WorldWideScience

Sample records for rock piles remediation

  1. Environmental remediation of the Wismut legacy and utilization of the reclaimed areas, waste rock piles and tailings ponds

    International Nuclear Information System (INIS)

    Hagen, M.; Jakubick, A.T.

    2006-01-01

    Between 1945 and reunification (1989) of Germany more than 232 000 t of U 3 O 8 has been produced in Saxony and Thuringia, East Germany. This affected an area of approximately 100 km 2 and left behind an extensive legacy of contaminated operations areas, underground and open pit mines, waste rock piles and tailings ponds. Following reunification, DM 13 billion (Euro 6.6 billion) were committed (and later revised to Euro 6.2 billion) to remediation of the liabilities and the government owned corporation, Wismut GmbH entrusted with the implementation of the Environmental Remediation (ER) of the liabilities. The prime goal of the ER Project follows from the legal requirements to abate health risks, mitigate existing and prevent future environmental damages. During the investigations and assessment of risks, development of remediation concepts, adoption of suitable technologies and work procedures as well as physical implementation of the remedial measures extensive use was made of international (mostly US and Canadian) ER experience. The extent of remedial measures was based on object-specific Environmental Assessments rather than on uniformly applied health/environmental standards. The ER workflow is more an iterative process than a linear succession of tasks, such as common for civil engineering projects. The internal (technical) parts of the problems were partly resolved by using Conceptual Site Models (CSM) for selection and prioritization of remedial measures. Reclamation of the waste rock piles is by covering in situ, relocation to a central pile or backfilling into an open pit. The backfilling of the open pit at Ronneburg with acid generating waste rock has been optimized from a geochemical point of view. For tailings ponds reclamation in form of dry landforms is being followed. To increase release (and reuse) of scrap metal from demolition, a fast and reliable method of discrimination of the non-contaminated metal has been developed. The flooding of

  2. Close-out of open pit and waste rock piles of a uranium mine in Guangxi province of China

    International Nuclear Information System (INIS)

    Xu Lechang; Zhang Zhao; Zhang Guopu; Liu Min

    2012-01-01

    Close-out of projects of a mine in Guangxi province of China includes open pit,east and west waste rock piles, ore transfer station, industrial fields, buildings, ore transporting road, and equipment and conduits. The following remediation limits are introduced: environment penetrating radiation dose rate and 222 Rn flux of open pit and waste rock piles, 226 Ra specific activity of soil and individual dose. Remediation objective and programme are discussed in details. Remediation effects are evaluated. (authors)

  3. Uranium migration and retention during weathering of a granitic waste rock pile

    International Nuclear Information System (INIS)

    Boekhout, F.; Gérard, M.; Kanzari, A.; Michel, A.; Déjeant, A.; Galoisy, L.; Calas, G.; Descostes, M.

    2015-01-01

    Highlights: • We investigate the environmental impact of the granitic waste rock piles. • The majority of the waste rocks in the pile is barren- or overburden rock. • The main neo-formed U-bearing phases are (Ca) and (Cu) uranyl phosphates. • Under circum-neutral pH conditions they do not pose an environment threat. - Abstract: This study investigates the post-mining evolution of S-type granitic waste rocks around a former uranium mine, Vieilles Sagnes (Haute Vienne, NW Massif Central, France). This mine was operated between 1957 and 1965 in the La Crouzille former world-class uranium mining district and is representative of intra-granitic vein-type deposits. 50 years after mine closure and the construction and subsequent re-vegetation of the granitic waste rock pile, we evaluate the environmental evolution of the rock pile, including rock alteration, neo-formation of U-bearing phases during weathering, and U migration. Vertical trenches have been excavated through the rock pile down to an underlying paleo-soil, allowing the investigation of the vertical differentiation of the rock pile and its influence on water pathways, weathering processes and U migration and retention. Arenization dominantly drives liberation of U, by dissolution of uraninite inclusions in the most alterable granitic minerals (i.e. K-feldspar and biotite). Retention of U in the matrix at the base of the waste rock pile, and in the underlying paleo-soil most likely occurs by precipitation of (nano-) uranyl phosphates or a combination of co-precipitation and adsorption reactions of U onto Fe (oxy)hydroxides and/or clay minerals. Even though U-migration was observed, U is retained in stable secondary mineral phases, provided the current conditions will not be modified

  4. Radioactive safety analysis and assessment of waste rock pile site in uranium tailings

    International Nuclear Information System (INIS)

    Liu Changrong; Liu Zehua; Wang Zhiyong; Zhou Xinghuo

    2007-01-01

    Based on theoretical calculation and in-situ test results, distribution and emissions of radioactive nuclides of uranium tailings impoundment and waste rock pile sites are analyzed in this paper. It is pointed out that 222 Rn is the main nuclide of uranium tailings impoundment and waste rock pile site. Also 222 Rn is the main source term of public dose. 222 Rn concentrations in the atmospheric environment around and individual dose to Rn gradually decrease with increasing distances to uranium tailings impoundment and waste rock pile site. Based on in-situ tests on five uranium tailings impoundment and waste rock pile sites, a decisive method and safety protection distance are presented, which can be used to guide the validation and design of radioactive safety protection in uranium tailings impoundment and waste rock pile sites. (authors)

  5. In-situ grouting of uranium-mill-tailings piles: an assessment

    International Nuclear Information System (INIS)

    Tamura, T.; Boegly, W.J. Jr.

    1983-05-01

    Passage in 1978 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) initiated a program of remedial action for 22 existing mill tailings piles generated in the period 1940 to 1970 as part of the nation's defense and nuclear power programs. The presence of these piles poses potential health and environmental contamination concerns. Possible remedial actions proposed include multilayer covers over the piles to reduce water infiltration, reduce radon gas releases, and reduce airborne transport of tailings fines. In addition, suggested remedial actions include (1) the use of liners to prevent groundwater contamination by leachates from the piles and (2) chemical stabilization of the tailings to retain the radioactive and nonradioactive sources of contamination. Lining of the piles would normally be applicable only to piles that are to be moved from their present location such that the liner could be placed between the tailings and the groundwater. However, by using civil engineering techniques developed for grouting rocks and soils for strength and water control, it may be possible to produce an in situ liner for piles that are not to be relocated. The Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project Office requested that ORNL assess the potential application of grouting as a remedial action. This report examines the types of grouts, the equipment available, and the costs, and assesses the possibility of applying grouting technology as a remedial action alternative for uranium mill tailings piles

  6. In-situ grouting of uranium-mill-tailings piles: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, T.; Boegly, W.J. Jr.

    1983-05-01

    Passage in 1978 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) initiated a program of remedial action for 22 existing mill tailings piles generated in the period 1940 to 1970 as part of the nation's defense and nuclear power programs. The presence of these piles poses potential health and environmental contamination concerns. Possible remedial actions proposed include multilayer covers over the piles to reduce water infiltration, reduce radon gas releases, and reduce airborne transport of tailings fines. In addition, suggested remedial actions include (1) the use of liners to prevent groundwater contamination by leachates from the piles and (2) chemical stabilization of the tailings to retain the radioactive and nonradioactive sources of contamination. Lining of the piles would normally be applicable only to piles that are to be moved from their present location such that the liner could be placed between the tailings and the groundwater. However, by using civil engineering techniques developed for grouting rocks and soils for strength and water control, it may be possible to produce an in situ liner for piles that are not to be relocated. The Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project Office requested that ORNL assess the potential application of grouting as a remedial action. This report examines the types of grouts, the equipment available, and the costs, and assesses the possibility of applying grouting technology as a remedial action alternative for uranium mill tailings piles.

  7. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    Science.gov (United States)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  8. Load-bearing Characters Analysis of Large Diameter Rock-Socketed Filling Piles Based on Self-Balanced Method

    Science.gov (United States)

    tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao

    2018-03-01

    Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.

  9. Application of self-balanced loading test to socketed pile in weak rock

    Science.gov (United States)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone

  10. Design method of large-diameter rock-socketed pile with steel casing

    Science.gov (United States)

    Liu, Ming-wei; Fang, Fang; Liang, Yue

    2018-02-01

    There is a lack of the design and calculation method of large-diameter rock-socketed pile with steel casing. Combined with the “twelfth five-year plan” of the National Science & Technology Pillar Program of China about “Key technologies on the ports and wharfs constructions of the mountain canalization channels”, this paper put forward the structured design requirements of concrete, steel bar distribution and steel casing, and a checking calculation method of the bearing capacity of the normal section of the pile and the maximum crack width at the bottom of the steel casing. The design method will have some degree of guiding significance for the design of large-diameter rock-socketed pile with steel casing.

  11. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  12. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  13. Role of rock texture and mineralogy on the hydrology and geochemistry of three neutral-drainage mesoscale experimental waste rock piles at the Antamina Mine, Peru

    Science.gov (United States)

    Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.

    2009-12-01

    An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas

  14. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  15. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  16. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    Science.gov (United States)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  17. Model Test Research on the End Bearing Behavior of the Large-Diameter Cast-in-Place Concrete Pile for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Jingwei Cai

    2016-01-01

    Full Text Available For large-diameter, cast-in-place concrete piles, the end bearing capacity of a single pile is affected by discontinuous surfaces that exist in natural rock masses when the bearing layer of the pile end is located in the rock layer. In order to study the influence of the jointed dip angle on the bearing characteristics of the pile end, the discrete element models are adopted to simulate the mechanical characteristics of the jointed rock masses, and the model tests of the failure mode of the jointed rock masses were also designed. The results of the numerical calculations and modeling tests show that the joints, which have a filtering effect on the internal stress of the bedrock located at the pile end, change the load transferring paths. And the failure mode of the jointed rock foundation also changes as jointed dip angle changes. The rock located at the pile end generally presents a wedge failure mode. In addition, the Q-S curves obtained by model tests show that the ultimate end bearing capacity of a single pile is influenced by the jointed dip angle. The above results provide an important theoretical basis for how to correctly calculate end resistance for a cast-in-place concrete pile.

  18. Case study: remediation of a former uranium mining/processing site in Hungary

    International Nuclear Information System (INIS)

    Csovari, M. et al.

    2004-01-01

    The Hungarian uranium mining activities near Pecs lasted from 1958 to 1997. Approximately 46 Mt of rock were mined, from which 18.8 Mt of upgraded ore were processed. Some ore had been exported prior to the construction of the processing plant at the site. Remediation of the former uranium-related industrial sites is being carried out by the Mecsek Ore Environment Ltd. and started in the 1990s. Today the former mines and their surroundings are rehabilitated, former heap piles and a number of smaller waste rock piles have been relocated to a more protected area (waste rock pile N 3). Ongoing core remediation activities are directed to the remediation of the tailings ponds, and also water treatment issues are most important. Three water treatment facilities are currently in operation: a mine water treatment system with the objective to remove uranium and gain a marketable by-product; a pump-and-treat system to restore the groundwater quality in the vicinity of the tailing ponds; a pilot-scale, experimental passive in-situ groundwater treatment system to avoid migration of uranium contaminated groundwater. Refs. 5 (author)

  19. Application Study of Self-balanced Testing Method on Big Diameter Rock-socketed Piles

    Directory of Open Access Journals (Sweden)

    Qing-biao WANG

    2013-07-01

    Full Text Available Through the technological test of self-balanced testing method on big diameter rock-socketed piles of broadcasting centre building of Tai’an, this paper studies and analyzes the links of the balance position selection, the load cell production and installation, displacement sensor selection and installation, loading steps, stability conditions and determination of the bearing capacity in the process of self-balanced testing. And this paper summarizes key technology and engineering experience of self-balanced testing method of big diameter rock-socketed piles and, meanwhile, it also analyzes the difficult technical problems needed to be resolved urgently at present. Conclusion of the study has important significance to the popularization and application of self-balanced testing method and the similar projects.

  20. Screening and comparison of remedial alternatives for the South Field and flyash piles at the Fernald site

    International Nuclear Information System (INIS)

    Bumb, A.C.; Jones, G.N.

    1996-05-01

    The South Field, the Inactive Flyash Pile, and the Active Flyash Pile are in close proximity to each other and are part of Operable Unit 2 (OU2) at the Fernald Environmental Management Project (FEMP). The baseline risk assessment indicated that the exposure pathways which pose the most significant risk are external radiation from radionuclides in surface soils and use of uranium contaminated groundwater. This paper presents screening and comparison of various remedial alternatives considered to mitigate risks from the groundwater pathway. Eight remedial alternatives were developed which consisted of consolidation and capping, excavation and off-site disposal with or without treatment, excavation and on-site disposal with or without treatment and combinations of these. Risk-based source (soil) preliminary remediation levels (PRLs) and waste acceptance criteria (WACs) were developed for consolidation and capping, excavation, and on-site disposal cell. The PRLs and WACs were developed using an integrated modeling tool consisting of an infiltration model, a surface water model, a vadose zone model, and a three-dimensional contaminant migration model in saturated media. The PRLs and WACs were then used to determine need for soil treatment, determine excavation volumes, and screen remedial alternatives. The selected remedial alternative consisted of excavation and on-site disposal with off-site disposal of the fraction exceeding the WAC

  1. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada

    Science.gov (United States)

    Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin

    2018-03-01

    Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.

  2. Kinematic Interaction and Rocking Effects on the Seismic Response of Viaducts on Pile Foundations

    International Nuclear Information System (INIS)

    Dezi, F.; Carbonari, S.; Leoni, G.

    2008-01-01

    This paper is aimed at providing a contribution for a more accurate and effective design of bridges founded on piles. A numerical model is employed herein to determine the stresses and displacements in the piles taking into account soil-foundation-structure interaction. A 3D finite element approach is developed for piles and superstructure whereas the soil is assumed to be a Winkler-type medium. The method is applied to single piers representative for a class of bridges. Varying the soil layers characteristics and the pile spacing (from 3 to 5 diameters), bending and axial stresses along piles as well as the pier base shear are computed. A comparison with respect to a fixed-base model is provided. Special issues such as the contribution of the soil profile, of the local amplification and of the rocking at the foundation level are discussed. Soil-structure interaction is found to be essential for effective design of bridges especially for squat piers and soft soil

  3. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    International Nuclear Information System (INIS)

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-01-01

    The Waterloo Barrier trademark steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10 -8 to 10 -10 cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier trademark cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier trademark in these applications

  4. Real Scale test and analysis of the skin friction on a pile in rock; Ensayo a escala real e interpretacion del comportamiento de un pilote por fuest en roca

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, D. del; Melentijevic, S.; Prieto, L.; Olalla, C.

    2011-07-01

    The skin friction behaviour of a pile in a flysch rock in San Sebastian (Guipuzcoa) has been studied. The static load test was performed on a pile of 1 meter diameter, on the 5 meter length segment of the pile between 12 and 17 meters depth- Two Osterberg cells were embedded into the pile segment to apply the load on the pile-rock system. The mechanism of the load transfer between the pile and the rock has been analyzed by laboratory tests on rock samples, load test results and a finite element method calculus. the results have also been compared to the existing formations of world wide published standards. (Author) 16 refs.

  5. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    International Nuclear Information System (INIS)

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.; Schlosser, R.M.

    2000-01-01

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity

  6. 40 CFR 264.554 - Staging piles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Staging piles. 264.554 Section 264.554... for Cleanup § 264.554 Staging piles. This section is written in a special format to make it easier to... staging pile? A staging pile is an accumulation of solid, non-flowing remediation waste (as defined in...

  7. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    Science.gov (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  8. Experimental Study of Bilinear Initiating System Based on Hard Rock Pile Blasting

    Directory of Open Access Journals (Sweden)

    Yusong Miao

    2017-01-01

    Full Text Available It is difficult to use industrial explosives to excavate hard rock and achieve suitable blasting effect due to the low energy utilization rate resulting in large rocks and short blasting footage. Thus, improving the utilization ratio of the explosive energy is important. In this study, a novel bilinear initiation system based on hard rock blasting was proposed to improve the blasting effects. Furthermore, on the basis of the detonation wave collision theory, frontal collision, oblique reflection, and Mach reflection during detonation wave propagation were studied. The results show that the maximum detonation pressure at the Mach reflection point where the incident angle is 46.9° is three times larger than the value of the explosive complete detonation. Then, in order to analyze the crack propagation in different initiation forms, a rock fracture test slot was designed, and the results show that bilinear initiating system can change the energy distribution of explosives. Finally, field experiment was implemented at the hard rock pile blasting engineering, and experimental results show that the present system possesses high explosive energy utilization ratio and low rock fragments size. The results of this study can be used to improve the efficiency in hard rock blasting.

  9. Study of waste rock piles producing acid drainage in the Brazilian first uranium mine

    International Nuclear Information System (INIS)

    Oliveira, Alexandre P. de; Rey-Silva, Daniela V.F.M.; Barreto, Rodrigo P.; Souza-Santos, Marcio L. de; Veronesi, Luciano da S.

    2009-01-01

    The Uranium Mine and Milling Facility located in the Pocos de Caldas Plateau stopped operating since mid-1990's and remediation actions for the mine areas are going to take place in the near future. However, environmental concerns should be addressed such as acid mine drainage (AMD) in the waste rock piles (WRPs), pit mine, and tailing dam, all driven by pyrite oxidation reactions. The AMD process leaches both heavy metals and radionuclides pollutants through the soil. This work shows the methodology applied for the determination of chemical species leaching from WRP4 as well the generation of acid waters. An experimental setup has been assembled to determine the acidity of water in contact with samples of material from the WRP4. Results are presented along a list of chemical species found in the remaining water. That is followed by discussions regarding its pH and chemical composition measured during the experiments. It has been observed that not only water and available oxygen are significant to the pyrite oxidation reaction, but also bacterial activity. This last effect should be addressed in the near future. Moreover, various important aspects regarding the experimental setup were noticed and are addressed as propositions for the continuation of the present work. (author)

  10. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    Science.gov (United States)

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the

  11. Seismic behavior analysis of piled drums

    International Nuclear Information System (INIS)

    Aoki, H.; Kosaka, T.; Mizushina, T.; Shimizu, M.; Uji, S.; Tsuchiya, H.

    1987-01-01

    In general, low level radioactive waste is packed in drums and stored in a warehouse being piled vertically, or laid horizontally. To observe the behavior of piled drums during an earthquake, an experimental study was reported. The experimental study is limited by the vibrating platform capacity. To carry out these tests up to the supporting limit is not recommended, in view of the vibrating platform curing as well as the operators' security. It is very useful to develop the analytical method for simulating the behavior of the drums. In this report, a computer program of piled drum's dynamic motion is shown, and the analytical result is referred to the experimental result. From the result of experiment on piled drums, the sliding effect has been found to be very important for the stability of drum, and the rocking motion observed, showing a little acceleration is less than the static estimated value. Behavior of piled drums is a complex phenomena comprising of sliding, rocking and jumping

  12. Grouting of uranium mill tailings piles

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10 -3 cm/s to values approaching 10 -7 cm/s using silicate grouts and to 10 -8 cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table

  13. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd 3 ). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM)

  14. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  15. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  16. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    International Nuclear Information System (INIS)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC section 7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management

  17. Geotechnical and water resource aspects of uranium mill tailings pile reclamation projects

    International Nuclear Information System (INIS)

    Caldwell, J.A.; Tackston, J.W.; Portillo, R.

    1986-01-01

    Design and construction work is currently in progress at more than twenty sites associated with the UMTRA Project - this involves final reclamation of the uranium mill tailings piles so that they are stable for at least 200 years and for up to 1000 years. Remedial action construction plans for the tailings piles involve detailed consideration of the present and possible future ground water and surface-water impacts of the pile. Since the stabilized pile is ultimately a major geotechnical structure, detailed consideration of the long-term resistance to erosion and containment of radioactive material is also required. A case history illustrates how the critical design criteria governing the remedial action activities at the various piles are applied to the pile at the Lakeview site to provide for long-term protection of the water resource and public health and safety

  18. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  19. Optimising the bio-piling of weathered hydrocarbons within a risk management framework

    International Nuclear Information System (INIS)

    Hough, R.; Brassington, K.; Sinke, A.; Crossley, J.; Paton, G.; Semple, K.; Risdon, G.; Jacobson, Ch.; Daly, P.; Jackman, S.; Lethbridge, G.; Pollard, S.

    2005-01-01

    Thirty years of research into petroleum microbiology and bio-remediation have bypassed an important observation - that many hydrocarbon contaminated sites posing potential risks to human health harbour weathered, 'mid-distillate' or heavy oils rather than 'fresh product'. Ex-situ bio-piling is an important technology for treating soils contaminated with weathered hydrocarbons. However, its performance continues to be represented by reference to reductions in the hydrocarbon 'load' in the soils being treated, rather than reductions in the risks posed by the hydrocarbon contamination. The absence of 'risk' from the vocabulary of many operators and remediation projects reduces stakeholder (regulatory, investor, landowner, and public) confidence in remediation technologies, and subsequently limits the market potential of these technologies. Stakeholder confidence in the bio-piling of weathered hydrocarbons may be improved by demonstrating process optimisation within a validated risk management framework. To address these issues, a consortium led by Cranfield University's Integrated Waste Management Centre has secured funding from the UK Government's Bio-remediation LINK programme. Project PROMISE (involving BP, SecondSite Regeneration Ltd., Dew Remediation Ltd., TES Bretby (Mowlem Group), technology translators PERA, and academics from Aberdeen, Cranfield and Lancaster Universities) aims to improve market confidence in bio-piling by demonstrating how this treatment may be applied within a risk management context. For weathered hydrocarbons in particular, the underpinning scientific components of process control, waste diagnostics, environmental fate modelling, and risk assessment have yet to be fully integrated to allow bio-piling projects to be verified with improved confidence. The Joint Research Council Review of Bio-remediation recognised this in calling explicitly for the positioning of bio-remediation within a risk management framework. The PERF report (Thermo

  20. Recent hydrological observations from the Riverton and Maybell tailings piles

    International Nuclear Information System (INIS)

    Tokunaga, T.; Narasimhan, T.N.

    1982-01-01

    This paper reports on field and laboratory hydrologic studies of two inactive uranium mill tailings piles under the Uranium Mill Tailings Remedial Action Program (UMTRA). The ultimate goal of the studies is to evaluate the nature of the contaminant potential of the piles with sufficient detail so that appropriate remedial measures can be designed and implemented under the UMTRA Program. The field studies included the monitoring of hydraulic head profiles of the piles and infiltration tests. Both the field and laboratory results from the Riverton tailings indicate a great deal of spatial variability in hydraulic properties. It is determined that the bulk of the precipitation input at the Riverton tailings is lost by evapotranspiration within the upper meter of soil cover and tailings

  1. Survival and growth of Alfalfa (Medicago sativa l.) inoculated with an am fungus (Glomus intraradices) in contaminated soils treated with two different remediation technologies (bio-pile and thermal desorption)

    International Nuclear Information System (INIS)

    Norini, M.P.; Beguiristain, Th.; Leyval, C.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of persistent and toxic soil pollutants that are of major public concern due to their mutagenic and carcinogenic property. Phyto-remediation is the use of plants and their associated microorganisms for remediation of polluted soils. Phyto-remediation could be used in conjunction with other remediation technologies to reduce the contamination to safe levels and maintain or restore soil physico-chemical and biological properties. Most plant species form mycorrhizas with symbiotic fungi. It was shown that AM fungi enhance survival and plant growth in PAH contaminated soils. Mycorrhizal fungi also enhance the biotransformation or biodegradation of PAH, although the effect differed between soils. A rhizosphere and myco-rhizosphere gradient of PAH concentrations was observed, with decreased PAH concentration with decreased distance to roots. Different microbial communities were found in the rhizosphere of AM and non-mycorrhizal plants in comparison to bulk soil, suggesting that AM could affect PAH degradation by changing microbial communities. We investigated the effect of mycorrhizal fungi and nutrients on the ability of alfalfa to grow on soil contaminated with PAHs before and after two remediation treatments. We used soil from an industrial site (Homecourt, North East part of France) highly contaminated with PAH (2000 mg kg -1 ), which has been partially treated by two different remediation technologies (bio-pile and thermal desorption). The bio-pile treatment consisted of piling the contaminated soil with stimulation of aerobic microbial activity by aeration and addition of nutrient solution, and reduced PAH concentration to around 300 mg kg-1. With the thermal desorption treatment the soil was heated to around 500 deg. C so that PAH vaporized and were separated from the soil. The residual PAH concentration in soil was 40 mg kg -1 . Treated and non-treated contaminated soil was planted with alfalfa (Medicago

  2. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)

  3. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

  4. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    Science.gov (United States)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  5. Dose assessment of remedial action for uranium tailing impoundment of a nuclear factory

    International Nuclear Information System (INIS)

    Li Xutong; Ma Ruwei; Guo Zede

    2000-01-01

    A large uranium tailing impoundment in China will be closure and remedial action have been planned. The remedial action will include shaping and covering the dam and beach in order to prevent the impoundment from damage and restrict spread of tailing sands and emission of radon. The author presents the analysis and estimation of the exposure to workers for remedial action and to public after the remedial action. To estimate the exposure to workers, the pathway of inhalation of radon, tailing sands in suspension and external γ exposure were taken into consideration. The exposure scenario is considered as probably maximum exposure to the workers who work on the tailing pile without any protection measures, the dose is 6.0 mSv/a. Two situation for the exposure to public after remedial action were considered: normal and abnormal condition. For the normal condition, inhalation of radon emitted from impoundment is only the pathway to public for the exposure, and individual dose for critical group of public is 0.053 mSv/a, collective dose for population within 80 km is 1.0 man·Sv/a. For the abnormal conditions, four scenarios were considered, i.e. dwelling on tailing pile, farming on tailing pile, living in a house built by contaminated materials and some temporal activities on the pile. The scenarios of dwellings is living in a house on the pile and drinking contaminated water. The maximum individual dose is 27 mSv/a

  6. Numerical Study on Dynamic Response of Pile Group Foundation of Geotechnical Centrifuge

    Directory of Open Access Journals (Sweden)

    Mao Quansheng

    2015-01-01

    Full Text Available Based on National Engineering Laboratory for Harbor Engineering Structure-Geotechnical Centrifuge Laboratory construction project, the dynamical response of piles foundation under horizontal-rocking vibration was analyzed by using finite element software Abaqus, and the displacement and stress characteristics of piles were discussed with soil between the piles reinforced by high pressure jet piles. The result indicates that in the operation of the centrifuge, foundation changes of vertical load of center pile are very small; the vertical displacement of the pile head is increasing, the vertical displacement of the pile head is no longer changed until the vibration time reaches 3 times period,; the horizontal load of piles varies with sinusoidal, the horizontal displacement amplitude is increasing, , and the vibration amplitude reaches to fixed value at 2 times vibration period.

  7. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use

  8. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  9. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  10. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, A.P.; Gandy, C.J. [Newcastle Univ. (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach Group

    2010-07-01

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  11. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    International Nuclear Information System (INIS)

    Jarvis, A.P.; Gandy, C.J.

    2010-01-01

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  12. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability

  13. Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles.

    Science.gov (United States)

    Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D

    2018-05-30

    Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  15. Sources of acid and metals from the weathering of the Dinero waste pile, Lake Fork watershed, Leadville, Colorado

    Science.gov (United States)

    Diehl, S.F.; Hageman, Phil L.; Smith, Kathleen S.; Herron, J.T.; Desborough, G.A.

    2005-01-01

    Two trenches were dug into the south Dinero mine-waste pile near Leadville, Colorado, to study the weathering of rock fragments and the mineralogic sources of metal contaminants in the surrounding wetland and Lake Fork Watershed. Water seeping from the base of the south Dinero waste-rock pile was pH 2.9, whereas leachate from a composite sample of the rock waste was pH 3.3. The waste pile was mostly devoid of vegetation, open to infiltration of precipitation, and saturated at the base because of placement in the wetland. The south mine-waste pile is composed of poorly sorted material, ranging from boulder-size to fine-grained rock fragments. The trenches showed both matrix-supported and clast-supported zones, with faint horizontal color banding, suggesting zonation of Fe oxides. Secondary minerals such as jarosite and gypsum occurred throughout the depth of the trenches. Infiltration of water and transport of dissolved material through the pile is evidenced by optically continuous secondary mineral deposits that fill or line voids. Iron-sulfate material exhibits microlaminations with shrinkage cracking and preferential dissolution of microlayers that evidence drying and wetting events. In addition to fluids, submicron-sized to very fine-grained particles such as jarosite are transported through channel ways in the pile. Rock fragments are coated with a mixture of clay, jarosite, and manganese oxides. Dissolution of minerals is a primary source of metals. Skeletal remnants of grains, outlined by Fe-oxide minerals, are common. Potassium jarosite is the most abundant jarosite phase, but Pb-and Ag-bearing jarosite are common. Grain-sized clusters of jarosite suggest that entire sulfide grains were replaced by very fine-grained jarosite crystals. The waste piles were removed from the wetland and reclaimed upslope in 2003. This was an opportunity to test methods to identify sources of acid and metals and metal transport processes within a waste pile. A series of

  16. Acid rock drainage passive remediation using alkaline clay: Hydro-geochemical study and impacts of vegetation and sand on remediation.

    Science.gov (United States)

    Plaza, Fernando; Wen, Yipei; Liang, Xu

    2018-10-01

    Acid rock drainage (ARD) is one of the most adverse environmental problems of the mine industry, especially in regions with an abundance of coal refuse (CR) deposits (e.g. the Northern Appalachian Coalfield in the USA) where surface and ground waters are affected by this pollution due to the acidity and high content of sulfates and heavy metals. This study explores the effectiveness of the ARD passive remediation method using alkaline clay (AC) through a series of static and long-term kinetic laboratory experiments (over three years) complemented with field measurements and geochemical modeling. Two important issues associated with this passive and auto-sustainable ARD remediation method were investigated: 1) the hydrogeochemical study of the mixture in terms of the percentages of AC and CR, and, 2) impacts of vegetation cover and a saturated sand barrier on the remediation. Both the field measurements and the samples used for the experiments came from a local coal waste site. Through the analysis of the field measurements and the outcome of the laboratory experiments and the geochemical modeling, alkaline clay proved to be an effective remediation material for ARD, in terms of achieving a neutral pH in the leachate and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. Moreover, it has been demonstrated that the use of vegetation and a saturated sand barrier are beneficial. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked downward the oxygen and water diffusion, reducing pyrite oxidation rates. The proposed remediation approach ensures that the acidity consumption will likely occur before all the alkalinity is exhausted. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. SIMPLE ANALYTICAL MODEL FOR HEAT FLOW IN FRACTURES - APPLICATION TO STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    Science.gov (United States)

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lakeview, Oregon: Volume 1, Text and appendices A through D

    International Nuclear Information System (INIS)

    Chernoff, A.R.

    1992-07-01

    The Lakeview inactive uranium processing site is in Lake County, Oregon, approximately one mile northwest of the town of Lakeview, sixteen miles north of the California-Oregon border, and 96 miles east of Klamath Falls. The total designated site covers an area of 258 acres consisting of a tailings pile (30 acres). seven evaporation ponds (69 acres), the mill buildings, and related structures. The mill buildings and other structures have been decontaminated and are currently being used by Goose Lake Lumber Company. The tailings pile at the processing site was originally stabilized by Atlantic Richfield with an earthen cover 18--24 inches thick. The average depth of the tailings, including the cover, varied from six to eight feet. There were estimated to be 662,000 cubic yards of tailings, windblown contaminated materials, and vicinity property materials. During remedial action under the Uranium Mill Tailings Remedial Action (UMTRA) Project, approximately 264,000 cubic yards of additional contaminated materials were identified from excavations required to remove thorium- and arsenic-contaminated soils. The remedial action for the Lakeview site consisted of the cleanup, relocation, consolidation, and stabilization of all residual radioactive materials and thorium- and arsenic-contaminated materials in a partially below-grade disposal cell at a location approximately seven miles northwest of the tailings site, identified as the Collins Ranch site. A cover, including a radon/infiltration barrier and rock layer for protection from erosion, was Placed on top of the tailings. A rock-soil matrix covers the topslope and provides a growth medium for vegetation. The US Department of Energy (DOE) will retain the license and surveillance and maintenance responsibilities for the final restricted site of 13 acres

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd 3 ) [470,000 cubic meters (m 3 )]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater

  20. Big Pile or Small Pile?

    Science.gov (United States)

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-01-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece…

  1. Static Load Test on Instrumented Pile - Field Data and Numerical Simulations

    Science.gov (United States)

    Krasiński, Adam; Wiszniewski, Mateusz

    2017-09-01

    Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.

  2. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  3. Contribution to Estimating Bearing Capacity of Pile in Clayey Soils

    Science.gov (United States)

    Drusa, Marián; Gago, Filip; Vlček, Jozef

    2016-12-01

    The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.

  4. Contribution to Estimating Bearing Capacity of Pile in Clayey Soils

    Directory of Open Access Journals (Sweden)

    Drusa Marián

    2016-12-01

    Full Text Available The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT, standard penetration (SPT or dynamic penetration test (DP are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.

  5. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  6. Remediation of former uranium mining and milling activities in Central Asia

    International Nuclear Information System (INIS)

    Waggitt, Peter

    2007-01-01

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  7. The pile EL3; Pile EL3

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J.; Raievski, V. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; Hainzelin, J. [Chantiers de l' Atlantique (Penhoet-Loire), 75 - Paris (France)

    1959-07-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10{sup 14} n/cm{sup 2}/s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [French] Le programme de la pile laboratoire a haut flux EL3, a ete fixe en octobre 1954. C'est une pile moderee et refroidie a l'eau lourde. Les barres de combustible sont en uranium metal a 1,6 pour cent - 2 pour cent de molybdene, gainees a l'aluminium. Le flux thermique maximum dans le moderateur est de 10{sup 14} n/cm{sup 2}/s. Les etudes ont commence en janvier 1955, la construction en mai 1955, la premiere divergence a eu lieu en juillet 1957. On trouvera dans ce rapport, une description generale de la pile et de ses batiments annexes, l'etude physique de la pile et un certain nombre d'etudes technologiques executees pour la construction d'EL3. (auteur)

  8. The pile EL3; Pile EL3

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J; Raievski, V [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; Hainzelin, J [Chantiers de l' Atlantique (Penhoet-Loire), 75 - Paris (France)

    1959-07-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10{sup 14} n/cm{sup 2}/s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [French] Le programme de la pile laboratoire a haut flux EL3, a ete fixe en octobre 1954. C'est une pile moderee et refroidie a l'eau lourde. Les barres de combustible sont en uranium metal a 1,6 pour cent - 2 pour cent de molybdene, gainees a l'aluminium. Le flux thermique maximum dans le moderateur est de 10{sup 14} n/cm{sup 2}/s. Les etudes ont commence en janvier 1955, la construction en mai 1955, la premiere divergence a eu lieu en juillet 1957. On trouvera dans ce rapport, une description generale de la pile et de ses batiments annexes, l'etude physique de la pile et un certain nombre d'etudes technologiques executees pour la construction d'EL3. (auteur)

  9. Analysis on pile testing results of post-grouting bored pile

    Science.gov (United States)

    Zheng, A. R.

    2017-04-01

    Based on static load test results, the bearing capacity of bored piles with pile-toe and pile-shaft post-grouting has been analyzed. The analysis reveals that: with post-grouting, the interface between pile and surrounding soil are strengthened and the relative sliding displacement in between is reduced; end resistance of pile is enhanced and can be mobilized at earlier stage with smaller sliding displacement. As a result, the performance of bored pile is improved with increased bearing capacity and reduced settlement.

  10. Report on game species of concern associated with the Gunnison Remedial Action Project, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1991-09-01

    This report provides background information and data used in the analysis of potential impacts to game species reported in the Environmental Assessment of the Proposed Remedial Action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. That environmental assessment provides details regarding proposed remedial action at the Gunnison site along with a description of existing conditions and projected environmental impacts. A summary of the proposed action is provided. The uranium mill tailings and other contaminated materials at the Gunnison processing site would be transported to the Landfill disposal site via the Tenderfoot Mountain (TM) haul route. The remedial action would take place over a three-year period with two six-month winter shutdowns. The first year would consist of site preparation and haul road construction. The second year would consist of moving the tailings. Movement of the radon/infiltration barrier cover material and erosion protection material would take place during the third construction year. The material used to cover the pile is fine-grained material for the radon/infiltration barrier (Sixmile Lane borrow site) and rock for erosion protection from the Chance Gulch borrow site. The location of the borrow sites used to obtain these materials and the associated haul roads is shown

  11. DRIVEN POLYSTRONG REINFORCED CONCRETE PILES AND NEW DESIGN OF PILE CAPS

    Directory of Open Access Journals (Sweden)

    I. I. Bekbasarov

    2015-01-01

    Full Text Available The paper presents constructional and technological features for manufacturing driven piles with variable strength of pile shaft. Economical efficiency of their production has been shown in the paper. The paper provides a pile cap design that ensures perception of hammer impacts with the help of lateral edges of the pile cap. Driven reinforced concrete piles which are manufactured from three shaft sections having various strength have been proposed in the paper. Material strength (concrete grade and diameter of bars and length of shaft sections are given on a case by case basis in accordance with nature and rate of stresses in piles during their driving process. Manufacturing of polystrong piles provides an opportunity to select them for a particular construction site with due account of their preservation during driving process.A pile cap has been developed that as opposed to existing analogous designs makes it possible to transmit impact efforts from a hammer to the pile through lateral surface of its head part. The pile cap provides the possibility to increase an area for perception of hammer impact efforts by the pile and in doing so it is possible significantly to reduce a damage risk and destruction of pile concrete during its driving. Application of polystrong piles and their driving with the help of new pile cap are considered as a basis for defect-free and resource-saving technology for pile foundations in the construction.

  12. CONDUCTING AND ANALYZING THE RESULTS OF THE EXPERIMENTAL BOX TEST OF RETAINING WALL MODELS WITHOUT PILES AND ON THE PILE FOUNDATION

    Directory of Open Access Journals (Sweden)

    M. A. Lisnevskyi

    2015-08-01

    Full Text Available Purpose. Taking into consideration that the bearing capacity of the foundation may be insufficient, in the study it is assumed that pile foundation can be used to reduce the impact of the construction of new retaining structures on roads and railways near the existing buildings or in areas of dense urban development and ensure the stability of the foundation. To reduce the volume of excavation it is necessary to choose the economic structure of the retaining wall. To do this, one should explore stress-strain state (SSS of the retaining walls, to develop methods to improve their strength and stability, as well as to choose the most appropriate method of their analysis. Methodology. In the design of retaining walls foundation mat and piles are considered as independent elements. Since the combined effect of the retaining wall, piles and foundation mat as well as the effect of soil or rock foundation on the structure are considered not fully, so there are some limitations in the existing design techniques. To achieve the purpose the box tests of retaining walls models without piles and with piles for studying their interaction with the surrounding soil massif were conducted. Findings. Laboratory simulation of complex systems «surrounding soil – retaining wall – pile» was carried out and on the basis of the box test results were analyzed strains and its main parameters of the stress-strain state. Analysis of the results showed that the structure of a retaining wall with piles is steady and stable. Originality. So far, in Ukraine has not been carried out similar experimental box tests with models of retaining walls in such combinations. In the article has been presented unique photos and test results, as well as their analysis. Practical value. Using the methodology of experimental tests of the retaining wall models with piles and without them gives a wider opportunity to study stress-strain state of such structures.

  13. Investigation and development of an effective, economical and efficient concrete pile splice.

    Science.gov (United States)

    2015-06-01

    Structures such as bridges or tall buildings often require deep foundations in order to reach soil or rock strata capable of resisting the associated high loads. In Florida, concrete elements such as driven piles, drilled shafts or other cast-in-plac...

  14. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    Science.gov (United States)

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  15. Static Load Test on Instrumented Pile – Field Data and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2017-09-01

    Full Text Available Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.

  16. Theoretical computation background for transformation of foundations using pile drains

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven

    2017-01-01

    Full Text Available In the design of foundations for buildings and structures of various purposes, including improved risk, weak water-saturated clay soils with low mechanical characteristics are often found on a construction site. One of the possible ways of using them as a foundation is to seal them in various ways, including using pile drains of sand or rock stone material that are capable of both absorbing the load at the base and accelerating the process of filtration consolidation. This paper describes an analytical solution to the problem of interaction between the pile and the mattress with the surrounding soil of the foundation, taking into account the possibility of expanding the pile shaft. Solutions are obtained for determining the stresses in the shaft of the pile drain and in the soil under the mattress. The solution takes into account the influence of the pre-stressed state of the foundation after compaction on the formation of a stress-strain state during the erection and operation of structures. The solutions are relevant for consolidating pile drains made of rubble or for jet grouting piles, the rigidity of which is comparable to the rigidity of the surrounding soil. The paper describes the technique for determining the characteristics of the strength and deformability of the converted foundation and the results of large-scale tests at the experimental site for the construction of a large energy facility in Russia.

  17. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs

  18. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    International Nuclear Information System (INIS)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers ''will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of ''vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells

  19. Taming Windscale's piles

    International Nuclear Information System (INIS)

    Adams, A.L.

    1989-01-01

    The options as to what to do with the Windscale Piles are being assessed before a final decision on decommissioning is made. Both Piles were shutdown in 1957 following the fire in the Pile number 1. Pile 1 still contains 22 tons of natural uranium fuel. The details of graphite moderator content, biological shielding and other components and containment are given. The fuel and isotope channels in Pile 2 have been examined and the air and water ducts have been inspected. The chimneys of both Piles are contaminated and all entrances have been sealed. Before any work starts the air outlet ducts will be sealed from the chimney and a ventilation system installed. A manipulator is being prepared to remove the remaining fuel elements from both Piles. The proposed decommissioning programme for both Piles is outlined. (U.K.)

  20. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    Science.gov (United States)

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  1. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  2. Remediation of petroleum contaminated soils through bioventing in cold regions

    International Nuclear Information System (INIS)

    Brar, G.S.; Currier, P.M.; Reynolds, C.M.; Millhouse, J.B.

    1994-01-01

    Petroleum contaminated soils are found in many remote sites in Alaska where releases from bulk storage of fuel oil for heat and power generation have occurred. Bioventing, a process in which petroleum degradation by indigenous aerobic bacteria is enhanced by supplying oxygen and nutrients, may be a viable treatment technique for soils at remote sites if limitations due to low temperatures can be overcome. The objectives of this study were to: (1) test a design for ex-situ bioventing in cold regions, (2) evaluate biodegradation rates at low temperatures, and (3) determine the effects of applied nutrients on low-temperature biodegradation. Two aerated biopit remediation cells were constructed to treat previously excavated soils at Eareckson Air Force Station, Shemya, Alaska. Experimental treatments consisted of a fertilized pile (FP) and a nonfertilized pile (NFP). Hourly soil and air temperature data at 4 depths were recorded at 4 locations in each biopit. During 148 days of remediation, mean temperature ranged from -3 to 6 C for air at 100 cm. above the piles. The mean concentrations of TPH and DRO decreased from an initial 1,304 and 982 mg/kg of 139 and 82 mg/kg, respectively, with the FP, and 422 and 294 mg/kg with the NFP in 115 days. Cumulative degradation rates of TPH and DRO are significantly (P 2 = 0.94 for TPH. 0.93 for DRO). Pit bioventing technology was shown to be efficient, fast, and cost-effective in cold regions where temperature during winter months is a major constraint for the remediation of contaminated soils

  3. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  5. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  6. Seismic response of pile foundations and pile forces caused by kinematic and inertial interaction

    International Nuclear Information System (INIS)

    Hartmann, H.G.; Waas, G.

    1985-01-01

    The horizontal motion and pile forces of pile groups subjected to earthquake excitation are analysed. The piles are modelled as linear elastic beam elements embedded in a layered linear visco-elastic soil medium. Pile-soil-pile interaction is included. The earthquake excitation results from vertically propagating shear waves. Kinematic and inertial interaction effects on foundation motion and pile forces are studied for a single pile, a small pile group and a large pile group. Soft and stiff soil conditions are considered, and the effect of a flexible vs. a rigid halfspace below the soil layers is shown. (orig.)

  7. Pile load test on large diameter steel pipe piles in Timan-Pechora, Russia

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, S. [Golder Associates Inc., Houston, TX (United States); Tart, B. [Golder Associates Inc., Anchorage, AK (United States); Swartz, R. [Paragon Engineering Services Inc., Houston, TX (United States)

    1994-12-31

    Pile load testing conducted in May and June of 1993 at the Polar Lights Ardalin project in Arkangelsk province, Russia, was documented. Pile load testing was conducted to determine the ultimate and allowable pile loads for varying pile lengths and ground temperature conditions and to provide creep test data for deformation under constant load. The piles consisted of 20 inch diameter steel pipe piles driven open ended through prebored holes into the permafrost soils. Ultimate pile capacities, adfreeze bond, and creep properties observed were discussed. 10 figs., 4 tabs.

  8. Piles of objects

    KAUST Repository

    Hsu, Shu-Wei

    2010-01-01

    We present a method for directly modeling piles of objects in multi-body simulations. Piles of objects represent some of the more interesting, but also most time-consuming portion of simulation. We propose a method for reducing computation in many of these situations by explicitly modeling the piles that the objects may form into. By modeling pile behavior rather than the behavior of all individual objects, we can achieve realistic results in less time, and without directly modeling the frictional component that leads to desired pile shapes. Our method is simple to implement and can be easily integrated with existing rigid body simulations. We observe notable speedups in several rigid body examples, and generate a wider variety of piled structures than possible with strict impulse-based simulation. © 2010 ACM.

  9. Evidence for the incorporation of lead into barite from waste rock pile materials

    Energy Technology Data Exchange (ETDEWEB)

    COURTIN-NOMADE, ALEXANDRA; SOUBRAND-COLIN, MARILYNE; MARCUS, MATTHEW A.; FAKRA, SIRINE .C

    2008-01-21

    Because Pb is one of the most toxic elements and is found as a major contaminant in mining environments, this study aims to identify the distribution of this element in host phases issued from the alteration of mine wastes. The sampling location was a former mine near Oakland, California (USA). This mine was once a source of sulfide minerals from which sulfuric acid was made. The material discussed in this paper was collected in iron hardpans that were formed within the waste rock pile resulting from the excavation work. In most contaminated environments (soils, mine waste), secondary metal-bearing phases arising from alteration processes are usually fine-grained (from 10 {micro}m to less than 1 {micro}m) and highly heterogeneous, requiring the use of micron-scale techniques. We performed micro-Raman spectroscopy, microscanning X-ray diffraction (SXRD), and microextended X-ray near edge spectroscopy (XANES) to determine the relationships between Pb and a Ba/Fe-rich host phase. Micro-Raman spectroscopy suggests that Pb is preferentially incorporated into barite rather than goethite. Results from micro-Raman experiments show the high sensitivity of this analytical tool to the incorporation of Pb into barite by being especially sensitive to the variations of the S-O bond and showing the characteristic bands due to the contribution of Pb. This association is confirmed and is well-illustrated by micro-SXRD mineral species maps showing the correlation between Pb and barite. Microfocused XANES indicates that Pb is present as Pb{sup 2+}, agreeing with the in situ physicochemical parameters.

  10. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    Science.gov (United States)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted

  11. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  12. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  13. Underwater noise reduction of marine pile driving using a double pile.

    Science.gov (United States)

    2015-12-01

    Impact pile driving of steel piles in marine environments produces extremely high sound levels in the water. : It has been shown that current pile driving noise attenuation techniques, such as bubble curtains and : cofferdams, provide limited noise r...

  14. Static pile load tests on driven piles into Intermediate-Geo Materials.

    Science.gov (United States)

    2016-09-01

    The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...

  15. Occupational exposure during remediation works at a uranium tailings pile.

    Science.gov (United States)

    Dinis, Maria de Lurdes; Fiúza, António

    2013-05-01

    The aim of this study was to assess by different approaches the occupational exposure during the remediation of a tailings dam in an abandoned uranium mining site, with an area of about 13.3 ha and an estimated volume of 1.39 million m³. A hypothetical scenario was created in which the workers involved in the remediation activities were exposed to radiation through both internal and external pathways. It was intended to assess quantitatively the potential exposure of the workforce involved in the remediation works, focussing particularly on the inhalation of radon and on the gamma irradiation from the contaminated soil. Different methodologies were considered based on a deterministic and a probabilistic approach for dose assessment and risk assessment, respectively. The deterministic approach typically employs a highly "conservative" single value for each input parameter. The probabilistic approach employs sensitivity and uncertainty analysis of input parameters using probabilistic distributions of the sensitive parameters. The results indicate that annual effective dose limit for occupational exposure (worst scenario case created) may reach a significant fraction of occupational radiation protection limits. This is also stressed by the values obtained for the occupational risk estimated by Monte Carlo methodology using probabilistic distributions for the input parameters. The results also showed that the pathway with the highest dose does not necessarily correspond to the pathway with the highest risk. Nevertheless, it is well known that probabilistic analysis generally produces more realistic results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals.

    Science.gov (United States)

    Pedretti, Daniele; Mayer, K Ulrich; Beckie, Roger D

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH<4 in a mixing boundary) within the first 100years can be as high as 75% for a NPR=2 and 40% for NPR=4. The latter is traditionally considered as a "universally safe" threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    Bachrach, A.; Hoopes, J.; Morycz, D.; Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P.; Rice, G.

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated [vicinity] properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed

  18. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin

    2017-12-01

    Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.

  19. Pile Driving Analysis for Pile Design and Quality Assurance

    Science.gov (United States)

    2017-08-01

    Driven piles are commonly used in foundation engineering. The most accurate measurement of pile capacity is achieved from measurements made during static load tests. Static load tests, however, may be too expensive for certain projects. In these case...

  20. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Appendix B to Attachment 3, lithologic logs

    International Nuclear Information System (INIS)

    1994-03-01

    This appendix contains the lithologic logs and monitor well construction information for the remedial action plan for uranium mill tailings sites at Slick Rock, CO. Data from each borehole is presented graphically and a stratigraphic description is given

  1. Windscale pile core surveys

    International Nuclear Information System (INIS)

    Curtis, R.F.; Mathews, R.F.

    1996-01-01

    The two Windscale Piles were closed down, defueled as far as possible and mothballed for thirty years following a fire in the core of Pile 1 in 1957 resulting from the spontaneous release of stored Wigner energy in the graphite moderator. Decommissioning of the reactors commenced in 1987 and has reached the stage where the condition of both cores needs to be determined. To this end, non-intrusive and intrusive surveys and sampling of the cores have been planned and partly implemented. The objectives for each Pile differ slightly. The location and quantity of fuel remaining in the damaged core of Pile 1 needed to be established, whereas the removal of all fuel from Pile 2 needed to be confirmed. In Pile 1, the possible existence of a void in the core is to be explored and in Pile 2, the level of Wigner energy remaining required to be quantified. Levels of radioactivity in both cores needed to be measured. The planning of the surveys is described including strategy, design, safety case preparation and the remote handling and viewing equipment required to carry out the inspection, sampling and monitoring work. The results from the completed non-intrusive survey of Pile 2 are summarised. They confirm that the core is empty and the graphite is in good condition. The survey of Pile 1 has just started. (UK)

  2. Radon impact at a remediated uranium mine site in Japan

    International Nuclear Information System (INIS)

    Ishimori, Yuu

    2011-01-01

    This paper mainly illustrates the radon impact of the closed uranium mine site remediated in 2007. The site remediated is the waste rock site located on the steep slope of a hill about 1.5 km upstream from a residential area along a main ravine. Major remedial action was to cover these waste rock yards with weathering granite soil. The radon flux density after remediation was intended to be 0.1 Bqm -2 s -1 in consideration with the natural background level around Ningyo-toge because there is no value of radon flux density regulated in Japan. Our action decreased the radon concentration in the site to natural background level, approximately from 10 to 40 Bqm -3 , although relatively high concentration in excess of 100 Bqm -3 was observed before remediation. On the other hand, our action did not decrease the radon concentrations around the site in general. This fact proved that the limited source such as waste rocks affected the radon concentrations at neighboring area only. The similar tendencies were also observed in other environmental data such as radon progeny concentrations. In conclusion, these findings proved that our remedial action was successful against radon. This fact will lead to more reasonable action plans for other closed mine sites. (author)

  3. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

  4. Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    1987-06-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document

  5. Soil heating during burning of forest slash piles and wood piles

    Science.gov (United States)

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  6. Use of geothermal piles combined with pile foundations

    Directory of Open Access Journals (Sweden)

    Ivan Kuzytskyi

    2016-07-01

    Full Text Available The possibility of use of geothermal piles in conditions of cold climate is considered. Full-scale experiment is conducted for using this technology in Kiev. Obtained results testify about a possibility for using the system in conditions of Ukraine, but this technology requires more detailed study and simulation of multiannual cycle of use of geothermal piles 

  7. Radon barrier field-test monitoring at Grand Junction tailings pile

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1983-11-01

    Pacific Northwest Laboratory (PNL), as part of the Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) technology development program, has conducted three large-scale field tests of radon covers at the uranium mill tailings pile in Grand Junction, Colorado. The barrier systems, monitored for radon flux for over two years, include earthen, multilayer, and asphalt emulsion covers. Results of the monitoring have shown that a variety of cover systems can meet the Environmental Protection Agency (EPA) standard. The most effective covers tested were asphalt emulsion and earthen (mancos shale). 10 references, 7 figures, 1 table

  8. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.

  9. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  10. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document

  11. Use of lidar point cloud data to support estimation of residual trace metals stored in mine chat piles in the Old Lead Belt of southeastern, Missouri

    Science.gov (United States)

    Witt, Emitt C.

    2016-01-01

    Historic lead and zinc (Pb-Zn) mining in southeast Missouri’s ―Old Lead Belt‖ has left large chat piles dominating the landscape where prior to 1972 mining was the major industry of the region. As a result of variable beneficiation methods over the history of mining activity, these piles remain with large quantities of unrecovered Pb and Zn and to a lesser extent cadmium (Cd). Quantifying the residual content of trace metals in chat piles is problematic because of the extensive field effort that must go into collecting elevation points for volumetric analysis. This investigation demonstrates that publicly available lidar point data from the U.S. Geological Survey 3D Elevation Program (3DEP) can be used to effectively calculate chat pile volumes as a method of more accurately estimating the total residual trace metal content in these mining wastes. Five chat piles located in St. Francois County, Missouri, were quantified for residual trace metal content. Utilizing lidar point cloud data collected in 2011 and existing trace metal concentration data obtained during remedial investigations, residual content of these chat piles ranged from 9247 to 88,579 metric tons Pb, 1925 to 52,306 metric tons Zn, and 51 to 1107 metric tons Cd. Development of new beneficiation methods for recovering these constituents from chat piles would need to achieve current Federal soil screening standards. To achieve this for the five chat piles investigated, 42 to 72% of residual Pb would require mitigation to the 1200 mg/kg Federal non-playground standard, 88 to 98% of residual Zn would require mitigation to the Ecological Soil Screening level (ESSL) for plant life, and 70% to 98% of Cd would require mitigation to achieve the ESSL. Achieving these goals through an existing or future beneficiation method(s) would remediate chat to a trace metal concentration level that would support its use as a safe agricultural soil amendment.

  12. Soil-structure Interaction in the Seismic Response of Coupled Wall-frame Structures on Pile Foundations

    International Nuclear Information System (INIS)

    Carbonari, S.; Dezi, F.; Leoni, G.

    2008-01-01

    This paper presents a study on the seismic response of coupled wall-frame structures founded on piles. A complete soil-structure interaction analysis is carried out with reference to a case study. Three different soils and seven real accelerograms are considered. Local site response analyses are performed in order to evaluate the incoming free-field motion at different depths and the ground motion amplifications. A numerical model, accounting for the pile-soil-pile interaction and for material and radiation damping, is used to evaluate the impedance matrix and the foundation input motion. The domain decomposition technique is adopted to perform time-domain seismic analyses introducing Lumped Parameter Models to take into account the impedance of the soil-structure system. Applications show that the rocking phenomena affect the behaviour of the structure by changing the base shear distribution within the wall and the frame and by increasing the structural displacements

  13. Safety precautions in atomic pile control (1962); Securite dans le controle des piles atomiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [French] Nous avons aborde le probleme de la securite dans le controle des piles atomiques a la suite de notre participation d'une part aux avant rojets de piles atomiques du CE.A. et d'autre part a l'examen au sein de la sous ommission de surete des piles, de la securite des piles du CE.A. en fonctionnement ou en projet. Nous avons ete amenes a nous interesser alors aux risques encourus par les piles pendant leur fonctionnement et par la meme a leur comportement en regime dynamique. Ce travail traite principalement de l'importance des securites intrinseques, de l'influence des variations de reactivite sur les evolutions de puissance en regime d'accident et du developpement d'appareillages de securite robustes et de fonctionnement tres sur. L'accident de demarrage a ete particulierement developpe aussi bien pour les piles a bas

  14. Safety precautions in atomic pile control (1962); Securite dans le controle des piles atomiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [French] Nous avons aborde le probleme de la securite dans le controle des piles atomiques a la suite de notre participation d'une part aux avant rojets de piles atomiques du CE.A. et d'autre part a l'examen au sein de la sous ommission de surete des piles, de la securite des piles du CE.A. en fonctionnement ou en projet. Nous avons ete amenes a nous interesser alors aux risques encourus par les piles pendant leur fonctionnement et par la meme a leur comportement en regime dynamique. Ce travail traite principalement de l'importance des securites intrinseques, de l'influence des variations de reactivite sur les evolutions de puissance en regime d'accident et du developpement d'appareillages de securite robustes et de fonctionnement tres sur. L'accident de demarrage a ete particulierement

  15. Mono pile foundation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyngesen, S.; Brendstrup, C.

    1997-02-01

    The use of mono piles as foundations for maritime structures has been developed during the last decades. The installation requirements within the offshore sector have resulted in equipment enabling driving of piles up to 3-4 m to large penetration depths. The availability of this equipment has made the use of large mono piles feasible as foundations for structures like wind turbines. The mono pile foundations consists of three parts; the bare pile, a conical transition and a boat landing. All parts are prefitted at the yard in order to minimise the installation work that has to be carried out offshore. The study of a mono pile foundations for a 1.5 MW wind turbine has been conducted for two locations, Horns Rev and Roedsand. Three different water depths: 5, 8 and 11 m have been investigated in the study. The on-site welding between pile and conical transition is performed by an automatic welding machine. Final testing and eventually repair of the weld are conducted at least 16 hours after welding. This is followed by final installation of J-tube, tie-in to subsea cables and installation of the impressed current system for corrosive protection of the mono pile. The total cost for procurement and installation of the mono pile using the welded connection is estimated. The price does not include procurement and installation of access platform and boat landing. These costs are estimated to 250.000 DKK. Depending on water depth the cost of the pile ranges from 2,2 to 2,7 million DKK. Procurement and fabrication of the pile are approx. 75% of the total costs. The remaining 25% are due to installation. The total costs are very sensitive to the unit price of pile steel. During the project it became obvious that ice load has a very large influence on the dimensions of the mono pile. (EG)

  16. Dynamic characteristics of rocks and method of their determine

    OpenAIRE

    Radoslav Schügerl

    2009-01-01

    This paper presents selected problems of the research of the influence of technical vibrations on rocks. The vibrations are the products of the technological procedure, such as mining blasting, ramming of the piles, using of the drilling-equipment or vibration machines. The vibrations could be also evocated by road or train traffic. The most important dynamic characteristics of rocks are dynamic modulus of elasticity Edyn; dynamic modulus of deformation Edef, dyn; dynamic shear-modulus Gdyn; ...

  17. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure - Pile Internal Capacity

    Science.gov (United States)

    Pachla, Henryk

    2017-12-01

    The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  18. Characterizing hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Paige C. Eagle; Cameron S. Balog

    2010-01-01

    Land managers throughout the West pile and burn surface fuels to mitigate fire hazard in dry forests. Whereas piling was historically conducted with heavy machinery following commercial harvesting operations, land managers are increasingly prescribing the use of hand piling and burning to treat surface fuels created by thinning and brush cutting. An estimate of the...

  19. Analysis of effect of different construction methods of piles on the end effect on skin friction of piles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongbo; CHEN Zhuchang

    2007-01-01

    Based on the comparative analysis of end effect on skin friction of displacement-pile (driven pile),the end effect on skin friction of bored pile is studied.The end effect on skin friction between driven pile and bored pile is different and the end effect on skin friction of bored pile is reduce of skin friction in the soil layer adjacent to the pile end.The degradation degree of skin friction is deduced with the increase of the distance from pile end.The concept of additional mud cake formed by the effect of cushion at the bottom of borehole during pouring concrete is introduced to explain the mechanism of end effect on skin friction of the bored pile.The test results of post-grouting piles indicate that the post-grouting technique is an effective way to improve the end effect on skin friction of bored pile.

  20. Risk assessment in the DOE Assurance Program for Remedial Action

    International Nuclear Information System (INIS)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly

  1. Screw piles for cold climate foundations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Sakr, M. [Almita Manufacturing Ltd., Edmonton, AB (Canada)

    2008-07-01

    Almita Manufacturing is an Alberta-based company that designs and builds screw piles with its own installation teams. It also engineers and supplies piles to numerous other companies and independent installers. The company services industries such as oil and gas; power transmission and distribution; and commercial construction. This presentation discussed the design and technical aspects of screw piles. A screw pile was defined as a steel pipe shaft with a 45 degree cut at the bottom and a formed helical plate welded to the outside of the pipe near the base and at a selected point on the shaft. The pile is screwed into the ground with a planetary drive head of suitable torque rating. The helical plate or helix helps facilitate the installation of the pile and gives the screw pile increased bearing capacity and pull-out resistance over a traditional straight-shaft pile. Screw piles were compared against cast in place concrete piles and steel driven piles. Screw piles were reported to have no tailings; no concrete curing time; no rebar, anchor belts, and no liners; and no dewatering. Screw piles can also be installed in all types of weather. Rhe Cree Burn Camp case study near Fort McMurray, Alberta was also presented. This residential camp and recreation complex consists of pre-fabricated units that make up three storey housing buildings and a single floor multi-use building. The case study provided information on soil; design parameter inputs; load testing program and pile configuration; geotechnical and structural design results; compression load test arrangement; pile test setup; and test results. The presentation also discussed fabrication as well as installation equipment. Various applications were also presented through a series of project pictures. Last, the presentation provided a simple cost analysis. tabs., figs.

  2. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  3. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    Science.gov (United States)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  4. Behaviour of radiotoxic pollutants from tailings of uranium mining activities, measured data to serve as a basis for the development of concepts for mine site rehabilitation. Final report

    International Nuclear Information System (INIS)

    Geipel, G.; Bernhard, G.; Thieme, M.; Grambole, G.; Neubert, H.

    1994-01-01

    Dependencies of the activity ratios U-234/U-238, Th-230/U-238, and especially Ra-226/U-238 on the depth of the mill tailing pile were found. Seepage waters show that U-234 has a preferential solubility compared with U-238. Because of sorption effects and incorporation into weathering products, Th and Ra show lower activity concentrations in seepage waters than uranium. Leaching experiments allow to distinguish between uranium coming from desorption and weathering processes. The distribution ratio of uranium between rock the material and the solution shows a maximum at pH∝7. For rock materials from the Schelma mining area, distribution ratios of uranium up to 10 3 depending on grain size and pH were found. About 2.5% of the uranium inventory of the mill tailing are bonded to the rock surface and that leaching of this uranium is very easy. The balance of weathering processes in the mill tailing pile shows that about 0.8 mg U/l in the seepage water originated from weathering processes. It was found that every year about 30 t of the rock material in a mill tailing pile underlie weathering processes. For the remediation of mill tailing piles, the seepage waters must be collected and cleaned. (orig./HP) [de

  5. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  6. Piles of objects

    KAUST Repository

    Hsu, Shu-Wei; Keyser, John

    2010-01-01

    We present a method for directly modeling piles of objects in multi-body simulations. Piles of objects represent some of the more interesting, but also most time-consuming portion of simulation. We propose a method for reducing computation in many

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report

    International Nuclear Information System (INIS)

    1996-08-01

    This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3

  8. 3D FEM Analysis of a Pile-Supported Riverine Platform under Environmental Loads Incorporating Soil-Pile Interaction

    Directory of Open Access Journals (Sweden)

    Denise-Penelope N. Kontoni

    2018-01-01

    Full Text Available An existing riverine platform in Egypt, together with its pile group foundation, is analyzed under environmental loads using 3D FEM structural analysis software incorporating soil-pile interaction. The interaction between the transfer plate and the piles supporting the platform is investigated. Two connection conditions were studied assuming fixed or hinged connection between the piles and the reinforced concrete platform for the purpose of comparison of the structural behavior. The analysis showed that the fixed or hinged connection condition between the piles and the platform altered the values and distribution of displacements, normal force, bending moments, and shear forces along the length of each pile. The distribution of piles in the pile group affects the stress distribution on both the soil and platform. The piles were found to suffer from displacement failure rather than force failure. Moreover, the resulting bending stresses on the reinforced concrete plate in the case of a fixed connection between the piles and the platform were almost doubled and much higher than the allowable reinforced concrete stress and even exceeded the ultimate design strength and thus the environmental loads acting on a pile-supported riverine offshore platform may cause collapse if they are not properly considered in the structural analysis and design.

  9. The pile EL3

    International Nuclear Information System (INIS)

    Robert, J.; Raievski, V.

    1959-01-01

    The programme of the high flux laboratory pile EL3 was laid down in october 1954. It is a heavy-water moderated and cooled pile. The fuel rods are of uranium metal with 1.6 per cent - 2 per cent of molybdenum, with aluminium canning. The maximum thermal flux in the moderator is 10 14 n/cm 2 /s. Studies began in january 1955, construction in may 1955, and the first divergence took place in July 1957. This report gives a general description of the pile and its adjacent buildings, the physical study of the pile, and certain technological studies carried out for the construction of EL3. (author) [fr

  10. Radiological criteria and methods for remediation of contaminated former mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Biesold, H.; Thielen, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne (Germany); Weiss, D. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Berlin (Germany)

    2001-07-01

    Mining and ore processing have a long history in the New States of Germany, Saxony, Thuringia and Saxony-Anhalt. The ores were often mineralized with uranium and therefore the residues are a radiological hazard to man and environment. Immediately after World War II the Soviet Union started to develop its nuclear capability by mining uranium ores in the occupied zone of East Germany. At the beginning the exploitation was concentrated on former underground mines of silver and other non ferrous ores. Afterwards, new uranium deposits were explored in Saxony and eastern Thuringia. Numerous waste rock piles and tailings ponds of considerable size resulted from these mining activities. Uranium production reached some 220,000 t between 1946 and 1990. After the reunification in 1990, production was finished for economic and other reasons. The German Federal Government was faced with one of the largest ecological, social and economic challenges. In this report an overview is given on kind and amount of the mining residues, the radiation protection criteria, models and data bases used for risk assessment and dose calculation are explained and remediation methods are described. (authors)

  11. Radiological criteria and methods for remediation of contaminated former mining sites

    International Nuclear Information System (INIS)

    Biesold, H.; Thielen, H.; Weiss, D.

    2001-01-01

    Mining and ore processing have a long history in the New States of Germany, Saxony, Thuringia and Saxony-Anhalt. The ores were often mineralized with uranium and therefore the residues are a radiological hazard to man and environment. Immediately after World War II the Soviet Union started to develop its nuclear capability by mining uranium ores in the occupied zone of East Germany. At the beginning the exploitation was concentrated on former underground mines of silver and other non ferrous ores. Afterwards, new uranium deposits were explored in Saxony and eastern Thuringia. Numerous waste rock piles and tailings ponds of considerable size resulted from these mining activities. Uranium production reached some 220,000 t between 1946 and 1990. After the reunification in 1990, production was finished for economic and other reasons. The German Federal Government was faced with one of the largest ecological, social and economic challenges. In this report an overview is given on kind and amount of the mining residues, the radiation protection criteria, models and data bases used for risk assessment and dose calculation are explained and remediation methods are described. (authors)

  12. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  13. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure – Pile Internal Capacity

    Directory of Open Access Journals (Sweden)

    Pachla Henryk

    2017-12-01

    Full Text Available The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  14. Characterizing Axial Stiffness of Individual Batter Piles with Emphasis on Elevated, Laterally Loaded, Clustered Pile Groups

    Science.gov (United States)

    2016-11-01

    using the appropriate stiffness based on the direction of the calculated pile load. 1...load cases. CPGA utilizes the stiffness method (Saul 1968) of three-dimensional pile group analysis for user-specified static loadings. The pile...CPGA analysis and coordinate systems (global and pile) As discussed in Chapter 1, the CPGA software utilizes the stiffness method (Saul 1968) of

  15. Modelling the pile load test

    OpenAIRE

    Prekop Ľubomír

    2017-01-01

    This paper deals with the modelling of the load test of horizontal resistance of reinforced concrete piles. The pile belongs to group of piles with reinforced concrete heads. The head is pressed with steel arches of a bridge on motorway D1 Jablonov - Studenec. Pile model was created in ANSYS with several models of foundation having properties found out from geotechnical survey. Finally some crucial results obtained from computer models are presented and compared with these obtained from exper...

  16. Use of pile driving analysis for assessment of axial load capacity of piles : [technical summary].

    Science.gov (United States)

    2012-01-01

    The dynamic response of a pile during driving is very : complex, involving the interactions of the hammer, cushion, : pile and soil during application of an impact load. : The first analysis aimed at simulating a hammer blow on : a pile was published...

  17. Modelling the pile load test

    Directory of Open Access Journals (Sweden)

    Prekop Ľubomír

    2017-01-01

    Full Text Available This paper deals with the modelling of the load test of horizontal resistance of reinforced concrete piles. The pile belongs to group of piles with reinforced concrete heads. The head is pressed with steel arches of a bridge on motorway D1 Jablonov - Studenec. Pile model was created in ANSYS with several models of foundation having properties found out from geotechnical survey. Finally some crucial results obtained from computer models are presented and compared with these obtained from experiment.

  18. Laterally Loaded Piles in Clay

    DEFF Research Database (Denmark)

    Christensen, Helle; Niewald, Gitte

    1992-01-01

    The ultimate lateral resistance of a pile element moved horizontally can be analyzed by the theory of plasticity. At a certain depth the movements around the pile are purely horizontal and upper bound solutions can be estimated theoretically under undrained circumstances. Model tests...... in the laboratory show ultimate resistances close to the estimated limits and p - y curves close to curves based on test results from full-scale piles. Rough and smooth piles with circular and square cross sections are investigated....

  19. A new method for controlling of floor heave of deep tunnels in soft rocks by mini-tube grouting piles of crushed stones%微型碎石管注桩治理深部软岩巷道底鼓新方法

    Institute of Scientific and Technical Information of China (English)

    谢芳; 王金安

    2013-01-01

    针对造成巷道底鼓的物理和力学两种重要机制,研究并提出微型碎石管注桩治理深部软岩巷道底鼓的新方法.在物理机制方面,微型碎石桩具有渗透性极好的特点,在巷道施工和使用期间可汲取岩体中的渗水并透过碎石桩中的插管排出,从而降低软岩层因遇水膨胀导致的变形;在力学机制方面,微型碎石桩一方面通过钻孔置换出少部分底板软岩,从体量上减少变形岩体,另一方面能利用碎石桩体的侧向可压缩性耗散岩体水平变形,底板岩层中的水平地应力得以释放,极大减缓了促使底鼓变形的力学作用;通过微型碎石桩中的插管注浆加固底板岩体,提高了底板复合地基整体承载力.通过数值分析,阐明该方法在治理软岩巷道底鼓机制上的有效性.%Focusing on two important mechanisms of physics and mechanics that give rise to the floor heave of tunnels , a new method of controlling the floor heave of deep tunnels in soft rocks was proposed by means of mini-tube grouting piles of crushed stones. In physical aspect, the method utilizes the characteristics of good permeability of crushed stone pile to absorb the water in rockmass and drainage out through the tubes in the pile during the construction and application of the tunnels, resulting in the decrease in expansion deformation of soft rock due to water saturation. In mechanical aspect, partial volume in floor stratum has been replaced, on one hand, by the installed mini piles which reduce the volume of the deforming rock body, and on the other hand, amount of horizontal deformation are dissipated through the lateral compressive deformation of the crushed stone pile, and the horizontal stress is released. As a result, the mechanical affect that induces the heave deformation in floor stratum is considerably reduced. By means of grouting the crushed stones through the tube inserted in the pile, the floor stratum is reinforced and the

  20. Analysis of pile foundations under dynamic loads

    International Nuclear Information System (INIS)

    Waas, G.; Hartmann, H.G.

    1981-01-01

    A method is presented for the analysis of pile foundations which are subjected to horizontal dynamic loads from earthquakes, airplane impact, gas explosion or other sources. The motion of the pile cap and the pile forces are computed. - The loads may be applied to the pile cap or directly to the piles (e.g. by earthquake wave motion). The soil may be stratified and is considered to be an elastic or visco-elastic medium. The piles are assumed vertical. The method makes use of an approximate fundamental solution for displacements caused by a dynamic point load in a layered visco-elastic medium. The approximation involves a discretization of the medium in the vertical direction. In horizontal directions the medium is treated by continuum theory. The soil medium supports each pile at about 10 to 20 nodes. A dynamic flexiblity matrix for the soil is derived which relates the elastic, damping and inertial forces of the soil to the displacements at each node. It includes effects of radiation damping. All piles are coupled through the soil flexibility matrix. The piles are modelled by beam elements. Transient response is computed using fast discrete Fourier transforms. The arrangement of the piles is arbitrary. However, simple and double symmetry can be accounted for by the computer program. When the pile arrangement is axisymmetric, the degrees of freedom can be reduced to only those of two piles per ring. The influence of the number of piles and the influence of the pile spacing on group stiffness and on pile forces is presented for two soil profiles. Dynamic effects on pile forces of a foundation for a reactor building are studied. They are significant when soils are soft. (orig.)

  1. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    Science.gov (United States)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  2. Discussion on “Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks” [J Rock Mech Geotech Eng 6 (2017 1140–151

    Directory of Open Access Journals (Sweden)

    Ergin Arioglu

    2018-06-01

    Full Text Available A new comprehensive set of data (n = 178 is compiled by adding a data set (n = 72 collected by Arioglu et al. (2007 to the data set (n = 106 presented in Rezazadeh and Eslami (2017. Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength (UCS (0.15 MPa < σrc < 156 MPa and various rock types. Rock mass cuttability index (RMCI is correlated with shaft resistance (rs to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus rs equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami (2017. Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations. Keywords: Uniaxial compressive strength (UCS, Rock mass cuttability index (RMCI, Shaft resistance, Rock socketed piles, Database

  3. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    Science.gov (United States)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  4. Pullout capacity of batter pile in sand.

    Science.gov (United States)

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  5. Pullout capacity of batter pile in sand

    Directory of Open Access Journals (Sweden)

    Ashraf Nazir

    2013-03-01

    Full Text Available Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  6. Large-diameter boring of rock bed by a reveres circulation drill; Ribasu sakyureshon doriru ni yoru daikokei ganban sakko

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, S.; Torii, K. [Kajima Corp., Tokyo (Japan); Hoshino, S.; Motoyama, M.

    1995-09-25

    The Itojima Large Bridge is a road bridge of 675 m in the total length connecting together the Nagashima Island and the Itojima Island in the northwest district of Kagoshima Prefecture, having a central span of 260 m and comprising a 5-span-continuous PC cable stayed bridges and PC box girder bridges. The foundation of this bridge employs a multi-pillar type pile structure. The piling work was started in July, 1991 by a hole inset method in a severe working environment where the depth of water is 20 m, the range of the tides is 4 m, the speed of tidal current is 2 kt, the rock bed structure is complicated and the steep seabed is steeply inclined. This report describes the results of the execution of the reverse circulation drilling, which has a high general versatility in rock bed boring, using self-lifting barges and large working boats during the rock bed boring for the foundation piling for the construction of the Itojima Large Bridge. The report, especially, also introduces the details of the work that casing pipes were driven into a stable rock bed by a vibrojet method for the measure against the collapse of a bore wall which occurred during the boring work. 24 figs., 14 tabs.

  7. Nonlinear Equilibrium and Stability Analysis of Axially Loaded Piles Under Bilateral Contact Constraints

    Directory of Open Access Journals (Sweden)

    Ricardo A. da Mota Silveira

    Full Text Available AbstractThis paper presents a nonlinear stability analysis of piles under bilateral contact constraints imposed by a geological medium (soil or rock. To solve this contact problem, the paper proposes a general numerical methodology, based on the finite element method (FEM. In this context, a geometrically nonlinear beam-column element is used to model the pile while the geological medium can be idealized as discrete (spring or continuum (Winkler and Pasternak foundation elements. Foundation elements are supposed to react under tension and compression, so during the deformation process the structural elements are subjected to bilateral contact constraints. The errors along the equilibrium paths are minimized and the convoluted nonlinear equilibrium paths are made traceable through the use of an updated Lagrangian formulation and a Newton-Raphson scheme working with the generalized displacement technique. The study offers stability analyses of three problems involving piles under bilateral contact constraints. The analyses show that in the evaluation of critical loads a great influence is wielded by the instability modes. Also, the structural system stiffness can be highly influenced by the representative model of the soil.

  8. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    Science.gov (United States)

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  9. The Windscale piles - past, present and future

    International Nuclear Information System (INIS)

    Jones, J.M.; Adams, A.L.

    1987-01-01

    The paper concerns the Windscale reactor piles, in which a fire occurred in the core of pile 1 thirty years ago. A description is given of the two Windscale piles, along with the events leading up to the accident, and the state of the piles following shutdown. The surveillance and maintenance to ensure that the pile and associated buildings were in a safe condition is outlined. The present state of the core, water ducts and pile chimneys is described. The present and future programme of work to ensure long term safety is discussed. This includes the initial steps in decommissioning of the piles. (U.K.)

  10. Simplified analysis of laterally loaded pile groups

    Directory of Open Access Journals (Sweden)

    F.M. Abdrabbo

    2012-06-01

    Full Text Available The response of laterally loaded pile groups is a complicated soil–structure interaction problem. Although fairly reliable methods are developed to predicate the lateral behavior of single piles, the lateral response of pile groups has attracted less attention due to the required high cost and complication implication. This study presents a simplified method to analyze laterally loaded pile groups. The proposed method implements p-multiplier factors in combination with the horizontal modulus of subgrade reaction. Shadowing effects in closely spaced piles in a group were taken into consideration. It is proven that laterally loaded piles embedded in sand can be analyzed within the working load range assuming a linear relationship between lateral load and lateral displacement. The proposed method estimates the distribution of lateral loads among piles in a pile group and predicts the safe design lateral load of a pile group. The benefit of the proposed method is in its simplicity for the preliminary design stage with a little computational effort.

  11. Recycling of uranium by a perennial vegetation

    International Nuclear Information System (INIS)

    Thiry, Y.

    2005-01-01

    At sites of large scale mining and processing of uranium ore, tailings and waste rock piles are today the most visible relics of the uranium extractive industry. These mining relics are constantly subjected to weathering and leaching processes causing the dissemination of radioactive and toxic elements and sometimes requiring remedial operations. The in situ remediation of waste rock piles usually includes their revegetation for minimizing the water infiltration and for increasing surface soil stability. Thanks to its biomass density and longevity, the perennial vegetation plays an important role in stabilisation of the water cycling. The buffer role of forest vegetation can reduce water export from watersheds as well as erosion and hydrological losses of chemicals including radionuclides from contaminated sites. If long term reduction of contaminant dispersion at revegetated uranium mining sites is to be fully appreciated, then the extent of radioactive contaminant availability to forest vegetation and ecosystem cycling as well as the possible economic valorisation of the woody products must be considered. Concerned study focused on a Scots pine plantation established 35 years ago on a uranium waste rock pile (Wismuth GmbH) situated near Schlema (Germany). This investigation aimed at quantifying the mobility of uranium in the mining debris and its transport to the different tree compartments with emphasis on the processes involved. The influence of pine vegetation on uranium cycling dynamics was further assessed in terms of annual fluxes)

  12. Finding of no significant impact proposed remedial action at two uranium processing sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0339) of the proposed remedial action at two uranium processing sites near Slick Rock in San Miguel County, Colorado. These sites contain radioactively contaminated materials that would be removed and stabilized at a remote location. Based on the information and analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (ONSI)

  13. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił

    2015-12-01

    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  14. Static pile load tests on driven piles in Intermediate-Geo Materials : research brief.

    Science.gov (United States)

    2017-02-01

    Research Objectives: : Investigate the use of modified standard penetration tests (MSPT) : Compare field results with predictions made by the WisDOT driving formula, PDA and CAPWAP : Improve prediction of pile lengths and pile capacities ...

  15. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    International Nuclear Information System (INIS)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-01-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  16. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

  17. Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text

    International Nuclear Information System (INIS)

    1984-05-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs

  18. Test Exponential Pile

    Science.gov (United States)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  19. Test Pile Reactivity Loss Due to Trichloroethylene

    International Nuclear Information System (INIS)

    Plumlee, K.E.

    2001-01-01

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation

  20. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mathematical simulation of a waste rock heap

    International Nuclear Information System (INIS)

    Scharer, J.M.; Pettit, C.M.; Chambers, D.B.; Kwong, E.C.

    1994-01-01

    A computer model has been developed to simulate the generation of acidic drainage in waste rock piles. The model considers the kinetic rates of biological and chemical oxidation of sulfide minerals (pyrite, pyrrhotite) present as fines and rock particles, as well as chemical processes such as dissolution (kinetic or equilibrium controlled), complexation (from equilibrium and stoichiometry of several complexes), and precipitation (formation of complexes and secondary minerals). Through mass balance equations and solubility constraints (e.g., pH, phase equilibria) the model keeps track of the movement of chemical species through the waste pile and provides estimates of the quality of seepage (pH, sulfate, iron, acidity, etc.) leaving the heap. The model has been expanded to include the dissolution (thermodynamic and sorption equilibrium), adsorption and coprecipitation of uranium and radium. The model was applied to simulate waste rock heaps in British Columbia, Canada and in Thueringia, Germany. To improve the accuracy and confidence of long-term predictions of seepage quality, the entire history of the heaps was simulated. Cumulative acidity loads and water treatment considerations were used as a basis for evaluation of various decommissioning alternatives. Simulation of the technical leaching history of a heap in Germany showed it will generate contaminated leachate requiring treatment for acidity and radioactivity for several hundred years; cover installation was shown to provide a significant reduction of potential burdens, although chemical treatment would still be required beyond 100 years

  2. Geomechanical Simulation of CO2 Leakage and Cap Rock Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Runar [Univ. of Missouri, Rolla, MO (United States); Bai, Baojun [Univ. of Missouri, Rolla, MO (United States); Eckert, Andreas [Univ. of Missouri, Rolla, MO (United States)

    2012-09-30

    CO2 sequestration into porous and permeable brine filled aquifers is seen as one of the most likely near-term solutions for reducing greenhouse gases. Safely storing injected CO2, which is less dense than water, requires trapping the CO2 under an impermeable rock which would act as a seal. One of the concerns with CO2 sequestration is the generation of new fractures or reactivation of existing fractures and faults caused by CO2 injection into the sealing formation. Mitigation strategies must be developed to remediate potentially leaking faults or fractures. This project evaluated potential storage scenarios in the state of Missouri and developed coupled reservoir and geomechanic simulations to identify storage potential and leakage risks. Further, several injectable materials used to seal discontinuities were evaluated under subsurface conditions. The four sealant materials investigated were paraffin wax, silica based gel, polymer based gel, and micro-cement, which all significantly reduced the fracture permeability. However, the micro-cement was the most effective sealing agent and the only sealant able to withstand the large differential pressure caused by CO2 or brine injection and create a strong seal to prevent further fracturing.

  3. Simulation of bearing capacity of bored piles

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed

    2018-01-01

    Full Text Available This study focuses on how one can possibly predict the ultimate load for the piles that did not reach failure. This challenge was acquired through Chin- Konder method by which, the estimated settlement that correspond to failure load is well defined. Hence, this research aims to make a comparative study between the results of pile load tests carried out in Al-Basrah sewage treatment plant project, and those results induced from the numerical analysis in term of ultimate pile capacity. Consequently, it may give a clear idea on the ability of numerical simulation in getting close to the actual behavior of piles. In the current study, a numerical study using Plaxis 3D Foundation program has been performed on bored piles by the assistance of site investigations of soil. Mohr- Coulomb and linear elastic models were adopted in the simulation for soil and pile respectively. Ten bored piles were used in this analysis under different values of loading. The diameter and length of pile are 0.6m and 24m respectively. The test results indicate that, an excellent agreement has been found as a response of pile capacity between the field and numerical studies. Also, ideal load- settlement curves were created using Chin- Konder method to predict the failure load of bored piles. Also, the results have demonstrated that, the pile capacity obtained from the simulation process is larger about 51% than that design load estimated before the design of piles. This may present a priority to use the finite element method to be accounted as an effective approach in the primary analysis.

  4. Pile Model Tests Using Strain Gauge Technology

    Science.gov (United States)

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  5. Safety precautions in atomic pile control (1962)

    International Nuclear Information System (INIS)

    Furet, J.

    1962-01-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [fr

  6. Piles of dislocation loops in real crystals

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest

  7. 30 CFR 77.214 - Refuse piles; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; general. 77.214 Section 77.214... Installations § 77.214 Refuse piles; general. (a) Refuse piles constructed on or after July 1, 1971, shall be..., tipples, or other surface installations and such piles shall not be located over abandoned openings or...

  8. Engineering assessment of inactive uranium mill tailings, Slick Rock sites, Slick Rock, Colorado. Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the two millsites in Slick Rock, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. The Union Carbide site has 350,000 tons of tailings and the North Continent site now owned by Union Carbide has 37,000 tons of tailings. Both tailings piles have been stabilized in accordance with regulations of the State of Colorado. Radon gas release from the tailings on the sites constitute the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The sparse population and relatively low radiation levels yield minimal immediate environmental impact. Hence the three alternative actions presented are directed towards restricting access to the sites (Option I), and returning the windblown tailings to the piles and stabilizing the piles with cover material (Option II), and consolidating the two piles on the UC site and stabilizing with 2 ft of cover (Option III). Fencing around the tailings piles is included in all options. Options II and III provide 2 ft of cover material on the tailings. Costs of the options range from $370,000 to $1,100,000. Reprocessing the tailings for uranium is not economically feasible

  9. Acid rock drainage in the uranium mining and milling site of Pocos de Caldas, Brazil -- duration assessment, pollutant generation modelling and remediation strategies

    International Nuclear Information System (INIS)

    Fernandes, H.M.; Franklin, M.R.

    2002-01-01

    This geochemical modeling work was carried out to simulate the acid drainage generation from one of the waste-rock piles at the Pocos de Caldas uranium mining site. The mathematical code STEADQYL was used. The estimated results were in good agreement for sulphate and uranium concentrations and the duration of the acid water generation was estimated to be about 500 years. The effect of covering the dump with a material that minimized oxygen diffusion was assessed. Projections indicated that covering the dump with a 1.0 m thickness of a material (like clay), which had an oxygen diffusion coefficient of 10 9 m 2 ·s 1 , would reduce the pollutant concentrations to acceptable values. The estimated cost, when using this strategy, would be about US $10 million. (author)

  10. Summary on out-of-pile and in-pile properties of M5 alloy

    International Nuclear Information System (INIS)

    Zhao Wenjin

    2001-01-01

    The out-of-pile and in-pile corrosion, mechanical properties, microstructure,hydrogen absorption, creep and growth resistances of M5 alloy using as PWR fuel rod cladding materials developed by FRAMATOME in France has been summarized with reference to the literatures. The results obtained from in-pile irradiation tests show that the corrosion and hydrogen absorption resistances, creep and irradiation growth resistances of M5 alloy cladding are superior to that of the optimized Zircaloy-4. It could be estimated that the M5 alloy enables rod burnups close to 65GWd/tU to be reached

  11. A computational model of pile vertical vibration in saturated soil based on the radial disturbed zone of pile driving

    International Nuclear Information System (INIS)

    Li Qiang; Shi Qian; Wang Kuihua

    2010-01-01

    In this study, a simplified computational model of pile vertical vibration was developed. The model was based on the inhomogeneous radial disturbed zone of soil in the vicinity of a pile disturbed by pile driving. The model contained two regions: the disturbed zone, which was located in the immediate vicinity of the pile, and the undisturbed region, external to the disturbed zone. In the model, excess pore pressure in the disturbed zone caused by pile driving was assumed to follow a logarithmic distribution. The relationships of stress and strain in the disturbed zone were based on the principle of effective stress under plain strain conditions. The external zone was governed by the poroelastic theory proposed by Biot. With the use of a variable separation method, an analytical solution in the frequency domain was obtained. Furthermore, a semi-analytical solution was attained by employing a numerical convolution method. Numerical results from the frequency and time domain indicated that the equivalent radius of the disturbed zone and the ratio of excess pore pressure had a significant effect on pile dynamic response. However, actual interactions between pile and soil will be weaker due to the presence of the radial disturbed zone, which is caused by pile driving. Consequently, the ideal undisturbed model overestimates the interaction between pile and soil; however, the proposed model reflects the interaction of pile and soil better than the perfect contact model. Numerical results indicate that the model can account for the time effect of pile dynamic tests.

  12. Some Remarks on Foundation Pile Testing Procedures

    Science.gov (United States)

    Rybak, Jarosław

    2017-10-01

    This work presents the review of pile capacity testing techniques. In an overview, the key points in pile designing are: determination of the appropriate computational schemes, reliable data on loads and the properties of structural materials (in particular, of the soil mass, which is marked by the greatest variability). The procedure of constructing a pile foundation should include: carrying out soil tests in the scope that ensures safe designing, selecting a piling technology that is relevant both to geotechnical conditions and expected loads, drafting a piling design together with the design of load tests, setting up a testing station for further load tests, static and/or dynamic tests of pile load capacity, preceded by supplementary soil tests when the conditions of test pile installation fail to comply with the design assumptions or when the pile length exceeds the depth of the previously investigated soil, making documentation of load capacity tests (with an additional correction of the piling design), the actual piling (ongoing analysis of pile driving logs and, if necessary, testing the piles’ integrity), drawing up the as-built documentation. Unfortunately, the design is corrected after the load test have been conducted only if the piles fail to show the designed bearing capacity. The designer is then obliged to revise the design assumptions on the basis of tests results. If the test results account for the a greater bearing capacity than necessary and it would be recommendable to limit the extent of the planned (i.e. set out in the contract) piling works, usually neither the contractor nor the designer, nor even the Construction Site Supervisor, acting for the benefit of the Investor, are willing to take on the responsibility for reducing the scope of the piling works. The necessity of conducting additional control tests before and during the implementation of the construction project is often treated by the investors as an attempt at extorting extra

  13. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  14. Introduction to Single Piles under Lateral Loading

    DEFF Research Database (Denmark)

    Augustesen, Anders; Ibsen, Lars Bo

    .2). The description is based on results of laboratory tests, full-scale field tests as well as numerical investigations presented in literature. Second, general methods that attempt to model lateral pile response are discussed in section 1.4. Third, focus is paid to a widely used method for prediction of the response......The purpose of this chapter is to give a short introduction to single piles subjected to lateral loading. First, the observed behaviour of laterally loaded piles is described, i.e. the effects of loading conditions, installation procedure, pile type etc. on pile behaviour are presented (section 1...... of a lateral loaded pile, namely the Winkler approach in which the pile is modelled as an elastic beam on an elastic foundation (section 1.5). The soil response and thereby the elastic foundation is represented by springs with nonlinear behaviour (p-y curves). In section 1.6 different types and formulations...

  15. Multisignal detecting system of pile integrity testing

    Science.gov (United States)

    Liu, Zuting; Luo, Ying; Yu, Shihai

    2002-05-01

    The low strain reflection wave method plays a principal rule in the integrating detection of base piles. However, there are some deficiencies with this method. For example, there is a blind area of detection on top of the tested pile; it is difficult to recognize the defects at deep-seated parts of the pile; there is still the planar of 3D domino effect, etc. It is very difficult to solve these problems only with the single-transducer pile integrity testing system. A new multi-signal piles integrity testing system is proposed in this paper, which is able to impulse and collect signals on multiple points on top of the pile. By using the multiple superposition data processing method, the detecting system can effectively restrain the interference and elevate the precision and SNR of pile integrity testing. The system can also be applied to the evaluation of engineering structure health.

  16. Test Setup for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...... in offshore pile foundations today....

  17. Piles of dislocation loops in real crystals. 2. Evolution of dislocation piles under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.

    1985-01-01

    The given paper considers evolution of piles in a real molybdenum crystal under neutron irradiation. Obtained was a stability criterium, when meeting it interstitial piles (one-dimensional periodical structures of interstitial loops) in the crystal tend to stationary state under the irradiation and, when disturbing the criterium, they disintegrate into rapidly growing interstitial isolated loops. It was also shown that the generation of dense vacancy piles results in the formation of an ordering structure of isolated vacancy loops. Theoretical results agree good with experimental data

  18. Energy piles. A fundamental energy pile; Energiepfaehle. Eine fundamentale Energiequelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Holger; Beldermann, Nico [GF-Tec GmbH, Roedermark (Germany)

    2013-03-01

    The Maintower, the new airport in Berlin/Brandenburg, a lot of Ikea buildings, and also small office buildings or residential buildings may exchange energy with the underground by means of pile fundaments. At the correct planning and execution, energy piles are low-cost geothermal power plants which sustainable generate heating and cooling for the buildings standing on them. Even more energy can be generated safely under compliance with the groundwater protection by means of a new development of the material and the transfer.

  19. Pile Design Based on Cone Penetration Test Results

    OpenAIRE

    Salgado, Rodrigo; Lee, Junhwan

    1999-01-01

    The bearing capacity of piles consists of both base resistance and side resistance. The side resistance of piles is in most cases fully mobilized well before the maximum base resistance is reached. As the side resistance is mobilized early in the loading process, the determination of pile base resistance is a key element of pile design. Static cone penetration is well related to the pile loading process, since it is performed quasi-statically and resembles a scaled-down pile load test. In ord...

  20. Lead immobilization in thermally remediated soils and igneous rocks

    International Nuclear Information System (INIS)

    Hickmott, D.D.; Carey, J.W.; Stimac, J.; Larocque, A.; Abell, R.; Gauerke, E.; Eppler, A.

    1997-01-01

    This is the final report for a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The principal goal of this project was to investigate the speciation of lead in the environment at LANL and to determine the feasibility of using thermal remediation methods to immobilize lead in the environment. Lead occurs as pyromorphite [Pb(PO 4 ) 3 (Cl, OH)], cerussite (PbCO 3 ) and galena (PbS) in vapor-phase-altered Bandelier Tuff samples. LANL soils primarily contain cerussite and PbO. Thermal remediation experiments at high temperatures (up to 400 C) suggest that thermal immobilization of highly-reactive Pb compounds in the environment may be feasible, but that this technique is not optimal for more refractory lead phases such as cerussite and PbO

  1. Remedial action selection report Maybell, Colorado, site. Final report

    International Nuclear Information System (INIS)

    1996-12-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 )

  2. Test Procedure for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test procedure described in the following is used when examining the effects of static or cyclic loading on the skin friction of an axially loaded pile in dense sand. The pile specimen is only loaded in tension to avoid any contribution from the base resistance. The pile dimensions are chosen...... to resemble full scale dimension of piles used in offshore pile foundations today. In this report is given a detailed description of the soil preparation and pile installation procedures as well data acquisition methods....

  3. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  4. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    Science.gov (United States)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze

  5. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  6. Geotechnical engineering considerations in the NRC's review of uranium mill tailings remedial action plans

    International Nuclear Information System (INIS)

    Gillen, D.M.

    1985-01-01

    To reduce potential health hazards associated with inactive uranium mill tailings sites, the Department of Energy (DOE) is presently investigating and implementing remedial actions at 24 sites in the Uranium Mill Tailings Remedial Action Program (UMTRAP). All remedial actions must be selected and performed with the concurrence of the Nuclear Regulatory Commission (NRC). This paper provides a discussion of geotechnical engineering considerations during the NRC's preconcurrence review of proposed remedial action plans. In order for the NRC staff to perform an adequate geotechnical engineering review, DOE documents must contain a presentation of the properties and stability of all in-situ and engineered soil and rock which may affect the ability of the remedial action plans to meet EPA standards for long-term stability and control. Site investigations, laboratory testing, and remedial action designs must be adequate in scope and technique to provide sufficient data for the NRC staff to independently evaluate static and dynamic stability, settlement, radon attenuation through the soil cover, durability of rock for erosion protection, and other geotechnical engineering factors

  7. Pulse pile-up IV

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1991-05-01

    The study of pulse pile-up is extended from the case of unipolar pulses, for which ruin theory is an excellent approximation, to the case of bipolar pulses for which ruin theory is not applicable to the effect of the back-kicks in reducing the pile-up: an appropriate solution is presented. (Author) 3 refs., 11 figs

  8. Introduction of effective piles in a base structure

    Directory of Open Access Journals (Sweden)

    В.Б. Кашка

    2005-03-01

    Full Text Available  Design features of effective piles such as СВ and their advantages in use are considered at the device of the pile bases in comparison with widely widespread types of piles. From results of comparative tests of piles under static pressing loading in different earth conditions the tendency of redistribution of bearing (carrying ability between a trunk and expansions an effective pile such as СВ was determined on earth conditions.

  9. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    International Nuclear Information System (INIS)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    1997-01-01

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 and RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility

  10. The Windscale piles initial decommissioning programme

    International Nuclear Information System (INIS)

    Boorman, T.; Woodacre, A.

    1992-01-01

    The two Windscale Piles, the first large scale nuclear reactors built in the UK were constructed in the late 1940's and operated until the accident in Pile No 1 caused their permanent shutdown in 1957. Following a period of care and maintenance, a programme of initial decommissioning has begun aimed at establishing a satisfactory long-term safe condition for the Windscale Piles Complex with minimum maintenance commitments. For the chimneys this involves the removal of the top filter sections. The pond will be emptied and cleaned. For the Piles the initial phase includes the consideration of options for long-term decommissioning solutions. (author)

  11. Starting up a programme of atomic piles using compressed gas; Le demarrage d'un programme de piles atomiques a gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, J; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [French] 1) Examen des ressources - intellectuelles et materielles - qui ont oriente le programme fran is vers: a) la voie de l'uranium naturel et du plutonium; b) l'emploi comme fluide pour le transfert de la chaleur (fluide primaire) d'un gaz comprime. 2) Le role d'exploration des piles EL2 et G1, EL2 pile a uranium naturel, eau lourde et gaz comprime, G1 pile a uranium naturel, graphite et air atmospherique. 3) Developpement de la neutronique des piles a graphite: l'etude physique de G1. 4) Examen de certains problemes poses par les centrales equipees de piles a uranium naturel, graphite et gaz carbonique comprime: structure, materiaux speciaux, circuits de fluides, optimisation. Aspects economiques. 5) Les auxiliaires du progres: a) piles pour essai de materiaux et pour essais de cartouches, b) moyens de laboratoire et moyens de calcul. 6) Orientations nouvelles possibles des piles a gaz comprime: a) elevation de la pression, b) combustible enrichi, c) temperatures elevees, d) emploi de l

  12. New trends in pile safety instrumentation; Les tendances nouvelles dans l'instrumentation de securite des piles

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J.

    1961-04-19

    This report addresses the protection of nuclear piles against damages due to operation incidents. The author discusses the current trends in the philosophy of safety of atomic power piles, identifies the parameters which define safety systems, presents tests to be performed on safety chains, comments the relationship between safety and the decrease of the number of pile inadvertent shutdowns, discusses the issues of instrument failures and chain multiplicity, comments the possible improvement of the operation of elements which build up safety chains (design simplification, development of semiconductors, replacement of electromechanical relays by static relays), the role of safety logical computers and the development of automatics in pile safety, presents automatic control as a safety factor (example of automatic start-up), and finally comments the use of fuses.

  13. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  14. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; abandonment. 77.215-4 Section 77... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be abandoned... refuse pile shall be abandoned in accordance with a plan submitted by the operator and approved by the...

  15. Attenuation of pressure dips underneath piles of spherocylinders.

    Science.gov (United States)

    Zhao, Haiyang; An, Xizhong; Gou, Dazhao; Zhao, Bo; Yang, Runyu

    2018-05-30

    The discrete element method (DEM) was used to simulate the piling of rod-like (elongated sphero-cylindrical) particles, mainly focusing on the effect of particle shape on the structural and force properties of the piles. In this work, rod-like particles of different aspect ratios were discharged on a flat surface to form wedge-shaped piles. The surface properties of the piles were characterized in terms of angle of repose and stress at the bottom of the piles. The results showed that the rise of the angle of repose became slower with the increase of particle aspect ratio. The pressure dip underneath the piles reached the maximum when the particle aspect ratio was around 1.6, beyond which the pressure dip phenomenon became attenuated. Both the pressure dip and the shear stress dip were quantitatively examined. The structure and forces inside the piles were further analyzed to understand the change in pressure dip, indicating that "bridging" or "arching" structures within the piles were the cause of the pressure dip.

  16. Impedance function of a group of vertical piles

    International Nuclear Information System (INIS)

    Wolf, J.P.; Arx, G.A. von

    1978-01-01

    Impedance and transfer functions of a group of vertical piles located in any desired configuration in plan in a horizontally stratified soil layer are derived. Hysteretic and radiation damping are accounted for. The method separates the piles and the soil, introducing unknown interaction forces. The total flexibility matrix of the soil is constructed, superposing the (complex) flexibility coefficients caused by the interaction forces of a single pile only. The dependence of the impedance and transfer functions on the oscllating frequency for foundations with different numbers of piles is investigated. Pile-soil-pile interaction is shown to be very important for all modes of vibration. The procedure is used in the seismic analysis of a reactor building. (Author)

  17. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... drainage may not be diverted over the outslope of the refuse pile. Runoff from areas above the refuse pile...

  18. Nanoindentation-induced pile-up in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Pantchev, B; Danesh, P; Wiezorek, J; Schmidt, B

    2010-01-01

    Nanoindentation-induced material extrusion around the nanoindent (pile-up) leads to an overestimation of elastic modulus, E, and nanohardness, H, when the test results are evaluated using the Oliver and Pharr method. Factors affecting the pile-up during testing are residual stresses in film and ratio of film and substrate mechanical properties. Nanoindentation of hydrogenated amorphous silicon (a-Si:H) films has been carried out with the aim to study the effect of residual compressive stress on the pile-up in this material. To distinguish the contribution of compressive stress to the appearance of pile-up ion implantation has been used as a tool, which reduces the compressive stress in a-Si:H. Scanning probe microscope has been used for the imaging of the indent and evaluation of the pile-up. The values of E and H have been obtained from the experimental load-displacement curves using depth profiling with Berkovich tip, which has created negligible pile-up. A sharper cube corner tip has been used to study the pile-up. It has been established that pile-up is determined by the material plasticity, when the compressive stress is below 200 MPa. The contribution of mechanical stress to the pile-up is essential for the stress as high, as about 500 MPa.

  19. Grouting for Pile Foundation Improvement

    NARCIS (Netherlands)

    Van der Stoel, A.E.C.

    2001-01-01

    The aim of this research was to examine the use of grouting methods for pile foundation improvement, a generic term that is used here to define both foundation renovation (increasing the bearing capacity of a pile foundation that has insufficient bearing capacity) and foundation protection

  20. Pile foundation response in liquefiable soil deposit during strong earthquakes. ; Centrifugal test for pile foundation model and correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Y.; Miura, K. (Kajima Corp., Tokyo (Japan)); Scott, R.; Hushmand, B. (California Inst. of Technology, California, CA (United States))

    1992-09-30

    For the purpose of studying the pile foundation response in liquefiable soil deposit during earthquakes, a centrifugal loading system is employed which can reproduce the stress conditions of the soil in the actual ground, and earthquake wave vibration tests are performed in dry and saturated sand layers using a pile foundation model equipped with 4 piles. In addition, the result of the tests is analyzed by simulation using an analytic method for which effective stress is taken into consideration to investigate the effectiveness of this analytical model. It is clarified from the result of the experiments that the bending moment of the pile and the response characteristics of the foundation in the pile foundation response in saturated sand are greatly affected by the longer period of acceleration wave form of the ground and the increase in the ground displacement due to excess pore water pressure buildup. It is shown that the analytical model of the pile foundation/ground system is appropriate, and that this analytical method is effective in evaluating the seismic response of the pile foundation in nonlinear liquefiable soil. 23 refs., 21 figs., 3 tabs.

  1. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  2. Integrity and As-built capacity of bored pile group

    International Nuclear Information System (INIS)

    Shaw, D.E.; Kissenpfennig, J.F.; Huemmer, M.R.

    1983-01-01

    This paper discusses the application of statistical methods to the reliability evaluation of cast-in-place concrete piles. The difficulties associated with pile construction can lead to larger uncertainties than would be associated with normal reinforced concrete structures both due to uncertainty in concrete quality and end bearing capacity. These uncertainties can be dealt with through the use of statistical methods. A statistical model of an individual pile is formulated along with a methodology for determining necessary statistical parameters from results of concrete batch tests, core strength tests and visual logs, sonic geophysical testing methods, and proof tests. Strength models for both static vertical and seismic horizontal loadings are discussed. The overall safety of a pile foundation is dependent upon the distribution of individual pile strength as well as the additional reliability due to the use of a large number of parallel load paths provided by a pile group foundation. The paper presents a mechanical model of global pile behavior which accounts for individual pile ductility along with the possibility of redistribution of loads from weaker to stronger piles. The use of the Monte Carlo method to determine the overall reliability of the pile foundation is discussed. Numerical results for both individual pile behavior as well as overall foundation behavior are presented. (orig.)

  3. Thermomechanical Behavior of Energy Pile Embedded in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Xu Huang

    2018-01-01

    Full Text Available The traditional energy pile (solid energy pile has been implemented for decades. However, the design of different kinds of energy piles is still not well understood. In this study, a series of model tests were performed on an aluminum pipe energy pile (PEP in dry sandy soil to investigate the thermal effects on the mechanical behaviors of pipe energy pile. The thermal responses of the PEP were also analyzed. Steady temperatures of the PEP under different working conditions were also compared with that of the solid energy pile. Different loading tests were carried out on four pipe energy piles under three different temperatures of 5, 35, and 50°C, respectively. The bearing capacity change can be interpreted through the load-displacement curves. Experiment results were also compared with the solid energy pile to evaluate bearing capacities of the PEP and the solid energy pile under different temperature conditions. The mobilized shaft resistance was also calculated and compared with the solid energy pile data and the results show that the PEP has a similar load transfer mechanism with the solid energy pile. It could also be found that, for PEPs under working load, plastic displacement would appear after a whole heating cycle.

  4. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  5. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  6. 29 CFR 1926.603 - Pile driving equipment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of the...

  7. Analysis of transients in the SRP test pile

    International Nuclear Information System (INIS)

    Church, J.P.

    1976-11-01

    Analysis of the hypothetical upper limit accident in the Savannah River Test Pile showed that the offsite thyroid dose from fission product release would be -3 of the 10-CFR-100 guideline dose for 95 percent of measured meteorological conditions. Offsite whole body dose would be negligible. The Test Pile was modified to limit the length of test piece that can be charged to the pile. These modifications reduce the potential offsite dose to -5 of the regulatory guidelines. Assessment of Test Pile safety included calculations of transients initiated by a variety of reactivity additions that were either terminated or not terminated by safety systems. Reactivity addition mechanisms considered were abnormally driving control rods out of the pile and charging abnormal test pieces into the pile. The transients were evaluated in the adiabatic approximation in which three-dimensional calculations of static flux shapes and reactivity were superimposed on point reactor kinetics calculations. Negative reactivity feedback effects appropriate for the pile and the temperature dependence of material properties, such as specific heat and thermal conductivity, were included. The results show that, for the worst initiators, safety systems can prevent the temperature rise from exceeding 1 0 C anywhere in the Test Pile. If the safety systems do not function, the pile temperatures will increase until the transient is ended by the inherent negative reactivity effects, including the melting of some fuel

  8. New trends in pile safety instrumentation

    International Nuclear Information System (INIS)

    Furet, J.

    1961-01-01

    This report addresses the protection of nuclear piles against damages due to operation incidents. The author discusses the current trends in the philosophy of safety of atomic power piles, identifies the parameters which define safety systems, presents tests to be performed on safety chains, comments the relationship between safety and the decrease of the number of pile inadvertent shutdowns, discusses the issues of instrument failures and chain multiplicity, comments the possible improvement of the operation of elements which build up safety chains (design simplification, development of semiconductors, replacement of electromechanical relays by static relays), the role of safety logical computers and the development of automatics in pile safety, presents automatic control as a safety factor (example of automatic start-up), and finally comments the use of fuses

  9. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  10. Environmental restoration. Stabilization of mining tailing and uranium mineral

    International Nuclear Information System (INIS)

    Perez, C.; Carboneras, P.

    1998-01-01

    ENRESA has dismantling a uranium mill facility and restored the site since 1991 to 1994. Since 1997, 19 uranium mines are being re mediated. The Andujar uranium mill was operational since 1959 to 1981. The remedial action plan performed in the Andujar mill site involved stabilizing and consolidating the uranium mill tailings and contaminated materials in place. Mill equipment, building and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the pile. The tailings mass has been reshape by flattening the side slopes and cover system was placed over the pile. The uranium mines are located in Extremadura and Andalucia. There is a great diversity among the mines in terms of the magnitude of the disturbed areas by mining work and the effects on the environment, including excavations, waste rock piles, abandoned shafts and galleries, and remaining of surface structures and facilities. Remedial measures include the sealing for shafts and openings to prevent collapse of mine workings and subsidence, the dewatering and the open-pit excavation and the treatment of the contaminated waters, the disposal and the stabilization of mining debris piles to prevent dispersion, the placement of a re vegetated cover over the piles to control dust and erosion, and the restoration of the site. (Author)

  11. Part 1: Logging residues in piles - Needle loss and fuel quality. Part 2: Nitrogen leaching under piles of logging residues

    International Nuclear Information System (INIS)

    Lehtikangas, P.; Lundkvist, H.

    1991-01-01

    Part 1: Experimental piles were built in three geographical locations during May-Sept. 1989. Logging residues consisted of 95% spruce and 5% pine. Height of the piles varied between 80 and 230 cm. Needles were collected by placing drawers under 40 randomely chosen piles. The drawers were emptied every two weeks during the storage period. Natural needle loss was between 18 and 32% of the total amount of needles after the first two months of storage. At the end of the storage period, 24-42% of the needles had fallen down to the drawers. At the end of the experiment the total needle fall was 95-100% in the shaken piles. According to the results of this study piles smaller than 150 cm had the most effective needle fall. Piles should be placed on open places where the air and sun heat penetrate and dry them. Needles were the most sensitive fraction to variations in precipitation compared to the other components, such as branches. Piles usually dried quickly, but they also rewet easily. This was especially true in the smaller piles. The lowest moisture content was measured at the end of June. The ash content in needles varied between 4 and 8%. 16 refs., 15 figs. Part 2: Three field experiments were equipped with no-tension humus lysimeters. Pairs of lysimeters with the same humus/field layer vegetation material were placed in pairs, one under a pile of felling residues and another in the open clear felling. Leaching of nitrogen as well as pH and electric conductivity in the leachate was followed through sampling of the leachate at regular intervals. The results from the investigation show that: * the amount of leachate was higher in lysimeters in the open clear felling, * pH in the leachate was initially lower under piles of felling residues, * the amount of nitrogen leached was higher in the open clear felling. Thus, storing of felling residues in piles during the summer season did not cause any increase in nitrogen leaching, which had been considered to be a risk

  12. The Tensile Capacity Of Bored Piles In Frictional Soils

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Andersen, Allan; Damkilde, Lars

    2008-01-01

    Three series of 10 piles each were installed in two different locations. The length of the piles varied from 2 to 6 m and the diameters were 14 and 25 cm. The piles were constructed above the groundwater table using continuous flight augers and the concrete was placed by gravity free fall. The pi....... The piles were tested to failure in axial uplift and the load-displacement relations were recorded.......Three series of 10 piles each were installed in two different locations. The length of the piles varied from 2 to 6 m and the diameters were 14 and 25 cm. The piles were constructed above the groundwater table using continuous flight augers and the concrete was placed by gravity free fall...

  13. Engineering assessment of inactive uranium mill tailings, Slick Rock sites, Slick Rock, Colorado. A summary of the Phase II, Title I

    International Nuclear Information System (INIS)

    1977-10-01

    Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at the two millsites in Slick Rock, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals residing nearby, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. The Union Carbide site has 350,000 tons of tailings and the North Continent site now owned by Union Carbide has 37,000 tons of tailings. Both tailings piles have been stabilized in accordance with regulations of the State of Colorado. Radon gas release from the tailings on the sites constitute the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The sparse population and relatively low radiation levels yield minimal immediate environmental impact. Hence the three alternative actions presented are directed towards restricting access to the sites (Option I), and returning the windblown tailings to the piles and stabilizing the piles with cover material (Option II), and consolidating the two piles on the UC site and stabilizing with 2 ft of cover (Option III). Fencing around the tailings piles is included in all options. Options II and III provide 2 ft of cover material on the tailings. Costs of the options range from $370,000 to $1,100,000. Reprocessing the tailings for uranium is not economically feasible

  14. Temperature response functions (G-functions) for single pile heat exchangers

    International Nuclear Information System (INIS)

    Loveridge, Fleur; Powrie, William

    2013-01-01

    Foundation piles used as heat exchangers as part of a ground energy system have the potential to reduce energy use and carbon dioxide emissions from new buildings. However, current design approaches for pile heat exchangers are based on methods developed for boreholes which have a different geometry, with a much larger aspect (length to diameter) ratio. Current methods also neglect the transient behaviour of the pile concrete, instead assuming a steady state resistance for design purposes. As piles have a much larger volume of concrete than boreholes, this neglects the significant potential for heat storage within the pile. To overcome these shortcomings this paper presents new pile temperature response functions (G-functions) which are designed to reflect typical geometries of pile heat exchangers and include the transient response of the pile concrete. Owing to the larger number of pile sizes and pipe configurations which are possible with pile heat exchangers it is not feasible to developed a single unified G-function and instead upper and lower bound solutions are provided for different aspects ratios. - Highlights: • We present new temperature response functions for pile heat exchangers. • The functions include transient heat transfer within the pile concrete. • Application of the functions reduces the resulting calculated temperature ranges. • Greater energy efficiency is possible by accounting for heat storage in the pile

  15. Prediction of pile set-up for Ohio soils.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  16. Applicability of geostatistical methods and optimization of data for assessing hydraulic and geological conditions as a basis for remediation measures in the Ronneburg ore mining district

    International Nuclear Information System (INIS)

    Post, C.

    2001-01-01

    The remediation of the former Wismut mines in Thuringia has been planed and prepared since 1990. Objects of remediation are mines, tailing ponds and waste rock piles. Since more than 40 years of mining have had a great affect on the exploited aquifer, special emphasis is given to groundwater recharge so that minery-flooding is one of the conceivable remedial options. Controlled flooding supports minimising the expanded oxidation zone, which renders an immense pollutant potential, while at the same time the flooding reduces the quantity of acid mine water, that has to be treated. One of the main tasks of modelling the flooding progress is to determine and prognosticate the wateroutlet-places. Due to the inadequacy of the database from the production period, limited accuracy of the available data and because of the inherent uncertainty of approximations used in numerical modelling, a stochastic approach is prospected. The flooding predictions, i.e. modelling of hydrodynamical and hydrochemical conditions during and after completion of flooding predominantly depend on the spatial distribution of the hydraulic conductivity. In order to get a better understanding of the spatial heterogeneity of the Palaeozoic fractured rock aquifer, certain geostatistical interpolation methods are tested to achieve the best approach for describing the hydrogeological parameters in space. This work deals in detail with two selected geostatistical interpolation methods (ordinary and indicator kriging) and discusses their applicability and limitations including the application of the presented case. Another important target is the specification of the database and the improvement of consistency with statistical standards. The main emphasis lies on the spatial distribution of the measured hydraulic conductivity coefficient, its estimation at non-measured places and the influence of its spatial variability on modelling results. This topic is followed by the calculation of the estimation

  17. Installation effects of auger cast-in-place piles

    Directory of Open Access Journals (Sweden)

    Fathi M. Abdrabbo

    2012-12-01

    Full Text Available Since their introduction in Europe and North America some 50 years ago, auger cast-in-place piles (ACIP have become increasingly popular all over the world. These piles offer considerable environmental advantages during construction including minimal vibration, and low noise beside their high productivity. The most severe limitation of the ACIP is its sensitivity to operator performance, which can lead to a pile of poor integrity or inconsistent quality. Thus the improper use of ACIP equipment can result in piles containing defects or can cause instability of nearby structures. Three case studies are presented and discussed in an effort to illustrate learned lessons. First case study highlights the misuse of ACIP equipment leading to unreliable defective pile foundations. Second and third case studies show the adverse effects of installing ACIP on the stability of nearby structures. The study revealed that it is essential to employ a clever pile crew during the installation of ACIP to observe, interpret, and take corrective actions for unusual situations. The authorities worldwide should oblige pile contractors to employ only experienced and qualified workers in charge of geotechnical engineering works. Tender documents should include precise clauses related to the technological factors affecting the quality of ACIP. Unfavorable side effects of installing ACIP in saturated loose and medium sand can cause tilt of adjacent existing structures; even they are on either shallow or deep foundations. A row of micro-piles and/or soil grouting adjacent to the existing buildings were successfully used to reduce the adverse effects of ACIP. Implementation of different codes on the results of pile loading tests produced different pile working loads. Therefore tender documents should specify the code upon which interpreting the pile test results. At the meantime the geotechnical engineer should implement his experience and judgment during application of the

  18. The Effects of Time on Soil Behaviour and Pile Capacity

    DEFF Research Database (Denmark)

    Augustesen, Anders

    When designing pile foundations, static design equations, pile driving formulae, static loading tests or stress wave analyses can be employed to estimate the axial capacity of single piles. Both laboratory and field tests show that soil exhibits time-dependent behaviour. An important result...... based on a set of static loading tests. In the literature it is suggested that the pile capacity increases with the logarithm to time after installation which is confirmed in this thesis. In continuation of this, it is analysed whether the magnitude of the set-up is related to the properties of the clay...... circumstances (e.g. load specifications, length of pile, pile material). In order to evaluate the design methods for piles in clay, it is necessary to correct for time between pile driving and pile testing. Results of testing the calculation procedures against the available data by employing different time...

  19. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... drainage may not be diverted over the outslope of the refuse piles. Runoff from the areas above the refuse...

  20. Numerical Simulation for the Soil-Pile-Structure Interaction under Seismic Loading

    Directory of Open Access Journals (Sweden)

    Lifeng Luan

    2015-01-01

    Full Text Available Piles are widely used as reinforcement structures in geotechnical engineering designs. If the settlement of the soil is greater than the pile, the pile is pulled down by the soil, and negative friction force is produced. Previous studies have mainly focused on the interaction of pile-soil under static condition. However, many pile projects are located in earthquake-prone areas, which indicate the importance of determining the response of the pile-soil structure under seismic load. In this paper, the nonlinear, explicit, and finite difference program FLAC3D, which considers the mechanical behavior of soil-pile interaction, is used to establish an underconsolidated soil-pile mode. The response processes of the pile side friction force, the pile axial force, and the soil response under seismic load are also analyzed.

  1. Interacting with piles of artifacts on digital tables

    NARCIS (Netherlands)

    Aliakseyeu, D.; Lucero Vera, A.A.; Subramanian, S.

    2007-01-01

    Designers and architects regularly use piles to organise visual artifacts. Recent efforts have now made it possible for users to create piles in digital systems as well. However, there is still little understanding of how users shouldinteract with digital piles. In this paper we investigate this

  2. Interacting with piles of artifacts on digital tables

    NARCIS (Netherlands)

    Aliakseyeu, D.; Subramanian, S.; Lucero Vera, A.A.; Gutwin, C.

    2006-01-01

    Designers and architects regularly use piles to organize visual artifacts. Recent efforts have now made it possible for users to create piles in digital systems as well. However, there is still little understanding of how users should interact with digital piles. In this paper we investigate this

  3. FIELD INVESTIGATIONS OF PILED-RAFT FOUNDATIONS WITH SHORT-LENGTH CONIC PILES IN BUILDING AREAS OF MINSK

    Directory of Open Access Journals (Sweden)

    V. A. Sernov

    2015-01-01

    Full Text Available In recent time piled foundations are extensively applied due to an increase of storeys in buildings constructed in Minsk and load increment on the soil. Preference is given to this approach even in the case when relatively firm soil occurs in the top part of the foundation bed. In this case maximum usage of the foundation bed bearing capacity and reduction of foundation cost are considered as top-priority tasks for designers. One of the ways to increase the bearing capacity of piled foundations is the necessity to take into account resistance of foundation bed soil located under raft bottom. The raft as well as a shallow foundation is capable to transfer a significant part of building load into the soil. Such approach makes it possible to reduce a number of piles in the foundation or shorten their length. Then it results in shortening of the construction period and significant reduction in zero cycle. However up to the present moment reliable calculation methods that permit to take into account soil resistance in the raft base. An analysis of previous investigations on the matter executed by various researchers and a number of field investigations have been carried out with the purpose to develop the proposed methods.The paper presents results of field investigations on foundations consisting of short stamped tapered piles which are joined together with the help of the raft fragment. Strength and deformation characteristics of the bases are increasing while making such foundations in the fill-up soil. In this case the filled-up ground layer becomes a bearing layer both for piles and rafts as well. Improvement of high-plastic clay-bearing soil properties is ensured by ramming dry concrete mix under pile foot. The paper describes an experience on application of the piled-raft foundation in complicated engineering and geological conditions while constructing the Orthodox Church in Minsk.

  4. 30 CFR 77.215-1 - Refuse piles; identification.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; identification. 77.215-1 Section... COAL MINES Surface Installations § 77.215-1 Refuse piles; identification. A permanent identification marker, at least six feet high and showing the refuse pile identification number as assigned by the...

  5. Rational use of anchor pile material of the thin retaining walls

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-12-01

    Full Text Available The article considers the urgency of application of the reinforced concrete anchor piles in the constructions of retaining structures associated with the possibility of establishing rigid joint of element interface and more durable pile constructions in the soil. The features of the inclined anchor piles work as a part of sheet-pile retaining walls are noted. There was performed a study of the stress-strain state of the inclined reinforced concrete anchor piles of the thin sheet-pile wall with the reinforced concrete face members of T-section, combined with piles by a longitudinal beam. The authors consider a constructive scheme of retaining structure and list the applied loads. The efforts in the anchor piles were determined. The bending-moment curves show the character of the force distribution along the pile. A form of the pile ensuring the rational distribution of material along the pile is presented. The distribution of efforts along the length and effect of filling on its operation in the soil were accepted as the criteria of construction solution for a pile. The substantiation of the proposed design of pile is presented in terms of its stress-strain state and the rational use of material. The authors made conclusions on the reasonability of adopted design solutions associated with an increase in the flexural strength of pile, increment of the ultimate pullout capacity, stability improvement, effective use of backfill and exception of the «out of operation» areas of the pile.

  6. Concentration processes under tubesheet sludge piles in nuclear steam generators

    International Nuclear Information System (INIS)

    Gonzalez, F.; Spekkens, P.

    1987-01-01

    The process by which bulk water solutes are concentrated under tubesheet sludge piles in nuclear steam generators was investigated in the laboratory under simulated CANDU operating conditions. Concentration rates were found to depend on the tube heat flux and pile depth, although beyond a critical depth the concentration efficiency decreased. This efficiency could be expressed by a concentration coefficient, and was found to depend also on the sludge pile porosity. Solute concentration profiles in the sludge pile suggested that the concentration mechanism in a high-porosity/permeability pile is characterized by boiling mainly near or at the tube surface, while in low-porosity piles, the change of phase may also become important in the body of the sludge pile. In all cases, the full depth of the pile was active to some extent in the concentration process. As long as the heat transfer under the pile was continued, the solute remained under the pile and slowly migrated toward the bottom. When the heat transfer was stopped, the solute diffused back into the bulk solution at a rate slower than that of the concentration process

  7. Review of vibration effect during piling installation to adjacent structure

    Science.gov (United States)

    Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd

    2017-12-01

    Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.

  8. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale

    OpenAIRE

    Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.

    2015-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumu...

  9. 30 CFR 77.215-3 - Refuse piles: certification.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles: certification. 77.215-3 Section... COAL MINES Surface Installations § 77.215-3 Refuse piles: certification. (a) Within 180 days following written notification by the District Manager that a refuse pile can present a hazard, the person owning...

  10. Interesting Developments in Testing Methods Applied to Foundation Piles

    Science.gov (United States)

    Sobala, Dariusz; Tkaczyński, Grzegorz

    2017-10-01

    Both: piling technologies and pile testing methods are a subject of current development. New technologies, providing larger diameters or using in-situ materials, are very demanding in terms of providing proper quality of execution of works. That concerns the material quality and continuity which define the integral strength of pile. On the other side we have the capacity of the ground around the pile and its ability to carry the loads transferred by shaft and pile base. Inhomogeneous nature of soils and a relatively small amount of tested piles imposes very good understanding of small amount of results. In some special cases the capacity test itself form an important cost in the piling contract. This work presents a brief description of selected testing methods and authors remarks based on cooperation with Universities constantly developing new ideas. Paper presents some experience based remarks on integrity testing by means of low energy impact (low strain) and introduces selected (Polish) developments in the field of closed-end pipe piles testing based on bi-directional loading, similar to Osterberg idea, but without sacrificial hydraulic jack. Such test is suitable especially when steel piles are used for temporary support in the rivers, where constructing of conventional testing appliance with anchor piles or kentledge meets technical problems. According to the author’s experience, such tests were not yet used on the building site but they bring a real potential especially, when the displacement control can be provided from the river bank using surveying techniques.

  11. Uranium-mill-tailings remedial-action project (UMTRAP) cover and liner technology development project

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.; Freeman, H.D.; Cline, J.F.; Beedlow, P.A.; Buelt, J.L.; Relyea, J.R.; Tamura, T.

    1982-01-01

    Cover and liner systems for uranium mill tailings in the United States must satisfy stringent requirements regarding long-term stability, radon control, and radionuclide and hazardous chemical migration. The cover placed over a tailings pile serves three basic purposes: (1) to reduce the release of radon, (2) to prevent the intrusion of plant roots and burrowing animals into the tailings, and (3) to limit surface erosion. The liner placed under a tailings pile prevents the migration of radionuclides and hazardous chemicals to groundwater. Pacific Northwest Laboratory is developing and evaluating cover and liner systems that meet these objectives and conform to federal standards. The cover and liner technology discussed in this paper involves: (1) single and multilayer earthen cover systems, (2) asphalt emulsion radon barrier systems, (3) biobarrier systems, (4) revegetation and rock covers, and (5) asphalt, clay, and synthetic liner systems. These systems have been tested at the Grand Junction, Colorado, tailings pile, where they have been shown to effectively reduce radon releases and radionuclide and chemical migration

  12. Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2017-01-01

    This paper presents a comprehensive description and the considerations regarding the design of a new laboratory test setup for testing cyclic axially loaded piles in sand. The test setup aims at analysing the effect of axial one-way cyclic loading on pile capacity and accumulated displacements....... Another aim was to test a large diameter pile segment with dimensions resembling full-scale piles to model the interface properties between pile and sand correctly. The pile segment was an open-ended steel pipe pile with a diameter of 0.5 m and a length of 1 m. The sand conditions resembled the dense sand...... determined from the API RP 2GEO standard and from the test results indicated over consolidation of the sand. Two initial one-way cyclic loading tests provided results of effects on pile capacity and accumulated displacements in agreement with other researchers’ test results....

  13. 30 CFR 77.215 - Refuse piles; construction requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; construction requirements. 77.215... COAL MINES Surface Installations § 77.215 Refuse piles; construction requirements. (a) Refuse deposited on a pile shall be spread in layers and compacted in such a manner so as to minimize the flow of air...

  14. Friction effects on lateral loading behavior of rigid piles

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole

    2012-01-01

    taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...

  15. Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads

    Science.gov (United States)

    Polishchuk, A. I.; Maksimov, F. A.

    2017-11-01

    The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.

  16. Analytical out-of-pile and in-pile experiments on gadolinia bearing fuels

    International Nuclear Information System (INIS)

    Bruet, M.; Francois, B.; Do, Q.; Bergeron, J.; Trotabas, M.

    1986-06-01

    New fuel management schemes in PWRs can be achieved through the use of burnable poisons like gadolinia bearing fuel rods. However, the introduction of such a design has required a qualification program, which has been performed in collaboration between CEA, FRAGEMA and/or FRAMATOME by specialized teams in CEA facilities. The main scoops of this program concern: the fabrication process; the out of pile physical properties determination: the in pile thermomechanical behaviour and fission product release; the neutronic studies in view to validate the Computed Gd efficiency and the LBP depletion calculation schemes and to analyse and assess various schemes of core calculations

  17. FORECASTING PILE SETTLEMENT ON CLAYSTONE USING NUMERICAL AND ANALYTICAL METHODS

    Directory of Open Access Journals (Sweden)

    Ponomarev Andrey Budimirovich

    2016-06-01

    Full Text Available In the article the problem of designing pile foundations on claystones is reviewed. The purpose of this paper is comparative analysis of the analytical and numerical methods for forecasting the settlement of piles on claystones. The following tasks were solved during the study: 1 The existing researches of pile settlement are analyzed; 2 The characteristics of experimental studies and the parameters for numerical modeling are presented, methods of field research of single piles’ operation are described; 3 Calculation of single pile settlement is performed using numerical methods in the software package Plaxis 2D and analytical method according to the requirements SP 24.13330.2011; 4 Experimental data is compared with the results of analytical and numerical calculations; 5 Basing on these results recommendations for forecasting pile settlement on claystone are presented. Much attention is paid to the calculation of pile settlement considering the impacted areas in ground space beside pile and the comparison with the results of field experiments. Basing on the obtained results, for the prediction of settlement of single pile on claystone the authors recommend using the analytical method considered in SP 24.13330.2011 with account for the impacted areas in ground space beside driven pile. In the case of forecasting the settlement of single pile on claystone by numerical methods in Plaxis 2D the authors recommend using the Hardening Soil model considering the impacted areas in ground space beside the driven pile. The analyses of the results and calculations are presented for examination and verification; therefore it is necessary to continue the research work of deep foundation at another experimental sites to improve the reliability of the calculation of pile foundation settlement. The work is of great interest for geotechnical engineers engaged in research, design and construction of pile foundations.

  18. Installation of a bio-venting remediation system using directionally drilled horizontal wells

    International Nuclear Information System (INIS)

    Hardy, L.; Stolz, A.P.

    1997-01-01

    The installation of a remediation system for off-site contamination was discussed. The site was contaminated with gasoline and diesel from an abandoned bulk fuel storage and distribution terminal located near a highway. The dissolved phase hydrocarbon plume extended beneath several houses down gradient of the site. Bioventing was considered to be the only remediation option to recover the liquid phase hydrocarbons beneath the highway in a way that would satisfy all the clean-up objectives and the design constraints. Bioventing is closely related to soil vapour extraction (SVE). The main difference is that in bioventing, the mechanism for removal of contaminants is bio-degradation by indigenous bacteria, whereas in SVE, contaminants are simply removed by volatilization. Bioventing systems enhance the activity of the indigenous bacteria by inducing air flow in the subsurface through the use of vapour injection or extraction wells. Two horizontal vapour extraction wells were installed with a directional drill. A soil pile was utilized as a bio-filter for the extracted hydrocarbon vapours and a backfilled trench was used to inject vapours recovered from the soil pile to the subsurface. The total mass of hydrocarbons degraded by this system in 230 days was estimated to be 1,000 kg. It was concluded that under appropriate conditions the in-situ treatment of contaminated soil using directionally drilled wells can be justified on both economic and technical grounds. 3 refs., 1 tab., 5 figs

  19. Global and local scour at pile groups

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Bundgaard, Klavs; Fredsøe, Jørgen

    2005-01-01

    This paper presents the results of an experimental investigation on scour around pile groups with different configurations exposed to steady current. Two kinds of tests were carried out: rigid-bed tests and actual scour tests. In these, the mean and turbulence properties of the flow were measured...... across the pile groups. The pile-group configurations were such that the global scour was distinguished from the local scour. The results show that the global scour can be quite substantial....

  20. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  1. Three dimensional modeling of laterally loaded pile groups resting in sand

    Directory of Open Access Journals (Sweden)

    Amr Farouk Elhakim

    2016-04-01

    Full Text Available Many structures often carry lateral loads due to earth pressure, wind, earthquakes, wave action and ship impact. The accurate predictions of the load–displacement response of the pile group as well as the straining actions are needed for a safe and economic design. Most research focused on the behavior of laterally loaded single piles though piles are most frequently used in groups. Soil is modeled as an elastic-perfectly plastic model using the Mohr–Coulomb constitutive model. The three-dimensional Plaxis model is validated using load–displacement results from centrifuge tests of laterally loaded piles embedded in sand. This study utilizes three dimensional finite element modeling to better understand the main parameters that affect the response of laterally loaded pile groups (2 × 2 and 3 × 3 pile configurations including sand relative density, pile spacing (s = 2.5 D, 5 D and 8 D and pile location within the group. The fixity of the pile head affects its load–displacement under lateral loading. Typically, the pile head may be unrestrained (free head as the pile head is allowed to rotate, or restrained (fixed head condition where no pile head rotation is permitted. The analyses were performed for both free and fixed head conditions.

  2. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  3. Foundation heat transfer analysis for buildings with thermal piles

    International Nuclear Information System (INIS)

    Almanza Huerta, Luis Enrique; Krarti, Moncef

    2015-01-01

    Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level

  4. Experimental Study on Post Grouting Bearing Capacity of Large Diameter Bored Piles

    Directory of Open Access Journals (Sweden)

    Wang Duanduan

    2015-01-01

    Full Text Available Post grouting can improve the inherent defects such as the formation of the mud cake at pile side and the sediment at pile end in the process of bored pile construction. Thus post grouting has been widely used in Engineering. The purpose of this paper is to research the influences of post grouting to pile bearing capacity more systematically and intuitively. Combined with the static load test of four test piles in Weihe River Bridge test area of new airport highway in Xi’an, the bearing capacity and settlement of routine piles and post grouting piles are comparatively analyzed. The test results show that under the same geological condition, post grouting can improve the properties of pile tip and pile shaft soil of bored piles significantly, enhance the ultimate resistance, improve the ultimate bearing capacity and reduce the pile tip settlement. Then post grouting can aim to optimize pile foundation.

  5. Modeling temperature noise in a fast-reactor pile

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    To observe partial overlapping of the heat carrier cross section in piles, leading to local temperature rise or boiling of the sodium, provision is made for individual monitoring of the fuel assemblies with respect to the output temperature. Since the deviation of the mean flow rate through the pile and the output temperature is slight with this anomaly, the temperature fluctuations may provide a more informative index. The change in noise characteristics with partial overlapping of the cross sections occurs because of strong distortion of the temperature profile in the overlap region. The turbulent flow in the upper part of the pile transforms this nonuniformity into temperature pulsations which may be recorded by a sensor at the pile output. In this paper the characteristics of temperature noise are studied for various pile conditions and sensor locations by statistical modeling

  6. Global and local scour at pile groups

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Bundgaard, Klavs; Fredsøe, Jørgen

    2005-01-01

    This paper presents the results of an experimental investigation on scour around pile groups with different configurations exposed to steady current. Two kinds of tests were carried out: (1) Rigid-bed tests, and (2) Actual scour tests. In the former tests, the mean and turbulence properties...... of the flow were measured across the pile groups. The pile group configurations were such that the global scour was distinguished from the local scour. The results show that the global scour can be quite substantial....

  7. Response of shallow geothermal energy pile from laboratory model tests

    Science.gov (United States)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement

  8. Alternative cover design

    International Nuclear Information System (INIS)

    1988-11-01

    The special study on Alternative Cover Designs is one of several studies initiated by the US Department of Energy (DOE) in response to the proposed US Environmental Protection Agency (EPA) groundwater standards. The objective of this study is to investigate the possibility of minimizing the infiltration of precipitation through stabilized tailings piles by altering the standard design of covers currently used on the Uranium Mill Tailings Remedial Action (UMTRA) Project. Prior. to the issuance of the proposed standards, UMTRA Project piles had common design elements to meet the required criteria, the most important of which were for radon diffusion, long-term stability, erosion protection, and groundwater protection. The standard pile covers consisted of three distinct layers. From top to bottom they were: rock for erosion protection; a sand bedding layer; and the radon barrier, usually consisting of a clayey sand material, which also functioned to limit infiltration into the tailings. The piles generally had topslopes from 2 to 4 percent and sideslopes of 20 percent

  9. Coupled modelling of convergence, steel corrosion, gas production and brine flow in a rock salt repository

    International Nuclear Information System (INIS)

    Becker, D.A.; Hirsekorn, R.P.

    2013-01-01

    This poster presents the global simulation of the behaviour of thick-walled steel containers piled up in a borehole in a rock salt repository. The simulation takes into account: the convergence by the creeping of rock salt, the backfill and waste compaction, the porosity dependent flow resistance, the anaerobic corrosion (iron to magnetite transformation, gas production, brine consumption, water consumption and salt precipitation) and pressure development. Mechanical influence of corrosion has not yet been taken into account in the integrated code LOPOS

  10. Preliminary evaluation of uranium mill tailings conditioning as an alternative remedial action technology

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.

    1981-01-01

    Conditioning of uranium mill tailings is being investigated as an alternative remedial action for inactive tailings piles to be stabilized by the US Department of Energy. Tailings from high priority sites have been characterized for elemental composition, mineralogy, aqueous leachable contaminants, and radon emanation power to provide a baseline to determine the environmental hazard control produced by conditioning. Thermal stabilization of tailings at high temperatures and removal of contaminants by sulfuric acid leaching are being investigated for technical merit as well as economic and engineering feasibility

  11. Heave induced reduction of friction capacity of pile embedded in clays

    OpenAIRE

    Setyo Budi Gogot; Wibowo Tantri Gondo

    2017-01-01

    Installation of new piles may cause heave which influence friction capacity of existing piles. The heave can be observed from the difference in the elevation of existing pile heads recorded before and after the installation of new piles or through load-settlement diagram from Static Load Test data. This paper presents the study of bearing capacity of hollow cylindrical concrete piles with diameter of 800 mm from two projects. The piles at Project I and Project II were hydraulically jacked int...

  12. Estimating volume, biomass, and potential emissions of hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Cameron S. Balog; Jeffrey W. Kelly

    2009-01-01

    Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric...

  13. Influences on the thermal efficiency of energy piles

    International Nuclear Information System (INIS)

    Cecinato, Francesco; Loveridge, Fleur A.

    2015-01-01

    Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures. - Highlights: • A numerical model for 3D thermal transient analysis of energy piles is developed. • The model is validated against both field data and an analytical solution. • Key parameters are then identified for efficient thermal design of energy piles. • Energy efficiency is maximised by large pipe number and concrete conductivity. • Large exchanger fluid velocity does not have a major impact on efficiency

  14. Dynamic stiffness of pile groups in a multilayered soil. Part 1

    International Nuclear Information System (INIS)

    Ohta, Y.; Hijikata, K.; Kobayashi, Y.

    1989-01-01

    For evaluating the dynamic stiffness of the pile group foundations, forced vibration tests are executed on pile group foundation models. Two types of test models are used, one is a single pile model and the other a four-pile model. Dividing the tests into 4 steps, the forced vibration tests are performed. Step 1 is for the single pile model, and steps 2 to 4 are for the four-pile model. In step 2 and step 3, the gap effects between the foundation bottom and the ground surface are examined. In step 4, the backfill effects are obtained. Based on the test results, the pile group effects, the gap effects and the backfill effects on the dynamic characteristics of the pile group foundations are described in this paper

  15. Field Test of Driven Pile Group under Lateral Loading

    Science.gov (United States)

    Gorska, Karolina; Rybak, Jaroslaw; Wyjadlowski, Marek

    2017-12-01

    All the geotechnical works need to be tested because the diversity of soil parameters is much higher than in other fields of construction. Horizontal load tests are necessary to determine the lateral capacity of driven piles subject to lateral load. Various load tests were carried out altogether on the test field in Kutno (Poland). While selecting the piles for load tests, different load combinations were taken into account. The piles with diverse length were chosen, on the basis of the previous tests of their length and integrity. The subsoil around the piles consisted of mineral soils: clays and medium compacted sands with the density index ID>0.50. The pile heads were free. The points of support of the “base” to which the dial gauges (displacement sensors) were fastened were located at the distance of 0.7 m from the side surface of the pile loaded laterally. In order to assure the independence of measurement, additional control (verifying) geodetic survey of the displacement of the piles subject to the load tests was carried out (by means of the alignment method). The trial load was imposed in stages by means of a hydraulic jack. The oil pressure in the actuator was corrected by means of a manual pump in order to ensure the constant value of the load in the on-going process of the displacement of the pile under test. On the basis of the obtained results it is possible to verify the numerical simulations of the behaviour of piles loaded by a lateral force.

  16. Gunnar uranium mine environmental remediation - Northern Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2013-07-01

    The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22. largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which

  17. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    Science.gov (United States)

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  18. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  19. Remediation of the Gunnar uranium mine site, northern Saskatchewan

    International Nuclear Information System (INIS)

    Calvert, H.T.; Brown, J.L.

    2011-01-01

    The Gunnar uranium mine, located in northern Saskatchewan, operated from 1955 to 1963. When the mine was closed, the site was not remediated to the standards that are in place for today's uranium mines. Waste rock and mill tailings were left un-covered and water quality issues were not addressed. As a result, the current state of the site impacts the local environment. The company that operated the Gunnar Mine no longer exists. In 2006, the Government of Saskatchewan and the Government of Canada entered into an agreement to share the costs for remediating the site. An environment assessment of the project to remediate the site is currently underway. This paper provides an update of the issues and the progress being made. (author)

  20. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  1. Measurements of pile driving noise from control piles and noise-reduced piles at the Vashon Island ferry dock.

    Science.gov (United States)

    2017-04-01

    As part of the Washington State Department of Transportation (WSDOT) pile attenuation test program, : researchers from the University of Washington Applied Physics Laboratory (APL-UW) conducted underwater sound : measurements on 7 and 8 December 2015...

  2. Experimental Comparison of Statically and Cyclically Loaded Non-Slender Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    rigid form of motion. The Winkler model approach, employing p-y curves to describe the soil-pile interaction, is often employed as the design method for laterally loaded piles. The p-y curve formulation, currently recommended by the American Petroleum Institute and Det Norske Veritas, is based on tests...... on slender piles with length to diameter ratios larger than ten and outer pile diameters less than two meters. Hence, the pile tests that form the basis of the currently recommended p-y curve formulation are conducted with use of piles that exhibits a flexible behaviour, which is in contrast to the piles...... used as foundation for modern offshore wind energy converters. The aim of the present work is to investigate the pile behaviour for non-slender piles by means of small-scale testing. The pile behaviour is investigated and compared for both static and cyclic loading. When conducting small-scale tests...

  3. Theoretical study of short pile effect in tunnel excavation

    Science.gov (United States)

    Tian, Xiao-yan; Liu, Jing; Gao, Xiao-mei; Li, Yuan

    2017-09-01

    The Misaki Sato Go ideal elastoplastic model is adopted and the two stage analysis theory is used to study the effect of tunnel excavation on short pile effect in this paper. In the first stage, the free field vertical displacement of the soil at the corresponding pile location is obtained by using empirical formula. In the second stage, the displacement is applied to the corresponding pile location. The equilibrium condition of micro physical differential equation settlement of piles. Then through logical deduction and the boundary condition expressions of the settlement calculation, obtain the pile side friction resistance and axial force of the week. Finally, an engineering example is used to analyze the influence of the change of main parameters on their effects.

  4. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  5. Analysis of static and dynamic pile-soil-jacket behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad Reza Emami

    1998-12-31

    In the offshore industry, recent extreme storms, severe earthquakes and subsidence of the foundation of jacket platforms have shown that new models and methods must take into account the jacket- pile-soil foundation interaction as well as the non-linear dynamic performance/loading effects. This thesis begins with a review of the state of art pile-soil interaction model, recognizing that most existing pile-soil models have been established based on large diameter pile tests on specific sites. The need for site independent and mechanistic pile-soil interaction models led to the development of new (t-z) and (p-y) disk models. These are validated using the available database from recent large diameter pile tests in the North Sea and Gulf of Mexico. The established static disk models are applied for non-linear static analysis of the jacket-pile-soil system under extreme wave loading. Dynamic pile-soil interaction is studied and a new disk-cone model is developed for the non-linear and non-homogeneous soils. This model is applied to both surface and embedded disks in a soil layer with non-linear properties. Simplified non-linear as well as more complex analysis methods are used to study the dynamic response of the jacket platform under extreme sea and seismic loading. Ductility spectra analysis is introduced and used to study the dynamic performance of the jacket systems near collapse. Case studies are used to illustrate the effects of structural, foundation failure characteristics as well as dynamic loading effects on the overall performance of the jacket-pile-soil systems near ultimate collapse. 175 refs., 429 figs., 70 tabs.

  6. THE NEW STRUCTURE OF A PLATE-PILE FOUNDATION

    Directory of Open Access Journals (Sweden)

    SAMORODOV О. V.

    2016-01-01

    Full Text Available Raising of problem. In the construction of high-rise buildings with significant loads on foundations and bedding at the base of not rocky soils tend to use the most common pile foundation to reduce the deformation and correspond to regulations [1] on the maximum permissible deformation. Monitoring of the stress-strain state (SSS pile foundations constructed buildings shows the existing reserves of bearing capacity on the one hand - soil bases of the second group of limit states, on the other - the foundation of the first group of limit states by regulating the SSS foundation during construction and exploitation. Therefore, are increasingly using more progressive structure of foundations consisting of piles and of plate, as well as methods for their construction [2 - 10], however, in their design there are a number of disadvantages associated with the ambiguity of the application of methods for the calculation of such structures, which allows to do only partial conclusions and recommendations. Purpose. Is proposing the new structure of a plate-pile foundation, which overcomes the drawbacks of the existing design solutions and methods of consruction their, as well as is proposing an engineering method of a determination of basic parameters. Conclusion. Is proposes the new structure of a plate-pile foundation and the method of a determination of basic parameters his in the design of a soil base to the maximum permissible deformation Su buildings. Efficiency of application this type plate-pile foundation obtained by rational distribution resistance between a plate and piles, when under load from the building to the first work fully incorporated plate that allows maximum deformed for plate, and then the piles - due to of the hinge connection with the plate. Thus, depending on the maximum permissible deformation for buildings resistance of plate part of a full load of more than 50%, that significantly reduces the consumption of concrete.

  7. Pile-up correction by Genetic Algorithm and Artificial Neural Network

    Science.gov (United States)

    Kafaee, M.; Saramad, S.

    2009-08-01

    Pile-up distortion is a common problem for high counting rates radiation spectroscopy in many fields such as industrial, nuclear and medical applications. It is possible to reduce pulse pile-up using hardware-based pile-up rejections. However, this phenomenon may not be eliminated completely by this approach and the spectrum distortion caused by pile-up rejection can be increased as well. In addition, inaccurate correction or rejection of pile-up artifacts in applications such as energy dispersive X-ray (EDX) spectrometers can lead to losses of counts, will give poor quantitative results and even false element identification. Therefore, it is highly desirable to use software-based models to predict and correct any recognized pile-up signals in data acquisition systems. The present paper describes two new intelligent approaches for pile-up correction; the Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The validation and testing results of these new methods have been compared, which shows excellent agreement with the measured data with 60Co source and NaI detector. The Monte Carlo simulation of these new intelligent algorithms also shows their advantages over hardware-based pulse pile-up rejection methods.

  8. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Science.gov (United States)

    2010-07-01

    ... existing piles. 761.347 Section 761.347 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... from existing piles. (a) General. Sample piles that are either specifically configured for sampling... alternate sampling plan in accordance with § 761.62(c). (b) Specifically configured piles. A specifically...

  9. 30 CFR 77.215-2 - Refuse piles; reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; reporting requirements. 77.215-2... COAL MINES Surface Installations § 77.215-2 Refuse piles; reporting requirements. (a) The proposed location of a new refuse pile shall be reported to and acknowledged in writing by the District Manager...

  10. Radiohygienic aspects of the remediation works of the former uranium mine in Hungary

    International Nuclear Information System (INIS)

    Kerekes, A.; Juhasz, L.; Fueloep, N.; Koeteles, G.J.; Csoevari, M.

    2002-01-01

    A national project was initiated to remediate the site of the Hungarian uranium mine closed in 1997. The radiation levels on the mining and milling area were in the range between the background level and up to 10 to 100 times the background level. The most important phases of the remediation work investigated to assess the radiation burden of the workers and of the population living around the area to be recultivated are: transportation of mill tailings, covering of piles of refuse ores and mill tailings by soil, dismounting of the ore processing unit. The environmental radiation protection levels for the remediation processes are the following: radon flux from the surface of the restored tailings ponds 0.7 Bq.m -2 s -1 , radon concentration increment in the open air 20 Bq.m -3 , external dose rate increment above the restored site 200 nGy.h -1 . Based on the model assessments the exposure route of external dose was identified as the main source of the radiation dose for the workers and the population as well. The main conclusions concerning the occupational and environmental radiation protection are: the remediation work should be considered as a radiation practice, the use of the restored area by the population needs limited restrictions only. (author)

  11. The Settlement Behavior of Piled Raft Interaction in Undrained Soil

    DEFF Research Database (Denmark)

    Ghalesari, Abbasali Taghavi; Barari, Amin; Amini, Pedram Fardad

    2013-01-01

    Offshore piled raft foundations are one of the most commonly used foundations in offshore structures. When a raft foundation alone does not satisfy the design requirements, the addition of piles may improve both the ultimate load capacity and the settlement performance of the raft. In this paper......, the behavior of a piled raft on undrained soil is studied based on a series of parametric studies on the average and differential settlement of piled raft using three-dimensional finite element analysis. The settlement behavior is found to be dependent on the number of piles and raft thickness....

  12. Vibration tests on pile-group foundations using large-scale blast excitation

    International Nuclear Information System (INIS)

    Tanaka, Hideo; Hijikata, Katsuichirou; Hashimoto, Takayuki; Fujiwara, Kazushige; Kontani, Osamu; Miyamoto, Yuji; Suzuki, Atsushi

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. One structure had 25 steel tubular piles and the other had 4 piles. The super-structures were exactly the same. The test pit was backfilled with sand of appropriate grain size distributions in order to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1683 cm/s 2 according to the distances between the test site and the blast areas. Maximum strains were 13,400 micro-strains were recorded at the pile top of the 4-pile structure, which means that these piles were subjected to yielding

  13. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  14. Program of in-pile IASCC testing under the simulated actual plant condition. Development of technique for in-pile IASCC initiation test in JMTR

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Tsukada, Takashi; Kaji, Yoshiyuki; Nagata, Nobuaki; Dozaki, Koji; Takiguchi, Hideki

    2003-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is caused by the synergistic effects of neutron irradiation, stress and corrosion by high temperature water. It is, therefore, essential to perform in-pile SCC tests, which are material tests under the conditions simulating those of actual LWR operation, in order to clarify the precise mechanism of the phenomenon, though mainly out-of-pile SCC tests for irradiated materials have been carried out in this research field. There are, however, many difficulties to perform in-pile SCC tests. Performing in-pile SCC tests, essential key techniques must be developed. Hence as a part of development of the key techniques for in-pile SCC tests, we have embarked on development of the test technique which enables us to obtain the information concerning the effect of such parameters as applied stress level, water chemistry, irradiation conditions, etc. on the crack initiation behavior. Although it is difficult to detect the crack initiation in in-pile SCC tests, the crack initiation can be evaluated by the detection of specimen rupture if the cross section area of the specimen is small enough. Therefore, we adopted the uniaxial constant loading (UCL) test with small tensile specimens. This paper will describe the current status of the development of several techniques for in-pile SCC initiation tests in JMTR and the results of the performance tests of the designed testing unit using the out-of-pile loop facility. (author)

  15. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Science.gov (United States)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  16. Kinematic seismic response of piles in layered soil profile

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, A.N.

    2006-01-01

    This paper is aimed at highlighting the importance of Kinematic Seismic Response of Piles, a phenomenon often ignored in dynamic analysis. A case study is presented where the end bearing pile is embedded in two layer soil system of highly contrasting stiffnesses; a typical case where kinematic loading plays important role. The pile soil system is modeled as continuous system and as discrete parameter system; both are based on BDWF (Beam on Dynamic Winkler Foundation) formulation. For discrete parameter system, a finite element software SAP2000 is used and the modeling technique of kinematic interaction in finite element software is discussed. For pile soil system modeled as continuous system, a general MATLAB code is developed capable of performing elastic site response analysis in two layer soil system, solving differential equation governing kinematic interaction, and giving as output the maximum ground displacement, maximum pile displacement, rotation, moment and shear distribution along pile length. The paper concludes that kinematic seismic actions must be evaluated particularly at the interface of soil layers of significantly differing soil stiffnesses. (author)

  17. Design phase identification of high pile rebound soils : final report

    Science.gov (United States)

    2010-12-15

    An engineering problem has occurred when installing displacement piles in certain soils. During driving, piles are rebounding excessively during each hammer blow, causing delay and as a result may not achieve the required design capacities. Piles dri...

  18. Environmental Impact and Remediation of Uranium Tailings and Waste Rock Dumps at Mailuu-Suu in Kyrgyzstan

    International Nuclear Information System (INIS)

    Kunze, C.; Walter, U.; Wagner, F.; Schmidt, P.; Barnekow, U.; Gruber, A.

    2011-01-01

    This paper describes the environmental situation in the former uranium mining and milling region of Mailuu-Suu (Kyrgyzstan), the approach to environmental remediation of the waste facilities (tailings ponds and waste dumps) and the results achieved so far. It starts with an outline of the history of the environmental remediation project which has received international attention and is seen as a pilot project for further remediation activities of former uranium mining and milling sites in the region. Apart from technical aspects, the paper draws conclusions with respect to the administrative environment, institutional capacity building and the local availability of resources needed to successfully implement a complex remediation project. (author)

  19. Research on the characterization and conditioning of uranium mill tailings. III. Summary of uranium mill tailings conditioning research and implications regarding remedial actions

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Williams, J.M.

    1983-06-01

    This report summarizes the findings of research on uranium mill tailings conditioning technology development performed for the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). Hazards and risks posed by tailings piles are discussed in relation to the goal of conditioning the tailings to reduce these hazards. The results of our efforts regarding characterization of tailings, removal of radionuclides, mineral recovery, thermal stabilization, and engineering/economic analysis of conditioning are presented. The implications of these results for remedial action plans are discussed and conclusions regarding the applicability of these technologies are also presented

  20. Metamorphic rocks in the deep boreholes near Maribor

    Directory of Open Access Journals (Sweden)

    Mirka Trajanova

    2002-12-01

    Full Text Available Six research-captive boreholes for thermal water passed through a pile of metamorphic rocks near Maribor (Eastern Slovenia that is on average about 1000 m thick. The succession of metamorphic rocks is characteristic for the Pohorje Mt. and eastern Kobansko region. In the area of the boreholes two tectonic zones are more pronounced: the upper one, at a depth of about 510 to 550 m at the contact of the Štelenska Gora and Phyllite formations and the deeper one at a depth of about 460 to 590 m, indicating the reverse fault junction of the Phyllite and Kobansko formations. They belong to the second andthe third thrust unit of the accretionary wedge formed at the collision of the European and African plates. Four Alpine nappe units are proven in the Slovenian part of the Eastern Alps.

  1. A review of shear strength models for rock joints subjected to constant normal stiffness

    Directory of Open Access Journals (Sweden)

    Sivanathan Thirukumaran

    2016-06-01

    Full Text Available The typical shear behaviour of rough joints has been studied under constant normal load/stress (CNL boundary conditions, but recent studies have shown that this boundary condition may not replicate true practical situations. Constant normal stiffness (CNS is more appropriate to describe the stress–strain response of field joints since the CNS boundary condition is more realistic than CNL. The practical implications of CNS are movements of unstable blocks in the roof or walls of an underground excavation, reinforced rock wedges sliding in a rock slope or foundation, and the vertical movement of rock-socketed concrete piles. In this paper, the highlights and limitations of the existing models used to predict the shear strength/behaviour of joints under CNS conditions are discussed in depth.

  2. Pile foundation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Jurkiewicz, W.J.; Thomaz, E.; Rideg, P.; Girao, M.

    1978-01-01

    The subject of pile foundation used for nuclear power plant structures, considering the experience gained by the designers of the Angra Nuclear Power Plant, Units 2 and 3 in Brazil is dealt with. The general concept of the pile foundations, including types and execution of the piles, is described briefly. Then the two basic models, i.e. the static model and the dynamic one, used in the design are shown, and the pertinent design assumptions as related to the Angra project are mentioned. The criteria which established the loading capacity of the piles are discussed and the geological conditions of the Angra site are also explained briefly, justifying the reasons why pile foundations are necessary in this project. After that, the design procedures and particularly the tools - i.e. the computer programs - are described. It is noted that the relatively simple but always time consuming job of loading determination calculations can be computerized too, as it was done on this project through the computer program SEASA. The interesting aspects of soil/structure interaction, applicable to static models, are covered in detail, showing the theoretical base wich was used in the program PILMAT. Then the advantage resulting from computerizing of the job of pile reinforcement design are mentioned, describing briefly the jobs done by the two special programs PILDES and PILTAB. The point is stressed that the effort computerizing the structural design of this project was not so much due to the required accuracy of the calculations, but mainly due to the need to save on the design time, as to allow to perform the design task within the relatively tight time schedule. A conclusion can be drawn that design of pile foundations for nuclear power plant structures is a more complex task than the design of bearing type of foundation for the same structures, but that the task can be always made easier when the design process can be computerized. (Author)

  3. Low maintenance options and challenges for the collection and interception of mine drainage

    International Nuclear Information System (INIS)

    Jarvis, A.P.; Younger, P.L.

    2008-01-01

    A vast majority of mining operations in the United Kingdom have been abandoned, leaving a legacy of abandoned deep coal and metal mines and waste rock piles. The United Kingdom has committed to address environmental problems from deep coal mines of the former nationalized coal mining industry. No such body for abandoned metal mines or for waste rock piles exists, therefore remediation initiatives tend to be in stages. This presentation described low maintenance options and challenges for the collection and interception of mine drainage. The presentation provided several illustrations and charts as well as discussions related to regional dewatering; aquifer protection; pump-and-treat; and gravity drainage with treatment. Several challenges such as water quality, conservation, archaeology, local interest, and health and safety were also presented. It was demonstrated that for a variety of reasons, most current mine water treatment systems in the United Kingdom comprise pumping to a treatment system, or even pumping to avoid treatment. tabs., figs

  4. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  5. An experimental study on pile spacing effects under lateral loading in sand.

    Science.gov (United States)

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.

  6. Pile group program for full material modeling and progressive failure.

    Science.gov (United States)

    2008-12-01

    Strain wedge (SW) model formulation has been used, in previous work, to evaluate the response of a single pile or a group of piles (including its : pile cap) in layered soils to lateral loading. The SW model approach provides appropriate prediction f...

  7. Physical Modelling of Large Diameter Piles in Coarse-Grained Soil

    DEFF Research Database (Denmark)

    Brødbæk, K. T.; Augustesen, Anders Hust; Møller, M.

    2011-01-01

    of increasing the effective stresses. The test setup is thoroughly described in the paper. Two non-slender aluminium pipe piles subjected to lateral loads have been tested in the laboratory. The piles are heavily instrumented with strain gauges in order to obtain p-y curves, displacement and bending moment......Monopiles are an often-used foundation concept for offshore wind turbine converters. These piles are highly subjected to lateral loads and overturning bending moments due to wind and wave forces. To ensure enough stiffness of the foundation and an acceptable pile-head deflection, monopiles...... with diameters of 4 to 6 m are typically employed. In current practice these piles are traditionally designed by means of the p-y curve method although the method is developed and verified for slender piles in sand with diameters up to approximately 2 m. One of the limitations of the p-y curves used in current...

  8. Piles, tabs and overlaps in navigation among documents

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2010-01-01

    Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles. In an experim......Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles....... In an experiment we compared 11 participants’ navigation with these variations and found strong task effects. Overall, overlapping windows were preferred and their structured layout worked well with some tasks. Surprisingly, tabbed documents were efficient in tasks requiring simply finding a document. Piled...... on document navigation and its support by piling....

  9. Pile-Reinforcement Behavior of Cohesive Soil Slopes: Numerical Modeling and Centrifuge Testing

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2013-01-01

    Full Text Available Centrifuge model tests were conducted on pile-reinforced and unreinforced cohesive soil slopes to investigate the fundamental behavior and reinforcement mechanism. A finite element analysis model was established and confirmed to be effective in capturing the primary behavior of pile-reinforced slopes by comparing its predictions with experimental results. Thus, a comprehensive understanding of the stress-deformation response was obtained by combining the numerical and physical simulations. The response of pile-reinforced slope was indicated to be significantly affected by pile spacing, pile location, restriction style of pile end, and inclination of slope. The piles have a significant effect on the behavior of reinforced slope, and the influencing area was described using a continuous surface, denoted as W-surface. The reinforcement mechanism was described using two basic concepts, compression effect and shear effect, respectively, referring to the piles increasing the compression strain and decreasing the shear strain of the slope in comparison with the unreinforced slope. The pile-soil interaction induces significant compression effect in the inner zone near the piles; this effect is transferred to the upper part of the slope, with the shear effect becoming prominent to prevent possible sliding of unreinforced slope.

  10. Design Optimization of Piles for Offshore Wind Turbine Jacket Foundations

    DEFF Research Database (Denmark)

    Sandal, Kasper; Zania, Varvara

    Numerical methods can optimize the pile design. The aim of this study is to automatically design optimal piles for offshore wind turbine jacket foundations (Figure 1). Pile mass is minimized with constraints on axial and lateral capacity. Results indicate that accurate knowledge about soil...

  11. Environmental remediation activities at WISMUT GmbH, Germany

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Takahashi, Kuniaki; Miyasaka, Yasuhiko; Yamana, Hajimu

    2007-01-01

    The WISMUT GmbH has carried out environmental remediation activities since 1991 in former GDR (German Democratic Republic) to rehabilitate the environment and landscape which have been adversely affected by decades of unrestrained mining and processing of uranium ores. It is worthy of being mentioned especially that WISMUT GmbH's sites including waste rock dump, mill tailings pond, open pit mine and water treatment facilities with an area of 3,700ha have been rehabilitated practically and extensively, and these activities are planned to terminate in 2015 except for the water treatment. For safety assessment after remediation, the value of 1mSv/y (in excess of the background level) is applied to as an individual effective dose, from the recommendation of ICRP (International Commission on Radiological Protection). This report shows a summary of environmental remediation activities carried out by the WISMUT GmbH and related regulatory laws. (author)

  12. Finite Element Investigations on the Interaction between a Pile and Swelling Clay

    DEFF Research Database (Denmark)

    Kaufmann, Kristine Lee; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    of Little Belt Clay. The case study involves a circular concrete pile installed in clay immediately after an excavation. The influence of the swelling soil on the soil–pile interaction and the internal pile forces are analysed by solely observing the upper pile part positioned in the swelling zone...... of the surrounding soil implies upward shear stresses at the soil–pile interface leading to tensile vertical stresses in the pile. In the current case, they exceed the tensile strength of concrete. The tensile vertical stresses peak after 35-50 years. However, the heave of the soil continues for additional 300 years....... It appears that the development of plastic interface implies the shrinkage of the pile....

  13. Cost benefit analysis for remediation of a nuclear industry landfill

    International Nuclear Information System (INIS)

    Parker, Tom; Hardisty, Paul; Dennis, Frank; Liddiard, Mark; McClelland, Paul

    2006-01-01

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure

  14. Cost benefit analysis for remediation of a nuclear industry landfill

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Tom; Hardisty, Paul [WorleyParsons Komex, Bristol (United Kingdom); Dennis, Frank; Liddiard, Mark; McClelland, Paul [UKAEA, Dounreay (United Kingdom)

    2006-09-15

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure.

  15. Hybrid pulse pile-up rejection system as applied to Rutherford backscattering

    International Nuclear Information System (INIS)

    Boie, R.A.; Wildnauer, K.R.

    1977-01-01

    The problems of pulse on pulse pile-up and noise limited pile-up rejectors are considered in detail for Rutherford backscattering spectra. The forms of these spectra allow the distortions from pile-up and the residual pile-up after rejection to be understood via a simple model. Extended calculations allow us to predict the effects quite accurately. A new pile-up rejection system is described. The ''linear'' rejection method is implemented with peak stretchers and advantageously combined with an event counting rejector to provide a versatile high performance system

  16. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  18. Elementary calculation of the shutdown delay of a pile; Calcul elementaire de la periode d'extinction d'une pile

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J

    1949-04-01

    This study analyzes theoretically the progress of the shutdown of a nuclear pile (reactor) when a cadmium rod is introduced instantaneously. For simplification reasons, the environment of the pile is considered as homogenous and only thermal neutrons are considered (delayed neutrons are neglected). Calculation is made first for a plane configuration (plane vessel, plane multiplier without reflector, and plane multiplier with reflector), and then for a cylindrical configuration (multiplier without reflector, multiplier with infinitely thick reflector, finite cylindrical piles without reflector and with reflector). The self-sustain conditions are calculated for each case and the multiplication length and the shutdown delay are deduced. (J.S.)

  19. An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand

    Science.gov (United States)

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  20. Effect of Stemming to Burden Ratio and Powder Factor on Blast Induced Rock Fragmentation- A Case Study

    Science.gov (United States)

    Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.

    2017-08-01

    Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.

  1. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  2. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may be...

  3. Small-Scale Cyclic Tests on Nonslender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from August 2011 till October 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests, the piles have been exposed to cyclic loading consisting of 20-25 load cycles and all the tests have been conducted in a pressure tank....... The objective of the tests has been to investigate the effect of pile diameter, length to diameter ratio and cyclic loading on the soil response for non-slender piles in sand....

  4. In-pile IASCC growth tests of irradiated stainless steels in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Shibata, Akira; Ohmi, Masao [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation-assisted stress corrosion cracking (IASCC) test plan to evaluate in-situ effects of neutron/{gamma}-ray irradiation on crack growth of irradiated stainless steels under high-temperature water conditions for commercial boiling water reactors (BWRs) using the Japan Materials Testing Reactor (JMTR). Crack growth rate and its electrochemical corrosion potential (ECP) dependence are different between in-pile test and post irradiation examination (PIE), but these differences are not fully understood. The objectives of the present study are to understand the difference between in-pile and out-of-pile IASCC growth and to confirm the effectiveness of mitigation due to lowering ECP on in-pile crack growth rates. For in-pile crack growth tests, we have selected a large compact tension specimen such as 0.5T-CT because of validity of SCC growth test at a high stress intensity factor (K-value). For loading a 0.5T-CT specimen up to K - 30 MPa {radical}m, we have adopted a lever type loading unit for in-pile crack growth tests in the JMTR. In this report, an in-pile test plan for crack growth of irradiated SUS316L stainless steels under simulated BWR conditions in the JMTR and current status of development of in-pile crack growth test techniques are presented. (author)

  5. Demonstration and Validation of a Fractured Rock Passive Flux Meter

    Science.gov (United States)

    2015-04-01

    attenuation, and enhanced biodegradation as competitive remediation solutions to chlorinated ethene-contaminated fractured rock. The criteria and...located outside, then some form of weatherproofing for the gauges will be necessary. As a temporary measure, heavy-duty polyethylene bags , secured

  6. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may be...

  7. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  8. Performance assessment of a single-layer moisture store-and-release cover system at a mine waste rock pile in a seasonally humid region (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin

    2018-03-03

    Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.

  9. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  10. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

  11. After the fire: preparing the Windscale Piles for decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Windscale Piles in the UK were taken out of service in 1957 after a fire in Pile 1. They have remained essentially in the same state since that time and during this period there have been periodic inspections of the complete structures to ensure that there is no degradation taking place. The Piles are in a safe condition and would remain so for a considerable period (50 years or more) provided they were undisturbed. However, the Piles must be decommissioned at some time and clearly this will require preparatory work which is now being carried out. The work is scheduled for completion in 1994, at a cost of Pound 8 million at present day prices. (author)

  12. Experimental Investigations of Tension Piles in Sand Subjected to Static and Cyclic Loading

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    to accumulated upwards displacement of the piles and, thus, undesired deflection of the wind turbine structure. This study concerns the effect of cyclic loading on a pile installed in dense sand and loaded in tension. A new laboratory test setup was constructed to make these pile load tests. The thesis discusses...... the advantages and disadvantages of the test setup. The results of cyclic loading tests showed that the loading conditions are very important for the behavior of piles. Some wind and wave conditions can be beneficial and increase the pile capacity while other conditions can be damaging and reduce the pile......The present thesis regards the behavior of the piles in jacket pile foundations used for offshore wind turbines. The piles are often loaded in tension because of the combination of wind and wave conditions and the low self-weight of the wind turbine. The repeated cyclic loading can lead...

  13. SHAKING TABLE TESTS ON SEISMIC DEFORMATION OF PILE SUPPORTED PIER

    Science.gov (United States)

    Fujita, Daiki; Kohama, Eiji; Takenobu, Masahiro; Yoshida, Makoto; Kiku, Hiroyoshi

    The seismic deformation characeteristics of a pile supported pier was examined with the shake table test, especially focusing on the pier after its deformation during earthquakes. The model based on the similitude of the fully-plastic moment in piles was prepared to confirm the deformation and stress characteristic after reaching the fully-plastic moment. Moreover, assuming transportation of emergency supplies and occurrence of after shock in the post-disaster period, the pile supported pier was loaded with weight after reaching fully-plastic moment and excited with the shaking table. As the result, it is identified that the displacement of the pile supported pier is comparatively small if bending strength of piles does not decrease after reaching fully-plastic moment due to nonoccourrence of local backling or strain hardening.

  14. Hydrogeological site investigation for the efficient remediation of uranium mining sites -- an integrated approach

    International Nuclear Information System (INIS)

    Biehler, D.; Jaquet, O.; Croise, J.; Lavanchy, J.-M.

    2002-01-01

    The currently practised remediation of former uranium mines in Eastern Germany involves the flooding of underground and open pit mines, and the stabilization of waste rock dumps and tailings ponds, e.g. by dewatering, covering, improving dams, cleaning effluents. This article presents examples demonstrating that the remediation concepts developed and implemented have failed their targets, resulting in uncontrolled flow behaviour and migration of contaminated water, leading to increased costs and additional threats to the environment. A generic series of steps for an improved remediation management with respect to financial efforts and environmental safety are proposed in terms of an integrated approach. (author)

  15. Experimental study on performance of laterally loaded plumb and battered piles in layered sand

    Directory of Open Access Journals (Sweden)

    Bushra S. Albusoda

    2017-09-01

    Full Text Available This study introduces a series of single and pile group model tests subjected to lateral loads in . multilayered sand from Karbala, Iraq. The aim of this study is to investigate: the performance of the pile groups subjected to lateral loads; in which the pile batter inclination angle is changed; the effect of pile spacing (s/d ratio, the influence of using different number of piles and pile group configuration. Results revealed that the performance of single negative (Reverse Battered piles with inclination of 10° and 20° show a gain of 32% and 76 % in the ultimate lateral capacity over the regular ones. For pile groups, the use of a combination of regular, negative and positive battered piles in different angles of inclination within the same group shows a significant increase in the ultimate lateral load carrying capacity. Increasing the spacing between piles in groups of the same category shows an increase in the group efficiency, also changing the piles number within the group by using different patterns will influence the ultimate lateral resistance of the pile group.

  16. Pulse pile-up. I: Short pulses

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  17. Centrifuge modeling of rapid load tests with open-ended piles

    NARCIS (Netherlands)

    Nguyen, T.C.; Van Lottum, H.; Holscher, P.; Van Tol, A.F.

    2012-01-01

    Rapid and static load tests were conducted on open-ended and close-ended piles in the Deltares GeoCentriflige. hi flight, a pile was driven into the soil. Both fme-grained sand and silt beds were tested. Both the rapid and static soil resistances o f a close-ended pile were higher than the soil

  18. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  19. diSCuSSion of APPliCAtion of refleCtion WAve method to AnAlySiS of ChArACterS of roCK And Soil of beArinG lAyer At the end of Pile duG by mAn PoWer%反射波法在人工挖孔桩桩端持力层岩土性状分析中应用探讨

    Institute of Scientific and Technical Information of China (English)

    程小顺

    2016-01-01

    By comparison of measured results by reflection wave method with detection results by drilled core method of low strain of man power-dug hole pile of a construction, this paper concluded that reflection wave method detection result of low strain can qualitatively be used for judging characters of rock and soil in bearing layer at the end of man power-dug hole grouting pile, and longitudinal wave velocity of rock mass is closely related to intactness of rock and weathering degree of rocks[1,2].%通过某工程人工挖孔桩低应变反射波法实测结果与钻芯法检测结果对比分析,认为低应变反射波法检测结果可定性判断人工挖孔灌注桩桩端持力层岩土性状,岩体的纵波速度与岩石的完整程度、岩石风化程度等因素关系密切[1~2],本文利用低应变反射波法检测结果计算了人工挖孔灌注桩持力层纵波速度,利用计算的持力层纵波速度对人工挖孔桩持力层岩土性状进行了探讨。

  20. Prediction of pile set-up for Ohio soils : executive summary report.

    Science.gov (United States)

    2011-02-01

    ODOT typically uses small diameter driven pipe piles for bridge foundations. When a pile is driven into the subsurface, it disturbs and displaces the soil. As the soil surrounding the pile recovers from the installation disturbance, a time dependant ...

  1. An Estimating Formula of Lateral Load Acting on Stabilizing Piles for Landslide

    OpenAIRE

    尾崎, 叡司; 石田, 陽博

    1984-01-01

    An estimating method of lateral load acting on stabilizing piles in a raw due to the plastic deformation of soil for landslide was discussed in this paper. Special emphasis was put on the problems of the space between stabilizing piles and of lateral load induced in piles through the surrounding soils due to plastic deformation in the vicinity of piles. In order to obtain an analytical result of the lateral load acting on stabilizing piles, the authors tried to solve the equilibrium equation ...

  2. Field Tests to Investigate the Penetration Rate of Piles Driven by Vibratory Installation

    Directory of Open Access Journals (Sweden)

    Zhaohui Qin

    2017-01-01

    Full Text Available Factors directly affecting the penetration rate of piles installed by vibratory driving technique are summarized and classified into seven aspects which are driving force, resistance, vibratory amplitude, energy consumption, speeding up at the beginning, pile plumbness keeping, and slowing down at the end, from the mechanism and engineering practice of the vibratory pile driving. In order to find out how these factors affect the penetration rate of the pile in three major actors of vibratory pile driving: (i the pile to be driven, (ii the selected driving system, and (iii the imposed soil conditions, field tests on steel sheet piles driven by vibratory driving technique in different soil conditions are conducted. The penetration rates of three different sheet pile types having up to four different lengths installed using two different vibratory driving systems are documented. Piles with different lengths and types driven with or without clutch have different penetration rates. The working parameters of vibratory hammer, such as driving force and vibratory amplitude, have great influences on the penetration rate of the pile, especially at the later stages of the sinking process. Penetration rate of piles driven in different soil conditions is uniform because of the different penetration resistance including shaft friction and toe resistance.

  3. Probabilistic evaluation method for axial capacity of single pile based on pile test information. Saika shiken kekka wo koryoshita kuienchoku shijiryoku no kakuritsuronteki hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Suzuki, M. (Shimizu Construction Co. Ltd., Tokyo (Japan)); Nakatani, S. (Ministry of Construction Tokyo (Japan)); Matsui, K. (CTI Engineering Co. Ltd., Tokyo (Japan))

    1991-12-20

    To consider the safety and economics in the design of pile, the reasonable evaluation on estimated accuracy from the accuracy of equation of pile capacity and probabilistic evaluation method is necessary. Therefore, the data analysis based on the collection and summary of the results from load tests of piles is one of powerful approach. In this study, selection of the parameters that cannot obtained from probabilistic model and load test and combination between statistical and experimental data by using Baysian probabilistic theory was examined. As the feature of this study, use of the design pile capacity equation based on the model of evaluation of pile capacity, consideration of the intrinsic difference between statistical data and results of load tests by using Baysian probabilistic theory and quantitative examination of applicability of the proposed method and the results of load tests are given. 24 refs., 5 figs., 7 tabs.

  4. The effect of loading rate on pile bearing capacity of saturated sand

    NARCIS (Netherlands)

    Archeewa, E.

    2005-01-01

    Pile load tests are commonly used by engineers to determine its bearing capacity. At present, there are three methods of pile load tests: the static, the dynamic and the quasi-static test. The static pile load test is done by applying an axial load on the pile with a long duration. The dynamic and

  5. Critical sizes and flux distributions in the shut down pile

    International Nuclear Information System (INIS)

    Banchereau, A.; Berthier, P.; Genthon, J.P.; Gourdon, C.; Lattes, R.; Martelly, J.; Mazancourt, R. de; Portes, L.; Sagot, M.; Schmitt, A.P.; Tanguy, P.; Teste du Bailler, A.; Veyssiere, A.

    1957-01-01

    An important part of the experiments carried out on the reactor G1 during a period of shut-down has consisted in determinations of critical sizes, and measurements of flux distribution by irradiations of detectors. This report deals with the following points: 1- Critical sizes of the flat pile, the long pile and the uranium-thorium pile. 2- Flux charts of the same piles, and study of an exponential experiment. 3- Determination of the slit effect. 4- Calculation of the anisotropy of the lattice. 5- Description of the experimental apparatus of the irradiation measurements. (author) [fr

  6. Reducing Local Scouring at Bridge Piles Using Collars and Geobags

    Directory of Open Access Journals (Sweden)

    Shatirah Akib

    2014-01-01

    Full Text Available The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.

  7. Ground Vibration Isolation of Multiple Scattering by Using Rows of Tubular Piles as Barriers

    Directory of Open Access Journals (Sweden)

    Miao-miao Sun

    2014-01-01

    Full Text Available A new formal solution for the multiple scattering of plane harmonic waves by a group of arbitrary configuration tubular piles in an elastic total space is derived. Each order of scattering satisfies prescribed boundary conditions at the interface of tubular piles, which is delivered as the sum of incident and scattering waves. The first order performs the scattering wave by each scattered pile and the subsequent orders resulted from the excitation of each pile of first order of scattering from the remaining tubular piles. Advanced scattering orders can be regarded as the same manners. Several series of scattering coefficients are figured out with the aids of addition theorem so that the exact steady-state solution for the scattered displacement and stress is obtained. Particularly, when internal diameter of tubular piles tends to be infinitely small, it degenerates to a solid pile problem. By imposing the normalized displacement amplitudes and transmissibility indices, the influences of specific parameters such as scattering orders, internal and external diameter ratio of piles, pile material rigidity, position and distances between tubular pile and pile rows, and pile numbers are discussed. Certain recommended conclusions have been drawn as the guidelines of practical engineering design for discontinuous barrier of tubular piles.

  8. Assessment of Time Functions for Piles Driven in Clay

    DEFF Research Database (Denmark)

    Augustesen, Anders; Andersen, Lars; Sørensen, Carsten Steen

    The vertical bearing capacity of piles situated in clay is studied with regard to the long-term set-up. A statistical analysis is carried out on the basis of data from numerous static loading tests. The database covers a wide range of both soil and pile properties, which ensures a general....... Hence, it is suggested that a constant set-up factor should be applied for the prediction of pile capacities at a given time after initial driving....

  9. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  10. Lateral displacement and pile instability due to soil liquefaction using numerical model

    Directory of Open Access Journals (Sweden)

    Abdel-Salam Ahmed Mokhtar

    2014-12-01

    Extensive studies were performed to investigate the effects of soil submergence, pile diameter, earthquake magnitude and duration on pile lateral deformation and developed bending moment along pile shaft. Study results show that earthquake magnitude and time duration have a particular effect on the pore water pressure generation and hence pile lateral deformation and bending moments. They also show the benefits of using relatively large piles to control the lateral displacement. Recommendations are presented for designers to perform comprehensive analysis and avoid buckling and plastic hinge failures.

  11. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  12. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd 3 of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables

  13. Synthesis of concrete bridge piles prestressed with CFRP systems.

    Science.gov (United States)

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  14. Out-of-pile and in-pile temperature noise investigations: a survey of methods results and models

    International Nuclear Information System (INIS)

    Dentico, G.; Giovannini, R.; Marseguerra, M.; Pacilio, N.; Taglienti, S.; Tosi, V.; Vigo, A.; Oguma, R.

    1982-01-01

    A review is given of the main results obtained from temperature noise measurements performed in out-of-pile sodium loops on fast fuel element mock-ups. Sources of data were thermocouples placed in the central axis of the channel downstream from the bundle end. Autoregressive moving average (ARMA) models have been applied to several temperature time series; the analysis shows that a simple ARMA (3, 2) model adequately accounts for the observed fluctuations. Finally, highlights of a heat transfer stochastic model are also reported together with a preliminary validation against in-pile experimental data. (author)

  15. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Millot, J P [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    circumstances... - experimental investigations on power excursions linked with precise initial conditions: the aim of this work is to define the basis for theoretical research, and the limits beyond which the risks of explosion cease to be negligible. The research work will be done so as to enable checking with outside reactor experiments and to continue them in the explosion field. - studies of the behaviour of the reactor control-instrumentation. - experimental investigations related with transient operation with initial short life (study of boiling, temperature measurements, vacuum pressure and fraction...) with the aim of defining the hypotheses of a theory on swimming-pool reactor kinetics related to heat transfer phenomena, - investigations of the behaviour of fuels in reactors (these experiments are planned to be carried out in loops) Preliminary experimental results. CABRI went critical on the 21 December 1963. The first transient experiments are expected for March 1964. (authors) [French] II devenait necessaire de construire en France une pile qui permette d'etudier les conditions de fonctionnement des installations futures, de choisir, tester et mettre au point les dispositifs de securite a adopter. On a choisi une pile a eau, type de pile qui correspond aux constructions les plus nouvelles du CEA en matiere de piles laboratoire ou d'universite; il importe en effet de pouvoir evaluer les risques presentes et d'etudier les possibilites d'augmentation de puissance constamment demandees par les utilisateurs: il est particulierement interessant d'eclaircir les phenomenes d'oscillation de puissance et les risques de calefaction (burn out). Les programmes de travaux sur CABRI seront harmonises avec les travaux effectues sur les Spert americains de meme type; lors de sa construction des contacts fructueux ont ete etablis avec les specialistes americains qui ont defini les premiers de ces reacteurs. La communication donne une description sommaire de la pile et decrit le

  16. Lateral response of pile foundations in liquefiable soils

    Directory of Open Access Journals (Sweden)

    Asskar Janalizadeh

    2015-10-01

    Full Text Available Liquefaction has been a main cause of damage to civil engineering structures in seismically active areas. The effects of damage of liquefaction on deep foundations are very destructive. Seismic behavior of pile foundations is widely discussed by many researchers for safer and more economic design purposes. This paper presents a pseudo-static method for analysis of piles in liquefiable soil under seismic loads. A free-field site response analysis using three-dimensional (3D numerical modeling was performed to determine kinematic loads from lateral ground displacements and inertial loads from vibration of the superstructure. The effects of various parameters, such as soil layering, kinematic and inertial forces, boundary condition of pile head and ground slope, on pile response were studied. By comparing the numerical results with the centrifuge test results, it can be concluded that the use of the p-y curves with various degradation factors in liquefiable sand gives reasonable results.

  17. Discovery: Pile Patterns

    Science.gov (United States)

    de Mestre, Neville

    2017-01-01

    Earlier "Discovery" articles (de Mestre, 1999, 2003, 2006, 2010, 2011) considered patterns from many mathematical situations. This article presents a group of patterns used in 19th century mathematical textbooks. In the days of earlier warfare, cannon balls were stacked in various arrangements depending on the shape of the pile base…

  18. The homogenisation of bulk material in blending piles.

    NARCIS (Netherlands)

    Gerstel, A.W.

    1979-01-01

    In this thesis the homogenisation of bulk material in three types of piles is dealt with. The homogenisation implies that the fluctuations of a material proprety in the input flow of the pile are transformed into output fluctuations, whereby the latter ones are evened out. Analyses are presented

  19. Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles

    Science.gov (United States)

    John Klepac; Dana Mitchell; Jason Thompson

    2015-01-01

    Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...

  20. Development of an integrated economic decision-support tool for the remediation of contaminated sites. Overview note

    International Nuclear Information System (INIS)

    Samson, R.; Bage, G.

    2004-05-01

    This report concludes the first design phase of an innovative software tool which, when completed, will allow managers of contaminated sites to make optimal decisions with respect to site remediation. The principal objective of the project was to develop the foundations for decision-support software (SITE VII) which will allow a comprehensive and rigorous approach to the comparison of remediation scenarios for sites contaminated with petroleum hydrocarbons. During this first phase of the project, the NSERC Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal has completed four stages in the design of a decision-support tool that could be applied by any site manager using a simple computer. These four stages are: refinement of a technico-economic evaluation model; development of databases for five soil remediation technologies; design of a structure for integration of the databases with the technico-economic model; and simulation of the remediation of a contaminated site using the technico-economic model and a subset of the databases. In the interim report, the emphasis was placed on the development of the technico-economic model, supported by a very simple, single-technology simulation of remediation. In the present report, the priority is placed on the integration of the different components required for the creation of decision-support software based on the technico-economic model. An entire chapter of this report is devoted to elaborating the decision structure of the software. The treatment of information within the software is shown schematically and explained step-by-step. Five remediation technologies are handled by the software: three in-situ technologies (bio-venting, bio-slurping, bio-sparging) and two ex-situ technologies (thermal desorption, Bio-pile treatment). A technology file has been created for each technology, containing a brief description of the technology, its performance, its criteria of applicability

  1. Picking up Clues from the Discard Pile

    Science.gov (United States)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil. On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image. This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench. Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches. For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench. The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed

  2. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Science.gov (United States)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  3. Physical Modelling of Cyclic Laterally Loaded Pile in Cohesionless Soil

    DEFF Research Database (Denmark)

    Hansen, Mette; Wolf, Torben K.; Rasmussen, Kristian L.

    Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical in the service......Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical...... in the serviceability limit state. In this paper small-scale testing of a pile subjected to cyclic, lateral loading is treated in order to investigate the effect of cyclic loading. The test setup, which is an improvement of a previous setup, is described and the first results of testing are compared with previous...

  4. Laboratory Testing of Cyclic Laterally Loaded Pile in Cohesionless Soil

    DEFF Research Database (Denmark)

    Roesen, Hanne Ravn; Ibsen, Lars Bo; Hansen, Mette

    2013-01-01

    Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical in the service......Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical...... in the serviceability limit state. In this paper small-scale testing of a pile subjected to cyclic, lateral loading is treated in order to investigate the effect of cyclic loading. The test setup, which is an improvement of a previous setup, is described and the first results of testing are compared with previous...

  5. Modelling of pile load tests in granular soils : Loading rate effects

    NARCIS (Netherlands)

    Nguyen, T.C.

    2017-01-01

    People have used pile foundations throughout history to support structures by transferring
    loads to deeper and stronger soil layers. One of the most important questions during the design of the pile foundation is the bearing capacity of the pile. The most reliable method for determining the

  6. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  7. Sandstone Relief Geohazards and their Mitigation: Rock Fall Risk Management in the Bohemian Switzerland National Park

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Zuzana; Zvelebil, J.

    2005-01-01

    Roč. 44, - (2005), s. 53-58 ISSN 1682-5519. [Sandstone Landscapes in Europe. Past, Present and Future. International Conference on Sandstone Landscapes /2./. Vianden, 25.05.2005-28.05.2005] Keywords : sandstones * rock-slope instability * rock fall * risk evalution and mitigation * monitoring net * remedial works Subject RIV: DO - Wilderness Conservation

  8. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled or...

  9. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  10. 1981 radon barrier field test at Grand Junction uranium mill tailings pile

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.; Baker, E.G.; Freeman, H.D.

    1983-04-01

    Technologies to reduce radon released from uranium mill tailings are being investigated by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology development program. These technologies include: (1) earthen cover systems, (2) multilayer cover systems, and (3) asphalt emulsion radon barrier systems. During the summer of 1981, a field test was initiated at the Grand Junction, Colorado, uranium tailings pile to evaluate and compare the effectiveness of each radon barrier system. Test plots cover about 1.2 ha (3 acres). The field test has demonstrated the effectiveness of all three cover systems in reducing radon release to near background levels ( 2 s - 1 ). In conjunction with the field tests, column tests (1.8 m diameter) were initiated with cover systems similar to those in the larger field test plots. The column tests allow a direct comparison of the two test procedures and also provide detailed information on radon transport

  11. 3D Centrifuge Modeling of the Effect of Twin Tunneling to an Existing Pile Group

    Directory of Open Access Journals (Sweden)

    M. A. Soomr

    2017-10-01

    Full Text Available In densely built urban areas, it is inevitable that tunnels will be constructed near existing pile groups. The bearing capacity of a pile group depends on shear stress along the soil-pile interface and normal stress underneath the pile toe while the two would be adversely affected by the unloading process of tunneling. Although extensive studies have been conducted to investigate the effects of tunnel construction on existing single piles, the influence of twin tunnel advancement on an existing pile group is merely reported in the literature. In this study, a series of three-dimensional centrifuge tests were carried out to investigate the response of an existing pile group under working load subjected to twin tunneling at various locations in dry Toyoura sand. In each twin tunneling test, the first tunnel is constructed near the mid-depth of the pile shaft, while the second tunnel is subsequently constructed either next to, below or right underneath the pile toe (Tests G_ST, G_SB and G_SU, respectively. Among the three tests, the 2nd tunnel excavated near the pile toe (Test G_ST results in the smallest settlement but the largest transverse tilting (0.2% of pile group. Significant bending moment was induced at the pile head (1.4 times of its bending moment capacity due to the 2nd tunnel T. On the contrary, tunneling right underneath the toe of pile (i.e., Test G_SU results in the smallest tilting but largest settlement of the pile group (4.6% of pile diameter and incremental mobilisation of shaft resistance (13%. Due to stress release by the twin tunneling, the axial force taken by the front piles close to tunnels was reduced and partially transferred to the rear piles. This load transfer can increase the axial force in rear piles by 24%.

  12. Static Tension Tests on Axially Loaded Pile Segments in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    This paper provides laboratory test results of static axially loaded piles in sand. With a newly developed test setup, the pile-soil interface friction was investigated by using an open-ended steel pile segment with a diameter of 0.5 m. Use of a pile length of 1 m enabled the pile-soil interface...... friction to be analyzed at a given soil horizon while increasing the vertical effective stress in the sand. Test results obtained by this approach can be analyzed as single t-z curves and compared to predictions of unit shaft friction from current design methods for offshore foundations. The test results...... showed best agreement with the traditional design method given in the American Petroleum Institute (API) design code. When t-z curves obtained from the test results were compared to t-z curve formulations found in the literature, the Zhang formulation gave good predictions of the initial and post...

  13. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam

    2015-02-01

    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  14. Numerical and experimental assessment of thermal performance of vertical energy piles: An application

    International Nuclear Information System (INIS)

    Gao Jun; Zhang Xu; Liu Jun; Li Kuishan; Yang Jie

    2008-01-01

    A district space heating and cooling system using geothermal energy from bearing piles was designed in Shanghai and will be installed in two years before 2010. This paper describes the pile-foundation heat exchangers applied in an energy pile system for an actual architectural complex in Shanghai, 30% of whose cooling/heating load was designed to be provided by a ground-source heat pump (GSHP) system using the energy piles. In situ performance tests of heat transfer are carried out to figure out the most efficient type of energy pile and to specify the design of energy pile system. Numerical investigation is also performed to confirm the test results and to demonstrate the medium temperature variations along the pipes. The averaged heat resistance and heat injection rate of different types of energy piles are calculated from the test and numerical results. The effect of pile type, medium flow rate and inlet temperature on thermal performance is separately discussed. From the viewpoint of energy efficiency and adjustability, the W-shaped underground heat exchanger with moderate medium flow rate is finally adopted for the energy pile system

  15. Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Chris; Corbett, Catherine [Lower Columbia River Estuary Partnership; Ebberts, Blaine [U.S. Army Corps of Engineers

    2009-07-27

    The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed

  16. Dynamic Soil-Pile Interaction for large diameter monopile foundations

    DEFF Research Database (Denmark)

    Zania, Varvara

    2013-01-01

    of the study is to analyse the dynamic interaction of the soil and a single pile embedded in it by accounting for the geometric and stiffness properties of the pile. In doing so, a semi – analytical approach is adopted based on the fundamental solution of horizontal pile vibration by Novak and Nogami (1977...... eigenfrequencies of the soil layer do not affect the soil – pile interaction. The decrease of the eigefrequency of the OWT depends on the aforementioned variation of the dynamic stiffness and the slenderness ratio of the monopile.......Monopile foundations have been used in a large extent to support offshore wind turbines (OWT), being considered as a reliable and cost effective design solution. The accurate estimation of their dynamic response characteristics is essential, since the design of support structures for OWTs has been...

  17. Estimating setup of driven piles into Louisiana clayey soils.

    Science.gov (United States)

    2010-11-15

    Two types of mathematical models for pile setup prediction, the Skov-Denver model and the newly developed rate-based model, have been established from all the dynamic and static testing data, including restrikes of the production piles, restrikes, st...

  18. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    exceptional circumstances... - experimental investigations on power excursions linked with precise initial conditions: the aim of this work is to define the basis for theoretical research, and the limits beyond which the risks of explosion cease to be negligible. The research work will be done so as to enable checking with outside reactor experiments and to continue them in the explosion field. - studies of the behaviour of the reactor control-instrumentation. - experimental investigations related with transient operation with initial short life (study of boiling, temperature measurements, vacuum pressure and fraction...) with the aim of defining the hypotheses of a theory on swimming-pool reactor kinetics related to heat transfer phenomena, - investigations of the behaviour of fuels in reactors (these experiments are planned to be carried out in loops) Preliminary experimental results. CABRI went critical on the 21 December 1963. The first transient experiments are expected for March 1964. (authors) [French] II devenait necessaire de construire en France une pile qui permette d'etudier les conditions de fonctionnement des installations futures, de choisir, tester et mettre au point les dispositifs de securite a adopter. On a choisi une pile a eau, type de pile qui correspond aux constructions les plus nouvelles du CEA en matiere de piles laboratoire ou d'universite; il importe en effet de pouvoir evaluer les risques presentes et d'etudier les possibilites d'augmentation de puissance constamment demandees par les utilisateurs: il est particulierement interessant d'eclaircir les phenomenes d'oscillation de puissance et les risques de calefaction (burn out). Les programmes de travaux sur CABRI seront harmonises avec les travaux effectues sur les Spert americains de meme type; lors de sa construction des contacts fructueux ont ete etablis avec les specialistes americains qui ont defini les premiers de ces reacteurs. La communication donne une

  19. Development of p-y curves of laterally loaded piles in cohesionless soil.

    Science.gov (United States)

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2014-01-01

    The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75%) was increased in the range of 40-95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method.

  20. Development of p-y Curves of Laterally Loaded Piles in Cohesionless Soil

    Science.gov (United States)

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2014-01-01

    The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75%) was increased in the range of 40–95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method. PMID:24574932

  1. Development of p-y Curves of Laterally Loaded Piles in Cohesionless Soil

    Directory of Open Access Journals (Sweden)

    Mahdy Khari

    2014-01-01

    Full Text Available The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75% was increased in the range of 40–95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method.

  2. PROCESS DIAGRAMS FOR INSTALLATION OF DRIVEN PILES IN PENETRATED WELLS

    Directory of Open Access Journals (Sweden)

    Kovalev Vladimir Aleksandrovich

    2017-03-01

    Full Text Available This article presents the main options of improved and newly devised designs and process diagrams for installation of foundations made of driven, or jack, piles in the penetrated wells with expanded shoe, mainly in weak wet (waterlogged and water-saturated soils. The article presents six options of process diagrams for installation of driven piles in penetrated wells, listing the main procedures: for well-compacted weak soils, for the case when the water ingress is excluded, for the case when it is necessary to increase the load-bearing capacity of pile's bearing face in the waterlogged soils, for the case when the load-bearing capacity of the pile shall be increased both for the end and for the sides, for the case when peat or other biogenous water-saturated soils are present at the bottom of the well, and for the case when there is no contracted zone nor practical possibility to ensure the stability of the walls. The proposed six options of process diagrams for installation of the driven piles in penetrated wells provide expansion of their area of application regarding the soil conditions, increase of load-bearing capacity, and possibility of using jack systems for driving the piles under conditions of dense urban development.

  3. Main issues of pile foundation at waterfront development and its prevention method

    Science.gov (United States)

    Manap, N.; Tan, K. Y.; Syahrom, N.

    2017-12-01

    Pile foundation is widely used in construction and building marine structures. This is because pile foundation is an important structure and should have long-term durability. However, in waterfront development, a lot of issues from the seawater should be considered distinctively because it consists of many problems that can affect the building structure especially the foundation of the building. Thus, a research should be conducted to identify issues of pile foundation at waterfront development and determine its prevention methods. The research was carried out through interviews with the developers and contractors from the projects of Lexis Hibiscus at Port Dickson, Negeri Sembilan and Redevelopment for Deep-Water Facilities at Quay 6 in Pasir Gudang, Johor, Malaysia. The objectives of this research are to identify issues of pile foundation and to determine the prevention methods of pile foundation issues at waterfront development. All respondents agreed that the main issues of pile foundations at waterfront development are the wave and tide condition. The prevention methods of the issue faced at waterfront development that are most frequently used for the pile foundation are coating system and concrete cover. This research is beneficial to all developers and contractors to ensure pile foundations at waterfront development can be protected by using the prevention methods.

  4. GPS-based handheld device for mapping contaminated areas

    International Nuclear Information System (INIS)

    Paridaens, J.

    2005-01-01

    Sometimes one is confronted with the challenge to map large areas with enhanced radioactivity. Examples are mine tailings or waste rock piles, deposits of the phosphate industry, flooding zones contaminated by effluents of plants processing ores containing enhanced natural radiation, nuclear accident sites etc. Car borne measuring equipment is not always an option, as the terrain might be rough and only accessible by foot. Airborne mapping with helicopters on the other hand is fast, but expensive, not readily available, shows difficulties with complex topography and lacks the necessary detail. The objective of this study was to create a portable and easily usable tool for the real time logging of radiation and location data, allowing mapping the radioactivity by simply walking over any kind of terrain with the portable equipment and post processing the data in the office. We also assessed the performance of the GPS based system on contaminated sites with areas varying from less than a hectare to several tens of hectares, with respect to speed, precision and ease of use. At sites of large scale mining and processing of uranium ore, tailings and waste rock piles are today the most visible relics of the uranium extractive industry. These mining relics are constantly subjected to weathering and leaching processes causing the dissemination of radioactive and toxic elements and sometimes requiring remedial operations. The in situ remediation of waste rock piles usually includes their revegetation for minimizing the water infiltration and for increasing surface soil stability. Thanks to its biomass density and longevity, the perennial vegetation plays an important role in stabilisation of the water cycling. The buffer role of forest vegetation can reduce water export from watersheds as well as erosion and hydrological losses of chemicals including radionuclides from contaminated sites. If long term reduction of contaminant dispersion at revegetated uranium mining sites is

  5. Tension Tests On Bored Piles In Sand

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Clausen, Johan; Damkilde, Lars

    2006-01-01

    The lengths of the bored piles varied from 2 m to 6 m and all were of a diameter of 140 mm. The piles were tested to failure in tension and the load-displacement relations were recorded. The investigation has shown pronounced differences between the load bearing capacities obtained by different...... design methods. The methods proposed by Fleming et al. and Reese & O’Neill seem to produce the best match with the test results....

  6. Investigation of a North Sea oil platform drill cuttings pile

    International Nuclear Information System (INIS)

    Hartley, J.P.; Watson, T.N.

    1993-01-01

    A comprehensive study of the drill cuttings pile at North West Hutton was undertaken in August, 1992. Fifty one wells have been drilled in the field, mainly using mineral oil based drill fluids, with the cuttings discharged to sea. The cuttings pile was mapped using a 3D side scan sonar system and the periphery was defined by towed side scan sonar and gamma ray spectrometer surveys. The pile was cored by vibrocorer to a maximum depth of 2.35m. The cores were assessed geotechnically and subsampled for physical and chemical analyses. Environmental impact was investigated by grab sampling at 12 stations out to 7,500m, selected on the basis of cuttings distribution. The results are relevant to the corrosion and long-term environmental effects of oily cuttings piles, the remove/leave alone debate, and abandonment planning. The cores were subsampled for hydrocarbon, trace metals and sulphide content and grain size analysis. Metals analyses included identification of metal species to estimate bioavailability and implications of pile disturbance. Estimates of oil migration within the pile are made from correlation of the chemical analyses results with the drilling history, in particular the change from diesel to low toxicity base oil in 1984. Strong gradients were found in the faunal data which correlate well with the physical and chemical results. Dense populations of opportunists species were present adjacent to the platform, including a novel molluscan opportunist. This is the first comprehensive study of an oily cuttings pile and is a contribution to the debate on their long term impact and fate on abandonment

  7. Study of the light emitted in the moderation of a heavy-water pile; Etude de la lumiere emise dans le moderateur d'une pile a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10{sup 6} photons/cm{sup 2} of water, when the pile power equals 1 watt. (author) [French] Lors du fonctionnement d'un reacteur utilisant l'eau comme moderateur de neutrons, on constate l'apparition d'une lumiere bleutee au sein du liquide. Une etude approfondie de ce rayonnement, entreprise sur la pile Fontenay-aux-Roses a montre que le spectre est identique a celui caracterisant la lumiere produite par effet Cerenkov. L'intensite lumineuse en fonction de Ia puissance de la pile, lors d'une divergence croit exponentiellement en fonction du temps avec une periode egale a celle de la montee en puissance. L'examen des diverses particules presentes dans la pile a permis de conclure que seuls les electrons ayant une energie superieure a 260 keV peuvent produire la lumiere Cerenkov. La source lumineuse ainsi constituee est d'environ 2.10{sup 6} photons/cm{sup 2} d'eau, lorsque la puissance de la pile est egale a 1 watt. (auteur)

  8. Nondestructive methods of evaluating quality of wood in preservative-treated piles

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2000-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood in used preservative-treated Douglas-fir and southern pine piles. Stress wave measurements were conducted on each pile section. Stress wave propagation speeds in the piles were then obtained to estimate their MOE. This was followed by...

  9. Seismic analysis of the pile foundation of the reactor building of the NPP ANGRA 2

    International Nuclear Information System (INIS)

    Wolf, J.P.; Arx, G.A. von; Barros, F.C.P. de; Kakubo, M.

    1981-01-01

    A pile foundation subjected to dynamic loads interacts with the surrounding soil. Frequency-dependent stiffness and radiation damping must be properly taken into account in pile-soil-pile interaction. Assuming that the soil consists of horizontal layers of elastic material with hysteretic damping, the dynamic stiffness of a group of (even battered) piles can be determined, accounting rigorously for the cavities where the soil is subsequently replaced by the piles. By way of illustration, this substructure procedure, which works in the frequency domain, is applied to the final design of the pile foundation of the Reactor Building of Angra 2 in Brazil. Below the basemat, a strongly horizontally-layered compressive soil of 36 m thickness rests on bedrock. The reactor building is founded on 202 endbearing piles and 88 floating piles of 15 m length. Every pile is modelled. Along each pile, compatibility between the pile and the soil in all three directions is formulated in seven nodes. The basemat is assumed to be rigid. On the level of bedrock a broad-banded response spectrum specifies the excitation (outcropping). (orig./WL)

  10. Airborne thermography of temperature patterns in sugar beet piles

    Science.gov (United States)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  11. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  12. Numerical modeling of centrifuge cyclic lateral pile load experiments

    Science.gov (United States)

    Gerolymos, Nikos; Escoffier, Sandra; Gazetas, George; Garnier, Jacques

    2009-03-01

    To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussées. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimental p-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, “pinching” behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.

  13. The Influence of Time on Bearing Capacity of Driven Piles

    DEFF Research Database (Denmark)

    Jensen, J. Lysebjerg; Augustesen, A.; Sørensen, Carsten S.

    2004-01-01

    In Danish engineering practice, one of the ways to determine the ultimate bearing capacity of an axially loaded pile is by means of geostatic formulas. In the equation describing the contribution from the shaft friction to the total bearing capacity for piles located entirely or partly in clay......, a regeneration factor appears. The regeneration factor accounts for effects of dissipation of pore pressure due to pile driving and true time effects such as ageing on the ultimate bearing capacity. Normally the factor is 0.4 but in this paper, the influence of the undrained shear strength and time...... on the regeneration factor is investigated. A relation between the quantities is proposed, which in the end may imply an economical benefit in the design of pile foundations....

  14. STUDY ON THE REASONABLE EVALUATION OF SOIL PROPERTIES APPLIED IN THE DESIGN OF SHINSO FOUNDATION (JAPANESE STYLE CAISSON TYPE PILE) ON THE SLOPE

    Science.gov (United States)

    Yasuzato, Toshinori; Samizo, Junichi; Maeda, Yoshito; Abe, Tetsuo; Matsuki, Satoshi; Okutani, Junpei

    The objective of this study is to find ways to maximize the design economy of the shinso foundation (Japanese style caisson type pile) on the rock slope through an evaluation of strength properties of the rock before and after plasticity. We investigate the influence of soil properties on the design result by carrying out experiments which give the soil properties before and after plasticity and by doing parametric studies on the soil properties. Experiment using small-scale shinso foundation is performed to verify the validity of result of examinations. Comparison between the experiment and the analytical result reveals the bearing capacity characteristics of the shinso foundation on the slope and gives new insights on the more economical design of the shinso foundation.

  15. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  16. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  17. Lateral resistance of piles near vertical MSE abutment walls.

    Science.gov (United States)

    2013-03-01

    Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...

  18. A prospective study of outcome from rubber band ligation of piles.

    Science.gov (United States)

    Longman, R J; Thomson, W H F

    2006-02-01

    With the recent introduction of stapled anopexy it is timely to review the benefits of existing treatment options for piles. This study investigates the effectiveness and safety of rubber band ligation (RBL) of piles in the outpatient setting. Two hundred and fifty-two consecutive patients referred with piles in an 18-month period were studied prospectively. In those patients deemed suitable for banding of piles, data were collected on symptoms, proctoscopic appearance and degree of piles. Short and long-term outcome data were recorded for success of treatment and complications. Of 203 patients considered suitable and who attended for RBL, 176 kept their follow-up appointment. One hundred and forty-eight (84%) had been rendered symptom-free. A third of patients, however, had proctoscopic evidence of persistent piles, whilst in half of those patients with continuing symptoms the anal cushions appeared normal. Six (3%) patients had suffered a complication. Long-term follow-up by questionnaire found that 44% of respondents remained asymptomatic at a median of 46 months from banding. Six (5%) of 117 responders to the questionnaire had, though previously normal, suffered a postbanding impairment of continence. Most patients with piles of any degree can be safely managed by rubber band ligation, but return of symptoms in the long term affects more than half of patients treated.

  19. Environmental restoration plans and activities in Germany

    International Nuclear Information System (INIS)

    Ettenhuber, E.

    1997-01-01

    The programme for remediation of radioactively contaminated sites due to mining and milling has two parts: (1) decommissioning and remediation programme for the Wismut sites and (2) investigation programme for ''old'' sites. The legal basis for decommissioning and remediation of the Wismut sites is the Regulations for Radiological Protection and Control of the former German Democratic Republic (GDR). In the beginning the individual projects concentrated on the elimination of hazard sources, problems of mining safety and underground remediation including flooding of mine working areas. Now the activities have shifted more towards surface remediation. The paper discusses major problems, namely stabilization of tailings, prevention of ground water contamination, backfilling of the open pit and covering of waste rock piles. The remediation of Wismut sites will still take about 10 more years. Investigations for ''old'' sites are carried out to arrive at general decisions on whether and for which ''old'' sites remedial measures should be considered. The results of these investigations so far show that remedial measures may be needed for 10 - 15 % of the ''old'' sites and, a framework legislation is required for the same. (author)

  20. Gas reactor in-pile safety test project (GRIST-2)

    International Nuclear Information System (INIS)

    Kelley, A.P. Jr.; Arbtin, E.; St Pierre, R.

    1979-01-01

    Although out-of-pile tests may be expected to confirm individual phenomena models in core disruptive accident analysis codes, only in-pile tests are capable of verifying the extremely complex integrated model effects within the appropriate time phase for these accidents. For this reason, the GRIST-2 project, the purpose of which is to design and construct an in-pile helium loop capable of transient safety testing in the TREAT facility in Idaho, forms a cornerstone of the US GCFR safety program. The project organization, experiment program, facility, helium system design, and schedule which have been selected to meet the objectives are described

  1. Multi-scale sensitivity analysis of pile installation using DEM

    Science.gov (United States)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2017-12-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  2. Cascades of pile-up and dead time

    International Nuclear Information System (INIS)

    Pomme, S.

    2008-01-01

    Count loss through a cascade of pile-up and dead time is studied. Time interval density-distribution functions and throughput factors are presented for counters with a series arrangement of pile-up and extending or non-extending dead time. A counter is considered, where an artificial dead time is imposed on every counted event, in order to control the length and type of dead time. For such a system, it is relatively easy to determine an average count-loss correction factor via a live-time clock gated by the imposed dead-time signal ('live-time mode'), or otherwise to apply a correction factor based on the inversion of the throughput function ('real-time mode'). However, these techniques do not account for additional loss through pulse pile-up. In this work, counting errors associated with neglecting cascade effects are calculated for measurements in live-time and real-time mode

  3. Investigation of Redistribution of Pile Foundation Forces Under Successive Loading of Its Elements

    Science.gov (United States)

    Sedin, Vladimir; Bikus, Kateryna; Kovba, Vladislav

    2017-12-01

    Redistribution of pile foundation forces under successive loading of its elements was investigated under laboratory conditions. A segment of pile foundation model was taken for use in the case study. Load tests on the pile foundation model segment, without joining its elements (pile and plate, which turns into grillage) and based on different combinations of static loadings were conducted. This proved that the loading of a plate causes skin friction on some length of the pile side surface as well as providing additional loading and settlement. Test results have shown that application of successive elements enables the foundation to carry loads up to 13% higher than in the case of a standard pile foundation loading with the same settlement rates.

  4. In-pile creep strain and failure of CW 316 Ti pressurized tubes

    International Nuclear Information System (INIS)

    Boutard, J.L.; Maillard, A.; Carteret, Y.; Levy, V.; Meny, L.

    1984-06-01

    The in-pile creep and failure behavior of CW 316 Ti pressurized tubes irradiated in the same rig at 660-680 0 C and 81.4 dpaF max in Phenix is presented and compared to monitors of the same heat. The in-pile plastic strains are of the same order of what is expected from the monitors and are rather independent of the dose rate in the range 4 to 9 x 10 -3 dpaF/h. Such a behavior supports the assumption that the out-of-pile deformation mechanisms are operative in pile and a certain balance occurs between modification of the microstructure, dynamic hardening and deformation mechanisms due to irradiation. Examinations by fractography and optical micrography, show that the failures are intergranular either in-pile or out-of-pile. In both cases the damage consists in intergranular wedge cracks, and no cavitation can be observed by transmission electron microscopy. Then the in-pile embrittlement which gives lower failure strain and time is to be associated with a decrease of the surface energy of grain-boundaries rather then growth and coalescence of cavities

  5. Bulk density and porosity distributions in a compost pile

    NARCIS (Netherlands)

    Ginkel, van J.T.; Raats, P.A.C.; Haneghem, van I.A.

    1999-01-01

    This paper mainly deals with the description of the initial distribution of bulk density and porosity at the moment a compost pile is built or rebuilt. A relationship between bulk density and vertical position in a pile is deduced from theoretical and empirical considerations. Formulae to calculate

  6. Acoustic emission diagnosis of concrete-piles damaged by earthquakes

    International Nuclear Information System (INIS)

    Shiotami, Tomoki; Sakaino, Norio; Ohtsu, Masayasu; Shigeishi, Mitsuhiro

    1997-01-01

    Earthquakes often impose unexpected damage on structures. Concerning the soundness of the structure, the upper portion is easily estimated by visual observation, while the lower portion located in deep underground is difficult to be estimated. Thus there exist few effective methods to investigate underground structures. In this paper, a new inspection technique for damage evaluation of concrete-piles utilizing acoustic emission (AE) is proposed, and is verified by a series of experiments. Firstly, such basic characteristics as the attenuation and effective wave-guides for detecting AE underground, are examined through laboratory tests. Secondary, fracture tests of full-scale prefabricated concrete piles are conducted, and the characteristics of the AE are examined. Finally, actual concrete-piles attacked by the 1995 Great Hanshin Earthquake are investigated. Results confirm that the estimated damages by the proposed method are in good agreement with actual damaged locations. Thus, the method is very effective for the diagnosis of the concrete-piles.

  7. Improved Design Basis for Laterally Loaded Large Diameter Pile

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    of up-to-date facilities has been: Equipment for controlling centrifuge tests, data acquisition, preparation of test samples and equipment for and making of lateral load tests. The present research has been narrowed to investigate the static and cyclic behaviour of stiff piles with a diameter of 1-3 m...... in dry sand by use of centrifuge modelling and to compare the findings with the standard p-y curves. It has been chosen to apply piles with an embedment length of 6 to 10 times the diameter of the applied piles. The general static behaviour of monopiles in dry sand has based on centrifuge tests been...... with a capacity of 3.6 MW and placed at water depths beyond 25 m. Different foundation solutions have over the years been applied for offshore turbines, but monopiles are currently the most applied foundation type and are typically with a pile diameter of 4-6 m and applied up to a water depth of 25 m...

  8. Heterogeneous dipolar theory of the exponential pile

    International Nuclear Information System (INIS)

    Mastrangelo, P.V.

    1981-01-01

    We present a heterogeneous theory of the exponential pile, closely related to NORDHEIM-SCALETTAR's. It is well adapted to lattice whose pitch is relatively large (D-2O, grahpite) and the dimensions of whose channels are not negligible. The anisotropy of neutron diffusion is taken into account by the introduction of dipolar parameters. We express the contribution of each channel to the total flux in the moderator by means of multipolar coefficients. In order to be able to apply conditions of continuity between the flux and their derivatives, on the side of the moderator, we develop in a Fourier series the fluxes found at the periphery of each channel. Using Wronski's relations of Bessel's functions, we express the multipolar coefficients of the surfaces of each channel, on the side of the moderator, by means of the harmonics of each flux and their derivatives. We retain only monopolar (A 0 sub(g)) and dipolar (A 1 sub(g)) coefficients; those of a higher order are ignored. We deduce from these coefficients the systems of homogeneous equations of the exponential pile with monopoles on their own and monopoles plus dipoles. It should be noted that the systems of homogeneous equations of the critical pile are contained in those of the exponential pile. In another article, we develop the calculation of monopolar and dipolar heterogeneous parameters. (orig.)

  9. Bracing system of the reflecting sheets making up an insulating pile

    International Nuclear Information System (INIS)

    Carr, R.W.

    1976-01-01

    In order to reduce heat and radiation losses, the body of nuclear reactors and the connected pipe work are encased in reflecting and insulating piles of thin spaced sheets of aluminium or stainless steel. These spaced sheets are then encased in thicker and more solid internal and external shells. The piles and shells are generally shaped to follow the contour of the reactor and connected piping. It is therefore necessary to have available a study bracing system to keep the pile intact during the various handling and assembly operations. The fastening system must also exert an effect on the edge of the pile to prevent the sheets making it up from shifting in relation to each other. The description is given of a fastening system that includes an oblong section to be fitted along the edges of the piles up sheets; bracing substantially perpendicular to the oblong section, to space the sheets of the stack in pairs; and a maintaining system, normally perpendicular to the oblong section, to enable the fastener to be clipped to the edge of the sheets by bending it around the edge of each sheet of the pile [fr

  10. Three-dimensional analysis for piled raft machine foundation embedded in sand

    Directory of Open Access Journals (Sweden)

    Mahmood Mahmood

    2018-01-01

    Full Text Available Three-dimensional analysis for the dynamic response of a piled raft foundation subjected to vertical vibration is presented in this study. The analysis considers several factors affecting the amplitude of displacement for deep foundation such as pile cap embedment, pile cap thickness, relative density of the sand and the boundary effect. A validation for an experimental piled raft model depending on a scale factor of (20 using at (Plaxis 3D computer program was performed. The sand is simulated using Mohr-Coloumb model while the concrete is simulated as linear elastic material. It has been found that embedding the pile cap in the soil and increasing its thickness lead to decrease the maximum amplitude of displacement. Furthermore, the predictions showed that increasing the distance between the foundation and the boundaries and increasing the relative density of the sand can significantly minimize the dynamic response of the foundation.

  11. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  12. ANALYSIS OF EXISTING SCHEMES AND THE OPTIMIZING SETTLEMENT CHOIS OF PILES WORK SCHEMES IN CLAY SOILS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-09-01

    Full Text Available Summary. It were considered and analyzed the existing schemes of piles work in clay soils. 1. Leningrad scientific school, where the formation of pile bearing capacity use as the basis of the thixotropic clay soils hardening and radial soil pressing around the pile shaft during the piles driving with pile-driving equipment for the exploitation period. 2. Odessa scientific school, in which the uplift soil formation from the edge pile use as the basis of the pile bearing capacity during the piles driving, the formation of the pressed zones (platform in the piles edge plane, the gap formation around the pile shaft during its diving by ground pushed moving with the pile edge. 3. Preconditions of the pile bearing capacity formation of the pile by the thixotropic soil hardening in time and the radial soil pressing around the pile shaft can not give an answer to the following questions: 1 Why during the pile driving is formed the gap around the trunk of dived piles, when by condition there is a radial soil hardening around the trunk? 2 Why in the interpiled space is formed the lune (deflection, not the soil mass swelling (due to the radial hardening? 3 By what is formed the calculated soil resistance under the lower end (edge of the pile? which is about 10 times higher than the calculated soil resistance in the edge plane, according to the Building Code V.2.1-10. 2009? The justified answers on all these and other technical and technological matters give perquisites of the Odessa scientific school with additions and authors developments

  13. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    Science.gov (United States)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  14. Summary of the engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  15. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  16. Reheating experiment in the 35-ton pile; Experience de rechauffage sur la pile de 35 tonnes

    Energy Technology Data Exchange (ETDEWEB)

    Cherot, J; Girard, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    When the 35-ton pile was started up it was necessary for us, in order to study certain effects (xenon for example), to know the anti reactivity value of the rods as a function of their dimensions. We have made use of the possibility, in the reheating experiment, of raising the temperature of the graphite-uranium block by simple heating, in order to determine the anti reactivity curves of the rods, and from that the overall temperature coefficient. For the latter we have considered two solutions: first, one in which the average temperature of the pile is defined as our arithmetical mean of the different values given by the 28 thermocouples distributed throughout the pile; a second in which the temperature in likened to a poisoning and is balanced by the square of the flux. The way in which the measurements have been made is indicated, and the different instruments used are described. The method of reheating does not permit the separation of the temperature coefficients of uranium and of graphite. The precision obtained is only moderate, and suffers from the changes of various parameters necessary to other manipulations carried out simultaneously (life time modulators for example), and finally it is a function of the comparatively restricted time allowed. It is evident of course that more careful stabilisation at the different plateaux chosen would have necessitated long periods of reheating. (author) [French] Nous avions besoin lors de la montee en puissance de la pile de 35 tonnes, pour l'elude de divers effets (xenon par ex.) de la valeur de l'antireactivite des barres en fonction de leurs cotes. Nous avons profite dans l'experience rechauffage de la possibilite de monter en temperature, non nucleairement, le bloc graphite uranium, pour determiner les courbes d'antireactivite des barres et de la le coefficient global de temperature. Nous avons considere pour ce dernier deux solutions. Une premiere dans laquelle la temperature moyenne de la pile est definie comme

  17. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  18. Study of the light emitted in the moderation of a heavy-water pile; Etude de la lumiere emise dans le moderateur d'une pile a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10{sup 6} photons/cm{sup 2} of water, when the pile power equals 1 watt. (author) [French] Lors du fonctionnement d'un reacteur utilisant l'eau comme moderateur de neutrons, on constate l'apparition d'une lumiere bleutee au sein du liquide. Une etude approfondie de ce rayonnement, entreprise sur la pile Fontenay-aux-Roses a montre que le spectre est identique a celui caracterisant la lumiere produite par effet Cerenkov. L'intensite lumineuse en fonction de Ia puissance de la pile, lors d'une divergence croit exponentiellement en fonction du temps avec une periode egale a celle de la montee en puissance. L'examen des diverses particules presentes dans la pile a permis de conclure que seuls les electrons ayant une energie superieure a 260 keV peuvent produire la lumiere Cerenkov. La source lumineuse ainsi constituee est d'environ 2.10{sup 6} photons/cm{sup 2} d'eau, lorsque la puissance de la pile est egale a 1 watt. (auteur)

  19. Study on Dynamic Characteristics of Heavy Machine Tool-Composite Pile Foundation-Soil

    Directory of Open Access Journals (Sweden)

    CAI Li-Gang

    2014-09-01

    Full Text Available Heavy duty computer numerical control machine tools have characteristics of large self-weight, load and. The insufficiency of foundation bearing capacity leads to deformation of lathe bed, which effects machining accuracy. A combined-layer foundation model is created to describe the pile group foundation of multi-soil layer in this paper. Considering piles and soil in pile group as transversely isotropic material, equivalent constitutive relationship of composite foundation is constructed. A mathematical model is established by the introduction of boundary conditions, which is based on heavy duty computer numerical control machine tools-composite pile foundation-soil interaction system. And then, the response of different soil and pile depth is studied by a case. The model improves motion accuracy of machine tools.

  20. Smart pile-up consideration for evaluation of high count rate EDS spectra

    International Nuclear Information System (INIS)

    Eggert, F; Anderhalt, R; Nicolosi, J; Elam, T

    2012-01-01

    This work describes a new pile-up consideration for the very high count rate spectra which are possible to acquire with silicon drift detector (SDD) technology. Pile-up effects are the major and still remaining challenge with the use of SDD for EDS in scanning electron microscopes (SEM) with ultra thin windows for soft X-ray detection. The ability to increase the count rates up to a factor of 100 compared with conventional Si(Li) detectors, comes with the problem that the pile-up recognition (pile-up rejection) in pulse processors is not able to improve by the same order of magnitude, just only with a factor of about 3. Therefore, it is common that spectra will show significant pile-up effects if count rates of more than 10000 counts per second (10 kcps) are used. These false counts affect both automatic qualitative analysis and quantitative evaluation of the spectra. The new idea is to use additional inputs for pile-up calculation to shift the applicability towards very high count rates of up to 200 kcps and more, which can be easily acquired with the SDD. The additional input is the 'known' (estimated) background distribution, calculated iteratively during all automated qualitative or quantitative evaluations. This additional knowledge gives the opportunity for self adjustment of the pile-up calculation parameters and avoids over-corrections which challenge the evaluation as well as the pile-up artefacts themselves. With the proposed method the pile-up correction is no longer a 'correction' but an integral part of all spectra evaluation steps. Examples for the application are given with evaluation of very high count rate spectra.

  1. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, J.R.

    1985-01-01

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

  2. Placement of mass concrete for cast-in-place concrete piling : the effects of heat of hydration of mass concrete for cast-in-place piles.

    Science.gov (United States)

    2008-12-01

    This report describes models, ABAQUS and Schmidt, to predict the peak temperature in the center of cast-in-place concrete piling. Five concrete piles with varying diameters and made up of concrete mixes with different percentage of fly ash are used. ...

  3. The Use of Tactile Sensors and PIV Analysis for Understanding the Bearing Mechanism of Pile Groups.

    Science.gov (United States)

    You, Zhijia; Chen, Yulong

    2018-02-06

    Model tests were carried out in dry silica sand under pile loading and visualizing observation to investigate the behavior of a pile group. The pile group consisted of nine cylindrical model piles of 40 mm in diameter in most tests or three rectangular parallelepiped model piles in the visualizing observation. Pile spacings of 200 mm and 100 mm between pile centers were used in the models. Tactile sensors were installed to measure the pressure distribution in the ground and colored sand layer with particle image velocimetry (PIV) analysis to reveal the ground deformation in addition to strain gauges inside the model piles to investigate the interaction among group piles. The tests results showed that a narrower spacing between piles resulted in a wider affected area of the ground and the interaction was more significant below the tips.

  4. Seismological analysis of group pile foundation for reactor

    International Nuclear Information System (INIS)

    Wang Demin.

    1984-01-01

    In the seismic analysis for reactor foundation of nuclear power plant, the local raise of base mat is of great significance. Base on the study of static and dynamic stability as well as soil-structure interaction of group piles on stratified soil, this paper presents a method of seismic analysis for group piles of reactor foundation at abroad, and a case history is enclosed. (Author)

  5. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  6. Analysis of Bearing Capacity Pile Foundation with Using Capwap Software for Testing Pile Driving Analyzer (pda) at Fasfel Development Project Parlimbungan Ketek Sikara-Kara Mandailing Natal District (north Sumatera)

    Science.gov (United States)

    Oberlyn Simanjuntak, Johan; Suita, Diana

    2017-12-01

    Pile foundation is one type deep foundation that serves to distribute the load of hard soil structure loading which has a high bearing capacity that is located deep enough inside the soil. To determine the bearing capacity of the pile and at the same time control the Calendring results, the Pile Driving Analyzer (PDA) test at 8 pile sections from the 84 point piling section (10% of the number sections), the results were analyzed by CAPWAP SOFTWARE, and the highest bearing capacity of Ru 177 ton and the lowest bearing capacity of 111 tons, is bigger than the plan load which load plans that is 60,9 tons. Finally the PDA safe is bearing bearing capacity of the load planning.

  7. Picking up Clues from the Discard Pile (Stereo)

    Science.gov (United States)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil. On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through its left eye and right eye that have been combined into this stereo view. The image appears three dimensional when seen through red-blue glasses. This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench. Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches. For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench. The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory

  8. Elementary calculation of the shutdown delay of a pile

    International Nuclear Information System (INIS)

    Yvon, J.

    1949-04-01

    This study analyzes theoretically the progress of the shutdown of a nuclear pile (reactor) when a cadmium rod is introduced instantaneously. For simplification reasons, the environment of the pile is considered as homogenous and only thermal neutrons are considered (delayed neutrons are neglected). Calculation is made first for a plane configuration (plane vessel, plane multiplier without reflector, and plane multiplier with reflector), and then for a cylindrical configuration (multiplier without reflector, multiplier with infinitely thick reflector, finite cylindrical piles without reflector and with reflector). The self-sustain conditions are calculated for each case and the multiplication length and the shutdown delay are deduced. (J.S.)

  9. Tritium tracer movement as an analogy for pump and treat remediation

    International Nuclear Information System (INIS)

    1994-12-01

    There has been debate over effectiveness of groundwater pump and treat remediation. The goal of the following discussion is to present evidence from a tracer test that illustrates the difficulty in removing contaminants from fractured shale that is typical of portions of the DOE-Oak Ridge Reservation (ORR). This report provides a brief prelude to more detailed analysis that is in progress. Attempts to remediate groundwater contamination with pump and treat technology have been hampered by difficulties in removing contaminants in slow flow zones. There is interest in using this remediation method on the ORR because it is an existing technology. However, this setting provides a rather extreme contrast between fast flow zones (fractures) and slow flow zones (the matrix surrounding the fractures). Over the past few years, the authors have begun to develop an understanding of how contaminants move in fractures and how contaminant exchange between the fracture and matrix occurs. In particular, they have evidence from a long term tritium tracer test that has direct bearing on potential success or failure of pump and treat remediation in fractured rocks

  10. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    Directory of Open Access Journals (Sweden)

    R. Ananda Kumar

    2015-01-01

    Full Text Available Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral load reviews are also presented. This review paper is prepared to find out the performance of basalt fibre reinforced polymer BFRP composite retrofitted reinforced cement concrete single end bearing piles.

  11. Bore pile foundation tall buildings closed in the heritage building

    Science.gov (United States)

    Triastuti, Nusa Setiani

    2017-11-01

    Bore pile foundation for high building surroundings heritage building should be not damage. Construction proses must good, no necking, no mixed deep water, no sliding soil, nonporous concrete. Objective the execution of bore pile so that heritage buildings and neighboring buildings that are old do not experience cracks, damage and tilting. The survey methodology was observe the process of the implementation of the dominant silt, clay soil, in addition a limited space and to analyze the results of loading tests, investigations of soil and daily reports. Construction process determines the success of the structure bore pile in high building structure bearing, without damaging a heritage building. Attainment the hard soil depth, density concrete, observable clean reinforcement in the implementation. Monitoring the implementation of, among others, the face of the ground water little reduce in the area and outside the footprint of the building, no impact of vibration drilling equipment, watching the mud content on the water coming out at the time of drilling, concrete volume was monitored each 2 m bore depth of pile, The result researched heritage building was not damage. The test results bore pile axial, lateral analyzed the results have the appropriate force design required.

  12. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  13. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  14. 20051655 - Petronas, Capacity of Driven Piles Offshore Malaysia

    DEFF Research Database (Denmark)

    Augustesen, Anders; Andersen, Lars

    This document is the third of four notes concerning the vertical capacity of piles. It includes an assessment of the effect of previous static load testing upon the measured capacity, i.e. preshearing effects.......This document is the third of four notes concerning the vertical capacity of piles. It includes an assessment of the effect of previous static load testing upon the measured capacity, i.e. preshearing effects....

  15. Effects of bacterial action on waste rock producing acid drainage in the Brazilian first uranium mine

    International Nuclear Information System (INIS)

    Rey-Silva, Daniela V.F.M.; Oliveira, Alexandre P. de; Geraldo, Bianca; Campos, Michele B.; Azevedo, Heliana de; Barreto, Rodrigo P.; Souza-Santos, Marcio L. de

    2009-01-01

    This work is an evolution of the methodology showed in the paper 'Study of waste of waste rock piles producing acid drainage in the Brazilian first uranium mine', also submitted for INAC2009. Therefore, the present work also related to the determination of chemical species leaching from waste rock pile 4 (WRP4) of the Uranium Mine and Milling Facility located in the Pocos de Caldas Plateau, as well as the generation of acid waters. With the previous experimental setup, it has been observed that not only water and available oxygen are significant to pyrite oxidation reaction, but bacterial activity as well. As a first approach, the present work addresses the same experiment, but now testing without the influence of bacterial action. Therefore, the new methodology and experimental setup is now capable of determining the acidity of water in contact with material from the WRP4 and the concentration of chemical species dissolved as function of time. Such would also show the extent of bacterial action interference on the pyrite oxidation reaction. Results are based on mass balances comparing concentrations of chemical species in the waste rock before the experiment and in the waste rock plus the remaining water after the experiment. In addition, the evolution of the pH and EMF (electromotive force) values along with chemical species quantified through the experiment are presented through graphics. That is followed by discussions on the significance of such results in terms of concentration of the involved chemical species. The present work has also shown the need of improving the injection of air into the system. A more sophisticated experimental setup should be assembled in the near future, which would allow the quantification of differences between experimental tests with and without bacterial action. (author)

  16. Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.

    1984-01-01

    The ultimate objective of the Uranium Mill Tailings Remedial Action Project (UMTRAP) is to minimize the potential environmental hazards due to the existing inactive uranium mill tailing piles. One of these sites, at Riverton, Wyoming, is located on the flood plain of the Wind River, with the water table lying within a few meters of the bottom of the tailings. Field data clearly indicates that contaminants, both radioactive and non-radioactive, are mobile within the tailings as well as in the adjacent ground water system. From the point of view of remedial action, the following important questions arise: At what rates and quantities will the contaminants continue to migrate in the ground water system over the next several hundred years. What will be the soil-water regime in the upper part of the tailings which controls the migration of radon gas to the atmosphere. In view of the projected system behavior, what are the economically viable and environmentally acceptable engineering solutions for remedy. The purpose of the mathematical modeling efforts at the Riverton site is to address the question of prediction; the transport of contaminants in the ground water system as well as the dynamic soil-water regime near the upper boundary. The use of mathematical models for the above purpose is dictated by the following questions: Do adequate computational models exist that can simulate the physico-chemical processes that characterize the mill tailings. Can these models reasonably explain the chemical evolution of the system since the beginning of the tailings emplacement. If so, can the historical behavior be used as the basis for predicting the behavior over the next several hundred years

  17. 3D Numerical Modeling of Pile Group Responses to Excavation-Induced Stress Release in Silty Clay

    Directory of Open Access Journals (Sweden)

    M. A. Soomro

    2018-02-01

    Full Text Available Development of underground transportation systems consists of tunnels, basement construction excavations and cut and cover tunnels which may encounter existing pile groups during their construction. Since many previous studies mainly focus on the effects of excavations on single piles, settlement and load transfer mechanism of a pile group subjected to excavation-induced stress release are not well investigated and understood. To address these two issues, three-dimensional coupled-consolidation numerical analysis is conducted by using a hypoplastic model which takes small-strain stiffness into account. A non-linear pile group settlement was induced. This may be attributed to reduction of shaft resistance due to excavation induced stress release, the pile had to settle substantially to further mobilise end-bearing. Compared to the Sp of the pile group, induced settlement of the single pile is larger with similar settlement characteristics. Due to the additional settlement of the pile group, factor of safety for the pile group can be regarded as decreasing from 3.0 to 1.4, based on a displacement-based failure load criterion. Owing to non-uniform stress release, pile group tilted towards the excavation with value of 0.14%. Due to excavation-induced stress release and dragload, head load of rear piles was reduced and transferred to rear piles. This load transfer can increase the axial force in front piles by 94%.

  18. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  19. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  20. 40 CFR 411.30 - Applicability; description of the materials storage piles runoff subcategory.

    Science.gov (United States)

    2010-07-01

    ... materials storage piles runoff subcategory. 411.30 Section 411.30 Protection of Environment ENVIRONMENTAL... Materials Storage Piles Runoff Subcategory § 411.30 Applicability; description of the materials storage piles runoff subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  1. The role of the waveform in pulse pile-up

    International Nuclear Information System (INIS)

    Datlowe, D.W.

    1977-01-01

    Pulse pile-up is the distortion of pulse-height distributions due to the overlap of detector responses to the arrival of two or more particles or photons within the detector resolving time. This paper presents a computational technique for simulating pile-up effects, which includes explicitly the dependence on the pulse-shape of the detector system. The basis of the technique is the manipulation of probability densities. The method is applicable to all types of linear pulse counting systems for nucleons, electrons, and photons, as long as the result is a pulse-height distribution. The algorithms are highly efficient in the amount of computing required for simulations, and internal checks for the numerical accuracy of the results are included. Studies of pile-up by monoenergetic pulses are used to determine the interrelationship between pulse shapes and spectral features; this information can be used to minimize pile-up. For broad spectra, the square wave approximation is compared with the present model including the correct waveform; introducing the pulse shape information smooths spectral features but does not qualitatively change the spectrum. (Auth.)

  2. Observation of Spectral Signatures of 1/f Dynamics in Avalanches on Granular Piles

    Science.gov (United States)

    Kim, Yong W.; Nishino, Thomas K.

    1997-03-01

    Granular piles of monodisperse glass spheres, 0.46+0.03 mm in diameter, have been studied. The base diameter of the pile has been varied from 3/8" to 2" in 1/8" increments. A single-grain dispenser with greater than 95consisting of a stepping motor-actuated reciprocating arm with a single-grain scoop. Each grain is dropped on the apex of the pile with lowest possible landing velocity at intervals at least 30longer than the duration of largest avalanches for each given pile. Each grain being added and being lost in avalanches from the pile is optically detected and recorded. The power spectrum of the net addition of grains to the pile as a function of time is found to be robustly 1/f for all base sizes. A wide variety of dynamical properties of 1/f systems, as obtained from the high precision data, will be presented.

  3. Numerical Simulation by using Soldiers Pile of the Embankment on Semarang-Solo Highway

    Science.gov (United States)

    Tumanduk, M. S. S. S.; Maki, T. S.; Pangkey, T. U. Y.; Pandeiroth, Y. C.

    2018-02-01

    Semarang-Solo highway works section II Gedawang-Penggaron constitutes a labile area. It is thought to be effect of the existence of coat clay shale which have moulded. For the purpose of anticipating the embankment mass movement it is placed line bored pile and stringed up (soldiers pile). The objective of this research is to know the efficient use of soldier’s pile of the embankment on Semarang-Solo highway section II Gedawang-Penggaron pursuant based upon numerical simulation. The result of analysis depicts that original slope in a stabil state with horizontal displacement which equal to 0.06 m and safety factor (SF) which equal to 1.31. The strengthened embankment with bored pile is not effective to give am SF improvement at slope so that, at this phase, the slope cannot be slid to be safe enough from landslide namely with horizontal displacement which equal to 0.20 m and SF which equal to 1.09. The effect of traffic load horizontal displacement is which equal to 0.21 m with SF which equal to 1.00. The earthquake simulation results horizontal displacement which equal to 0.75 m with SF which equal to 1.00. Long variation of bored pile of phase II by neglecting bored pile phase III at the depth 35 m yields horizontal displacement which equal to 0.03 m and SF optimum which equal to 2.17. The variation of pile location by placing bored pile under embankment slope foot with distance from the location of bored pile of phase II which equal to 20 m without changing the profile of the existing bored pile creates the horizontal displacement which equals to 0.02 m with SF which equal to 2.29. The result of the horizontal displacement and SF of the two alternative is safer compared to the existing condition (SF>1.5).

  4. Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....

  5. State-of-the-art review of some artificial intelligence applications in pile foundations

    Institute of Scientific and Technical Information of China (English)

    Mohamed A. Shahin

    2016-01-01

    Geotechnical engineering deals with materials (e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  6. Design of Jetty Piles Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Yongjei Lee

    2014-01-01

    Full Text Available To overcome the complication of jetty pile design process, artificial neural networks (ANN are adopted. To generate the training samples for training ANN, finite element (FE analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.

  7. Centrifuge modelling of drained lateral pile - soil response

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    of rigid piles. The tests have been performed in homogeneously dense dry or saturated Fontainebleau sand in order to mimic simplified drained offshore soil conditions. Approximately half of the tests have been carried out to investigate the centrifuge procedure in order to create a methodology of testing...... tests were used to investigate the pile - soil interaction to gain a better in-sight into the complex problem. A monotonic test series was carried out initially and then pile - soil interaction curves were deduced from these tests and compared with methodologies used today. The results indicate...... that the current methodologies can be improved and a modification to the methodology has been proposed. Secondly, a cyclic test series was carried out. The accumulation of displacement and the change in secant stiffness of the total response of these tests were evaluated. A simple mathematical model was proposed...

  8. Effect of piles on the seismic response of mosques minarets

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-03-01

    Minaret (60.0-m height was studied to investigate the effects of soil stiffness, pile length, diameter, and arrangement, on the minaret and pile dynamic behavior. Comparison between study results and conventional analysis method is illustrated. Study results, discussion, and conclusion are given.

  9. Numerical Modelling of Large-Diameter Steel Piles at Horns Rev

    DEFF Research Database (Denmark)

    Augustesen, Anders Hust; Brødbæk, K. T.; Møller, M.

    2009-01-01

    Today large-diameter monopiles are the most common foundation type used for large offshore wind farms. This paper aims to investigate the behaviour of monopiles under monotonic loading taking the interaction between the pile and the subsoil into account. Focus is paid to a monopile used as founda......Today large-diameter monopiles are the most common foundation type used for large offshore wind farms. This paper aims to investigate the behaviour of monopiles under monotonic loading taking the interaction between the pile and the subsoil into account. Focus is paid to a monopile used...... as foundation for a wind turbine at Horns Rev located in the Danish sector of the North Sea. The outer diameter of the pile is 4 m and the subsoil at the location consists primarily of sand. The behaviour of the pile is investigated under realistic loading conditions by means of a traditional Winkler...

  10. Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado

    Science.gov (United States)

    McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.

    2006-01-01

    Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.

  11. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  12. Rockfall Modelling with Remedial Design and Measures along Part of a Mountainous Settlement Area, Southern Turkey

    Science.gov (United States)

    Güntel, Berna; Acar, Altay

    2016-10-01

    In June 2011, a heavy rainfall triggered a number of rockfalls from steep slopes and on slopes made of soft to loose soils capped by inhomogeneous hard rock blocks and masses in the Düziçi Town of Osmaniye Province in Turkey. Large rock blocks had damaged 15 prefabricated hotel rooms whereas the slope movement blocked the major road between Duzigi and hot spring facilities at numerous locations along 280 m. This paper describes remedial measures and design recommended according to the modelling process based on the collection of data and simulation of rockfall with Rocscience RockFall 5.0 software.

  13. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-04-07

    Energy piles-A fairly new renewable energy concept-Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  14. Superfund Record of Decision (EPA Region 2): NL Industries, Salem County, Pedricktown, NJ. (First remedial action), September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-27

    The 44-acre NL Industries site is an inactive, secondary lead smelting facility in Pedricktown, Salem County, New Jersey. The site overlies the Cape May aquifer, a potential source of drinking water for local residents. In 1989, EPA began a multi-phased removal action. The Focused Feasibility Study resulted in the issuance of the Early Remedial Action Record of Decision (ROD), designated as Operable Unit (OU2). The nature and extent of remaining contamination on the site and areas adjacent to the site in various environmental media, such as soil, sediment, ground water, surface water, and air, are currently being evaluated and will be addressed as OU1 in a subsequent ROD. The primary contaminants of concern affecting the slag and lead oxide piles, sediment, debris, and standing surface water are metals including arsenic, chromium, and lead. The selected remedial action for the site is included.

  15. Radioactive influence of some phosphogypsum piles located at the SW Spain in their surrounding soils and salt-marshes

    Science.gov (United States)

    Bolivar, J. P.; Mosqueda, F.; Vaca, F.; Garcia-Tenorio, R.; Martinez-Sanchez, M. J.; Perez-Sirvent, C.; Martinez-Lopez, S.

    2012-04-01

    In the SW of Spain, just in the confluence of the mouths of the Tinto and Odiel River and in the vicinity of Huelva town, there is a big industrial complex which includes between others an industry devoted during more than 40 years to the production of phosphoric acid, by treating sedimentary phosphate rock by the so-called "wet acid method". As a by-product of the mentioned process it have been produced historically huge amounts of a compound called phosphogypsum, which composition is mostly di-hydrate calcium sulphate containing some of the impurities of heavy metals and natural radionuclides originally present in the raw material. Due to the lack of market for this by-product, it has been mostly piled over some salt-marshes located in the vicinity of the industry, on the bank of the Tinto River. About 100 million tons of phosphogypsum have been piled in an area covering more than 1000 hectares, constituting a clear environmental and radiological anomaly in the zone. The phosphogypsum piles set do not conform obviously a close system. They are interacting with the nearby environment mostly by leaching waters releases from the waters accumulated in them either for its previous use in transporting in suspension the PG from the factory or by rainfall. These waters leaks contain in solution enhanced amounts of heavy metals and radionuclides that can provoke the chemical and radioactive contamination in surroundings soil and salt-marshes areas. In this communication the radioactive influence by the phosphogypsum piles in the surrounding terrestrial environment is evaluated. This contamination is mostly due to radionuclides belonging to the uranium series, which are present originally in the raw material treated in the industry, and afterwards in the generated phosphogypsum, in enhanced amounts in relation to typical soils. In addition, the different dynamics and behavior of different radionuclides will be discussed and analyzed. The gained information in this study

  16. Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil

    Science.gov (United States)

    Goit, Chandra Shekhar; Saitoh, Masato

    2013-03-01

    Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics. Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered. Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles. Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases. Distinct values of horizontal impedance functions are obtained for the `positive' and `negative' cycles of harmonic loadings, leading to asymmetric force-displacement relationships for the inclined piles. Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses, and the results from the numerical models are in good agreement with the experimental data. Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.

  17. Stability Limits for Rubble Pile Asteroid Shapes

    Science.gov (United States)

    Scheeres, Daniel

    2018-04-01

    The stability of rubble pile asteroids are explored analytically, using simple models for their constituent components. Specifically, we look at the stability of spherical components resting and potentially rolling on each other as a function of their relative sizes, configuration and number. This talk will present some recent results in this problem. Of specific interest is a 5:1 limit on the elongation of a rubble pile body for stability, which is interestingly the same extreme elongation found for the first interstellar object. This limit is for a rubble pile consisting of stacked spheres, resting on each other in a straight line. If there are 5 or less bodies resting on each other in this configuration, there is an interval of spin rates for which the configuration is stable. If there are 6 or more bodies stacked as such, the spin rate for it to stabilize is beyond the spin rate at which it fissions. The talk will also explore additional results for different configurations of bodies resting on each other.

  18. Response of stiff piles in sand to long-term cyclic lateral loading

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Houlsby, Guy T.; Byrne, Byron W.

    2010-01-01

    . To address this, a series of laboratory tests were conducted where a stiff pile in drained sand was subjected to between 8000 and 60000 cycles of combined moment and horizontal loading. A typical design for an offshore wind turbine monopile was used as a basis for the study, to ensure that pile dimensions...... and loading ranges were realistic. A complete non-dimensional framework for stiff piles in sand is presented and applied to interpret the test results. The accumulated rotation was found to be dependent on relative density and was strongly affected by the characteristics of the applied cyclic load. The pile...... stiffness increased with number of cycles, which contrasts with the current methodology where static p - y curves are degraded to account for cyclic loading. Methods are presented to predict the change in stiffness and the accumulated rotation of a stiff pile due to long-term cyclic loading. The use...

  19. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Science.gov (United States)

    Krasiński, Adam; Kusio, Tomasz

    2015-02-01

    The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA) piles and screw displacement piles (SDP). The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  20. Feasibility of the Half Pile Supporting of Hand-dug Piles%人工挖孔桩半桩支护方案可行性分析

    Institute of Scientific and Technical Information of China (English)

    张赛威

    2015-01-01

    Taking the actual deep excavation project for the study object, this paper carried out the pile numerical computation and numerical simulation. By comparing the results, the half pile for hand-dug piles is feasible.%本文以实际工程深基坑工程为研究对象,分别对桩基进行数值计算和数值模拟,通过对结果进行对比可以看出,人工挖孔桩采用半桩基是可行的。

  1. Piling up technology of goods irradiated by single plate source

    International Nuclear Information System (INIS)

    Xia Hezhou; Chen Yuxia; Cao Hongyun; Lin Yong; Zhou guoquan

    1999-01-01

    In the irradiation process of piling up goods in static state, four irradiation working sites and single plate source was adopted. The results showed that piling up in this way remarkably raised the irradiation quality of goods. The utilization rate of radioactive ray reached 22.27%

  2. Out-of-pile test of the crud separator system. (I)

    International Nuclear Information System (INIS)

    Takasaki, Akito; Iimura, Katsumichi; Tanaka, Isao

    1991-01-01

    The JMTR Project has been developing the crud separator system since 1981, and the advanced system has been fabricated for the in-pile test to be performed in the HBWR (Norway). The crud separator system removes magnetized crud circulating in a primary circuit by the permanent magnet assembly surrounded inside and outside of the separator vessel. Before the in-pile test, out-of-pile test was carried out in the JMTR Project under the condition of atmospheric pressure and room temperature, and the simplified theoretical analysis for crud separation mechanism was also carried out. The out-of-pile test results suggested that separation factor increased with increasing magnetic susceptibility of crud and crud particle diameter, and decreased with increasing flow rate. These results were in good agreement with the theoretical analysis. The test results also showed that the crud size enlarger was effective in lower separation factor region, which related to lower magnetic susceptibility of crud, smaller crud diameter and higher flow rate. (author)

  3. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  4. Case Study of CPT-based Design Methods for Axial Capacity of Driven Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    loaded offshore driven piles in cohesionless soil has until now been the β-method given in API. The API-method is based on the effective overburden pressure at the depth in question. Previous studies show deviations between full-scale load test measurements of the axial pile capacity and the predictions...... found by means of the API-method. Compared to the test measurements, the API-method under-estimates the capacity of short piles (piles in loose sand, and gives a shaft capacity less conservative for piles in tension than for piles in compression......Today the design of onshore axially loaded driven piles in cohesionless soil is commonly made on basis of CPT-based methods because field investigations have shown strong correlation between the local shaft friction and the CPT cone resistance. However, the recommended design method for axially...

  5. INFLUENCE OF A ROUND CAP ON THE BEARING CAPACITY OF A LATERALLY LOADED PILE

    Directory of Open Access Journals (Sweden)

    Buslov Anatoliy Semenovich

    2012-07-01

    The data has proven that cap-covered piles are substantially more economical (over 40 % in terms of materials consumption rate if compared to constant cross-section piles (cap-free or broadening piles, all other factors being equal.

  6. Comparative Model Tests of SDP and CFA Pile Groups in Non-Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2015-02-01

    Full Text Available The research topic relates to the subject of deep foundations supported on continuous flight auger (CFA piles and screw displacement piles (SDP. The authors have decided to conduct model tests of foundations supported on the group of piles mentioned above and also the tests of the same piles working as a single. The tests are ongoing in Geotechnical Laboratory of Gdaňsk University of Technology. The description of test procedure, interpretation and analysis of the preliminary testing series results are presented in the paper.

  7. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing

    DEFF Research Database (Denmark)

    Elberling, B.; Søndergaard, J.; Jensen, L.A.

    2007-01-01

    Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm...... summer period. Here we show that heat generation within an oxidizing, sulfidic, coal-mining waste-rock pile in Svalbard (78° N) is high enough to keep the pile warm (roughly 5 °C throughout the year) despite mean annual air temperatures below -5 °C. Consequently, weathering processes continue year...... of these metals are taken up and accumulated in plants where they reach phytotoxic levels, including aluminum and manganese. Laboratory experiments document that uptake of Al and Mn in native plant species is highly correlated with dissolved concentrations. Therefore, future remedial actions to control...

  8. Aerial sampling of emissions from biomass pile burns in ...

    Science.gov (United States)

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  9. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  10. Towards building a neural network model for predicting pile static load test curves

    Directory of Open Access Journals (Sweden)

    Alzo’ubi A. K.

    2018-01-01

    Full Text Available In the United Arab Emirates, Continuous Flight Auger piles are the most widely used type of deep foundation. To test the pile behaviour, the Static Load Test is routinely conducted in the field by increasing the dead load while monitoring the displacement. Although the test is reliable, it is expensive to conduct. This test is usually conducted in the UAE to verify the pile capacity and displacement as the load increase and decreases in two cycles. In this paper we will utilize the Artificial Neural Network approach to build a model that can predict a complete Static Load Pile test. We will show that by integrating the pile configuration, soil properties, and ground water table in one artificial neural network model, the Static Load Test can be predicted with confidence. We believe that based on this approach, the model is able to predict the entire pile load test from start to end. The suggested approach is an excellent tool to reduce the cost associated with such expensive tests or to predict pile’s performance ahead of the actual test.

  11. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    Science.gov (United States)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  12. Contemporary drilling and grouting practices for dam remediation

    International Nuclear Information System (INIS)

    Bruce, D.A.; Naudts, A.

    1998-01-01

    A generic classification for the different methods used in rock drilling and overburden drilling is described, along with a classification of the range of grouting materials available and the different grouting methods that can be used. Examples are presented from two recent major dam remediation projects to demonstrate the basis for selection and use of the different methods and materials. It was shown that a high level of performance can be obtained when a project is properly designed, executed and monitored. 29 refs., 5 tabs., 5 figs

  13. Seismic soil-structure interaction of foundations with large piles

    International Nuclear Information System (INIS)

    Zeevaert, L.

    1996-01-01

    In seismic regions with soft soil deposits subjected to ground surface subsidence, there is the necessity to support the weight of constructions on large diameter piles or piers hearing on deep firm strata. To justify the action of these elements working under flexo compression and shear, it is necessary to perform calculations of soil pile interaction from a practical engineering point of view and estimate the order of magnitude of the forces and displacements to which these elements will be subjected during the seismic action assigned to the foundation. In this paper we defined a pier as a large diameter pile constructed on site. Furthermore, in the seismic analysis it is necessary to evaluate the seismic pore water pressure to learn on the effective seismic soil stresses close to the ground surface. (author)

  14. Comparison of Three Different Methods for Pile Integrity Testing on a Cylindrical Homogeneous Polyamide Specimen

    Science.gov (United States)

    Lugovtsova, Y. D.; Soldatov, A. I.

    2016-01-01

    Three different methods for pile integrity testing are proposed to compare on a cylindrical homogeneous polyamide specimen. The methods are low strain pile integrity testing, multichannel pile integrity testing and testing with a shaker system. Since the low strain pile integrity testing is well-established and standardized method, the results from it are used as a reference for other two methods.

  15. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  16. ENVIRONMENTAL AND ECONOMIC PROSPECTS FOR USAGE OF PULTRUDED COMPOSITE SHEET PILES

    Directory of Open Access Journals (Sweden)

    BURYA Alexander I.

    2016-11-01

    Full Text Available The article focuses on the description of pultruded composite sheet piles. The article covers the production technology, advantages over other traditional materials, as well as environmental and economic prospects for expanding of the usage of composite sheet piling.

  17. State-of-the-art review of some artificial intelligence applications in pile foundations

    Directory of Open Access Journals (Sweden)

    Mohamed A. Shahin

    2016-01-01

    Full Text Available Geotechnical engineering deals with materials (e.g. soil and rock that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  18. Study of the light emitted in the moderation of a heavy-water pile

    International Nuclear Information System (INIS)

    Breton, D.

    1958-06-01

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10 6 photons/cm 2 of water, when the pile power equals 1 watt. (author) [fr

  19. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    Science.gov (United States)

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  20. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available A Boundary Element Method (BEM approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  1. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.; Agarwal, Vivek; Heidrich, Brenden J.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors and measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  2. Geomorphic reclmation of a coal refuse pile

    Science.gov (United States)

    Hopkinson, L. C.; Quaranta, J.

    2017-12-01

    Geomorphic reclamation is a technique that may offer opportunities to improve mine reclamation in Central Appalachia. The design approach is based on constructing a steady-state, mature landform condition and takes into account the long-term climatic conditions, soil types, terrain grade, and vegetation. Geomorphic reclamation has been applied successfully in semi-arid regions but has not yet been applied in Central Appalachia. This work describes a demonstration study where geomorphic landforming techniques are being applied to a coarse coal refuse pile in southern West Virginia, USA. The reclamation design includes four geomorphic watersheds that radially drain runoff from the pile. Each watershed has one central draining channel and incorporates compound slope profiles similarly to naturally eroded slopes. Planar slopes were also included to maintain the impacted area. The intent is to alter the hydrology to decrease water quality treatment costs. The excavation cut and fill volumes are comparable to those of more conventional refuse pile reclamation designs. If proven successful then this technique can be part of a cost-effective solution to improve water quality at active and future refuse facilities, abandoned mine lands, bond forfeiture sites, landfills, and major earthmoving activities within the region.

  3. A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado

    Science.gov (United States)

    Runkel, R.L.; Bencala, K.E.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2009-01-01

    Pre- and post-remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre- and post-remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre- and post-remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre-remediation data, and the relatively dry conditions associated with the post-remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre-remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post-remediation period. A second confounding factor, temporal variability, violates the steady-state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post-remediation profiles of instream load are consistently lower than the pre-remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic-life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be

  4. Disaggregation of small, cohesive rubble pile asteroids due to YORP

    Science.gov (United States)

    Scheeres, D. J.

    2018-04-01

    The implication of small amounts of cohesion within relatively small rubble pile asteroids is investigated with regard to their evolution under the persistent presence of the YORP effect. We find that below a characteristic size, which is a function of cohesive strength, density and other properties, rubble pile asteroids can enter a "disaggregation phase" in which they are subject to repeated fissions after which the formation of a stabilizing binary system is not possible. Once this threshold is passed rubble pile asteroids may be disaggregated into their constituent components within a finite time span. These constituent components will have their own spin limits - albeit potentially at a much higher spin rate due to the greater strength of a monolithic body. The implications of this prediction are discussed and include modification of size distributions, prevalence of monolithic bodies among meteoroids and the lifetime of small rubble pile bodies in the solar system. The theory is then used to place constraints on the strength of binary asteroids characterized as a function of their type.

  5. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  6. Study on the measures of tunnels side-crossing bridge based on sheltering effects of isolation piles

    Science.gov (United States)

    Tang, Jian; Liu, Jun yan; Liu, Yan

    2017-08-01

    Based on the transit line 3, we studied the effect of the bridge piles crossed closely from the side by the shield tunnel. Using the three-dimensional finite element numerical analysis software Midas GTS/NX, we analyzed the effect of shield tunnel on pile deformation, statistics are obtained that under the condition of pile, subgrade reinforcement and ground changes. The calculation results show that in the condition of reinforcement, the new tunnel shield crossing through the pile caused longitudinal disturbance of the tunnel surrounding strata along the tunnel, where the soil over the area is within a certain range of pile and settlement deformation of surface subsidence occurs, changing the surface roughly to the shape of “V”. The maximum value appears above the shield tunnel and the value is high. In combination with engineering geology, hydrogeology and environment factors, this paper adopted isolation pile reinforcement to the pile, and the simulated results show that, pile settlement was significantly reduced under the condition of pile reinforcement. The calculation results show the rationality of the reinforcement scheme to a certain extent, which provides a theoretical basis for the similar tunnel.

  7. Radiation Protection in the Experimental Pile Marius

    International Nuclear Information System (INIS)

    Cohendy, G.

    1962-01-01

    Measurements made around the experimental pile 'Marius' made it possible to determine the valid characteristics of the slabs designed to improve the biological protection by covering the charge and discharge pits. These measurements also made it possible to evaluate the risks occurring when the pile is operating at various Powers and to make a reasonable estimate of the value of the ratio of the total danger due to neutrons (thermal and fast) and γ radiation and to the danger due only to the γ radiation. A knowledge of this ratio makes it possible to make satisfactory evaluations with a single apparatus which is really portable. (author) [fr

  8. Investigation of pile foundations of nuclear power plants with help of non linear analyses

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.; Costa, E.; Vaz, L.E.

    1984-01-01

    A few important 1300 MW PWR nuclear power plants have been built over pile foundations. The design requirements of Nuclear Power Plants prescribe accurate investigation of the as built conditions of the foundation. This study must take into account the actual concrete strength existent among and along the pile shafts of the foundation. In order to simulate the structural response of the foundation up to the failure, a non linear analysis must be performed. In this paper the required computer analysis procedures will be described. It can be verified that the redistribution of the internal forces in this highly hyperstatic soil-structure system can be of two types. The total applied forces over the foundation are redistributed among the piles and for each pile itself a local redistribution of forces takes place along the pile shaft. This type of analysis allows an accurate investigation of the actual safety margin existent in the pile foundation, based on the actual as built conditions of the construction. (Author) [pt

  9. Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish.

    Directory of Open Access Journals (Sweden)

    Joseph D Iafrate

    Full Text Available The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus and 10 grey snapper (Lutjanus griseus in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152-157 dB re 1 μPa (peak. No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

  10. Technical assessment of the significance of Wigner energy for disposal of graphite wastes from the Windscale Piles

    International Nuclear Information System (INIS)

    Guppy, R.M.; Wisbey, S.J.; McCarthy, J.

    2001-01-01

    Plans to dismantle the core of the Windscale Pile 1 reactor, and to package the waste for interim storage and eventual disposal, are well advanced. UK Nirex Limited, currently responsible for identifying and developing a site primarily for disposal of the wide range of intermediate level wastes, is addressing the suitability of the waste from Windscale Pile 1, for transport to, and disposal at, a deep waste repository. To support the decommissioning of Windscale Pile 1, information on the condition of the graphite has been sought. Despite the fire in 1957, recent sampling of regions of the core has shown that much of the graphite still contains significant residual Wigner energy. Unless it can be shown that Wigner energy will not be released at a significant rate during operations such as waste packaging or handling of the package, or after disposal, future safety cases may be undermined. A model for the release of Wigner energy has been developed, which describes the stored energy as a set of defects with different activation energies. Initial values of stored energy are attributed to each member of the set, and the energy is released using first order decay processes. By appropriate selection of the range of activation energies and stored energies attributable to each population of defects, experimentally determined releases of stored energy as a function of temperature can be reproduced by the model. Within the disposal environment, the packages will be subject to modest heating from external sources, including the host rocks, radioactive decay, corrosion processes and heat from curing of backfill materials in the disposal vaults. The Wigner energy release model has been used in combination with finite element thermal modelling to assess the temperature evolution of stacks of waste packages located within hypothetical disposal vaults. It has also been used to assess the response of individual waste packages exposed to fires. This paper provides a summary of the

  11. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  12. Effect of pile-driving sounds on the survival of larval fish

    NARCIS (Netherlands)

    Bolle, L.J.; Jong, C.A.F. de; Bierman, S.M.; Beek, P.J.G. van van; Wessels, P.W.; Blom, E.; Damme, C.J.G. van; Winter, H.V.; Dekeling, R.P.A.

    2016-01-01

    Concern exists about the potential effects of pile-driving sounds on fish, but evidence is limited, especially for fish larvae. A device was developed to expose larvae to accurately reproduced pile-driving sounds. Controlled exposure experiments were carried out to examine the lethal effects in

  13. Towards Intelligent Interpretation of Low Strain Pile Integrity Testing Results Using Machine Learning Techniques.

    Science.gov (United States)

    Cui, De-Mi; Yan, Weizhong; Wang, Xiao-Quan; Lu, Lie-Min

    2017-10-25

    Low strain pile integrity testing (LSPIT), due to its simplicity and low cost, is one of the most popular NDE methods used in pile foundation construction. While performing LSPIT in the field is generally quite simple and quick, determining the integrity of the test piles by analyzing and interpreting the test signals (reflectograms) is still a manual process performed by experienced experts only. For foundation construction sites where the number of piles to be tested is large, it may take days before the expert can complete interpreting all of the piles and delivering the integrity assessment report. Techniques that can automate test signal interpretation, thus shortening the LSPIT's turnaround time, are of great business value and are in great need. Motivated by this need, in this paper, we develop a computer-aided reflectogram interpretation (CARI) methodology that can interpret a large number of LSPIT signals quickly and consistently. The methodology, built on advanced signal processing and machine learning technologies, can be used to assist the experts in performing both qualitative and quantitative interpretation of LSPIT signals. Specifically, the methodology can ease experts' interpretation burden by screening all test piles quickly and identifying a small number of suspected piles for experts to perform manual, in-depth interpretation. We demonstrate the methodology's effectiveness using the LSPIT signals collected from a number of real-world pile construction sites. The proposed methodology can potentially enhance LSPIT and make it even more efficient and effective in quality control of deep foundation construction.

  14. An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

    Directory of Open Access Journals (Sweden)

    Oh Kyun Kwon

    2014-03-01

    Full Text Available In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D, reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150–360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

  15. Hydrochemical and isotopic study of groundwater impacted by the acid drainage of UrÂnio Mine - Osamu Utsumi, PoÇos de Caldas Plateau (MG), Brazil

    International Nuclear Information System (INIS)

    Alberti, Heber Luiz Caponi

    2017-01-01

    The Osamu Utsumi Mine - MOU, belonging to the Brazilian Nuclear Industries - INB, began in 1977 with pickling activities and remained in operation until 1995. During this period, 94 million tons of rocks were removed, which caused the generation of large wasted rock piles. The intense drainage and precipitation in the study region favored the oxidation and leaching of the wasted rock piles, causing the Acid Drainage of Mine - DAM and generating effluents with low pH and high concentrations of fluoride, aluminum, iron, manganese, sulfate, zinc, uranium and Radio, among others. Currently the MOU is in the process of decommissioning and environmental remediation. The understanding of the hydrogeochemical processes and the behavior of the water flow through different aquifers is extremely important so that the actions of environmental remediation and control of the DAM are really effective. In this sense, in this work, geoprocessing and hydrochemical techniques were used to propose a conceptual hydrogeochemical model in the MOU cavity system and wasted rock pile number 4 - BF4. The geoprocessing techniques allowed to characterize and size the area under study and to integrate information on geology and mineralogy with the hydrochemical data. The hydrochemical studies were based on three groundwater sampling campaigns, using the low flow method in 17 monitoring wells, as well as 3 water reservoirs in the study area. In the collected samples were determined: (1) the main cations and anions for groundwater classification using Piper and Stiff diagrams and multivariate statistical methods (cluster and Principal Component Analysis); (2) the major long half radionuclides and 222 Rn to assess radioactivity and imbalance between them; (3) the stable isotopes of 18 O and 2 H to provide information on the underground flows and water source; (4) the Tritium values found in the samples to estimate the age of the groundwater; (V) the sulfur and oxygen isotopes present in the

  16. Hydrochemical and isotopic study of groundwater impacted by the acid drainage of UrÂnio Mine - Osamu Utsumi, PoÇos de Caldas Plateau (MG), Brazil; Estudo hidroqímico e isotópico das águas subterrâneas impactadas pela drenagem ácida da Mina de Urânio - OSAMU UTSUMI, planalto de Poço de Caldas, MG

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Heber Luiz Caponi

    2017-07-01

    The Osamu Utsumi Mine - MOU, belonging to the Brazilian Nuclear Industries - INB, began in 1977 with pickling activities and remained in operation until 1995. During this period, 94 million tons of rocks were removed, which caused the generation of large wasted rock piles. The intense drainage and precipitation in the study region favored the oxidation and leaching of the wasted rock piles, causing the Acid Drainage of Mine - DAM and generating effluents with low pH and high concentrations of fluoride, aluminum, iron, manganese, sulfate, zinc, uranium and Radio, among others. Currently the MOU is in the process of decommissioning and environmental remediation. The understanding of the hydrogeochemical processes and the behavior of the water flow through different aquifers is extremely important so that the actions of environmental remediation and control of the DAM are really effective. In this sense, in this work, geoprocessing and hydrochemical techniques were used to propose a conceptual hydrogeochemical model in the MOU cavity system and wasted rock pile number 4 - BF4. The geoprocessing techniques allowed to characterize and size the area under study and to integrate information on geology and mineralogy with the hydrochemical data. The hydrochemical studies were based on three groundwater sampling campaigns, using the low flow method in 17 monitoring wells, as well as 3 water reservoirs in the study area. In the collected samples were determined: (1) the main cations and anions for groundwater classification using Piper and Stiff diagrams and multivariate statistical methods (cluster and Principal Component Analysis); (2) the major long half radionuclides and {sup 222}Rn to assess radioactivity and imbalance between them; (3) the stable isotopes of {sup 18}O and {sup 2}H to provide information on the underground flows and water source; (4) the Tritium values found in the samples to estimate the age of the groundwater; (V) the sulfur and oxygen isotopes

  17. Assessment of Feasibility of Suction Pile/Anchor Installation and Pullout Testing through Field Tests

    Directory of Open Access Journals (Sweden)

    R. Vijaya

    2014-09-01

    Full Text Available Suction pile anchors are large cylindrical (inverted bucket type structure open at the bottom and closed at the top and largely used for mooring of offshore platforms, exploratory vessels etc. Prediction of the mooring capacity of suction piles is a critical issue faced by the design engineers and rational methods are required to produce reliable designs. Tests have been conducted in an existing natural pond within NIOT campus with the objective of developing methodology of deployment, design and logistics for suction pile installation and testing of mooring capacity under static pullout. Small size suction piles with varying diameters and lengths have been used in the tests. The tests have been carried out in the natural pond with constant water depth of 1.5 m with the top 1.5 m layer of bed comprising soft marine clay. It is found that pile geometry, aspect ratio and angle of pullout have a significant influence on the response to pullout. As angle of mooring load application changes from vertical to horizontal the reaction offered by the suction pile changes from skin friction to passive soil resistance. Resistance offered by the internal plug of soil is found to vary according to dimension of the anchor piles.

  18. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-12-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  19. Asymptotic analysis of a pile-up of regular edge dislocation walls

    KAUST Repository

    Hall, Cameron L.

    2011-01-01

    The idealised problem of a pile-up of regular dislocation walls (that is, of planes each containing an infinite number of parallel, identical and equally spaced dislocations) was presented by Roy et al. [A. Roy, R.H.J. Peerlings, M.G.D. Geers, Y. Kasyanyuk, Materials Science and Engineering A 486 (2008) 653-661] as a prototype for understanding the importance of discrete dislocation interactions in dislocation-based plasticity models. They noted that analytic solutions for the dislocation wall density are available for a pile-up of regular screw dislocation walls, but that numerical methods seem to be necessary for investigating regular edge dislocation walls. In this paper, we use the techniques of discrete-to-continuum asymptotic analysis to obtain a detailed description of a pile-up of regular edge dislocation walls. To leading order, we find that the dislocation wall density is governed by a simple differential equation and that boundary layers are present at both ends of the pile-up. © 2011 Elsevier B.V.

  20. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    OpenAIRE

    R. Ananda Kumar; Dr. C. Selvamony; A. Seeni; Dr. T. R. Sethuraman

    2015-01-01

    Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral lo...

  1. Effects of Diameter on Initial Stiffness of P-Y Curves for Large-Diameter Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Augustesen, Anders Hust

    2010-01-01

    is developed for slender piles with diameters up to approximately 2.0 m. Hence, the method is not validated for piles with diameters of 4–6 m. The aim of the paper is to extend the p-y curve method to large-diameter non-slender piles in sand by considering the effects of the pile diameter on the soil-pile...... interaction. Hence, a modified expression for the p-y curves for statically loaded piles in sand is proposed in which the initial slope of the p-y curves depends on the depth below the soil surface, the pile diameter and the internal angle of friction. The evaluation is based on three-dimensional numerical...... analyses by means of the commercial program FLAC3D incorporating a Mohr-Coulomb failure criterion. The numerical model is validated with laboratory tests in a pressure tank at Aalborg University....

  2. Spontaneous vegetation on overburden piles in the Coal Basin of Santa Catarina, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, R.; Citadini-Zanette, V.; Leal-Filho, L.S.; Hennies, W.T. [University of Extremo Sul Catarinense, Criciuma (Brazil)

    2008-09-15

    The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950-1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40-50{sup o} characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration.

  3. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-01-01

    Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications. PMID:28772752

  4. STABILIZATION OF A FAILED SLOPE WITH PILED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. Rifat KAHYAOĞLU

    2008-01-01

    Full Text Available Neogene aged units of a densely populated region of Western Turkey along the Aegean Sea coastline is susceptible to landslides causing frequent economic loss especially following raining seasons. Several landslides took place in the area covering a narrow band of the coastline between Izmir and Söke (Aydın. Countermeasures against these relatively small-scale slope failures in the region often involve construction of either reinforced concrete retaining walls or stabilizing piles, which can be easily constructed by local contractors. In this study borings, in-situ and laboratory soil mechanics tests, geophysical and geological investigations have been performed in order to investigate the landslide occurred in the yard of an elementary school in Söke township. The analysis of two rows of piled retaining system constructed to reuse the school building against a potential slides are presented. Three inclinometer measurements have been performed after completion of the bored pile system. It has been concluded that the measured and the calculated displacement values are both small. There is no problem of the built project by means of moments and displacements.

  5. Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...... in the predictions of bearing capacities calculated by means of the three methods for piles loaded in both tension and compression. This implies that further analysis of the bearing capacity of axially loaded piles in sand should be conducted....

  6. Mathematical Model and Analysis of Negative Skin Friction of Pile Group in Consolidating Soil

    Directory of Open Access Journals (Sweden)

    Gangqiang Kong

    2013-01-01

    Full Text Available In order to calculate negative skin friction (NSF of pile group embedded in a consolidating soil, the dragload calculating formulas of single pile were established by considering Davis one-dimensional nonlinear consolidation soils settlement and hyperbolic load-transfer of pile-soil interface. Based on effective influence area theory, a simple semiempirical mathematical model of analysis for predicting the group effect of pile group under dragload was described. The accuracy and reliability of mathematical models built in this paper were verified by practical engineering comparative analysis. Case studies were studied, and the prediction values were found to be in good agreement with those of measured values. Then, the influences factors, such as, soil consolidation degree, the initial volume compressibility coefficient, and the stiffness of bearing soil, were analyzed and discussed. The results show that the mathematical models considering nonlinear soil consolidation and group effect can reflect the practical NSF of pile group effectively and accurately. The results of this paper can provide reference for practical pile group embedded in consolidating soil under NSF design and calculation.

  7. A new method for testing pile by single-impact energy and P-S curve

    Science.gov (United States)

    Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming

    2004-11-01

    By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.

  8. The effect of pulse pile-up on discrimination between neutrons and gamma rays

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    Pulse pile-up lengthens the rise-time of pulses. With an organic scintillator such as NE 213, pile-up can cause a short rise-time pulse originating from gamma rays to be interpreted by a rise-time analyser as a neutron. The degradation of pulse shape analyser performance at high count rates is shown to be directly related to pulse pile-up. Using this relationship, the contribution of piled-up gamma rays and neutrons to count rate related errors is calculated for a time-dependent fast neutron energy spectrum measurement. Errors of a few per cent occur even when the probability of a count per burst is as low as 0.01. (orig.)

  9. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  10. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  11. Reliability techniques and Coupled BEM/FEM for interaction pile-soil

    Directory of Open Access Journals (Sweden)

    Ahmed SAHLI

    2017-06-01

    Full Text Available This paper deals with the development of a computational code for the modelling and verification of safety in relation to limit states of piles found in foundations of current structures. To this end, it makes use of reliability techniques for the probabilistic analysis of piles modelled with the finite element method (FEM coupled to the boundary element method (BEM. The soil is modelled with the BEM employing Mindlin's fundamental solutions, suitable for the consideration of a three-dimensional infinite half-space. The piles are modelled as bar elements with the MEF, each of which is represented in the BEM as a loading line. The finite element of the employed bar has four nodes and fourteen nodal parameters, three of which are displacements for each node plus two rotations for the top node. The slipping of the piles in relation to the mass is carried out using adhesion models to define the evolution of the shaft tensions during the transfer of load to the soil. The reliability analysis is based on three methods: first order second moment (FOSM, first order reliability method and Monte Carlo method.

  12. Neutron spectrum in small iron pile surrounded by lead reflector

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Hayashi, S.A.; Kobayashi, Katsuhei; Matsumura, Tetsuo; Nishihara, Hiroshi.

    1978-01-01

    In order to save the quantity of sample material, a possibility to assess group constants of a reactor material through measurement and analysis of neutron spectrum in a small sample pile surrounded by a reflector of heavy moderator, was investigated. As the sample and the reflector, we chose iron and lead, respectively. Although the time dispersion in moderation of neutrons was considerably prolonged by the lead reflector, this hardly interferes with the assessment of group constants. Theoretical calculation revealed that both the neutron flux spectrum and the sensitivity coefficient of group constants in an iron sphere, 35 cm in diameter surrounded by the lead reflector, 25 cm thick, were close to those of the bare iron sphere, 108 cm in diameter. The neutron spectra in a small iron pile surrounded by a lead reflector were experimentally obtained by the time-of-flight method with an electron linear accelerator and the result was compared with the predicted values. It could be confirmed that a small sample pile surrounded by a reflector, such as lead, was as useful as a much larger bulk pile for the assessment of group constants of a reactor material. (auth.)

  13. Recovery of small pile burn scars in conifer forests of the Colorado Front Range

    Science.gov (United States)

    Charles C. Rhoades; Paula J. Fornwalt; Mark W. Paschke; Amber Shanklin; Jayne L. Jonas

    2015-01-01

    The ecological consequences of slash pile burning are a concern for land managers charged with maintaining forest soil productivity and native plant diversity. Fuel reduction and forest health management projects have created nearly 150,000 slash piles scheduled for burning on US Forest Service land in northern Colorado. The vast majority of these are small piles (

  14. Rehabilitating slash pile burn scars in upper montane forests of the Colorado Front Range

    Science.gov (United States)

    Paula J. Fornwalt; Charles C. Rhoades

    2011-01-01

    Slash pile burning is widely conducted by land managers to dispose of unwanted woody fuels, yet this practice typically has undesirable ecological impacts. Simple rehabilitation treatments may be effective at ameliorating some of the negative impacts of pile burning on plants and soils. Here, we investigated: (1) the impacts of slash pile burning on soil nitrogen and...

  15. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Markov Sergey

    2017-01-01

    Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  16. Performance of pile-up mitigation techniques for jets in pp collisions with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Testa, M., E-mail: marianna.testa@lnf.infn.it

    2016-07-11

    The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. The methods employed to correct for the impact of pile-up on jet energy, shapes and multiplicity with the ATLAS detector are presented here. They include energy correction techniques based on estimates of the average pile-up energy density and jet-to-vertex association techniques. Extensions of these methods to reduce the impact of pile-up on jet shapes use both subtraction and grooming procedures. Prospects for pile-up suppression at the HL-LHC are also shown.

  17. Performance of pile-up mitigation techniques for jets in pp collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Testa, M.

    2016-01-01

    The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. The methods employed to correct for the impact of pile-up on jet energy, shapes and multiplicity with the ATLAS detector are presented here. They include energy correction techniques based on estimates of the average pile-up energy density and jet-to-vertex association techniques. Extensions of these methods to reduce the impact of pile-up on jet shapes use both subtraction and grooming procedures. Prospects for pile-up suppression at the HL-LHC are also shown.

  18. Performance of pile-up mitigation techniques for jets in pp collisions with the ATLAS detector

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2015-01-01

    The large rate of multiple simultaneous proton-proton interactions, or pile-up, generated by the Large Hadron Collider in Run I required the development of many new techniques to mitigate the adverse effects of these conditions. The methods employed to correct for the impact of pile-up on jet energy, shapes and multiplicity with the ATLAS detector are here presented. They include energy correction techniques based on estimates of the average pile-up energy density and jet-to-vertex association techniques. Extensions of these methods to reduce the impact of pile-up on jet shapes use both subtraction and grooming procedures. Prospects for pile-up suppression at the HL-LHC are also shown.

  19. Dynamic stiffness and seismic input motion of a group of battered piles

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1979-01-01

    The dynamic stiffness (impedance function) and the corresponding seismic input motion of a group of battered piles, which can be end-bearing and floating, situated in any desired configuration in horizontally stratified soil, are determined. The soil and the piles consist of (frequency-dependent) visco-elastic material with hysteretic damping. The base mat can be rigid or flexible. Any seismic excitation, for which the free-field motion can be calculated, can be specified (body waves, propagating at an arbitrary angle, generalized surface waves). The soil is discretized by toroidal finite elements in conjunction with a Fourier expansion in the circumferential direction. Radiation and hysteretic damping are accounted for. The dynamic-flexibility matrix of the soil is generated, superimposing the basic dynamic-flexibility coefficients calculated by applying sequentially a horizontal and a vertical force at all nodes located on the axis of symmetry. The influence of the soil which is subsequently replaced by piles is taken into consideration. Pile-soil-pile interaction is accounted for in this method. The formulation can also be applied to embedded foundation and buried structures such as tunnels and pipe systems. (Auth.)

  20. Rock support of the L3 experimental hall complex

    International Nuclear Information System (INIS)

    Laughton, C.

    1990-06-01

    The methods of excavation and support selected for the LEP works are discussed in this paper. The excavation of the halls and chambers in discrete passes, from the roof down, and their temporary support by patterned fully bonded rock bolts and shotcrete ensured that mass deformations were contained. When working in soft rock materials where discontinuity, elastic and possibly plastic deformations may each play an important role in the overall rock structure stability, it is of paramount importance to systematically monitor the behavior of the rock in-situ. The use of instrumentation to indicate location, direction, levels, and rate of movement is essential to ensure that a safe, efficient and economical mining operation can be undertaken, and that any remedial action will be taken at the appropriate time. The use of the New Austrian Tunneling support mechanisms allowed the engineer greater flexibility in handling local reinforcement of the rock structure if superficial or relatively deep-seated instability was encountered. However, in the case where second linings are to be accommodated and flexible support mechanisms used, care should be taken to foresee over-excavation in weaker zones to allow for larger displacements prior to the attainment of confinement-convergence equilibria. 4 refs., 7 figs