevant towards evaluating how the fluid composition could possibly evolve in the drifts of a radioactive waste disposal facility. (authors)

  10. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  11. Silicon pore optics for future x-ray telescopes

    Science.gov (United States)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  12. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    interactions. This framework is expanded through a discussion of specific topics that are the focus of current research, or are either incompletely understood or not fully appreciated. At this point, the focus shifts to a brief discussion of the three major approaches to modeling multi-scale porous media (1) continuum models, (2) pore scale and pore network models, and (3) hybrid or multi-continuum models. From here, the chapter proceeds to investigate some case studies which illuminate the power of modern numerical reactive transport modeling in deciphering fluid-rock interaction.

  13. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Youn Soo [Institute of Mine Reclamation Technology, Mine Reclamation Corp., 2 Segye-ro, Wonju-si, Gangwon-do, 26464 (Korea, Republic of); Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841 (Korea, Republic of); Ryu, Ji-Hun; Kim, Geon-Young [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon, 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • Microfluidic tests was used to investigate water-rock (mineral) interactions. • Pb and U sorption onto thin shale and granite sections was evaluated. • Pb removal by thin shale section is related primarily to Fe-containing minerals. • A slightly larger amount of U was removed onto the thin granite section with Fe-containing minerals. - Abstract: The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl{sub 2} solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm{sup 2}) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm{sup 2}) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm{sup 2}) than the thin Bt-P section (240 μg/cm{sup 2}) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.

  14. Research on base rock mechanic characteristics of caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Isei, Takehiro; Katsuyama, Kunihisa; Seto, Masahiro; Ogata, Yuji; Utagawa, Manabu

    1997-01-01

    It has been considered that underground space is mechanically stable as compared with on the ground, and superior for storing radioactive waste for long period. However, in order to utilize underground space for the place of radioactive waste disposal, its long term stability such as the aseismatic ability of base rocks must be ensured, and for this purpose, it is necessary to grasp the mechanical characteristics of the base rocks around caverns, and to advance the technology for measuring and evaluating minute deformation and earth pressure change. In this research, the study on the fracture mechanics characteristics of base rocks and the development of the technology for measuring long terms stress change of base rocks were carried out. In this research, what degree the memory of past stress is maintained by rocks was presumed by measuring AE and strain when stress was applied to rock test pieces. The rocks tested were tuff, sandstone and granite. The experimental method and the experimental results of the prestress by AE method and DRA are reported. (K.I.)

  15. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography

    Science.gov (United States)

    Lin, Qingyang; Bijeljic, Branko; Rieke, Holger; Blunt, Martin J.

    2017-08-01

    The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

  16. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  17. Characterization of lacustrine shale pore structure: The Upper-Triassic Yanchang Formation, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yuxi Yu

    2016-08-01

    Full Text Available Amounts of silty laminae in continental shale gas reservoir were investigated in the Zhangjiatan shale of the Yanchang Formation, Ordos Basin. The purpose of this study is to provide awareness in terms of the nature and discrepancies in pore structure between silty laminae and clayey laminae. By mechanically separating the silty laminae from the shale core, a combination measurement series of mercury injection capillary pressure, N2 adsorption, and carbon dioxide adsorption were performed on the aforementioned two parts. An integrated pore size distribution, with a pore diameter range of 0.1 nm-100 μm, was obtained by using appropriate sample particle size and calculation model. The comparative analysis of the pore structure shows that the clayey laminae are dominated by mesopore and micropore; meanwhile, the silty laminae are dominated by macropore alone. The pore volume distribution in clayey laminae is sorted as mesopore volume > micropore volume > macropore volume, on the other hand, for silty laminae it is macropore volume > mesopore volume > micropore volume. The averaged total pore volume of silty laminae is 2.02 cc/100 g, and for clayey laminae, it is 1.41 cc/100 g. The porosity of silty laminae is 5.40%, which is greater than that of clayey laminae's 3.67%. Since silty laminae have larger pore width and pore space, they are more permeable and porous than the clayey laminae; it also acts as a favorable conduit and reservoir for shale gas.

  18. Isotopic composition of pore water in the Tournemire argilites (Aveyron, France): inter-comparison study of analytical methods and relations with petrophysical parameters; Etude de la composition isotopique des eaux porales de l'argilite de Tournemire: inter-comparaison des methodes de mesure et relations avec les parametres petrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    Altinier, M.V

    2006-06-15

    Stable isotope profiles of pore water in argillaceous rocks are used to characterize fluid migration through these rocks. However, the very low water contents, less than 5% by wet weight, and the small pore sizes (<10 nm) make difficult the access to pore water. In order to assess the representativeness of stable isotopes data in pore water from Tournemire shale (IRSN experimental facility), we made a comparative study by using vacuum distillation at 50 deg. C and 150 deg. C, diffusion in liquid phase and diffusive exchange in vapour phase, together with a study of petrophysical and mineralogical properties of the rock. The results show a good agreement between the water contents determined by heating and vacuum distillation at 150 deg. C and by equilibration techniques. On the other hand, vacuum distillation at 50 deg. C allows to extract less than 90% of the extractable water by heating at 150 deg. C; leading to a depletion in heavy isotopes of extracted water, which can be corrected by using a Rayleigh-type model. Finally, we studied a perpendicular profile to a fracture in order to determine the origin of heavy isotope enrichment of pore water that was observed, in previous works, in the vicinity of fractures (less than one meter). It seems that water content, which increases near the fracture, associated with a more important proportion of bigger pores ({phi} {approx} 10 - 180 nm), would be at the origin of the isotopic anomalies determined by vacuum distillation at 50 deg. C. Preponderance of bigger pores near the fractures would facilitate mobilization of pore water and its extraction by vacuum distillation at 50 deg. C, reducing the effects of incomplete distillation. (author)

  19. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    International Nuclear Information System (INIS)

    Hoekmark, Harald; Faelth, Billy

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future

  20. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    Energy Technology Data Exchange (ETDEWEB)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed the lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.

  1. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic ...

  2. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    Science.gov (United States)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  3. [A photographic scale for evaluating facial pores and analysis of factors associated with pore widening in Chengdu].

    Science.gov (United States)

    Wang, Qing; Zhou, Cheng-xia; Meng, Hui-min; Wang, Xi; Li, Li

    2010-09-01

    To develop a photographic scale for grading widening of pores, and to identify the factors associated with pore widening. People with widened pores were recruited, with photographs taken on their nasal tips, nasal alas and cheeks. A questionnaire survey was undertaken by dermatologists to assess the severity of pore widening. A Cumulative Logit Model was established to identify factors that were associated with pore widening. A total of 115 people participated in the study and 562 photographs were taken. The photographic scale was highly consistent with the clinical judgment. Another 1011 residents aged from 18 to 70 years old in Chengdu were surveyed. The logit model revealed that facial pore widening were associated with gender, age, oily skin, sun protection and anti-aging cosmetic. The photographic scale is reliable and easy to use. Gender, age and oily skin are risk factors, and sun protection and anti-aging cosmetic are protective factors with related to pore widening.

  4. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    Science.gov (United States)

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  5. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  6. Underground large scale test facility for rocks

    International Nuclear Information System (INIS)

    Sundaram, P.N.

    1981-01-01

    This brief note discusses two advantages of locating the facility for testing rock specimens of large dimensions in an underground space. Such an environment can be made to contribute part of the enormous axial load and stiffness requirements needed to get complete stress-strain behavior. The high pressure vessel may also be located below the floor level since the lateral confinement afforded by the rock mass may help to reduce the thickness of the vessel

  7. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  8. Measuring kinetic drivers of pneumolysin pore structure.

    Science.gov (United States)

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology.

  9. Buoyancy-driven chaotic regimes during solute dispersion in pore networks

    International Nuclear Information System (INIS)

    Tsakiroglou, C.D.; Theodoropoulou, M.A.; Karoutsos, V.

    2005-01-01

    . Periodic and quasi-periodic solute dispersion regimes are favored by relatively high Pe values and low degree of pore scale heterogeneities, whereas chaotic regimes are favored by low Pe values and high degree of pore-scale heterogeneities. Some ambiguity concerning the classification of the observed solute dispersion regimes is due to the fact that the short length of the time series does not allow the processing of datasets with the nonlinear methods of state-space analysis. (authors)

  10. Determining the REV for Fracture Rock Mass Based on Seepage Theory

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-01-01

    Full Text Available Seepage problems of the fractured rock mass have always been a heated topic within hydrogeology and engineering geology. The equivalent porous medium model method is the main method in the study of the seepage of the fractured rock mass and its engineering application. The key to the method is to determine a representative elementary volume (REV. The FractureToKarst software, that is, discrete element software, is a main analysis tool in this paper and developed by a number of authors. According to the standard of rock classification established by ISRM, this paper aims to discuss the existence and the size of REV of fractured rock masses with medium tractility and provide a general method to determine the existence of REV. It can be gleaned from the study that the existence condition of fractured rock mass with medium tractility features average fracture spacing smaller than 0.6 m. If average fracture spacing is larger than 0.6 m, there is no existence of REV. The rationality of the model is verified by a case study. The present research provides a method for the simulation of seepage field in fissured rocks.

  11. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  12. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains

    Directory of Open Access Journals (Sweden)

    Zhenyong Wu

    2017-10-01

    Full Text Available Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs. Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores

  13. Matrix Pore Water in Low Permeable Crystalline Bedrock: An Archive for the Palaeohydrogeological Evolution of the Olkiluoto Investigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F. [Hydroisotop GmbH, Schweitenkirchen (Germany); Waber, H. N. [Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Smellie, J. A.T. [Conterra AB, Stockholm (Sweden)

    2013-07-15

    Matrix pore water in the connected inter- and intragranular pore space of low permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes ({delta}{sup 18}O, {delta}{sup 2}H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and brought into context with the palaeohydrological evolution of the site. (author)

  14. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...

  15. Control of Target Molecular Recognition in a Small Pore Space with Biomolecule-Recognition Gating Membrane.

    Science.gov (United States)

    Okuyama, Hiroto; Oshiba, Yuhei; Ohashi, Hidenori; Yamaguchi, Takeo

    2018-05-01

    A biomolecule-recognition gating membrane, which introduces thermosensitive graft polymer including molecular recognition receptor into porous membrane substrate, can close its pores by recognizing target biomolecule. The present study reports strategies for improving both versatility and sensitivity of the gating membrane. First, the membrane is fabricated by introducing the receptor via a selectively reactive click reaction improving the versatility. Second, the sensitivity of the membrane is enhanced via an active delivering method of the target molecules into the pores. In the method, the tiny signal of the target biomolecule is amplified as obvious pressure change. Furthermore, this offers 15 times higher sensitivity compared to the previously reported passive delivering method (membrane immersion to sample solution) with significantly shorter recognition time. The improvement will aid in applying the gating membrane to membrane sensors in medical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  17. Transport of gaseous C-14 from a repository in unsaturated rock

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Lee, W. L.; Pigford, T.H.; California Univ., Berkeley, CA

    1990-09-01

    The authors predict the transport of gaseous 14 CO 2 from a nuclear waste repository in unsaturated rock using a porous-medium model. This model is justified if the appropriate modified Peclet number, which indicates equilibrium between gas in fractures and liquid in rock pores, is much less than unity. Numerical illustrations are given which are applicable to the proposed repository at Yucca Mountain which is 350 m underground. Maximum predicted concentrations of 14 CO 2 near the ground surface are comparable to the USNRC limit for unrestricted areas. Maximum predicted dose rates above ground are less than 1% of background. Travel times are predicted to be hundreds to thousands of years. For some cases, it is shown that the release rate from the source has negligible effect on concentrations at the ground surface. 15 refs., 10 figs., 1 tab

  18. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  19. Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.

    Science.gov (United States)

    Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei

    2018-04-01

    With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 10 CFR 963.17 - Postclosure suitability criteria.

    Science.gov (United States)

    2010-01-01

    ... spaces, or flowing along fractures or through perched water zones above the repository; (iv) Seepage—for... rock or mineral surfaces; and (ii) Dilution—for example, diffusion of radionuclides into pore spaces, dispersion of radionuclides along flow paths, and mixing with non-contaminated ground water. (9) Biosphere...

  1. Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James [Utah State Univ., Logan, UT (United States)

    2016-08-01

    This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments were carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO2 reacted systems to non-CO2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.

  2. Local porosity analysis of pore structure in cement paste

    International Nuclear Information System (INIS)

    Hu Jing; Stroeven, Piet

    2005-01-01

    Three-dimensional (3-D) local porosity theory (LPT) was originally proposed by Hilfer and recently used for the analysis of pore space geometry in model sandstone. LPT pursues to define the probability density functions of porosity and porosity connectivity. In doing so, heterogeneity differences in various sandstone samples were assessed. However, fundamental issues as to the stochastic concept of geometric heterogeneity are ignored in Hilfer's LPT theory. This paper focuses on proper sampling procedures that should be based on stochastic approaches to multistage sampling and geometric heterogeneity. Standard LPT analysis provides a 3-D microscopic modeling approach to materials. Traditional experimental techniques yield two-dimensional (2-D) section images, however. Therefore, this paper replaces the method for assessing material data in standard LPT theory to a more practical one, based on stereological, 3-D interpretation of quantitative image analysis data. The developed methodology is used to characterize the pore structure in hardened cement paste with various water/cement ratios (w/c) at different hydration stages

  3. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  4. Rock glaciers, Prealps, Vaud, Switzerland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The investigated area forms part of the western lobe of the Prealps (Swiss Prealps). The 25 identified fossil rock glaciers are found mainly in the Prealpes medianes...

  5. Determination of Irreducible Water Saturation from nuclear magnetic resonance based on fractal theory — a case study of sandstone with complex pore structure

    Science.gov (United States)

    Peng, L.; Pan, H.; Ma, H.; Zhao, P.; Qin, R.; Deng, C.

    2017-12-01

    The irreducible water saturation (Swir) is a vital parameter for permeability prediction and original oil and gas estimation. However, the complex pore structure of the rocks makes the parameter difficult to be calculated from both laboratory and conventional well logging methods. In this study, an effective statistical method to predict Swir is derived directly from nuclear magnetic resonance (NMR) data based on fractal theory. The spectrum of transversal relaxation time (T2) is normally considered as an indicator of pore size distribution, and the micro- and meso-pore's fractal dimension in two specific range of T2 spectrum distribution are calculated. Based on the analysis of the fractal characteristics of 22 core samples, which were drilled from four boreholes of tight lithologic oil reservoirs of Ordos Basin in China, the positive correlation between Swir and porosity is derived. Afterwards a predicting model for Swir based on linear regressions of fractal dimensions is proposed. It reveals that the Swir is controlled by the pore size and the roughness of the pore. The reliability of this model is tested and an ideal consistency between predicted results and experimental data is found. This model is a reliable supplementary to predict the irreducible water saturation in the case that T2 cutoff value cannot be accurately determined.

  6. Predictive hydro-mechanical excavation simulation of a mine-by test at the Mont Terri rock laboratory

    International Nuclear Information System (INIS)

    Krug, St.; Shao, H.; Hesser, J.; Nowak, T.; Kunz, H.; Vietor, T.

    2010-01-01

    Document available in extended abstract form only. The Mont Terri rock laboratory was extended from mid October 2007 to end 2008 with the goal to allow the project partners to continue their cooperative research on the long term. The extension of the underground laboratory by the excavation of an additional 165 metres long access tunnel (Gallery 08) with four niches was taken as opportunity to conduct an instrumented mine-by test in one of the niches (Niche 2/Niche MB). The measurements during the bedding parallel excavation provided a large amount of data as a basis to understand the hydro-mechanical (HM) coupled behaviour of Opalinus Clay around the excavated niche. BGR was involved in the in-situ investigations (seismic measurements) as a member of the experiment team consisting of five organisations (incl. NAGRA, ANDRA, GRS, Obayashi). An important issue for BGR is the application of the numerical code RockFlow (RF) for HM coupled simulations in order to understand the behaviour of Opalinus Clay by the use of the gained measuring data for validation. Under the management of NAGRA a blind prediction was carried out for a group of modelers belonging to some of the experiment team organisations. After a first comparison between the numerical results of different HM coupled models during the prediction meeting of the teams in June 2009 the measurement data are provided by NAGRA in order to validate the numerical models. Basically the model predictions have already shown the correct tendencies and ranges of observed deformation and pore water pressure evolution besides some under- or overestimations. The future RF validation results after having done some slight parameter adjustments are intended to be presented in the paper. The excavation of Niche 2 was done from 13 October to 7 November 2008 with a constant excavation rate of 1.30 m per day. The orientation of the niche follows the bedding strike, which amounts 60 deg.. The bedding planes have an average dip of

  7. Dissolution at porous interfaces VI: Multiple pore systems.

    Science.gov (United States)

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  8. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  9. Microstructural characterization of reservoir rocks by X-ray microtomography

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel Salvi; Appoloni, Carlos Roberto

    2007-01-01

    The evaluation of microstructural parameters from reservoir rocks is of great importance for petroleum industries. This work presents measurements of total porosity and pore size distribution of a sandstone sample from Tumblagooda geological formation, extracted from the Kalbari National Park in Australia. X-ray microtomography technique was used for determining porosity and pore size distribution. Other techniques, such as mercury intrusion porosimetry and Archimedes method have also been applied for those determinations but since they are regarded destructive techniques, samples cannot usually be used for further analyses. X-ray microtomography, besides allowing future analyses of a sample already evaluated, also provides tridimensional images of the sample. The experimental configuration included a SkysCan 1172 from CENPES-PETROBRAS, Rio de Janeiro, Brazil. The spatial resolution of this equipment is 2.9 μm. Images have been reconstructed using NRecon software and analysed with the IMAGO software developed by the Laboratory of Porous Materials and Thermophysical Properties of the Department of Mechanical Engineering / Federal University of Santa Catarina, Florianopolis, Brazil

  10. Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.

    Science.gov (United States)

    Volkan, Ender; Kalas, Vasilios; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Pham, Thieng; Waksman, Gabriel; Delcour, Anne H; Thanassi, David G; Hultgren, Scott J

    2013-12-17

    Extracellular fibers called chaperone-usher pathway pili are critical virulence factors in a wide range of Gram-negative pathogenic bacteria that facilitate binding and invasion into host tissues and mediate biofilm formation. Chaperone-usher pathway ushers, which catalyze pilus assembly, contain five functional domains: a 24-stranded transmembrane β-barrel translocation domain (TD), a β-sandwich plug domain (PLUG), an N-terminal periplasmic domain, and two C-terminal periplasmic domains (CTD1 and 2). Pore gating occurs by a mechanism whereby the PLUG resides stably within the TD pore when the usher is inactive and then upon activation is translocated into the periplasmic space, where it functions in pilus assembly. Using antibiotic sensitivity and electrophysiology experiments, a single salt bridge was shown to function in maintaining the PLUG in the TD channel of the P pilus usher PapC, and a loop between the 12th and 13th beta strands of the TD (β12-13 loop) was found to facilitate pore opening. Mutation of the β12-13 loop resulted in a closed PapC pore, which was unable to efficiently mediate pilus assembly. Deletion of the PapH terminator/anchor resulted in increased OM permeability, suggesting a role for the proper anchoring of pili in retaining OM integrity. Further, we introduced cysteine residues in the PLUG and N-terminal periplasmic domains that resulted in a FimD usher with a greater propensity to exist in an open conformation, resulting in increased OM permeability but no loss in type 1 pilus assembly. These studies provide insights into the molecular basis of usher pore gating and its roles in pilus biogenesis and OM permeability.

  11. Geophysical and transport properties of reservoir rocks. Final report for task 4: Measurements and analysis of seismic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cook, N.G.W.

    1993-05-01

    The principal objective of research on the seismic properties of reservoir rocks is to develop a basic understanding of the effects of rock microstructure and its contained pore fluids on seismic velocities and attenuation. Ultimately, this knowledge would be used to extract reservoir properties information such as the porosity, permeability, clay content, fluid saturation, and fluid type from borehole, cross-borehole, and surface seismic measurements to improve the planning and control of oil and gas recovery. This thesis presents laboratory ultrasonic measurements for three granular materials and attempts to relate the microstructural properties and the properties of the pore fluids to P- and S-wave velocities and attenuation. These experimental results show that artificial porous materials with sintered grains and a sandstone with partially cemented grains exhibit complexities in P- and S-wave attenuation that cannot be adequately explained by existing micromechanical theories. It is likely that some of the complexity observed in the seismic attenuation is controlled by details of the rock microstructure, such as the grain contact area and grain shape, and by the arrangement of the grain packing. To examine these effects, a numerical method was developed for analyzing wave propagation in a grain packing. The method is based on a dynamic boundary integral equation and incorporates generalized stiffness boundary conditions between individual grains to account for viscous losses and grain contact scattering.

  12. Remarks on some rock neutron parameters

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1984-01-01

    A method to calculate the thermal neutron parameters of rocks is given in the paper. It is based on a proper energy averaging of cross-sections for all rock matrix and rock saturating liquid constituents. The diffusion lengths in different lithologies in function of the variable rock porosity have been calculated. An influence of the thermal neutron spectrum on the shape of the porosity calibration curves for the dual spacing neutron method is shown. Magmatic rocks as a possible source of geothermal energy are now becoming a target of neutron loggings for the porosity determination. Here the knowledge of the slowing-down lengths is of great importance in the problem of the estimation of the calibration curves. A semi-analytical approach to get this parameter is given in the paper. It was found, as far as concerns the slowing-down of fast neutrons, that all magmatic rocks behave as sandstone with, however, different content of bound water in the rock matrix and different rock matrix density. Some neutron methods are based on the detection of epithermal neutrons. For theoretical considerations it is important to know the physical meaning of the registered signal. From the discussion of experimental data reported in the literature it seems that it is the slowing-down density that is the physical quantity being measured. This conclusion has a very important practical implication - the porosity calibration curves depend upon the slowing-down length alone and are independent of the slowing-down cross-section for epithermal neutrons

  13. Rock Moved by Mars Lander Arm

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  14. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  15. 3D Textural and Geochemical Analyses on Carbonado Diamond: Insights from Pores and the Minerals within Them

    Science.gov (United States)

    Eckley, S. A.; Ketcham, R. A.

    2017-12-01

    Carbonado is an enigmatic variety of polycrystalline diamond found only in placer deposits and Proterozoic metaconglomerates in Brazil and the Central African Republic with unknown primary origin. These highly porous black nodules possess a narrow range of isotopically light carbon (δ13C -31 to -24 ‰), a primarily crustal inclusion suite unusually enriched in REEs and actinides filling the pore spaces, a crystallization age from 2.6 to 3.8 Ga, and other atypical features which have led to a variety of formation theories from extra-solar to deep mantle. We have completed the first multi-sample 3D textural analysis on nine carbonados using high resolution X-ray CT (XCT), with follow-up geochemical work. We have documented a variety of textures in both pore structure and mineralogy within pores. All pore textures feature a preferred orientation. Spatial coherence in pore fillings in some specimens suggest that secondary minerals formed by in-situ breakdown of primary inclusion phases. This, combined with the presence of pseudomorphs, support the hypothesis that elements comprising the secondary minerals within the pore spaces are actually primary. SEM-EDS analysis of one carbonado's exterior revealed the presence of zircon; XCT analysis of the complete volume indicates zircon is present only on the exterior of that specimen, but may be interior to others. Anticipated follow-up work will include LA-ICP-MS U-Pb dating and REE analysis of the zircon, and step-leaching and ICP analysis of some specimens. Periodic XCT imaging will allow us to trace leaching progress and effectiveness. To provide further context for our observed pore fabrics, we also analyzed a framesite, a less porous polycrystalline diamond found in kimberlites thought to crystallize shortly before eruption. Both diamond varieties have bladed/elongated pores forming a foliation with a moderate lineation. The similarity in fabrics suggests a similar process could have formed both carbonados and

  16. Determination of the thermophysical properties of loose rocks; Bestimmung der thermophysikalischen Kennwerte von Lockergesteinen

    Energy Technology Data Exchange (ETDEWEB)

    Stegner, Johannes; Seehaus, Rainer; Sass, Ingo [Technische Univ. Darmstadt (Germany). Fachgebiet Angewandte Geothermie

    2012-10-16

    The heat conductivity as well as the temperature conductivity of loose rocks are the most important properties for the quantification of the yields of near-surface geothermal power plants. The more details on the heat conductivity are available, the more economical and sustainable is the dimensioning of a plant. The heat conductivity of loose rocks depends on the heat conductivity of the individual grain size fractions, water content, air pore volume, dry density, pressure conditions and temperature. Actually, a standardized procedure for the determination of geothermal parameters is missing. Thus, a measurement device for the investigation of the heat conductivity and thermal conductivity is developed. This measurement device enables a reproducible investigation of loose rocks optionally at a pressure consistency of up to 7.6 MPa, or at a volume consistency in the temperature range from -10 to +80 Celsius. The functionality of this measurement device can be validated by means of a comparison of measurements and finite element method simulations using loose rock standards. Additionally, the results of the field tests were correlated with in-situ values. In addition to validation of measurement devices, the measurement results are used to create calculation models for the geothermal parameters of loose rocks based on soil mechanical properties.

  17. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  18. Simulation of HTM processes in buffer-rock barriers based on the French HLW disposal concept

    International Nuclear Information System (INIS)

    Li, Xiaoshuo; Roehlig, Klaus-Juergen; Zhang, Chunliang

    2012-01-01

    at this simulation work, so that a lot of material HTM properties and parameters have to be considered. The material parameters are taken from the literatures, laboratory- und URL-experiments. Inspired by the French concept for disposal of HLW waste and the in-situ prevailing conditions data in the Bure-URL, coupled HM-coupled performances at the operation phase of the disposal and the HTM-coupled phenomena at the after-closure phase have been simulated and analyzed. The results include the display and interpretation of the temperature field development, the saturation and desaturation processes, mechanical stress and displacement, material damage processes, hydraulic swelling and thermal expansion at the buffer and clay rock media, which are jointly shown at this paper. The main conclusions from the modelling works are summarized as follows: (1) The drift excavation induces a redistribution of the rock stress with a minimum radial component, a maximum tangential component, and a middle component in the length direction. The deviatory stress results in deformation of the rock towards the open drift. In the area near the drift wall, the rock is damaged. The damaged zone extends into the rock mass to a distance of about 1.5 m. (2) The drift ventilation leads to a reduction of the pore-water pressure and even to a desaturation in the surrounding rock. The de-saturated zone reaches to a distance of about 4 m over 5 years. (3) The backfill of the drift with the unsaturated buffer enhances the desaturation of the rock. The bentonite-buffer takes up water from the rock, increasing the swelling pressure against the deformation and the damage of the surrounding rock. (4) The heat from the HLW containers transfers gradually into the buffer and the rock. The maximum temperature of 157 C is reached at the surface of the containers after about 2.5 years. The temperatures in the rock are limited below the conceptual criterion of 90 C, except for that of 93 C at the rock / buffer

  19. The Rock that Hit New York

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keksis, August Lawrence [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-03

    On January 12, 1975, a rock seemed to fall from the sky over New York State’s Schoharie County hitting the tractor of a local farmer, who was “preparing his fields for spring planting.” As the farmer later described the event to a reporter from the UFO INVESTIGATOR, the object glanced off the tractor, fell to the ground, and melted its way through a patch of ice that was two and one half inches thick. The farmer, Leonard Tillapaugh, called the county sheriff, Harvey Stoddard, who recovered the rock, noting that it “was still warm.” Why and how a sample of the rock came to Los Alamos is not known. However, it captivated a wide Laboratory audience, was subjected to rigorous testing and evaluation. Los Alamos used the scientific method in the manner promoted by Hynek. Did Los Alamos solve the mystery of the rock’s origin? Not definitively. Although the exact origin could not be determined, it was shown conclusively that the rock was not from outer space. With that said, the saga of Rock that hit New York came to an end. Nothing more was said or written about it. The principals involved have long since passed from the scene. The NICAP ceased operations in 1980. And, the rock, itself, has disappeared.

  20. Porosity and pore size distribution determination of Tumblagooda formation sandstone by X-ray microtomography

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel S.; Appoloni, Carlos R.; Moreira, Anderson C.

    2007-01-01

    Microstructural parameters evaluations of reservoir rocks are very important to petroleum industry. This work presents total porosity and pore size distribution measurement of a sandstone sample from the Tumblagooda formation, collected at Kalbarri National Park in Australia. Porosity and pores size distribution were determined using X-Ray microtomography and imaging techniques. For these measurements, it was employed a micro-CT (μ-CT) Skyscan system model 1172 with conical beam, operated with a 1 mm Al filter at 80 kV and 125 μA, respectively, and a 2000 x 1048 pixels CCD camera. The sample was rotated from 0 deg to 180 deg, in step of 0.5 deg. For the considered sample, this equipment provided images with 2.9 μm spatial resolution. Six hundreds 2-D images where reconstructed with the Skyscan NRecon software, which were analyzed with the aid of Imago software, developed at the Laboratory of Porous Media and Thermophysical Properties (LMPT), Department of Mechanical Engineering, Federal University of Santa Catarina, Brazil, in association with the Brazilian software company Engineering Simulation and Scientific Software (ESSS), and Petroleo Brasileiro SA (PETROBRAS) Research and Development Center (CENPES). The determined average porosity was 11.45 ±1.53 %. Ninety five percent of the porous phase refers to pores with radius ranging from 2.9 to 85.2 μm, presenting the larger frequency (7.7 %) at 11.7 μm radius. (author)

  1. 2012 Gordon Research Conference on Rock Deformation - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Kelemen, Peter [Columbia Univ., New York, NY (United States)

    2012-08-24

    to fractures that maintain or increase permeability and reactive surface area, which in turn accelerates reaction rates. Hydraulic fracture often triggers a widening cascade of frictional failures on adjacent fracture systems. Feedbacks that form or reactivate closely-spaced fractures in the upper crust have relevance for, e.g., geological storage of CO2, enhanced geothermal power systems, and shale gas extraction. Clustering of earthquakes involves feedbacks in stress distribution on different faults, or segments of fault zones, that focus deformation in both time and space. Negative feedbacks can modulate or prevent accelerating strain. Gravitational instabilities, such as "delamination", "relamination", and diapirism, are affected by both positive and negative feedbacks when material undergoes phase transformations driven by changing pressure and temperature. Changes in pore pressure due to metamorphic reactions and/or shear heating can modulate earthquake behavior. There is increasing understanding of the mechanisms that limit earthquake rupture zones, and cause slow slip rather than seismic events. Crystallization in pore space can randomize previously focused fluid flow, reduce permeability, and bring metamorphic reactions to a halt. All of these feedbacks are related in a rich interplay of geodynamic processes.

  2. Influence of natural mobile organic matter on europium retention on Bure clay rock

    International Nuclear Information System (INIS)

    Vu-Do, Laurence

    2013-01-01

    Bure clay rock (CR) was chosen as host rock for the French high and intermediate level long lived radioactive waste repository. This choice is mostly explained by the retention ability of the Callovo-Oxfordian rock (COx). Bure clay rock contains natural organic matter (OM) that could have an influence on radionuclide retention. The aim of this work is to assess the influence of natural mobile OM on the retention of Eu on clay rock. Eu was chosen as a chemical model for trivalent actinides contained in vitrified waste. Three organic molecules were studied: suberic, sorbic and tiglic acids, small organic acids identified in COx pore water. All the experiments were carried out in an environment recreating COx water (pH=7.5; I=0.1 mol/L; PCO 2 =10 -2 bar).Clay rock sample characterization showed that the sample used in this work was similar to those previously extracted from the area of interest and that it was necessary to maintain pH at 7.5 to avoid altering the clay rock. The Eu-OM system study indicated that organic acids had no influence on Eu speciation in COx water. The Eu-CR system experimental study confirmed that retention implied sorption on CR (C(Eu)≤6.10 -6 mol/L) and precipitation in COx water (C(Eu)≥6.10 -6 mol/L). Distribution coefficient Rd (quantifying sorption) was estimated at 170 ± 30 L/g. This high value is consistent with literature values obtained on clay rocks. The ternary Eu-OM-CR system study showed a slight increase of sorption in the presence of organic matter. This synergistic effect is very satisfactory in terms of storage security: the presence of small organic acids in clay rock does not question retention properties with respect to europium and trivalent actinides. (author)

  3. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  4. How did the ball of rock we live on get so nice?

    Science.gov (United States)

    Armstrong, K.

    2017-12-01

    We want to understand how the big ball of rock, water, and air we live on got to be as nice as it is. Some of the things that made our world so nice are what it's made of, and what happened to those things after they were all put together. When our home ball of rock was little, it got bigger by grabbing some of the other stuff that was close by in space. So our world is made of all that space stuff, which was rocks, and that stuff that turns red if you let it get wet. Most of that red stuff is deep down in the middle of the world, covered up by a lot of rocks. But there is a lot of it inside the rocks, too. That red stuff does a lot of cool stuff when it touches other things, especially the kind of air we like to breathe- that is what makes it turn red. Just one very tiny piece of the red stuff can join up with the breathing air in different ways: it can team up with none at all, or a little bit, or a lot, or even more. If we look at how much of the breathing air is teamed up with the red stuff inside the rocks, we can learn about how the rocks got there and what happened to them a long time ago. In the rocks that we can look at, there is more of the breathing air teamed up with the red stuff than we might have thought. We think that maybe that is because when more and more stuff tries to fit in the same small space, and gets pressed down, like it does deep down in our world, it can change in ways we do not expect. When our world was almost as big as it is now, it probably grabbed some space stuff that was almost as big as it was. The space stuff would have run into our world really hard, and that would have made everything really hot, hot enough to make all the rocks in the world move like water. We have an idea that maybe, when all the rocks on the world were really hot and moved around like water, deep down the red stuff and the breathing air might have got all pressed together very hard, so that more of the breathing air would team up with the red stuff than it

  5. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  6. Monitoring of high temperature zone by resistivity tomography during in-situ heater test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2008-01-01

    In-situ heater test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature zone. So we have conducted resistivity tomography during the heater test. As a result, low resistivity zone was appeared near the heated area as starting the heating, and the zone was expanded. Resistivity of rock is proportional to resistivity of pore water. It is known that pore water resistivity decreases as the temperature rise. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. (author)

  7. Study on Relation between Hydrodynamic Feature Size of HPAM and Pore Size of Reservoir Rock in Daqing Oilfield

    Directory of Open Access Journals (Sweden)

    Qing Fang

    2015-01-01

    Full Text Available The flow mechanism of the injected fluid was studied by the constant pressure core displacement experiments in the paper. It is assumed under condition of the constant pressure gradient in deep formation based on the characteristic of pressure gradient distribution between the injection and production wells and the mobility of different polymer systems in deep reservoir. Moreover, the flow rate of steady stream was quantitatively analyzed and the critical flow pressure gradient of different injection parameters polymer solutions in different permeability cores was measured. The result showed that polymer hydrodynamic feature size increases with the increasing molecular weight. If the concentration of polymer solutions overlaps beyond critical concentration, then molecular chains entanglement will be occur and cause the augment of its hydrodynamic feature size. The polymer hydrodynamic feature size decreased as the salinity of the dilution water increased. When the median radius of the core pore and throat was 5–10 times of the polymer system hydrodynamic feature size, the polymer solution had a better compatibility with the microscopic pore structure of the reservoir. The estimation of polymer solutions mobility in the porous media can be used to guide the polymer displacement plan and select the optimum injection parameters.

  8. Design, fabrication, and characterization of silicon pore optics for ATHENA/IXO

    DEFF Research Database (Denmark)

    Collon, Maximilien J.; Günther, Ramses; Ackermann, Marcelo

    2011-01-01

    Silicon pore optics is a technology developed to enable future large area X-ray telescopes, such as the International X-ray Observatory (IXO) or the Advanced Telescope for High ENergy Astrophysics (ATHENA), an L-class candidate mission in the ESA Space Science Programme 'Cosmic Visions 2015-2025'...... integrated into petals, and mounted onto the spacecraft to form an X-ray optic. In this paper we will present the silicon pore optics mass manufacturing process and latest X-ray test results.......-2025'. ATHENA/IXO use nested mirrors in Wolter-I configuration to focus grazing incidence X-ray photons on a detector plane. The x-ray optics will have to meet stringent performance requirements including an effective area of a few m2 at 1.25 keV and angular resolution between 5(IXO) and 9(ATHENA) arc seconds...

  9. Interaction between clay-based sealing components and crystalline host rock

    Science.gov (United States)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow

  10. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  11. Layout Optimization for the Repository within a discontinuous and saturated granitic rock mass

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Choi, Jong Won; Bae, Dae Seok

    2005-12-01

    The objective of the present study is a layout optimization of a single and double layer repositories within a repository site with special joint set arrangements. Single and double layer repository models, subjected to the variation of repository depth, cavern spacing, pitch, and layer spacing, are analyzed for the thermal, hydraulic, and mechanical interaction behavior during the period of 2000 years from waste emplacement. Material properties used for the granitic rock mass, rock joints, PWR spent fuel, disposal canister, compacted bentonite, backfill material, and groundwater are the data collected domestically, and foreign data are used for some of the data not available domestically. The repository model includes a saturated granitic rock mass with joints, PWR spent fuel in a disposal canister surrounded by compacted bentonite inside a deposition hole, and backfill material in the rest of the space within a repository cavern

  12. Cavitation and pore blocking in nanoporous glasses.

    Science.gov (United States)

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  13. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  14. Flow and Transport in Complex Microporous Carbonates as a Consequence of Separation of Scales

    Science.gov (United States)

    Bijeljic, B.; Raeini, A. Q.; Lin, Q.; Blunt, M. J.

    2017-12-01

    Some of the most important examples of flow and transport in complex pore structures are found in subsurface applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock structures contain most of the world's oil reserves, considerable amount of water reserves, and potentially hold a storage capacity for carbon dioxide. However, this type of pore space is difficult to represent due to complexities associated with a wide range of pore sizes and variation in connectivity which poses a considerable challenge for quantitative predictions of transport across multiple scales.A new concept unifying X-ray tomography experiment and direct numerical simulation has been developed that relies on full description flow and solute transport at the pore scale. Differential imaging method (Lin et al. 2016) provides rich information in microporous space, while advective and diffusive mass transport are simulated on micro-CT images of pore-space: Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk.Quantitative validation has been done on analytical solutions for diffusion and by comparing the model predictions versus the experimental NMR measurements in the dual porosity beadpack. Furthermore, we discriminate signatures of multi-scale transport behaviour for a range of carbonate rock (Figure 1), dependent on the heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions flow and transport (PDFs) measures of non-Fickian transport on the micro-CT i935mages. In complex porous media separation of scales exists, leading to flow and transport signatures that need to be described by

  15. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  16. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  17. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  18. In situ measurement of the rate of oxygen consumption by the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Lundy, M.; Claret, F.; Wechner, S.

    2012-01-01

    Document available in extended abstract form only. The ventilation of excavated drifts in the Callovo-Oxfordian argillaceous rock induces its exposure to air. The oxygen from air reacts with several reduced mineral species from the rock. It may also react with organic species existing in the rock. The effects of these reactions on the rock mineralogy were observed in the first meters of many boreholes drilled in the Andra's Underground Research Laboratory (URL) drifts at 490 m deep. They generate mainly sulfated and ferric secondary phases. The consequences of these reactions on the evolution of a radioactive waste disposal in such a rock are two folds. First, they will contribute to oxygen consumption and the generation of an anoxic atmosphere in the drifts and vaults after their closure. In addition, they will influence the composition of the water which will later on fill the drifts and vaults. These phenomena are taken into account in the modeling of disposal evolutions at various times and space scales. The main remaining uncertainties regarding these phenomena concern: i) the identification of all the species involved in the oxygen reduction; ii) the reaction kinetics; and iii) the extension of the oxidized zone around the drifts and vaults. The aim of the 'POX experiment' is to reduce these uncertainties. This experiment includes a test dedicated to the quantitative study of oxygen consumption in the Callovo-Oxfordian argillaceous rock. This test was implemented in 2009 in the Andra's URL. After an initial phase during which the rock natural gases and pore water at the test location were observed, the first oxygen injection was performed in July 2011. The experimental concept is based on gas circulation in a borehole. It consists of a 15 m-long and 76 mm-diameter ascending borehole, from which the last 5 m constitute the test interval. The rock surface in the test interval is close to 1 m 2 . The last 6 m of the borehole were cored with argon as a drilling

  19. Study on reciprocal relation of pore water pressure with genetic algorithm and neural network model (Contract research)

    International Nuclear Information System (INIS)

    Seno, Shoji; Nakajima, Makoto; Toida, Masaru; Kunimaru, Takanori; Watanabe, Kunio; Sohail Ahmed Rai

    2009-12-01

    Horonobe Underground Research Center has carried out the Horonobe Underground Research Laboratory Project which is a comprehensive research project to investigate the deep geological environment within sedimentary rock. In this project, long-term observation of the pore water pressure has been conducted with monitoring systems introduced in 9 of 11 boreholes drilled in phase I (surface-based investigation). Since August 2003 the monitoring systems have been settled successively in the boreholes, and a certain amount of the pore water pressure data has been already accumulated. Using 6 borehole data (HDB-1,3,6,7,8,9) among this, this report summarized the result of a study on reciprocal relation of pore water pressure to investigate the hydrogeological environment of this site. At first, to exclude the influences of working of nature such as tide and atmospheric pressure from the source data, an analysis with Bayesian model was progressed. As the result of the estimation of these influences calculated by BAYTAP-G (Bayesian Tidal Analysis Program Grouping Model), it was found that the influence of the atmospheric pressure was comparatively large and that of tide was comparatively small. Secondly, an analysis on the reciprocal relation of the pore water pressure was carried out to investigate the relation between the different depth points of the same borehole and the relation between different boreholes. As the result of the calculations with genetic algorithm (GA) and neural network models (BPANN, GAANN), it was found that estimation by GA models was better than other models in the case where analyzing data included radical changes. And the result also showed that in regions lower than GL.-400m of HDB-3,6,7,8, the pore water pressures change in the same manner. These results indicate the effectiveness of this analysis method. (author)

  20. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    Science.gov (United States)

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. Pore surface engineering in covalent organic frameworks.

    Science.gov (United States)

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  2. Investigation of block foundations resting on soil–rock and rock–rock media under coupled vibrations

    Directory of Open Access Journals (Sweden)

    Renuka Darshyamkar

    2017-04-01

    Full Text Available In the present study, the dynamic response of block foundations of different equivalent radius to mass (Ro/m ratios under coupled vibrations is investigated for various homogeneous and layered systems. The frequency-dependent stiffness and damping of foundation resting on homogeneous soils and rocks are determined using the half-space theory. The dynamic response characteristics of foundation resting on the layered system considering rock–rock combination are evaluated using finite element program with transmitting boundaries. Frequencies versus amplitude responses of block foundation are obtained for both translational and rotational motion. A new methodology is proposed for determination of dynamic response of block foundations resting on soil–rock and weathered rock–rock system in the form of equations and graphs. The variations of dimensionless natural frequency and dimensionless resonant amplitude with shear wave velocity ratio are investigated for different thicknesses of top soil/weathered rock layer. The dynamic behaviors of block foundations are also analyzed for different rock–rock systems by considering sandstone, shale and limestone underlain by basalt. The variations of stiffness, damping and amplitudes of block foundations with frequency are shown in this study for various rock–rock combinations. In the analysis, two resonant peaks are observed at two different frequencies for both translational and rotational motion. It is observed that the dimensionless resonant amplitudes decrease and natural frequencies increase with increase in shear wave velocity ratio. Finally, the parametric study is performed for block foundations with dimensions of 4 m × 3 m × 2 m and 8 m × 5 m × 2 m by using generalized graphs. The variations of natural frequency and peak displacement amplitude are also studied for different top layer thicknesses and eccentric moments.

  3. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  4. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  5. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics; THM-Gekoppelte Modellierung ausgewaehlter gesteinsmechanisch relevanter Prozesse im Tongestein

    Energy Technology Data Exchange (ETDEWEB)

    Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig (Germany). Repository Safety Research Div.

    2012-08-15

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  6. Application of x-ray microtomography to environmental fluid flow problems

    International Nuclear Information System (INIS)

    Wildenschild, D.; Culligan, K.A.; Christensen, B.S.B.

    2005-01-01

    Many environmental processes are controlled by the micro-scale interaction of water and air with the solid phase (soils, sediments, rock) in pore spaces within the subsurface. The distribution in time and space of fluids in pores ultimately controls subsurface flow and contaminant transport relevant to groundwater resource management, contaminant remediation, and agriculture. Many of these physical processes operative at the pore-scale cannot be directly investigated using conventional hydrologic techniques, however recent developments in synchrotron-based micro-imaging have made it possible to observe and quantify pore-scale processes non-invasively. Micron-scale resolution makes it possible to track fluid flow within individual pores and therefore facilitates previously unattainable measurements. We report on experiments performed at the GSECARS** (Advanced Photon Source) microtomography facility and have measured properties such as porosity, fluid saturation and distribution within the pore space, as well as interfacial characteristics of the fluids involved (air, water, contaminant). Different image processing techniques were applied following mathematical reconstruction to produce accurate measurements of the physical flow properties. These new micron-scale measurements make it possible to test existing and new theory, as well as emerging numerical modeling schemes aimed at the pore scale.

  7. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  8. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  9. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    Science.gov (United States)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  10. Mesoscale Simulations of Pore Migration in a Nuclear Fuel

    International Nuclear Information System (INIS)

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B.

    2010-01-01

    The evolution of pore and grain structure in a nuclear fuel environment is strongly influenced by the local temperature, and the temperature gradient. The evolution of pore and grain structure in an externally imposed temperature gradient is simulated for a hypothetical material using a Potts model approach that allows for porosity migration by mechanisms similar to surface, grain boundary and volume diffusion, as well as the interaction of migrating pores with stationary grain boundaries. First, the migration of a single pore in a single crystal in the presence of the temperature gradient is simulated. Next, the interaction of a pore moving in a temperature gradient with a grain boundary that is perpendicular to the pore migration direction is simulated in order to capture the force exerted by the pore on the grain boundary. The simulations reproduce the expected variation of pore velocity with pore size as well as the variation of the grain boundary force with pore size.

  11. Rock stresses associated with burial of nuclear waste

    International Nuclear Information System (INIS)

    Voight, B.

    1977-01-01

    Rock stress changes related to long-term deep storage of nuclear waste involve thermoelastic and pore fluid pressure changes associated with excavation and heating. Computer models are being examined to assess the question of thermally-induced fracturing in storage rock surrounding radioactive waste containers. Stresses are evaluated in three dimensions, employing elastic-plastic finite element codes. Potential failure conditions are expressed in terms of ''effective stresses,'' and force and thermal fields are incremented to produce an appropriate load path. In general, heating in vicinity of waste containers produces a zone of high compression bonded by a zone of circumferential and axial tension. (At this conference an analogous case of thermal stresses was documented and illustrated for larger-scale temperature domains associated with geothermal areas in Iceland.) Fractures are possible in radial directions as well as perpendicular to the axis of the cylindrical heat source. In addition, the mechanical effect of a vapor pulse will be explored by a two-phase numerical fluid transport model used in conjunction with mechanical finite element models. This portion of the work, being conducted jointly with C. R. Faust and J. W. Mercer of the US Geological Survey, should provide a preliminary appreciation of the possible effect of phase changes on fracturing of burial sites. Preliminary work suggests the possibility of establishing design criteria (e.g., design burial depth, depth of canister below storage vault) in order to minimize problems of potential rock fracture

  12. Manipulating the Toughness of Rocks through Electric Potentials

    Data.gov (United States)

    National Aeronautics and Space Administration — When rocks are stressed, electronic charge carriers are activated which are defect electrons in the oxygen anion sublattice, O– in a matrix of O2–, known as positive...

  13. Rock glaciers, Fletschhorn Area, Valais, Switzerland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a total amount of 74 rock glaciers which were investigated in the Fletschhorn Area in the southern Swiss Alps during the summer of 1995. The...

  14. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    Science.gov (United States)

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  15. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  16. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  17. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both

  18. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  19. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    , known as colloids, transport radionuclides up to the ground surface? RNR Experiment: An exchangeable cell in a specially built probe makes it possible to conduct experiments on how radionuclides move. True: Tracer tests are supposed to increase our understanding of how radionuclides are transported and answer the question whether results obtained on one scale are also valid on another. LTDE: To what extent can radionuclides migrate out into micropores in the rock? And how long do they stay there? Matrix Fluid Chemistry Experiment: The water in the rock's pores can differ in terms of composition and changes from the water running in the fractures. Rex Project: Approximately one year after the repository has been closed, all oxygen will have been consumed by the minerals and bacteria in the rock. The bacteria in particular are responsible for this consumption. Microbe Project: Can subterranean microbes keep a deep repository for spent nuclear fuel oxygen-free and how do they influence radionuclide transport?

  20. Characterization of bentonite pore structure by combining chloride porosity and SAXS measurements

    International Nuclear Information System (INIS)

    Muurinen, A.

    2010-01-01

    Document available in extended abstract form only. The total water porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80 and Deponit bentonites equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months. The dry densities of the samples varied approximately from 0.7 to 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the bentonites. It was obvious that the chloride porosity was lower than the water porosity in both clays, which indicates the exclusion caused by the negatively charged montmorillonite surfaces. In the XRD and SAXS measurements the measured basal spaces represented by the diffraction peaks were smaller than the theoretical ones assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not represented by the peaks. This could explain the difference between the measured chloride porosity and the modelling curve obtained with the Donnan model. By combining the information from the SAXS measurements and the chloride exclusion measurements, it was possible to evaluate the volumes of the soft and dense fractions and the pore sizes in each fraction for MX-80. The chloride porosity was mostly caused by the pores in the soft clay where the pore size is larger. The volume of the soft fraction decreased and its density increased with increasing density of the sample. (authors)