Fractional order differentiation and robust control design crone, h-infinity and motion control
Sabatier, Jocelyn; Melchior, Pierre; Oustaloup, Alain
2015-01-01
This monograph collates the past decade’s work on fractional models and fractional systems in the fields of analysis, robust control and path tracking. Themes such as PID control, robust path tracking design and motion control methodologies involving fractional differentiation are amongst those explored. It juxtaposes recent theoretical results at the forefront in the field, and applications that can be used as exercises that will help the reader to assimilate the proposed methodologies. The first part of the book deals with fractional derivative and fractional model definitions, as well as recent results for stability analysis, fractional model physical interpretation, controllability, and H-infinity norm computation. It also presents a critical point of view on model pseudo-state and “real state”, tackling the problem of fractional model initialization. Readers will find coverage of PID, Fractional PID and robust control in the second part of the book, which rounds off with an extension of H-infinity ...
Musa Mailah
2005-06-01
Full Text Available A resolved acceleration control (RAC and proportional-integral active force control (PIAFC is proposed as an approach for the robust motion control of a mobile manipulator (MM comprising a differentially driven wheeled mobile platform with a two-link planar arm mounted on top of the platform. The study emphasizes on the integrated kinematic and dynamic control strategy in which the RAC is used to manipulate the kinematic component while the PIAFC is implemented to compensate the dynamic effects including the bounded known/unknown disturbances and uncertainties. The effectivenss and robustness of the proposed scheme are investigated through a rigorous simulation study and later complemented with experimental results obtained through a number of experiments performed on a fully developed working prototype in a laboratory environment. A number of disturbances in the form of vibratory and impact forces are deliberately introduced into the system to evaluate the system performances. The investigation clearly demonstrates the extreme robustness feature of the proposed control scheme compared to other systems considered in the study.
Toda, Masayoshi
2016-01-01
This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection. Researche...
Robust global motion estimation
无
2007-01-01
A global motion estimation method based on robust statistics is presented in this paper. By using tracked feature points instead of whole image pixels to estimate parameters the process speeds up. To further speed up the process and avoid numerical instability, an alterative description of the problem is given, and three types of solution to the problem are compared. By using a two step process, the robustness of the estimator is also improved. Automatic initial value selection is an advantage of this method. The proposed approach is illustrated by a set of examples, which shows good results with high speed.
Robust motion control design for dual-axis motion platform using evolutionary algorithm
Horn-Yong Jan; Chun-Liang Lin; Ching-Huei Huang; Thong-Shing Hwang
2008-12-01
This paper presents a new approach to deal with the dual-axis control design problem for a mechatronic platform. The cross-coupling effect leading to contour errors is effectively resolved by incorporating a neural net-based decoupling compensator. Conditions for robust stability are derived to ensure the closedloop system stability with the decoupling compensator. An evolutionary algorithm possessing the universal solution seeking capability is proposed for ﬁnding the optimal connecting weights of the neural compensator and PID control gains for the and axis control loops. Numerical studies and a real-world experiment for a watch cambered surface polishing platform have veriﬁed performance and applicability of our proposed design.
Robust cascade control for the horizontal motion of a vehicle with single-wheel actuators
Moseberg, Jan-Erik; Roppenecker, Günter
2015-12-01
The article presents a cascade control for the horizontal motion of a vehicle with single-wheel actuators. The outer control loop for the longitudinal and lateral accelerations and the yaw rate ensures a desired vehicle motion. By a combination of state feedback control and observer-based disturbance feedforward the inner control loop robustly stabilises the rotating and steering motions of the wheels in spite of unknown frictions between tyres and ground. Since the three degrees of freedom of the horizontal motion are affected by eight tyre forces, the vehicle considered is an over-actuated system. Thus additional control objectives can be realised besides the desired motion trajectory as, for example, a maximum in driving safety. The corresponding analytical tyre force allocation also guarantees real-time capability because of its relatively low computational effort. Provided suitable fault detection and isolation are available, the proposed cascade control has the potential of fault-tolerance, because the force allocation is adaptable. Another benefit results from the modular control structure, because it allows a stepwise implementation. Besides, it only requires a small number of measurements for control purposes. These measurements are the rotational speeds and steering angles of the wheels, the longitudinal and lateral acceleration and the yaw rate of the vehicle.
Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator
Han Songshan; Jiao Zongxia; Wang Chengwen; Shang Yaoxing
2015-01-01
A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion sim-ulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simula-tors. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decom-position of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the control-ler theoretically can guarantee asymptotic tracking performance in the presence of the above uncer-tainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.
Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control
郎琳; 王剑; 韦庆; 马宏绪
2016-01-01
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities (LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods.
Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator
Han Songshan
2015-02-01
Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.
Yao Jianyong; Jiao Zongxia; Han Songshan
2013-01-01
Low-velocity tracking capability is a key performance of flight motion simulator (FMS),which is mainly affected by the nonlinear friction force.Though many compensation schemes with ad hoc friction models have been proposed,this paper deals with low-velocity control without friction model,since it is easy to be implemented in practice.Firstly,a nonlinear model of the FMS middle frame,which is driven by a hydraulic rotary actuator,is built.Noting that in the low velocity region,the unmodeled friction force is mainly characterized by a changing-slowly part,thus a simple adaptive law can be employed to learn this changing-slowly part and compensate it.To guarantee the boundedness of adaptation process,a discontinuous projection is utilized and then a robust scheme is proposed.The controller achieves a prescribed output tracking transient performance and final tracking accuracy in general while obtaining asymptotic output tracking in the absence of modeling errors.In addition,a saturated projection adaptive scheme is proposed to improve the globally learning capability when the velocity becomes large,which might make the previous proposed projection-based adaptive law be unstable.Theoretical and extensive experimental results are obtained to verify the high-performance nature of the proposed adaptive robust control strategy.
De-yuan MENG; Guo-liang TAO; Ai-min LI; Wei LI
2014-01-01
We investigate motion synchronization of dual-cylinder pneumatic servo systems and develop an adaptive robust synchronization controller. The proposed controller incorporates the cross-coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture by feeding back the coupled position errors, which are formed by the trajectory tracking errors of two cylinders and the synchronization error between them. The controller employs an online recursive least squares estimation algorithm to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, and uses a robust control law to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. Therefore, asymptotic convergence to zero of both trajectory tracking and synchronization errors can be guaranteed. Experimental results verify the effectiveness of the proposed controller.
Analysis of the Accuracy and Robustness of the Leap Motion Controller
Denis Fisseler
2013-05-01
Full Text Available The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2mmhas been obtained for static setups and of 1.2mmfor dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
Analysis of the accuracy and robustness of the leap motion controller.
Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis
2013-05-14
The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
A Novel Approach to Robust Motion Control of Electrical Drives with Model order Uncertainty
Stephen J Dodds
2004-01-01
Full Text Available A novel approach to the control of plants with model order uncertainty as well as parametric errors and externaldisturbances is presented, which yields a specified settling time of the step response with zero overshoot. The method is applied to amotion control system employing a permanent magnet synchronous motor. A single controller is designed to cater for mechanicalloads that may exhibit significant vibration modes. The order of the complete controlled system (i.e., the plant will therefore dependon the number of significant vibration modes. The controller is of the cascade structure, comprising an inner drive speed control loopand an outer position control loop. The main contribution of the paper is a completely new robust control strategy for plants withmodel order uncertainty, which is used in the outer position control loop. Its foundations lie in sliding mode control, but the set ofoutput derivatives fed back extend to a maximum order depending on the maximum likely rank of the plant, rather than its knownrank. In cases where the maximum order of output derivative exceeds the plant rank, in theory, virtual states are created that raise theorder of the closed-loop system while retaining the extreme robustness properties of sliding mode control.
Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong
2014-07-01
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This
Marek Hicar
2004-01-01
Full Text Available The article is about a control design for complete structure of the crane: crab, bridge and crane uplift.The most important unknown parameters for simulations are burden weight and length of hanging rope. We will use robustcontrol for crab and bridge control to ensure adaptivity for burden weight and rope length. Robust control will be designed for current control of the crab and bridge, necessary is to know the range of unknown parameters. Whole robust will be splitto subintervals and after correct identification of unknown parameters the most suitable robust controllers will be chosen.The most important condition at the crab and bridge motion is avoiding from burden swinging in the final position. Crab and bridge drive is designed by asynchronous motor fed from frequency converter. We will use crane uplift with burden weightobserver in combination for uplift, crab and bridge drive with cooperation of their parameters: burden weight, rope length and crab and bridge position. Controllers are designed by state control method. We will use preferably a disturbance observerwhich will identify burden weight as a disturbance. The system will be working in both modes at empty hook as well asat maximum load: burden uplifting and dropping down.
A robust adaptive robot controller
Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk
1993-01-01
A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excit
Zhi-Gang Wu
2013-07-01
Full Text Available The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS error of 0.21 μrad, which is approximately equal to the noise level.
Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang
2013-07-15
The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level.
Neuromorphic Configurable Architecture for Robust Motion Estimation
Guillermo Botella
2008-01-01
Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.
A robust adaptive robot controller
1993-01-01
A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excite the unmodeled dynamics and amplify the noise level. Third, we derive for the unknown parameter design a relationship between compensator gains and closed-loop convergence rates that is independen...
2013-01-01
Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List
Robust Self Tuning Controllers
Poulsen, Niels Kjølstad
1985-01-01
The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay....
2013-01-01
This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...
1985-09-19
13.2 3.6. 14.0. 1.8. 11111.52 *.6 L 3 n1 i erated ~~~m nc. AFOSR-TR- 798 s AD-A 161 349 ROBUST ADAPTIVE CONTROL * FINAL REPORT PREPARED BY: R~ OBERT L... Centre Block Computes the Norm of the [1I] Solo, V., "Time Series Recursions and Stochastc Regressors. The Rematning Elemerts Imple- Approximation
A robust adaptive controller for robot manipulators
Berghuis, Harry; Ortega, Romeo; Nijmeijer, Henk
1992-01-01
The authors propose a globally convergent adaptive control scheme for robot motion control with the following features: first, the adaptation law processes enhanced robustness with respect to noisy velocity measurements; secondly, the controller does not require the inclusion of high-gain loops that
Sabanovic, Asif
2011-01-01
"Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...
Robust control investigations for equipment loaded panels
Aglietti, G.S.; Langley, R.S.; Rogers, E.
1998-01-01
This paper develops a modelling technique for equipment load panels which directly produces (adequate) models of the underlying dynamics on which to base robust controller design/evaluations. This technique is based on the use of the Lagrange's equations of motion and the resulting models...
ROBUST CONTROL OF PERIODIC BIFURCATION SOLUTIONS
梁建术; 陈予恕; 梁以德
2004-01-01
The topological bifurcation diagrams and the coefficients of bifurcation equation were obtained by C-L method.According to obtained bifurcation diagrams and combining control theory,the method of robust control of periodic bifurcation was presented,which differs from generic methods of bifurcation control.It can make the existing motion pattern into the goal motion pattern.Because the method does not make strict requirement about parametric values of the controller,it is convenient to design and make it.Numerical simulations verify validity of the method.
A robust adaptive controller for robot manipulators
1992-01-01
The authors propose a globally convergent adaptive control scheme for robot motion control with the following features: first, the adaptation law processes enhanced robustness with respect to noisy velocity measurements; secondly, the controller does not require the inclusion of high-gain loops that may excite the unmodeled dynamics and amplify the noise level; thirdly the authors derive for the known parameter design a relationship between compensator gains and closed-loop convergence rates ...
Perez, Tristan; Blanke, Mogens
2010-01-01
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deciencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations....... This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....
Advances in robust fractional control
Padula, Fabrizio
2015-01-01
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...
Nazir, H.Z.; Riaz, M.; Does, R.J.M.M.; Abbas, N.
2013-01-01
Cumulative sum (CUSUM) control charts are very effective in detecting special causes. In general, the underlying distribution is supposed to be normal. In designing a CUSUM chart, it is important to know how the chart will respond to disturbances of normality. The focus of this article is to control
Attractive ellipsoids in robust control
Poznyak, Alexander; Azhmyakov, Vadim
2014-01-01
This monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will a...
Robust power system frequency control
Bevrani, Hassan
2008-01-01
Emphasizes the physical and engineering aspects of the power system frequency control design problem while providing a conceptual understanding of frequency regulation and application of robust control techniques. This book summarizes the author's research outcomes, contributions and experiences with power system frequency regulation.
Robust control design with MATLAB
Gu, Da-Wei; Konstantinov, Mihail M
2013-01-01
Robust Control Design with MATLAB® (second edition) helps the student to learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples from teaching-laboratory experiments, such as a two-wheeled, self-balancing robot, to complex systems like a flexible-link manipulator are given detailed presentation. All of these exercises are conducted using MATLAB® Robust Control Toolbox 3, Control System Toolbox and Simulink®. By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H-infinity optimization and related methods allowing readers quickly to move on with their own challenges. The hands-on tutorial style of this text rests on an abundance of examples and features for the second edition: · rewritten and simplified presentation of theoretical and meth...
Robust power system frequency control
Bevrani, Hassan
2014-01-01
This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi
Kinematics and Dynamics of Motion Control Based on Acceleration Control
Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro
The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.
Robust control charts in statistical process control
Nazir, H.Z.
2014-01-01
The presence of outliers and contaminations in the output of the process highly affects the performance of the design structures of commonly used control charts and hence makes them of less practical use. One of the solutions to deal with this problem is to use control charts which are robust agains
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
Robust H∞ control for networked control systems
Ma Weiguo; Shao Cheng
2008-01-01
The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied.When data are transmitted over network,the stochastic data packet dropout process can be described by a two-state Markov chain.The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes.The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality.The state feedback controller can be constructed via the solution of a set of linear matrix inequalities.An example is given to verify the effectiveness of the method proposed.
Funnel Libraries for Real-Time Robust Feedback Motion Planning
2016-07-21
environments. To our knowledge , the resulting hardware demonstrations on a fixed-wing airplane constitute one of the first examples of provably safe and robust... knowledge , the resulting hardware demonstrations on a fixed-wing airplane constitute one of the first examples of provably safe and robust control for...techniques for computing reachable sets based on the HJB equation have historically suffered from the curse of dimensionality since they rely on
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory
2009-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.
Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control
Mbaitiga Zacharie
2010-01-01
Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.
A decentralized adaptive robust method for chaos control.
Kobravi, Hamid-Reza; Erfanian, Abbas
2009-09-01
This paper presents a control strategy, which is based on sliding mode control, adaptive control, and fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in chaotic systems where the equations of motion are not known. The proposed control strategy is robust against the external noise disturbance and system parameter variations and can be used to convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic motions. Simulation results of controlling some typical higher order chaotic systems demonstrate the effectiveness of the proposed control method.
PID control with robust disturbance feedback control
Kawai, Fukiko; Vinther, Kasper; Andersen, Palle
2015-01-01
Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....
Coordinating control of multiple rigid bodies based on motion primitives
Fan Wu; Zhi-Yong Geng
2012-01-01
This paper studies the problem of coordinated motion generation for a group of rigid bodies.Two classes of coordinated motion primitives,relative equilibria and maneuvers,are given as building blocks for generating coordinated motions.In a motion-primitive based planning framework,a control method is proposed for the robust execution of a coordinated motion plan in the presence of perturbations,The control method combines the relative equilibria stabilization with maneuver design,and results in a closeloop motion planning framework.The performance of the control method has been illustrated through a numerical simulation.
Robust and optimal attitude control of spacecraft with disturbances
Park, Yonmook
2015-05-01
In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.
Nonlinear Robust Control for Spacecraft Attitude
Wang Lina
2013-07-01
Full Text Available Nonlinear robust control of the spacecraft attitude with the existence of external disturbances is considered. A robust attitude controller is designed based on the passivity approach the quaternion representation, which introduces the suppression vector of external disturbance into the control law and does not need angular velocity measurement. Stability conditions of the robust attitude controller are given. And the numerical simulation results show the effectiveness of the attitude controller.
Robust Image Restoration for Motion Blur of Image Sensors.
Yang, Fasheng; Huang, Yongmei; Luo, Yihan; Li, Lixing; Li, Hongwei
2016-06-09
Blind image restoration algorithms for motion blur have been deeply researched in the past years. Although great progress has been made, blurred images containing large blur and rich, small details still cannot be restored perfectly. To deal with these problems, we present a robust image restoration algorithm for motion blur of general image sensors in this paper. Firstly, we propose a self-adaptive structure extraction method based on the total variation (TV) to separate the reliable structures from textures and small details of a blurred image which may damage the kernel estimation and interim latent image restoration. Secondly, we combine the reliable structures with priors of the blur kernel, such as sparsity and continuity, by a two-step method with which noise can be removed during iterations of the estimation to improve the precision of the estimated blur kernel. Finally, we use a MR-based Wiener filter as the non-blind deconvolution algorithm to restore the final latent image. Experimental results demonstrate that our algorithm can restore large blur images with rich, small details effectively.
A Novel Robust Adaptive Fuzzy Controller
LIU Xiao-hua; WANG Xiu-hong; FEN En-min
2002-01-01
For a class of continuous-time nonlinear system, a novel robust adaptive fuzzy controller is proposed by using of Lyapunov method. It is proven that the control algorithm is globally stable, the output tracking-error can convergence to a domain of zero under the assumptions. As a result, the system controlled has stronger robustness for disturbance and modeling error.
2012-01-01
Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...
Robust Multiobjective Controllability of Complex Neuronal Networks.
Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen
2016-01-01
This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.
Design Robust Controller for Rotary Kiln
Omar D. Hernández-Arboleda
2013-11-01
Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.
Robust control of an aircraft model
Werner, H. [Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik
1999-12-01
A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)
Robust control of an aircraft model
Werner, H. (Bochum Univ. (Germany). Fakultaet fuer Elektrotechnik)
1999-01-01
A new multimodel approach to robust controller design is illustrated by a practical application: for a laboratory aircraft model, a robust controller is designed simultaneously for normal operating conditions and for propeller failure. Based on a linear model for each operating mode, an LMI formulation of the problem and convex programming are used to search for a state feedback controller which achieves the objective. This state feedback design is then realized simultaneously in both operating modes by a controller which is based on fast output sampling. Robust performance is demonstrated by experimental results. (orig.)
Modeling and robust control of wind turbine
Gilev, Bogdan
2016-12-01
In this paper a model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. This model is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model and robust control theory is developed a robust controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and robust controller
Robust Structured Control Design via LMI Optimization
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
Motion Control along Relative Equilibria
Nordkvist, Nikolaj
2008-01-01
The subject of this thesis is control of mechanical systems as they evolve along the steady motions called relative equilibria. These trajectories are of interest in theory and applications and have the characterizing property that the system's body-fixed velocity is constant. For example, constant...... on a Lie group is locally controllable along a relative equilibrium. These conditions subsume the well-known local controllability conditions for equilibrium points. Second, for systems that have fewer controls than degrees of freedom, we present a novel algorithm to control simple mechanical control...
Robust Fixed-Structure Control
1994-10-30
we utilize the UNCMND package interfaced with Matlab routines. This code is being tested using laboratory data from a noise control experiment. The...for second-order systems, a rigorous treatment of Guyan reduction, a deterministic foundation for energy flow theory, a unified treatment of quadratic...existence questions, it provides constructive techniques for obtaining controllers of interest. In contrast, conventional methods yield controllers only in
Nonlinear Robust Control Theory and Applications
1997-01-18
IEEE Transactions on Automatic Control , pp. 228-238...34Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics," IEEE Transactions on Automatic Control , pp. 25-38, 1991. 8 [10...Letter, 1994. [14] B. Moore, "Principal component analysis of linear systems: Controllability, observ- ability and model reduction," IEEE Transactions on Automatic Control ,
Robust control of robots fault tolerant approaches
Siqueira, Adriano A G; Bergerman, Marcel
2014-01-01
Bridging the divide between robust control theory and its application, this volume focuses on robotic manipulators and illustrates the mathematical concepts through experimental results in reproducible detail, obtained with a two-manipulator system.
Robust Optical User Motion Tracking Using a Kalman Filter
Dorfmüller-Ulhaas, Klaus
2007-01-01
Optical tracking has a great future in applications of virtual and augmented reality. It will assist to enhance the acceptance of virtual reality user interfaces, since optical tracking allows wireless interaction and precise tracking. Existing commercial motion capture systems are neither working reliably in real-time. Additionally, only few optical trackers can smooth and predict motion and include a motion estimator supplying similar results to the presented approach. A Kalman filter formu...
Robust control synthesis for uncertain dynamical systems
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Robust lyapunov controller for uncertain systems
Laleg-Kirati, Taous-Meriem
2017-02-23
Various examples of systems and methods are provided for Lyapunov control for uncertain systems. In one example, a system includes a process plant and a robust Lyapunov controller configured to control an input of the process plant. The robust Lyapunov controller includes an inner closed loop Lyapunov controller and an outer closed loop error stabilizer. In another example, a method includes monitoring a system output of a process plant; generating an estimated system control input based upon a defined output reference; generating a system control input using the estimated system control input and a compensation term; and adjusting the process plant based upon the system control input to force the system output to track the defined output reference. An inner closed loop Lyapunov controller can generate the estimated system control input and an outer closed loop error stabilizer can generate the system control input.
Helicopter vibration reduction using robust control
Mannchen, Thomas
2003-01-01
This dissertation presents a control law for helicopters to reduce vibration and to increase damping using individual blade control. H-infinity control synthesis is used to develop a robust controller usable in different operating conditions with different helicopter flight speeds. The control design is applied in simulation to the four-blade BO 105 helicopter rotor, which is equipped with an individual blade control system, where the pitch rod links are replaced by hydraulic actuators, allow...
Robust Reachability of Boolean Control Networks.
Li, Fangfei; Tang, Yang
2016-04-20
Boolean networks serve a powerful tool in analysis of genetic regulatory networks since it emphasizes the fundamental principles and establishes a nature framework for capturing the dynamics of regulation of cellular states. In this paper, the robust reachability of Boolean control networks is investigated by means of semi-tensor product. Necessary and sufficient conditions for the robust reachability of Boolean control networks are provided, in which control inputs relying on disturbances or not are considered, respectively. Besides, the corresponding control algorithms are developed for these two cases. A reduced model of the lac operon in the Escherichia coli is presented to show the effectiveness of the presented results.
Smith Predictor Based Robust Rapid Tracking Controller
LIU Hongbin; HU Dejin
2006-01-01
Precise model is hard to get in real application, a Smith predictor based robust rapid tracking controller for inaccurate model is proposed. Zero phase error feedforward controller which increases system closed-loop dynamics and disturbance observer based Smith feedback control which diminishes model hysteresis and improves stability are integrated. This method is applied in the noncircular machining with piezoelectric ceramic driver. The simulation and experiment show that the performance robustness and stability are well balanced in bandwidth about 200 Hz. The controller can decrease system hysteresis and get good tracking performance for predefined square-wave input signal.
System Identification and Robust Control
Tøffner-Clausen, S.
etc. Will generally yield a set of coupled non-linear partial differential equations. These equations can then be linearized (in time and position) around a suitable working point and Laplace transformed for linear control design. The linearized differential equations will typically involve physical...... enter the nominal model in a linear fractional manner. This is, however, a very general perturbation set which includes a large variety of uncertainty such as unstructured and structured dynamic uncertainty (complex perturbations) and parameter variations (real perturbations). The uncertainty structures...
Robust control of a hydraulically driven flexible arm
Guang LI; Khajepour AMIR
2004-01-01
A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.
Wheelchair control by head motion
Pajkanović Aleksandar
2013-01-01
Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.
A new robust control for minirotorcraft unmanned aerial vehicles.
Mokhtari, M Rida; Cherki, Brahim
2015-05-01
This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method.
An improved robust blind motion de-blurring algorithm for remote sensing images
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
Robust Geometric Control of a Distillation Column
Kymmel, Mogens; Andersen, Henrik Weisberg
1987-01-01
A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....
Principals' Pupil Control Behavior and School Robustness.
Smedley, Stanley R.; Willower, Donald J.
1981-01-01
A survey of 3,100 students, teachers, and principals in 47 elementary and secondary schools in the Middle Atlantic region, using the Pupil Control Behavior Form, revealed a positive association between principals' humanistic pupil control behavior and schools'"robustness" (the degree of meaning and excitement students find in school).…
Synthesis Methods for Robust Passification and Control
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Design Intelligent Robust Back stepping Controller
Zahra Esmaieli
2014-01-01
Full Text Available The increasing demand for multi-degree-of-freedom (DOF continuum robot in presence of highly nonlinear dynamic parameters in a number of industries has motivated a flurry of research in the development of soft computing nonlinear methodology. The robust backstopping controller proposed in this research is used to further demonstrate the appealing features exhibited by the continuum robot. Robust feedback controller is used to position control of continuum robot in presence of uncertainties. Using Lyapunov type stability arguments, a robust backstopping controller is designed to achieve this objective. The controller developed in this research is designed into two steps. Firstly, a robust stabilizing torque is designed for the nominal continuum robot dynamics derived using the constrained Lagrangian formulation based on modified PD backstopping controller. Next, the fuzzy logic methodology applied to it to solution uncertainty problem. The fuzzy model free problem is formulated to estimate the nonlinear formulation of continuum robot. The eventual stability of the controller depends on the torque generating capabilities of the continuum robots.
ROBUST CONTROL OF OSCILLATIONS IN AGRICULTURAL TRACTORS
Andersen, T. O.; Hansen, M. R.; Conrad, Finn
2003-01-01
This paper deals with research results on investigations of robust control of oscillations in off-road vechicles, and relates to analyses and control of the oscillations occurring in many off road vehicles, which are designed without any suspension. Without suspension, the tire is the only elastic...... element acting between the vehicle and the ground but the suspension and damping properties of the tires cannotmeet the demands for fast, safe and comfortable road transportation. In this paper, the mentioned phenomenon was undertaken for investigation with special focus on robust oscillations...
Robust and Adaptive Control With Aerospace Applications
Lavretsky, Eugene
2013-01-01
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features ...
Robust Adaptive Control of Hypnosis During Anesthesia
2007-11-02
1 of 4 ROBUST ADAPTIVE CONTROL OF HYPNOSIS DURING ANESTHESIA Pascal Grieder1, Andrea Gentilini1, Manfred Morari1, Thomas W. Schnider2 1ETH Zentrum...A closed-loop controller for hypnosis was designed and validated on humans at our laboratory. The controller aims at regulat- ing the Bispectral Index...BIS) - a surro- gate measure of hypnosis derived from the electroencephalogram of the patient - with the volatile anesthetic isoflurane administered
Matlab as a robust control design tool
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Robust H2 estimation and control
Lihua XIE; Yeng Chai SOH; Chunling DU; Yun ZOU
2004-01-01
This paper is concerned with the H2 estimation and control problems for uncertain discretetime systems with norm-bounded parameter uncertainty. We first present an analysis result on H2 norm bound for a stable uncertain system in terms of linearmatrix inequalities (LMIs). A solution to the robust H2 estimation problem is then derived in terms of two LMIs. As compared tothe existing results, our result on robust H2 estimation is more general. In addition, explicit search of appropriate scaling parametersis not needed as the optimization is convex in the scaling parameters. The LMI approach is also extended to solve the robust H2control problem which has been difficult for the traditional Riccati equation approach since no separation principle has been knownfor uncertain systems. The design approach is demonstrated through a simple example.
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Robustness analysis method for orbit control
Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan
2017-08-01
Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.
Real Time & Power Efficient Adaptive - Robust Control
Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru
2017-01-01
A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.
Robust coordinated control of a dual-arm space robot
Shi, Lingling; Kayastha, Sharmila; Katupitiya, Jay
2017-09-01
Dual-arm space robots are more capable of implementing complex space tasks compared with single arm space robots. However, the dynamic coupling between the arms and the base will have a serious impact on the spacecraft attitude and the hand motion of each arm. Instead of considering one arm as the mission arm and the other as the balance arm, in this work two arms of the space robot perform as mission arms aimed at accomplishing secure capture of a floating target. The paper investigates coordinated control of the base's attitude and the arms' motion in the task space in the presence of system uncertainties. Two types of controllers, i.e. a Sliding Mode Controller (SMC) and a nonlinear Model Predictive Controller (MPC) are verified and compared with a conventional Computed-Torque Controller (CTC) through numerical simulations in terms of control accuracy and system robustness. Both controllers eliminate the need to linearly parameterize the dynamic equations. The MPC has been shown to achieve performance with higher accuracy than CTC and SMC in the absence of system uncertainties under the condition that they consume comparable energy. When the system uncertainties are included, SMC and CTC present advantageous robustness than MPC. Specifically, in a case where system inertia increases, SMC delivers higher accuracy than CTC and costs the least amount of energy.
Robust balance shift control with posture optimization
Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.
2015-01-01
In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using o
Robust LQR Control Design of Gyroscope
Ashok S. Chandak
2013-04-01
Full Text Available The basic problem in designing control systems isthe ability to achieve good performance inthepresenceofuncertainties such as outputdisturbances, measurement noise or unmodeleddynamics (i.e. robust controllers. Recentdevelopment in the area has been directed towardsdeveloping a consistent design methodology withinthis uncertain environment. The attitude control/momentum management of the space station posesatypical problem in ahighlyuncertain environment(such asmass properties of the Space Station andenvironmental disturbancesas well as parametricuncertainties. The objective of this research is touse LQR control for the position control of spin axisrotor position at reference value in the presence ofparametric uncertainties, external unmeasurabledisturbances and system inherent non-linearitywithdifferenttype’sreference tracking signal areconsidered extensively in this paper.
Structured Robust Control for Small UAV
Elfatih G. HAMDI
2015-06-01
Full Text Available The performance and dynamic stability issues of flight control systems are still considered one of the most challenging design problems even though all of significant advances that have been happened in UAVs in the two last decades. This paper is devoted to design a flight control system to stabilize the attitude of small UAV against additive uncertainties. Toward this objective, structured robust control framework is considered. The design procedure is performed using two control configurations: The single degree of freedom (SDOF controller is considered and then followed by the two degree of freedom (TDOF controller to achieve some advantages. In SDOF configuration the entire set of all stabilizing controllers are, graphically, computed and then the controller parameter are, arbitrary, selected. A trade-off between designs requirements in SDOF controller determines the use of the TDOF controller. Therefore, the obtained parameters from SDOF controller are taken as initial guess and tuned using TDOF decentralized control to achieve the pre-determined performance specifications, while guarantee pre-determined robust stability. The obtained results clarify the ability of the designed controller to achieve an adequate level of stability and performance properties.
Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle
Escobar Sanabria, David
This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are
Stability Constraints for Robust Model Predictive Control
Amanda G. S. Ottoni
2015-01-01
Full Text Available This paper proposes an approach for the robust stabilization of systems controlled by MPC strategies. Uncertain SISO linear systems with box-bounded parametric uncertainties are considered. The proposed approach delivers some constraints on the control inputs which impose sufficient conditions for the convergence of the system output. These stability constraints can be included in the set of constraints dealt with by existing MPC design strategies, in this way leading to the “robustification” of the MPC.
Wire Scanner Motion Control Card
Forde, S E
2006-01-01
Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...
Rotational motion control of a spacecraft
Wisniewski, Rafal; Kulczycki, P.
2003-01-01
The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...
Modified robust sliding-mode control method for wafer scanner
Yiguang Wang
2015-03-01
Full Text Available This article studies the precision motion control of a long-stroke reticle stage driven by the permanent magnet linear motor in wafer scanner. A robust sliding-mode control method is proposed for tracking the reference trajectory in the presence of un-modeled dynamics, parametric uncertainty and external disturbances including force ripple, cogging and friction in the controlled system. A modified sliding-mode term based on the variable structure technique for eliminating the tracking error is employed in the proposed control law. The system stability and tracking convergence of the closed-loop control system are guaranteed by Lyapunov theory theoretically. The feasibility and effectiveness of the proposed method are demonstrated by comparative experiments on a linear motion testbed. The experimental results show that better tracking performance can be achieved by the proposed method compared with the conventional proportional–integral–derivative method and it can be considered as a possible alternative in the precision motion control system.
Robust force control of a robot manipulator
Dawson, D.M. (Clemson Univ., SC (United States)); Lewis, F.L. (Univ. of Texas, Fort Worth (United States)); Dorsey, J.F. (Georgia Inst. of Tech., Atlanta (United States))
1992-08-01
In this article, the authors develop a robust position/force controller based on the impedance approach without requiring exact knowledge of the robot dynamics. The controller is constructed so that a desired positional trajectory can be followed along the surface of the environment while the forces exerted on the environmental surface are regulated according to a target impedance. A global uniform ultimate boundedness result is obtained for the position tracking error and the force regulation error (i.e., the error between the actual manipulator impedance and desired target impedance). The controller only requires measurement of the end-effector force, joint velocity, and joint position.
The Robust Control Mixer Module Method for Control Reconfiguration
Yang, Z.; Blanke, M.
1999-01-01
of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed...
Change Point Detection with Robust Control Chart
Ng Kooi Huat
2011-01-01
Full Text Available Monitoring a process over time using a control chart allows quick detection of unusual states. In phase I, some historical process data, assumed to come from an in-control process, are used to construct the control limits. In Phase II, the process is monitored for an ongoing basis using control limits from Phase I. In Phase II, observations falling outside the control limits or unusual patterns of observations signal that the process has shifted from in-control process settings. Such signals trigger a search for assignable cause and, if the cause is found, corrective action will be implemented to prevent its recurrence. The purpose of this paper is to introduce a new methodology appropriate for constructing a robust control chart when a nonnormal or a contaminated data that may arise in phase I state. Through extensive Monte Carlo simulations, we examine the behaviors and performances of the proposed MM robust control chart when there is a process shift in mean.
Robust Control Design for Flight Control
1989-07-01
to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some
Keum, Jung-Hoon; Ra, Sung-Woong
2009-12-01
Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.
HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL
FANG Yu; YANG Jian; CHAI Xiaodong
2008-01-01
A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.
Robust solutions of Uncertain Capacity inventory control
Yajing Li
2013-01-01
This paper analyzes the uncertainties of air cargo and applies revenue management to solve the problem of air cargo capacity control.A robust capacity al ocation model for a multiple-leg with multiple shipment types is established,which describe uncertainty of these parameters as a number of discrete scenarios,and obtain the optimal al ocation with Mutation Particle Swarm Optimization.Simulation experiments show that this method can balance uncertainty of the model effectively and accord with actual situation.
Study on robust terrain following control
Zha Xu; Cui Pingyuan
2005-01-01
Based on classical terrain following (TF) algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from Digital Elevation Map (DEM) for TF control is discussed in order to save store space. The block control model, which is suitable for backstepping design,is given for nonlinear model of aircraft. Making full use of the characteristics of the system and combining block control principle, backstepping technique, a robust controller design method is proposed. Uncertainties in every sub-block are allowed, and can be canceled by using the idea of nonlinear damping. It is proved that the state tracking errors converge to the neighborhood of the origin exponentially. Finally, nonlinear six-degree-of-freedom simulation results for the aircraft model are presented to demonstrate the effectiveness of the proposed control law.
Automatic Synthesis of Robust and Optimal Controllers
Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand;
2009-01-01
In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....
Robust LQR Control Design of Gyroscope
Ashok S. Chandak
2013-03-01
Full Text Available The basic problem in designing control systems is the ability to achieve good performance in the presence of uncertainties such as output disturbances, measurement noise or unmodeled dynamics (i.e. robust controllers. Recent development in the area has been directed towards developing a consistent design methodology within this uncertain environment. The attitude control/ momentum management of the space station poses a typical problem in a highly uncertain environment (such as mass properties of the Space Station and environmental disturbances as well as parametric uncertainties. The objective of this research is to use LQR control for the position control of spin axis rotor position at reference value in the presence of parametric uncertainties, external unmeasurable disturbances and system inherent non-linearity with different type’s reference tracking signal are considered extensively in this paper.
Robot motion control in mobile environment
Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)
2003-01-01
With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.
Active structural vibration control: Robust to temperature variations
Gupta, Vivek; Sharma, Manu; Thakur, Nagesh
2012-11-01
d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.
PAN Li-xin; JIN Hong-zhang; WANG Lin-lin
2011-01-01
In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.
Robust Control Design via Linear Programming
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
A Robust H∞ Controller for an UAV Flight Control System
J. López
2015-01-01
Full Text Available The objective of this paper is the implementation and validation of a robust H∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H∞ robust controller in the inner loop, H∞ control methodology is used. The two controllers that conform the outer loop are designed using the H∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.
A robust optical/inertial data fusion system for motion tracking of the robot manipulator
Jie CHEN; Can-jun YANG; Jens HOFSCHULTE; Wan-li JIANG; Cha ZHANG
2014-01-01
We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS pro-vides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.
System identification for robust control design
Dohner, J.L.
1995-04-01
System identification for the purpose of robust control design involves estimating a nominal model of a physical system and the uncertainty bounds of that nominal model via the use of experimentally measured input/output data. Although many algorithms have been developed to identify nominal models, little effort has been directed towards identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal model identification and bounded output multiplicative uncertainty identification will be presented. This document is divided into several sections. Background information relevant to system identification and control design will be presented. A derivation of eigensystem realization type algorithms will be presented. An algorithm will be developed for calculating the maximum singular value of output multiplicative uncertainty from measured data. An application will be given involving the identification of a complex system with aliased dynamics, feedback control, and exogenous noise disturbances. And, finally, a short discussion of results will be presented.
Robust Controller Synthesis Based on Circle Criterion
Fuwa, Katsuhiko; Kato, Hiroyuki; Kando, Hisashi
It is well-known that stability margins (gain and phase margins) are important quantitative indicators for evaluating stability in feedback control system synthesis. However, when we use conventional techniques based on such stability margins, it may be difficult to suppress the vibration from high-order modes of mechanical system. This paper proposes the robust controller synthesis which achieves both the conventional stability margins and the second phase margin which is a quantitative indicator for suppressing the vibration. The basic idea is to synthesize controller such that the Nyquist locus of open-loop transfer function encircles the immediate outer side of the circle which is specified by the conventional stability margins and the second phase margin. This is formulated as modified H∞ mixed sensitivity problem with the weighting constants which are decided by the center and radius of the circle.
Stabilization of nonlinear systems based on robust control Lyapunov function
CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun
2007-01-01
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
ROBUST PARALLEL MOTION ESTIMATION AND MAPPING WITH STEREO CAMERAS IN UNDERGROUND INFRASTRUCTURE
C. Liu
2016-06-01
Full Text Available Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it’s also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
Fuzzy/Kalman Hierarchical Horizontal Motion Control of Underactuated ROVs
Francesco M. Raimondi
2010-09-01
Full Text Available A new closed loop fuzzy motion control system including on-line Kalman's filter (KF for the two dimensional motion of underactuated and underwater Remotely Operated Vehicle (ROV is presented. Since the sway force is unactuated, new continuous and discrete time models are developed using a polar transformation. A new hierarchical control architecture is developed, where the high level fuzzy guidance controller generates the surge speed and the yaw rate needed to achieve the objective of planar motion, while the low level controller gives the thruster surge force and the yaw control signals. The Fuzzy controller ensures robustness with respect to uncertainties due to the marine environment, forward surge speed and saturation of the control signals. Also Lyapunov's stability of the motion errors is proved based on the properties of the fuzzy maps. If Inertial Measurement Unit data (IMU is employed for the feedback directly, aleatory noises due to accelerometers and gyros damage the performances of the motion control. These noises denote a king of non parametric uncertainty which perturbs the model of the ROV. Therefore a KF is inserted in the feedback of the control system to compensate for the above uncertainties and estimate the feedback signals with more precision.
Hierarchical Motion Control for a Team of Humanoid Soccer Robots
Seung-Joon Yi
2016-02-01
Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.
Hierarchical Motion Control for a Team of Humanoid Soccer Robots
Seung-Joon Yi
2016-02-01
Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.
Fuzzy/Kalman Hierarchical Horizontal Motion Control of Underactuated ROVs
Francesco M. Raimondi
2010-06-01
Full Text Available A new closed loop fuzzy motion control system including on-line Kalman's filter (KF for the two dimensional motion of underactuated and underwater Remotely Operated Vehicle (ROV is presented. Since the sway force is unactuated, new continuous and discrete time models are developed using a polar transformation. A new hierarchical control architecture is developed, where the high level fuzzy guidance controller generates the surge speed and the yaw rate needed to achieve the objective of planar motion, while the low level controller gives the thruster surge force and the yaw torque control signals. The Fuzzy controller ensures robustness with respect to uncertainties due to the marine environment, forward surge speed and saturation of the control signals. Also Lyapunov's stability of the motion errors is proved based on the properties of the fuzzy maps. If Inertial Measurement Unit data (IMU is employed for the feedback directly, aleatory noises due to accelerometers and gyros damage the performances of the motion control. These noises denote a kind of non parametric uncertainty which perturbs the model of the ROV. Therefore a KF is inserted in the feedback of the control system to compensate for the above uncertainties and estimate the feedback signals with more precision.
Robust Repetitive Controller for Fast AFM Imaging
Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay
2012-01-01
Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.
Robust Force Control of Series Elastic Actuators
Andrea Calanca
2014-07-01
Full Text Available Force-controlled series elastic actuators (SEA are widely used in novel human-robot interaction (HRI applications, such as assistive and rehabilitation robotics. These systems are characterized by the presence of the “human in the loop”, so that control response and stability depend on uncertain human dynamics, including reflexes and voluntary forces. This paper proposes a force control approach that guarantees the stability and robustness of the coupled human-robot system, based on sliding-mode control (SMC, considering the human dynamics as a disturbance to reject. We propose a chattering free solution that employs simple task models to obtain high performance, comparable with second order solutions. Theoretical stability is proven within the sliding mode framework, and predictability is reached by avoiding the reaching phase by design. Furthermore, safety is introduced by a proper design of the sliding surface. The practical feasibility of the approach is shown using an SEA prototype coupled with a human impedance in severe stress tests. To show the quality of the approach, we report a comparison with state-of-the-art second order SMC, passivity-based control and adaptive control solutions.
Exoskeleton Motion Control for Children Walking Rehabilitation
Cristina Ploscaru
2016-06-01
Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.
VFI-based Robotic Arm Control for Natural Adaptive Motion
Woosung Yang
2014-03-01
Full Text Available Since neural oscillator based control methods can generate rhythmic motion without information on system dynamics, they can be a promising alternative to traditional motion planning based control approaches. However, for field application, they still need to be robust against unexpected forces or changes in environments so as to be able to generate “natural motion” like most biological systems. In this study a biologically inspired control algorithm that combines neural oscillators and virtual force is proposed. This work gives the condition with respect to parameters tuning to stably activate the neural oscillators. This is helpful to achieve motion adaptability to environmental changes keeping the motion repeatability. He efficacy and efficiency of the proposed methods are tested in the control of a planar three-linkage robotic arm. It is shown that the proposed controller generates a given circular path stably and repeatedly, even with unexpected contact with a wall. The adaptivity of motion control is also tested in control of a robotic arm with redundant degrees of freedom. The proposed control algorithm works throughout the simulations and experiments.
Robust lateral pulse jet control of an atmospheric rocket
Burchett, Bradley Thomas
Uncontrolled direct fire rockets exhibit high impact point dispersion, even at relatively short range, and as such have been employed as area weapons on the battlefield. In order to reduce the dispersion of a direct fire rocket, feedback control is employed to fire short-duration solid rocket pulses mounted near the nose of the projectile and acting perpendicular to the projectile axis of symmetry. The feedback law is developed by first determining a piece wise linear model of the projectile swerving motion, subsequently using this linear model to predict the projectile impact point both with and without control, and using the results to command pulses at appropriate times to drive the impact point closer to the specified target. Candidate optimal control laws are formed using rules based on decision grids, and a global control strategy search algorithm. The global search control law proves to be prohibitively computationally expensive for on-line implementation. The performance of the baseline control law is found to be comparable to the rule based and global search optimal control laws. The control gains of the baseline control law are optimized in the presence of parametric plant uncertainty using a Monte Carlo simulation. Performance of the system in the presence of parametric plant uncertainty using the optimized gains is deemed comparable to performance of the baseline controller with no plant uncertainty. The level of uncertainty of several plant parameters is varied in order to compare robustness of the controller when optimized with uncertainty viz. without uncertainty.
Landing Motion Control of Articulated Hopping Robot
Youngil Youm
2008-11-01
Full Text Available This paper deals with the landing motion of an articulated legged robot. Humans use a peculiar crouching motion to land safely which can be characterized by body stiffness and damping. A stiffness controller formulation is used to realize this human behavior for the robot. Using this method, the landing motion is achieved with only the desired body stiffness and damping values, without desired COG(Center of Gravity or joint paths. To achieve soft landing, variable body stiffness and damping values were optimized. PBOT, which has four links with flexible joints was used for validation of the landing controller. A body stiffness and damping controller was used as an outer landing control loop and a fast subsystem controller for flexible joints was used as an inner force control loop. Simulations and experimental results about the landing motion are presented to show the performance of the body stiffness and damping controller.
A MODEL AND CONTROLLER REDUCTION METHOD FOR ROBUST CONTROL DESIGN.
YUE,M.; SCHLUETER,R.
2003-10-20
A bifurcation subsystem based model and controller reduction approach is presented. Using this approach a robust {micro}-synthesis SVC control is designed for interarea oscillation and voltage control based on a small reduced order bifurcation subsystem model of the full system. The control synthesis problem is posed by structured uncertainty modeling and control configuration formulation using the bifurcation subsystem knowledge of the nature of the interarea oscillation caused by a specific uncertainty parameter. Bifurcation subsystem method plays a key role in this paper because it provides (1) a bifurcation parameter for uncertainty modeling; (2) a criterion to reduce the order of the resulting MSVC control; and (3) a low order model for a bifurcation subsystem based SVC (BMSVC) design. The use of the model of the bifurcation subsystem to produce a low order controller simplifies the control design and reduces the computation efforts so significantly that the robust {micro}-synthesis control can be applied to large system where the computation makes robust control design impractical. The RGA analysis and time simulation show that the reduced BMSVC control design captures the center manifold dynamics and uncertainty structure of the full system model and is capable of stabilizing the full system and achieving satisfactory control performance.
Robust object tracking techniques for vision-based 3D motion analysis applications
Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.
2016-04-01
Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.
Parametric uncertainty modeling for robust control
Rasmussen, K.H.; Jørgensen, Sten Bay
1999-01-01
The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... method can be utilized in identification of a nominal model with uncertainty description. The method is demonstrated on a binary distillation column operating in the LV configuration. The dynamics of the column is approximated by a second order linear model, wherein the parameters vary as the operating...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...
Robust Planning and Control Using Intelligent Products
Meyer, Gerben G.; Wortmann, J. C. (Hans)
The advances in production planning and control in the last decades have confirmed the centralized nature of the planning function. However, centralization has disadvantages when quick response to local production problems is required. Therefore, renewed interest in decentralized approaches emerges. This paper investigates the possibility to use intelligent products for decentralized handling of disturbances. Intelligent products are aware of their local context and they can negotiate with local manufacturing resources. Therefore, local solutions for problems can be suggested, virtually at the same time at which the problem occurs. The paper demonstrates the viability of this approach via a simulation study. For reasons of comparison, the TAC SCM environment is used. Moreover, robustness is taken as an additional measurement of performance. The results of the simulations are encouraging.
Optical Tracking With Two Markers for Robust Prospective Motion Correction for Brain Imaging
Singh, Aditya; Zahneisen, Benjamin; Keating, Brian; Herbst, Michael; Chang, Linda; Zaitsev, Maxim; Ernst, Thomas
2017-01-01
Object Prospective motion correction (PMC) during brain imaging using camera-based tracking of a skin-attached marker may suffer from problems including loss of marker visibility due to the coil and false correction due to non-rigid-body facial motion, such as frowning or squinting. A modified PMC system is introduced to mitigate these problems and increase the robustness of motion correction. Materials and Methods The method relies on simultaneously tracking two markers, each providing six degrees of freedom, that are placed on the forehead. This allows us to track head motion when one marker is obscured, and detect skin movements to prevent false corrections. Experiments were performed to compare the performance of the two-marker motion correction technique to the previous single-marker approach. Results Experiments validate the theory developed for adaptive marker tracking and skin movement detection, and demonstrate improved image quality during obstruction of the line-of-sight of one marker, when subjects squint, or when subjects squint and move simultaneously. Conclusion The proposed methods eliminate two common failure modes of PMC and substantially improve the robustness of PMC and can be applied to other optical tracking systems capable of tracking multiple markers. The methods presented can be adapted to the use of more than two markers. PMID:26121941
Motion control of a population of Artemias
L. Fortuna
2010-06-01
Full Text Available In this work, the collective behavior of Artemia Salina is studied both experimentally and theoretically. Several experiments have been designed to investigate the Artemia motion under different environment conditions. From the results of such experiments, a strategy to control the direction of motion of an Artemia population, by exploiting their sensitivity to light, has been derived and then implemented.
Robust control for snake maneuver design of missile
Kun, Ya; Chen, Xin; Li, Chuntao
2017-01-01
For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.
Observer-Based Robust Control for Spacecraft Rendezvous with Thrust Saturation
Neng Wan
2014-01-01
Full Text Available This paper proposes an observer-based robust guaranteed cost control method for thrust-limited rendezvous in near-circular orbits. Treating the noncircularity of the target orbit as a parametric uncertainty, a linearized motion model derived from the two-body problem is adopted as the controlled plant. Based on this model, a robust guaranteed cost observer-controller is synthesized with a less conservative saturation control law, and sufficient condition for the existence of this observer-based rendezvous controller is derived. Finally, an illustrative example with immeasurable velocity states is presented to demonstrate the advantages and effectiveness of the control scheme.
Biologically inspired control of humanoid robot arms robust and adaptive approaches
Spiers, Adam; Herrmann, Guido
2016-01-01
This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...
A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back
Emre Sariyildiz
2015-08-01
Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.
Robust control of a spatially distributed commercial fishery
William A. Brock; Xepapadeas, Anastasios; Yannacopoulos, Athanasios N.
2013-01-01
We consider a robust control model for a spatially distributed commercial fishery under uncertainty, and in particular a tracking problem, i.e. the problem of robust stabilization of a chosen deterministic benchmark state in the presence of model uncertainty. The problem is expressed in the form of a stochastic linear quadratic robust optimal control problem, which is solved analytically. We focus on the emergence of breakdown from the robust stabilization policy, called hot spots, and commen...
Multivariable robust PID control for a PEMFC system
Wang, Fu-Cheng; Ko, Chin-Chun [Department of Mechanical Engineering, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617 (China)
2010-10-15
This paper proposes robust proportional-integral-derivative (PID) control for a proton exchange membrane fuel cell (PEMFC) system. We model a PEMFC as a multivariable system, and apply identification techniques to obtain the system's transfer function matrices, where system variations and disturbances are regarded as uncertainties. Because robust control can cope with system uncertainties and disturbances, it has been successfully applied to improve the stability, performance, and efficiency of PEMFC systems in previous studies. However, the resulting robust controllers might be too complicated for hardware implementation. On the other hand, PID control has been widely applicable to engineering practices because of its simple structure, but it lacks stability analysis for systems with uncertainties. Therefore, by combining the merits of robust control and PID control, we design robust PID controllers for the PEMFC system. Based on evaluation of stability, performance, and efficiencies, the proposed robust PID controllers are shown to be effective. (author)
Fuzzy robust sliding mode control of a class of uncertain systems
任立通; 谢寿生; 苗卓广; 田虎森; 彭靖波
2016-01-01
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robustH∞control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
A New Approach to Robust and Fault Tolerant Control
Kemin Zhou
2005-01-01
In this paper, we shall summarize a new approach to robust and fault tolerant control proposed recently by the author. This approach is based on a variation of all controller parametrization. This robust and fault-tolerant control design consists of two parts: a nominal performance controller and a robustness controller, and works in such a way that when a component (sensor,actuator, etc.) failure is detected, the controller structure is reconfigured by adding a robustness loop to compensate the fault. We shall illustrate how this strategy works under various situations.
UAV Robust Strategy Control Based on MAS
Jian Han
2014-01-01
Full Text Available A novel multiagent system (MAS has been proposed to integrate individual UAV (unmanned aerial vehicle to form a UAV team which can accomplish complex missions with better efficiency and effect. The MAS based UAV team control is more able to conquer dynamic situations and enhance the performance of any single UAV. In this paper, the MAS proposed and established combines the reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coordinated flight and cooperative operation. The MAS uses BDI model to support its logical perception and to classify the different missions; then the missions will be allocated by utilizing auction mechanism after analyzing dynamic parameters. Prim potential algorithm, particle swarm algorithm, and reallocation mechanism are proposed to realize the rational decomposing and optimal allocation in order to reach the maximum profit. After simulation, the MAS has been proved to be able to promote the success ratio and raise the robustness, while realizing feasibility of coordinated flight and optimality of cooperative mission.
Nonlinear Control and Robust Observer Design for Marine Vehicles
Kim, Myung-Hyun
2000-01-01
A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from the slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertaint...
Machine learning in motion control
Su, Renjeng; Kermiche, Noureddine
1989-01-01
The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.
Machine learning in motion control
Su, Renjeng; Kermiche, Noureddine
1989-01-01
The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.
STS Motion Control Using Humanoid Robot
Mohd Bazli Bahar
2014-07-01
Full Text Available This study presents the development of Sit to Stand (STS motion control method. The main challenge in STS is in addressing the lift-off from chair problem. In solving the problem, the main components of the humanoid STS motion system involved are the (1 phase and trajectory planning and (2 motion control. These components should be designed so that the Zero Moment Point (ZMP, Centre of Pressure (CoP and Centre of Mass (CoM is always in the support polygon. Basically, in STS motion control there are two components, 1. Action selector and 2. Tracking controller. The STS motion control should able to operate in real time and continuously able to adapt any change in between the motion. In this way, the accuracy of the controller to rectify the motion error shall increase. The overall proposed method to perform the STS motion is designed to have two main phases. (1 CoM transferring that implements Alexander STS technique and (2 Stabilization Strategy that used IF-THEN rules and proportional velocity controller. This study focuses on the presentation of the development of second phase which are 1. The development of the IF-THEN rules as the action selector that operates in real time to assists the proportional controller in making the best decision and, 2. The development of Proportional Gain Identification for the proportional velocity controller that is capable to change the gain implementation by referring to the define region that represent the motion condition. The validation of the proposed method is done experimentally using NAO robot as the test platform. The coefficient of the gain identification for the proportional controller was tuned using NAO robot that was initially set at sitting position on a wooden chair. The inclination of the body from a frame perpendicular with the ground, angle y is observed. Coefficient that gives the lowest RMSE of angle y trajectory is taken as a constant. Results show the proposed control method has reduce
Motion Control of Wheeled Mobile Robots
Birol Kocaturk
2015-01-01
Full Text Available This article presents strategy for navigation of a wheeled mobile robot in unstructured environments with obstacles. The vehicle has two wheels independently to control the angular velocity. This work deals with mobile robots modelling then control strategies and simulation results. Simulation results recommends fuzzy logic controller for the wheeled mobile robot motion in unstructured environments.
μ Synthesis Method for Robust Control of Uncertain Nonlinear Systems
无
2000-01-01
μ synthesis method for robust control of uncertain nonlinear systems is propored, which is based on feedback linearization. First, nonlinear systems are linearized as controllable linear systems by I/O linearization,such that uncertain nonlinear systems are expressed as the linear fractional transformations (LFTs) on the generalized linearized plants and uncertainty.Then,linear robust controllers are obtained for the LFTs usingμsynthesis method based on H∞ optimization.Finally,the nonlinear robust controllers are constructed by combining the linear robust controllers and the nonlinear feedback.An example is given to illustrate the design.
A Robust controller for micro-sized agents: The prescribed performance approach
Denasi, Alper; Misra, Sarthak; Haliyo, S.; Sill, A.; Regnier, S.; Fatikow, S.
2016-01-01
Applications such as micromanipulation and minimally invasive surgery can be performed using micro-sized agents. For instance, drug-loaded magnetic micro-/nano- particles can enable targeted drug delivery. Their precise manipulation can be assured using a robust motion controller. In this paper, we
Nonlinear robust hierarchical control for nonlinear uncertain systems
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Switching Control System Based on Robust Model Reference Adaptive Control
HU Qiong; FEI Qing; MA Hongbin; WU Qinghe; GENG Qingbo
2016-01-01
For conventional adaptive control,time-varying parametric uncertainty and unmodeled dynamics are ticklish problems,which will lead to undesirable performance or even instability and nonrobust behavior,respectively.In this study,a class of discrete-time switched systems with unmodeled dynamics is taken into consideration.Moreover,nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper,and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance.For robustness against unmodeled dynamics and uncertainty,robust model reference aclaptive control (RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems.Meanwhile,two different switching laws are presented for switched systems and nonlinear systems,respectively.Thereby,the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems.Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes.Furthermore,as to the proposed scheme for nonlinear systems,its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.
A Robust Controller Structure for Pico-Satellite Applications
Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads
This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...... possible application, a satellite mission with the purpose of monitoring shipping routes for oil spills has been considered. However, it is the aim of the control structure to be widely applicable and adaptable for a vide variety of pico-satellite missions. The robust control structure has been evaluated...
Motion Control of Micro-/Nanomotors.
Teo, Wei Zhe; Pumera, Martin
2016-10-10
As we progress towards employing self-propelled micro-/nanomotors in envisioned applications such as cargo delivery, environmental remediation, and therapeutic treatments, precise control of the micro-/nanomotors direction and their speed is essential. In this Review, major emerging approaches utilized for the motion control of micro-/nanomotors have been discussed, together with the lastest publications describing these approaches. Future studies could incorporate investigations on micro-/nanomotors motion control in a real-world environment in which matrix complexity might disrupt successful manipulation of these small-scale devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Risk Analysis in Robust Control -- Making the Case for Probabilistic Robust Control
Chen, Xinjia; Zhou, Kemin
2007-01-01
This paper offers a critical view of the "worst-case" approach that is the cornerstone of robust control design. It is our contention that a blind acceptance of worst-case scenarios may lead to designs that are actually more dangerous than designs based on probabilistic techniques with a built-in risk factor. The real issue is one of modeling. If one accepts that no mathematical model of uncertainties is perfect then a probabilistic approach can lead to more reliable control even if it cannot guarantee stability for all possible cases. Our presentation is based on case analysis. We first establish that worst-case is not necessarily "all-encompassing." In fact, we show that for some uncertain control problems to have a conventional robust control solution it is necessary to make assumptions that leave out some feasible cases. Once we establish that point, we argue that it is not uncommon for the risk of unaccounted cases in worst-case design to be greater than that of the accepted risk in a probabilistic appro...
Robust Near-Hovering Flight Controller for Model-Scale Helicopters Via Parametric Approach
Zhigang Zhou; Yongan Zhang∗
2015-01-01
This paper aims to provide a parametric design for robust flight controller of the model⁃scale helicopter. The main contributions lie in two aspects. Firstly, under near⁃hovering condition, a procedure is presented for simplification of the highly nonlinear and under⁃actuated model of the model⁃scale helicopter. This nonlinear system is linearized around the trim values of the chosen flight mode, followed by decomposing this high⁃order linear model into three lower⁃order subsystems according to the coupling properties among channels. After decomposition, the three subsystems are obtained which include the coupling subsystem between the roll ( pitch) motion and the lateral ( longitudinal) motion, the subsystem of the yaw motion and the subsystem of the vertical motion. Secondly, by using eigenstructure assignment, the problem of flight controller design can be converted into solving two optimization problems and the linear robust controllers of these subsystems are designed through solving these optimization problems. Besides, this paper contrasts and analyzed the performances of the LQR controller and the parametric controller. The results demonstrate the effectiveness and the robustness against the parametric perturbations of the parametric controller.
Qinghua Zeng
2015-07-01
Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.
Deyuan Meng
2014-05-01
Full Text Available The dynamics of pneumatic systems are highly nonlinear, and there normally exists a large extent of model uncertainties; the precision motion trajectory tracking control of pneumatic cylinders is still a challenge. In this paper, two typical nonlinear controllers—adaptive controller and deterministic robust controller—are constructed firstly. Considering that they have both benefits and limitations, an adaptive robust controller (ARC is further proposed. The ARC is a combination of the first two controllers; it employs online recursive least squares estimation (RLSE to reduce the extent of parametric uncertainties, and utilizes the robust control method to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. In order to solve the conflicts between the robust control design and the parameter adaption law design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Theoretically, ARC possesses the advantages of the adaptive control and the deterministic robust control, and thus an even better tracking performance can be expected. Extensive comparative experimental results are presented to illustrate the achievable performance of the three proposed controllers and their performance robustness to the parameter variations and sudden disturbance.
Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint
Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan
2015-10-01
In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.
Impulse Control of Brownian Motion.
1981-11-01
convert some of his cash into securities, and for this he pays a fixed transaction cost K plus a proportional cost of k times the transaction size...securities, incurring a transaction cost of K+kq. (le never liquidates securities except when it is necessary to maintain a positive cash balance.) On the...and incurring a total transaction cost of L+1s. (If the initial cash balance exceeds S, the controller imediately buys enough securities to reduce
Robust Adaptive Beamforming against Signal Steering Vector Mismatch and Jammer Motion
Xiaojun Mao
2015-01-01
Full Text Available Since adaptive beamformer suffers from output performance degradation in the presence of interference nonstationarity and signal steering vector mismatch, a novel robust null broadening adaptive beamforming is proposed. The proposed method is realized by the combination of projection transform and diagonal loading techniques. First, a new projection matrix with null broadening ability is constructed and then projects the array received data onto the projection matrix. With the diagonal loading technique, a new sample covariance matrix is obtained. The theoretical analysis shows that the projection transform operation can expand the incident direction of the interference and improve orthogonality between the signal-plus-interference and the noise subspaces; thus the proposed beamformer can effectively broaden the jammer null and enhance the null depth. The analytical expressions of the proposed algorithm are also provided, which are efficient and easily solved. Simulation results are presented and demonstrated that the proposed beamformer can provide strong robustness against signal steering vector mismatch and jammer motion.
RASID: A Robust WLAN Device-free Passive Motion Detection System
Kosba, Ahmed E; Youssef, Moustafa
2011-01-01
Device-free passive (DfP) indoor localization is an emerging technology enabling the localization of entities that do not carry any devices nor participate actively in the localization process using the already installed wireless infrastructure. This technology is useful for a variety of applications, where special hardware might not be applicable or affordable such as intrusion detection, smart homes and border protection. In this paper, we present the design, implementation and evaluation of RASID, a DfP system for human motion detection. RASID combines different modules for statistical anomaly detection while adapting to changes in the environment to provide accurate, robust and low-overhead detection of human activities. Evaluation of the system in two different real testbed environments shows that it can achieve an accurate detection capability of 6% miss detection rate and 9% false alarm rate in both environments. In addition, the high accuracy and low overhead performance are robust to changes in the e...
(Mobile robots and intelligent motion control)
Pin, F.G.
1990-09-07
The traveler attended the IEEE International Workshop on Intelligent Motion Control, presented a paper entitled Autonomous Trajectory Generation for Mobile Robots with Non-Holonomic and Steering Angel Constraints,'' and chaired the session on mobile robots. Sessions of particular interests to ONRL/CESAR included Mobile Robots 1, 2, and 3, Motion Planning 1 and 2, Flexible Robots, Knowledge-Based Robotics Systems, Multi-Robot Systems, Redundant Robots, and Learning and Fuzzy Control 1 and 2. The traveler also visited the robotics laboratory of Bogazici University and held several discussions on design on redundant, compliant, reconfigurable, and dynamically balanced manipulators.
Terahertz Generation & Vortex Motion Control in Superconductors
Nori, Franco
2005-03-01
A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint
Chaotic neural network applied to two-dimensional motion control.
Yoshida, Hiroyuki; Kurata, Shuhei; Li, Yongtao; Nara, Shigetoshi
2010-03-01
Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.
Robust Control of an Ill-Conditioned Aircraft
Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.
1996-01-01
A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....
An ellipsoid algorithm for probabilistic robust controller design
Kanev, S.K.; de Schutter, B.; Verhaegen, M.H.G.
2003-01-01
In this paper, a new iterative approach to probabilistic robust controller design is presented, which is applicable to any robust controller/filter design problem that can be represented as an LMI feasibility problem. Recently, a probabilistic Subgradient Iteration algorithm was proposed for solving
Estimated Frequency Domain Model Uncertainties used in Robust Controller Design
Tøffner-Clausen, S.; Andersen, Palle; Stoustrup, Jakob;
1994-01-01
This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are......This paper deals with the combination of system identification and robust controller design. Recent results on estimation of frequency domain model uncertainty are...
Robust Control of an Ill-Conditioned Aircraft
Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.;
1996-01-01
A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....
Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes
Jia, Yinghong; Misra, Arun K.
2017-08-01
It is a new design concept to employ control moment gyroscopes (CMGs) as reactionless actuators for space robots. Such actuation has several noticeable advantages such as weak dynamical coupling and low power consumption over traditional joint motor actuation. This paper presents a robust control law for a CMG-actuated space robot in presence of system uncertainties and closed-chain constraints. The control objective is to make the manipulation variables to track the desired trajectories, and reduce the possibility of CMG saturation simultaneously. A reduced-order dynamical equation in terms of independent motion variables is derived using Kane's equations. Desired trajectories of the independent motion variables are derived by minimum-norm trajectory planning algorithm, and an adaptive sliding mode controller with improved adaptation laws is proposed to drive the independent motion variables tracking the desired trajectories. Uniformly ultimate boundedness of the closed loop system is proven using Lyapunov method. The redundancy of the full-order actual control torques is utilized to generate a null torque vector which reduces the possibility of CMG angular momentum saturation while producing no effect on the reduced-order control input. Simulation results demonstrate the effectiveness of the proposed algorithms and the advantage of weak dynamical coupling of the CMG-actuated system.
ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM
A.PURNA CHANDRA RAO
2010-11-01
Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.
Robust Hierarchical Control for Uncertain Multivariable Hexarotor Systems
Wei Lin
2015-01-01
Full Text Available Multirotor helicopter attracts more attention due to its increased load capacity and being highly maneuverable. However, these helicopters are uncertain multivariable systems, which pose a challenge for their robust controller design. In this paper, a robust two-loop control scheme is proposed for a hexarotor system. The resulted controller consists of a nominal controller and a robust compensator. The robust compensators are added to restrain the influences of uncertainties such as nonlinear dynamics, coupling, parametric uncertainties, and external disturbances. It is proven that the tracking errors are ultimately bounded with specified boundaries by choosing the parameters of the robust compensators. Simulation results on the hexarotor demonstrate the effectiveness of the proposed control method.
H∞ control for path tracking of autonomous underwater vehicle motion
Lin-Lin Wang
2015-05-01
Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.
Controlling vortex motion and vortex kinetic friction
Nori, Franco; Savel'ev, Sergey
2006-05-01
We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.
Robust Propulsion Control for Improved Aircraft Safety Project
National Aeronautics and Space Administration — Scientific Monitoring, Inc. proposes to develop a robust propulsion control approach to facilitate control law design and simulation-based validation. The proposed...
A mixture model for robust point matching under multi-layer motion.
Jiayi Ma
Full Text Available This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers. Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation. We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.
Chiu-Keng Lai
2014-01-01
Full Text Available Sliding mode control (SMC is rapped for the chattering due to high gain control. However, high gain control causes the system robust. For developing a system with robustness of SMC, a servo motor motion controller combining the two-degree-of-freedom (2DOF system and SMC is proposed. The discussed motion type is point-to-point control with the constraint of trapezoid velocity profile. SMC is designed to guide the motor motion to follow a predefined trail, and the inner 2DOF system is used to compensate the deterioration due to the adoption of load observer. The proposed hybrid system is realized on a PC-based motion controller, and the validness is verified by simulation and experimental results.
In control of switching, motion, and organization
Feringa, B.L.; Delden, R.A.van; Ter Wiel, M.K.J.
2003-01-01
Nature's solutions to control organization, switching, and linear and rotary motion are not only extremely elegant, but fascinating if one considers the design and synthesis of artificial molecular systems with such functions in order to add components to the nanotool-box. The synthesis of chiroptic
A toolbox for robust PID controller tuning using convex optimization
Sadeghpour, Mehdi; de Oliveira, Vinicius; Karimi, Alireza
2012-01-01
A robust PID controller design toolbox for Matlab is presented in this paper. The design is based on linearizing or convexifying the conventional non-convex constraints on the classical robustness margins or H∞ constraints. Then the existing optimization solvers can be used to compute the controller parameters. The software can be used in a wide range of controller design problems, including multi-model systems and gain-scheduled controllers. The models can be parametric or non-parametric whi...
Robust State Feedback Control of Wind-Excited Tall Buildings
无
2001-01-01
The introduction of robust control theory into structure control, as well as design procedure of stabilizing controllers for structures with parameter uncertainty and model error is discussed. A stability bound is derived from the polar decomposition of the nominal system matrix. In addition, our study shows that application of Iow pass filters avoids spillover by eliminating the unconsidered high frequency compo nents. It is demonstrated, via an example, our approach leads to excellent control result and offers far better robustness than previous solutions.
Multivariable robust digital controller design by convex optimization
2004-01-01
The dissertation is essentially concerned with methods of robust digital multivariable and monovariable controller design. For controller desing, a linear discrete-time model of plant to be controlled is used. The controller robustness is treated by sensitivity frequency analysis(sensitivity is transfer function/matrix of closed loop). Correspondingly to H∞ design, the singular values of frequency responses are used for the analysis.The work is divided into five parts. The first part concerns...
Robust H∞ Control of Hamiltonian System with Uncertainty
薛安成; 梅生伟; 胡伟; 周原
2003-01-01
This paper investigates the robust H∞ problem for a class of generalized forced Hamiltonian systems with uncertainties. The robust L2-gain was proved for the Hamiltonian with a sufficient condition for stable control of multimachine power systems expressed as a matrix algebraic inequality. A similar sufficient condition was then extended to the robust H∞ control of Hamiltonian systems to construct the state feedback H∞ control law. A numerical example is given to verify the validity of the proposed control scheme, which shows the effectiveness and promising application of the method.
Guidance and adaptive-robust attitude & orbit control of a small information satellite
Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.
2017-01-01
We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.
V. Jayaraj
2010-08-01
Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.
Adaptive Fuzzy and Robust H∞ Compensation Control for Uncertain Robot
Yuan Chen
2013-06-01
Full Text Available In this paper, two types of robust adaptive compensation control schemes for the trajectory tracking control of robot manipulator with uncertain dynamics are proposed. The proposed controllers incorporate the computed-torque control scheme as a nominal portion of the controller; an adaptive fuzzy control algorithm to approximate the structured uncertainties; and a nonlinear H∞ tracking control model as a feedback portion to eliminate the effects of the unstructured uncertainties and approximation errors. The validity of the robust adaptive compensation control schemes is investigated by numerical simulations of a two-link rotary robot manipulator
Sliding Mode Robustness Control Strategy for Shearer Height Adjusting System
Xiuping Su
2013-09-01
Full Text Available This paper firstly established mathematical model of height adjusting hydro cylinder of the shearer, as well as the state space equation of the shearer height adjusting system. Secondly we designed a shearer automatic height adjusting controller adopting the sliding mode robustness control strategy. The height adjusting controller includes the sliding mode surface switching function based on Ackermann formula, as well as sliding mode control function with the improved butterworth filter. Then simulation of the height adjustment controller shows that the sliding mode robustness control solves buffeting of typical controller, and achieves automatic control for the rolling drum of the shearer.
Synthesis of a PID-controller of a trim robust control system of an autonomous underwater vehicle
Khozhaev, I. V.; Gayvoronskiy, S. A.
2016-04-01
Autonomous underwater vehicles are often used for performing scientific, emergency or other types of missions under harsh conditions and environments, which can have non-stable, variable parameters. So, the problem of developing autonomous underwater vehicle motion control systems, capable of operating properly in random environments, is highly relevant. The paper is dedicated to the synthesis of a PID-controller of a trim robust control system, capable of keeping an underwater vehicle stable during a translation at different angles of attack. In order to synthesize the PID-controller, two problems were solved: a new method of synthesizing a robust controller was developed and a mathematical model of an underwater vehicle motion process was derived. The newly developed mathematical model structure is simpler than others due to acceptance of some of the system parameters as interval ones. The synthesis method is based on a system poles allocation approach and allows providing the necessary transient process quality in a considered system.
Anetai, Y; Mizuno, H; Sumida, I; Ogawa, K [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, JP (Japan); Takegawa, H [Department of Radiology, Kaizuka City Hospital, Kaizuka, Osaka, JP (Japan); Inoue, T [Department of Radiology, Juntendo University Urayasu Hospital, Urayasu, Chiba, JP (Japan); Koizumi, M [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, JP (Japan); Veld, A van’t; Korevaar, E [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)
2015-06-15
Purpose: To determine which proton planning technique on average-CT is more vulnerable to respiratory motion induced density changes and interplay effect among (a) IMPT of CTV-based minimax robust optimization with 5mm set-up error considered, (b, c) IMPT/SFUD of 5mm-expanded PTV optimization. Methods: Three planning techniques were optimized in Raystation with a prescription of 60/25 (Gy/fractions) and almost the same OAR constraints/objectives for each of 10 NSCLC patients. 4D dose without/with interplay effect was recalculated on eight 4D-CT phases and accumulated after deforming the dose of each phase to a reference (exhalation phase). The change of D98% of each CTV caused by density changes and interplay was determined. In addition, evaluation of the DVH information vector (D99%, D98%, D95%, Dave, D50%, D2%, D1%) which compares the whole DVH by η score = (cosine similarity × Pearson correlation coefficient − 0.9) × 1000 quantified the degree of DVH change: score below 100 indicates changed DVH. Results: Three 3D plans of each technique satisfied our clinical goals. D98% shift mean±SD (Gy) due to density changes was largest in (c): −0.78±1.1 while (a): −0.11±0.65 and (b): − 0.59±0.93. Also the shift due to interplay effect most was (c): −.54±0.70 whereas (a): −0.25±0.93 and (b): −0.12±0.13. Moreover lowest η score caused by density change was also (c): 69, while (a) and (b) kept around 90. η score also indicated less effect of interplay than density changes. Note that generally the changed DVH were still acceptable clinically. Paired T-tests showed a significantly smaller density change effect in (a) (p<0.05) than in (b) or (c) and no significant difference in interplay effect. Conclusion: CTV-based robust optimized IMPT was more robust against respiratory motion induced density changes than PTV-based IMPT and SFUD. The interplay effect was smaller than the effect of density changes and similar among the three techniques. The JSPS Core
Adaptive Robust Tracking Control of Pressure Trajectory Based on Kalman Filter
CAO Jian; ZHU Xiaocong; TAO Guoliang; YAO Bin
2009-01-01
When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking of rodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.
Pupil Control Behavior, Student Brinkmanship and Environmental Robustness.
Brown, Ralph E.; Licata, Joseph W.
1978-01-01
From the perspective of the student audience, the general results of the study suggest that, as teacher custodialism increases, the more robust are acts of student brinksmanship, the less robust is the teacher's pupil control behavior, and the less the teacher is liked by students. (Author)
Robust tuning of robot control systems
Minis, I.; Uebel, M.
1992-01-01
The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.
Robust Adaptive Control of Multivariable Nonlinear Systems
2011-03-28
IEEE Transactions on Automatic Control , 42(9): 1200-1221, 1997. 6. D. Li, N. Hovakimyan...limitations of performance,” IEEE Transactions on Automatic Control , vol. 52, no. 7, pp. 1604–1615, 2008. 8. X. Wang, N. Hovakimyan, 1L Adaptive...550-564, 2010. 5. C. Cao, N. Hovakimyan, Stability Margins of 1L Adaptive Control Architecture, IEEE Transactions on Automatic Control , vol. 55,
Robust CUSUM control charting for process dispersion
Nazir, H.Z.; Riaz, M.; Does, R.J.M.M.
2015-01-01
Process monitoring through control charts is a quite popular practice in statistical process control. From a statistical point of view, a superior control chart is one that has an efficient design structure, but having resistance against unusual situations is of more practical importance. To have a
A Robustness Study of Fuzzy Control Rules
Jantzen, Jan
1997-01-01
This simulation study investigates how different types of rule bases affect the control of different types of plant. In Simulink three nonlinear control surfaces have been tested and compared to a linear surface. It is recommended to be aware of the shape of the control surface, and carefully sel...
High-performance quantitative robust switching control for optical telescopes
Lounsbury, William P.; Garcia-Sanz, Mario
2014-07-01
This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Closed-Loop and Robust Control of Quantum Systems
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
Chen, Tien-Chi; Yu, Chih-Hsien
2009-07-01
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
Animation control of surface motion capture.
Tejera, Margara; Casas, Dan; Hilton, Adrian
2013-12-01
Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.
The plane motion control of the quadrocopter
A. N. Kanatnikov
2015-01-01
Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].
Robust control of linear descriptor systems
Feng, Yu
2017-01-01
This book develops original results regarding singular dynamic systems following two different paths. The first consists of generalizing results from classical state-space cases to linear descriptor systems, such as dilated linear matrix inequality (LMI) characterizations for descriptor systems and performance control under regulation constraints. The second is a new path, which considers descriptor systems as a powerful tool for conceiving new control laws, understanding and deciphering some controller’s architecture and even homogenizing different—existing—ways of obtaining some new and/or known results for state-space systems. The book also highlights the comprehensive control problem for descriptor systems as an example of using the descriptor framework in order to transform a non-standard control problem into a classic stabilization control problem. In another section, an accurate solution is derived for the sensitivity constrained linear optimal control also using the descriptor framework. The boo...
Unmodeled Dynamics in Robust Nonlinear Control
2000-08-01
IEEE Transactions on Automatic Control , vol. 44, pp. 1975–1981, 1999. [6] D. Bestle...systems,” IEEE Transactions on Automatic Control , vol. 41, pp. 876–880, 1996. 95 [9] C.I. Byrnes and A. Isidori, “New results and examples in...Output-feedback stochastic nonlinear stabilization,” IEEE Transactions on Automatic Control , vol. 44, pp. 328–333, 1999. [14] J. Eker and K.J.
Optimization-Based Robust Nonlinear Control
2006-08-01
IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup
Probability modeling for robustness of multivariate LQG designing based on ship lateral motion
无
2005-01-01
The robustness of LQG designing for latitudinal movement of ship is mainly discussed, when its hydrodynamic parameters fluctuate around criterion value at random on the proportional distributing. When a given ship state at the speed of 18 kn and the course of 45° under Rank 5 state of sea, and the hydrodynamic parameters of the ship fluctuate at random on the proportional distributing with a range of ±10%,±20%,±30%, the robustness of multivariate LQG designing for ship is analyzed with applying the probability modeling of relative controlling effect. The result of simulating shows that when the hydrodynamic parameters of ship fluctuates the relative controlling effect of the LQG designing submit to normal distribution and the mean value of relative controlling effect has no remarkable changes comparing to that without perturbation of hydrodynamic parameter.
Robust Control of Laddermill Wind Energy System
Podgaets, A.R.; Ockels, W.J.
2007-01-01
Laddermill flight control problem with closed loop is considered in this paper. Laddermill is an alternative concept for energy production using high altitude kites. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight
Sørensen, John Dalsgaard; Rizzuto, Enrico; Narasimhan, Harikrishna
2012-01-01
More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of structures......, a theoretical and risk-based framework is presented which facilitates the quantification of robustness, and thus supports the formulation of pre-normative guidelines....
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Incremental Sampling Algorithms for Robust Propulsion Control Project
National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop a system for robust engine control based on incremental sampling, specifically Rapidly-Expanding Random Tree (RRT)...
Robust control of photoassociation of slow O + H collision
Zhang, Wei; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel A.
2017-02-01
We show that robust laser pulses can be obtained by a sampling-based method to achieve a desired photoassociation probability when uncertainties in potential curves and laser amplitudes are considered. Optimal control simulations are performed using a time-dependent wave packet method based on a single electronic state. We use a small number of samples to construct a robust field and test the performance of this field using additional samples. Excellent outcomes are obtained based on the proposed method for different uncertainties. The robust control field achieves higher average photoassociation probabilities over the tested samples, in comparison with the probabilities achieved by the optimal field designed without using the sampling-based method. The sampling-based method may also be promising in the robust control of other molecular control goals.
Computation of robustly stabilizing PID controllers for interval systems.
Matušů, Radek; Prokop, Roman
2016-01-01
The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.
Robust Control of Collaborative Manipulators - Flexible Object System
Balasubramanian Esakki
2013-05-01
stability analysis is performed for both subsystems. Focusing on two three‐link manipulators holding a flexible beam, simulations are performed and simulation results demonstrate the versatility of the proposed robust composite control scheme.
Vehicle active steering control research based on two-DOF robust internal model control
Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun
2016-07-01
Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.
Self versus environment motion in postural control.
Kalpana Dokka
2010-02-01
Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.
Robust Planning and Control Using Intelligent Products
Meyer, Gerben; Wortmann, Johan; David, Esther; Gerding, Enrico; Sarne, David; Shehory, Onn
2010-01-01
The advances in production planning and control in the last decades have confirmed the centralized nature of the planning function. However, centralization has disadvantages when quick response to local production problems is required. Therefore, renewed interest in decentralized approaches emerges.
INTERVAL ROBUST CONTROL FOR NONLINEAR FLAT SYSTEMS
2013-01-01
Esta tesis se enfoca principalmente en el control robusto de sistemas no lineales planos. El objetivo principal es determinar una familia de controladores robustos con la finalidad de asegurar el cumplimiento de un conjunto de especificaciones deseadas bajo incertidumbre paramétrica en el proceso. La familia de controladores robustos se determina con un nuevo enfoque de control robusto posibilistico conjuntamente con la teoría de los sistemas planos. Las especificaciones e incertidumbre param...
Controlled quantum dialogue robust against conspiring users
Kao, Shih-Hung; Hwang, Tzonelih
2016-10-01
This paper explores a new security problem in controlled quantum dialogue (CQD) protocols, where the communicants may try to conspire to communicate without the controller's permission. According to our survey, all the previous CQD protocols suffer from this attack. In order to resolve this problem, we also present an improvement protocol. The security analyses show that the improved scheme is secure under this and other well-known attacks.
Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics
Guo-Qiang Wu
2013-01-01
Full Text Available Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based spacecraft motion model in six-degree-of-freedom is firstly developed. Then a finite-time controller based on nonsingular terminal sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.
Multivariable robust controller design of ACLS using loop-shaping approach
Dong, Chaoyang; Cui, Haihua; Wang, Qing
2008-10-01
In this paper a multivariable robust controller design approach of the ACLS is accomplished by using robust loop-shaping techniques. In order to avoid the inefficient way of choosing the weight functions by trial-and-error method, the structured genetic algorithm (SGA) approach is introduced, which is capable of simultaneously searching the orders and coefficients of the pre- and post-compensator for weight matrices. According to this approach, engineers can achieve an ideal loop-shape which lies in an appropriate region relating to the desired performance specifications. The effectiveness of this approach is illustrated by the longitudinal equations of a carrier-based aircraft's motion design example.
Sartori, Mary Ann; Bauske, Terri; Lunenburg, Fred C.
This study investigates students' perceptions of teachers' pupil control behavior, classroom robustness, and student self-control. Results reveal an association between humanistic pupil control behavior of teachers and high levels of classroom robustness, high levels of classroom robustness and high student self-control, and teacher humanism in…
Robust adaptive tracking control of robotic systems with uncertainties
Yaonan WANG; Jinzhu PENG; Wei SUN; Hongshan YU; Hui ZHANG
2008-01-01
To deal with the uncertainty factors of robotic systems,a robust adaptive tracking controller is Droposed.The knowledge of the uncertainty factors is assumed to be unidentified;the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded,immeasurable disturbances entering the System.The stability of the proposed controller is proven by the Lyapunov method.The proposed controller can easily be implemented and the stability of the closed system can be ensured;the tracking error and adaptation parameter error are uniformly ultimately bounded(UUB).Finally,some simulation examples are utilized to illustrate the control performance.
Robust Control for the Mercury Laser Altimeter
Rosenberg, Jacob S.
2006-01-01
Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.
Quantitative Robust Control Engineering: Theory and Applications
2006-09-01
1992). Discrete quantitative feedback technique, Capítulo 16 en el libro : Digital Control Systems: theory, hardware, software, 2ª edicion. McGraw...Rasmussen S.J., Garcia-Sanz, M. (2001, 2005), Software de diseño del libro Quantitative Feedback Theory: Fundamentals and Applications. Edición 2ª. CRCPress
A novel robust speed controller scheme for PMBLDC motor.
Thirusakthimurugan, P; Dananjayan, P
2007-10-01
The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.
Robust Control of Underactuated Manipulators: Analysis and Implementation
1994-05-01
Y Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. Proc. of the 30th Conference on Decision and...any of a series of controllers fully developed in the literature for mechanical manipulators. Because the control of such a system is fully dependent...robust controller for underactuated manipulators. The control of such systems can be extended to the control problem of fault-tolerant robots, space
Position Control of Motion Compensation Cardiac Catheters
Kesner, Samuel B.; Howe, Robert D.
2011-01-01
Robotic catheters have the potential to revolutionize cardiac surgery by enabling minimally invasive structural repairs within the beating heart. This paper presents an actuated catheter system that compensates for the fast motion of cardiac tissue using 3D ultrasound image guidance. We describe the design and operation of the mechanical drive system and catheter module and analyze the catheter performance limitations of friction and backlash in detail. To mitigate these limitations, we propose and evaluate mechanical and control system compensation methods, including inverse and model-based backlash compensation, to improve the system performance. Finally, in vivo results are presented that demonstrate that the catheter can track the cardiac tissue motion with less than 1 mm RMS error. The ultimate goal of this research is to create a fast and dexterous robotic catheter system that can perform surgery on the delicate structures inside of the beating heart. PMID:21874124
Xu Zhang
2017-09-01
Full Text Available Electromyogram (EMG contains rich information for motion decoding. As one of its major applications, EMG-pattern recognition (PR-based control of prostheses has been proposed and investigated in the field of rehabilitation robotics for decades. These prostheses can offer a higher level of dexterity compared to the commercially available ones. However, limited progress has been made toward clinical application of EMG-PR-based prostheses, due to their unsatisfactory robustness against various interferences during daily use. These interferences may lead to misclassifications of motion intentions, which damage the control performance of EMG-PR-based prostheses. A number of studies have applied methods that undergo a postprocessing stage to determine the current motion outputs, based on previous outputs or other information, which have proved effective in reducing erroneous outputs. In this study, we proposed a postprocessing strategy that locks the outputs during the constant contraction to block out occasional misclassifications, upon detecting the motion onset using a threshold. The strategy was investigated using three different motion onset detectors, namely mean absolute value, Teager–Kaiser energy operator, or mechanomyogram (MMG. Our results indicate that the proposed strategy could suppress erroneous outputs, during rest and constant contractions in particular. In addition, with MMG as the motion onset detector, the strategy was found to produce the most significant improvement in the performance, reducing the total errors up to around 50% (from 22.9 to 11.5% in comparison to the original classification output in the online test, and it is the most robust against threshold value changes. We speculate that motion onset detectors that are both smooth and responsive would further enhance the efficacy of the proposed postprocessing strategy, which would facilitate the clinical application of EMG-PR-based prosthetic control.
Optimal and robust feedback controller estimation for a vibrating plate
Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.
2004-01-01
This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2
Two wheel speed robust sliding mode control for electric vehicle drive
Abdelfatah Nasri
2008-01-01
Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.
Nonlinear Direct Robust Adaptive Control Using Lyapunov Method
Chunbo Xiu
2013-07-01
Full Text Available The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.
Adaptive robust control of robot manipulators -- Theory and experiment
Imura, Junichi; Sugie, Toshiharu; Yoshikawa, Tsuneo (Kyoto Univ. (Japan))
1994-10-01
In this paper, a new adaptive robust control scheme for manipulators is proposed that overcomes the drawbacks of conventional adaptive robust control methods. The proposed controller has a simple structure by exploiting the special structure of the manipulator dynamics, and achieves the specified tracking precision without any a priori information on uncertainty. Furthermore, the feedback gain of the proposed method is almost necessary and minimum for the specified precision. To verify the advantages of the method, experimental results are shown for the trajectory control of a 2 DOF direct-drive arm.
Robust Sliding Mode Fuzzy Control of a Car Suspension System
Ayman A. Aly
2013-07-01
Full Text Available Different characteristics can be considered in a suspension system design like: ride comfort, body travel, road handling and suspension travel. No suspension system can optimize all these parameters together but a better tradeoff among these parameters can be achieved in active suspension system.Objective of this paper is to establish a robust control technique of the active suspension system for a quarter-car model. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. A comparison of robust suspension sliding fuzzy control and passive control is shown using MATLAB simulations.
Robust Nonlinear Control of Tailless Fighter Aircraft
1999-02-01
also resulted in 1 book chapter and 12 refereed conference papers published, to appear and submitted. These papers are listed below. 1. A.R. Teel and L...Verlag, 1999, to appear. 4 Refereed Conference Publications 11. A.R. Teel. "A nonlinear control viewpoint on anti-windup and related problems", Preprints... Drc . TS"ThCH’WCAL R~PORT HAS qSN REViEWMAND IS APPRoVvOR 0 PLnUcBL EASE’WA APR 190-12, DISTRIBUTION I YONNE MASON S7T]NQ1pROORAJMMANAGE
Robustness of controllability for networks based on edge-attack.
Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong
2014-01-01
We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.
Robust Stability and Performance Comparison of PID and PPI Control
任正云; 张红; 邵惠鹤
2004-01-01
Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.
Robust exponential control of a class of systems with uncertainties
无
2002-01-01
The robust exponential stabilization problem for uncertain systems is studied. Based on the solution for a nominal linear quadratic regulator problem with a prescribed degree of stability, the methods of constructing state feedback controllers are developed to ensure the robust stability of the closed loop system under the conditions weaker than the matching condition. Also, the cases where the matching condition is satisfied are considered in detail. Some examples are included to show the solution methods.
Robust H2 control for uncertain sampled-data systems
Xie Weinan; Ma Guangcheng; Li Qinghua; Wang Changhong
2009-01-01
A new approach is proposed for robust H2 problem of uncertain sampled-data systems. Through introducing a free variable, a new Lyapunov asymptotical stability criterion with less conservativeness is established. Based on this criterion, some sufficient conditions on two classes of robust H2 problems for uncertain sampled-data control systems are presented through a set of coupled linear matrix inequalities, Finally, the less conservatism and potential of the developed results are illustrated via a numerical example.
Robust sliding mode control for uncertain discrete time systems
QU Shaocheng; WANG Yongji
2003-01-01
A novel variable structure control (VSC) strategy with a dynamic disturbance compensator based on the reaching law for a class of uncertain discrete systems is presented. The robust stability to disturbance and the system dynamics in the vicinity of the switching plane are studied. A measure of the uncertain parameters and external disturbance is obtained through delaying every sampling time. Theoretical analysis and experimental simulation results demonstrate that the dynamic performance and robustness of the closed-loop system are improved effectively.
Robust time and frequency domain estimation methods in adaptive control
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Robust Control of Machine-Tool Vibration in a Lathe
Claesson, Ingvar; Håkansson, Lars; Lagö, Thomas L.
1999-01-01
In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced substantially by active control of the machine-tool vibration. Adaptive fe...
Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.
Fei, Juntao; Zhou, Jian
2012-12-01
In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
Fuzzy robust attitude controller design for hydrofoil catamaran
Ren Junsheng; Yang Yansheng
2005-01-01
A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H∞ control performance, meanwhile. Finally, based on such a boat,HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.
Interpolation techniques in robust constrained model predictive control
Kheawhom, Soorathep; Bumroongsri, Pornchai
2017-05-01
This work investigates interpolation techniques that can be employed on off-line robust constrained model predictive control for a discrete time-varying system. A sequence of feedback gains is determined by solving off-line a series of optimal control optimization problems. A sequence of nested corresponding robustly positive invariant set, which is either ellipsoidal or polyhedral set, is then constructed. At each sampling time, the smallest invariant set containing the current state is determined. If the current invariant set is the innermost set, the pre-computed gain associated with the innermost set is applied. If otherwise, a feedback gain is variable and determined by a linear interpolation of the pre-computed gains. The proposed algorithms are illustrated with case studies of a two-tank system. The simulation results showed that the proposed interpolation techniques significantly improve control performance of off-line robust model predictive control without much sacrificing on-line computational performance.
The EWMA control chart based on robust scale estimators
Nadia Saeed
2016-12-01
Full Text Available The exponentially weighted moving average (EWMA chart is very popular in statistical process control for detecting the small shifts in process mean and variance. This chart performs well under the assumption of normality but when data violate the assumption of normality, the robust approaches needed. We have developed the EWMA charts under different robust scale estimators available in literature and also compared the performance of these charts by calculating expected out-of-control points and expected widths under non-symmetric distributions (i.e. gamma and exponential. The simulation studies are being carried out for the purpose and results showed that amongst six robust estimators, the chart based on estimator Q_n relatively performed well for non-normal processes in terms of its shorter expected width and more number of expected out-of-control points which shows its sensitivity to detect the out of control signal.
Robust control of seismic structures using independent modal-space techniques
Martin, Kerry S.; Rao, Vittal S.; Cheng, Franklin Y.
1996-04-01
Active robust structural controls have been utilized in the control of aerospace structures for many years but they have only been recently investigated in the context of control for civil engineering structures. The results of an investigation of the utilization of these methods on building-like structures are presented in this paper. The closed-loop systems take into account the limited available actuation force and are inherently insensitive to parameter variations and modeling uncertainties. Independent modal-space control (IMSC) is a structural control technique where the multi-input-multi-output configuration-space system is transformed into a set of uncoupled single-input-single-output modal-space systems. A modal controller is designed for each modal-space system and the set of modal controllers is transformed back into configuration-space. By combining IMSC with robust control techniques such as LQG/LTR or H(infinity ), a robust structural control design technique is proposed in this paper. Robust IMSC techniques are employed for control of seismic structures where a small number of actuators are used to control the first few modes of the structure. We have designed and implemented robust IMSC controllers on an experimental building-like structure. This structure utilizes torque motor driven active tendons as actuators and rests on a shaking table which is capable of providing one dimensional base excitation similar to earthquake ground motion. A three input-three output model of the structure, including the torque motor actuators, was developed using experimental data. The experimental structural identification technique, based on standard modal analysis methods, provides the mathematical model that describes the behavior of the structure. An H(infinity ) based IMSC controller has been designed and implemented on this structure using a dSPACE control development system. The results show that the performance of the system is satisfactory in the presence of
Robust levitation control for maglev systems with guaranteed bounded airgap.
Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong
2015-11-01
The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Robust stabilization of stochastic systems based on the LQ controller
Jundong BAO; Feiqi DENG; Qi LUO
2005-01-01
The robust exponential stability in mean square for a class of linear stochastic uncertain control systems is dealt with.For the uncertain stochastic systems,we have designed an optimal controller which guarantees the exponential stability of the system.Actually,we employed Lyapunov function approach and the stochastic algebraic Riccati equation (SARE) to have shown the robustness of the linear quadratic(LQ) optimal control law.And the algebraic criteria for the exponential stability on the linear stochastic uncertain closed-loop systems are given.
Robust control of a parallel hybrid drivetrain with a CVT
Mayer, T.; Schroeder, D. [Technical Univ. of Munich (Germany)
1996-09-01
In this paper the design of a robust control system for a parallel hybrid drivetrain is presented. The drivetrain is based on a continuously variable transmission (CVT) and is therefore a highly nonlinear multiple-input-multiple-output system (MIMO-System). Input-Output-Linearization offers the possibility of linearizing and of decoupling the system. Since for example the vehicle mass varies with the load and the efficiency of the gearbox depends strongly on the actual working point, an exact linearization of the plant will mostly fail. Therefore a robust control algorithm based on sliding mode is used to control the drivetrain.
Prosthetic hand control using motion discrimination from EMG signals.
Kurisu, Naoyuki; Tsujiuchi, Nobutaka; Koizumi, Takayuki
2009-01-01
In this report, we improve the motion discrimination method from electromyogram (EMG) for a prosthetic hand and propose prosthetic hand control. In the past, we proved that a motion discrimination method using conic models could discriminate three hand motions without the incorrect discriminations that the elbow motions cause. In this research, to increase discrimination accuracy of motion discrimination using conic models, we propose a feature extraction method using quadratic polynomials. Additionally, because many prosthetic hands using motion discrimination have constant motion speed that can't be controlled, we propose an angular velocity generation method using multiple regression models. We verified these methods by controlling the 3D hand model. In the experiment, the proposed method could discriminate five motions at a rate of above 90 percent without the incorrect discriminations that elbow motions cause. Moreover, the wrist joint angle of the 3D hand model could be controlled by standard variation of 3[deg] or less.
Robust decentralized controller design for UPFC using μ-synthesis
Taher, Seyed Abbas; Akbari, Shahabeddin; Abdolalipour, Ali; Hematti, Reza
2010-08-01
In this paper a new method based on structured singular value ( μ-synthesis) is proposed for the robust decentralized unified power flow controller (UPFC) design. To achieve decentralization, using the Schauder fixed point theorem the synthesis and analysis of multi-input multi-output (MIMO) control system is transformed into a set of equivalent multi-input single-output (MISO) control system. To cope with power system uncertainties μ-synthesis technique is being used for designing of UPFC controllers. The proposed μ-based controller has a decentralized scheme which has the advantage of reduction in the controller complexity and suitability for practical implementation. The effectiveness of the proposed control strategy on damping low frequency oscillations is evaluated under different operating conditions and compared with the conventional controller to demonstrate its robust performance through nonlinear simulation and some performance indices.
Robust control of robots via linear estimated state feedback
Berghuis, Harry; Nijmeijer, Henk
1994-01-01
In this note we propose a robust tracking controller for robots that requires only position measurements. The controller consists of two parts: a linear observer part that generates an estimated error state from the error on the joint position and a linear feedback part that utilizes this estimated
Robust Control Design for Uncertain Nonlinear Dynamic Systems
Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.
2012-01-01
Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.
LQR Controller for Toroidal Continuously Variable Transmission in Reverse Motion
Mensler, Michel; Kawabe, Taketoshi; Joe, Shinichiro
The system considered in this paper is a Toroidal Continuously Variable Transmission (TCVT) system for cars. This system is unstable in reverse motion as some mechanical parts have been removed from the original one for cost reduction, and the gear ratio has to be regulated around its nominal value for car reverse motion. The control theory used here is the Linear Quadratic Regulator (LQR) associated to a gain-scheduling technique, as the TCVT system is nonlinear according to the car speed. Moreover, as the LQR method requires the entire TCVT state vector and as the only available signal is the gear ratio, a full-order observer is designed. In order to take the other nonlinearities of the system into account, the observer is nonlinear: a diffeomorphism is then used for converting the variables provided by the nonlinear observer into the needed variables. In order to verify the effectiveness and the robustness of the controller against the car speed and the torque shift disturbance phenomenon, several experiments with a test-bed and with an actual vehicle have been performed and showed the efficiency of the proposed controller.
Robust linear parameter varying induction motor control with polytopic models
Dalila Khamari
2013-01-01
Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.
A New Lyapunov Based Robust Control for Uncertain Mechanical Systems
ZHEN Sheng-Chao; ZHAO Han; CHEN Ye-Hwa; HUANG Kang
2014-01-01
We design a new robust controller for uncertain mechanical systems. The inertia matrix0s singularity and upper bound property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-more, the inertia matrix0s being uniformly bounded above is also limited. A robust controller is proposed to suppress the effect of uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.
Robust Model Predictive Control of a Wind Turbine
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...
A Robust Deadbeat Control Method for UPS Inverters
汪孟; 李方正; 黄立培; SAKANE Makoto
2007-01-01
The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control method is proposed in this paper to deal with the problem. In the proposed control method, a proportional element is added to the traditional deadbeat control in order to improve the robustness to parametric imprecision. To eliminate the error between output voltage and voltage reference caused by environmental noise and parametric deviation, a model reference adaptive regulator is also added to the control method. A 1kVA prototype is built based on DSP. Theoretical analysis and experimental results show that the robustness for parametric variation of the proposed method is much better than the traditional deadbeat control.The system can remain stable even when the systemic parameters have a large deviation from calculating parameters. The system has small static error and fast dynamic response with the new control method. This method is easy to realize in DSP and is suitable for full digital realization of UPS.
Robust antisynchronization of chaos using sliding mode control strategy
Amit Mondal; Mitul Islam; Nurul Islam
2015-01-01
The paper proposes a sliding mode control strategy-based scheme for achieving anti-synchronization between two coupled non-linear chaotic systems. The method works irrespective of whether the systems under consideration possess or lack inverse symmetry. Using a linear sliding surface, a sliding mode control input and a non-linear coupling function are designed that synchronizes the systems antiphase. Finite-time convergence of the method is established. The controller is also robust to all forms of bounded perturbations and this robustness can be easily achieved by tuning of a single controller parameter and introduction of a control vector. The controller is also made chattering-free by producing a continuous analogue of the discontinuous control input. The effectiveness of the method is established by implementing it to antisynchronize chaotic Sprott systems and Rossler systems. The results are also verified through numerical simulation work.
Integrating Illumination, Motion, and Shape Models for Robust Face Recognition in Video
Keyur Patel
2008-05-01
Full Text Available The use of video sequences for face recognition has been relatively less studied compared to image-based approaches. In this paper, we present an analysis-by-synthesis framework for face recognition from video sequences that is robust to large changes in facial pose and lighting conditions. This requires tracking the video sequence, as well as recognition algorithms that are able to integrate information over the entire video; we address both these problems. Our method is based on a recently obtained theoretical result that can integrate the effects of motion, lighting, and shape in generating an image using a perspective camera. This result can be used to estimate the pose and structure of the face and the illumination conditions for each frame in a video sequence in the presence of multiple point and extended light sources. We propose a new inverse compositional estimation approach for this purpose. We then synthesize images using the face model estimated from the training data corresponding to the conditions in the probe sequences. Similarity between the synthesized and the probe images is computed using suitable distance measurements. The method can handle situations where the pose and lighting conditions in the training and testing data are completely disjoint. We show detailed performance analysis results and recognition scores on a large video dataset.
Robust recovery of human motion from video using Kalman filters and virtual humans.
Cerveri, P; Pedotti, A; Ferrigno, G
2003-08-01
In sport science, as in clinical gait analysis, optoelectronic motion capture systems based on passive markers are widely used to recover human movement. By processing the corresponding image points, as recorded by multiple cameras, the human kinematics is resolved through multistage processing involving spatial reconstruction, trajectory tracking, joint angle determination, and derivative computation. Key problems with this approach are that marker data can be indistinct, occluded or missing from certain cameras, that phantom markers may be present, and that both 3D reconstruction and tracking may fail. In this paper, we present a novel technique, based on state space filters, that directly estimates the kinematical variables of a virtual mannequin (biomechanical model) from 2D measurements, that is, without requiring 3D reconstruction and tracking. Using Kalman filters, the configuration of the model in terms of joint angles, first and second order derivatives is automatically updated in order to minimize the distances, as measured on TV-cameras, between the 2D measured markers placed on the subject and the corresponding back-projected virtual markers located on the model. The Jacobian and Hessian matrices of the nonlinear observation function are computed through a multidimensional extension of Stirling's interpolation formula. Extensive experiments on simulated and real data confirmed the reliability of the developed system that is robust against false matching and severe marker occlusions. In addition, we show how the proposed technique can be extended to account for skin artifacts and model inaccuracy.
Robust formation control of marine surface craft using Lagrange multipliers
Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.
2006-01-01
framework we develop robust control laws for marine surface vessels to counteract unknown, slowly varying, environmental disturbances and measurement noise. Robustness with respect to time-delays in the communication channels are addressed by linearizing the system. Simulations of tugboats subject......This paper presents a formation modelling scheme based on a set of inter-body constraint functions and Lagrangian multipliers. Formation control for a °eet of marine craft is achieved by stabilizing the auxiliary constraints such that the desired formation con¯guration appears. In the proposed...
Robust Control for Uncertain Linear System Subject to Input Saturation
Qingyun Yang
2014-01-01
Full Text Available A robust control scheme using composite nonlinear feedback (CNF technology is proposed to improve tracking control performance for the uncertain linear system with input saturation and unknown external disturbances. A disturbance observer is presented to estimate the unknown disturbance generated by a linear exogenous system. The designed gain matrix of the disturbance observer is determined by solving linear matrix inequalities (LMIs. Based on the output of the designed disturbance observer, a robust CNF controller including a linear feedback control item and a nonlinear item is developed to follow the desired tracking signals. The linear feedback controller is designed using LMIs and the stability of the closed-loop system is proved via rigorous Lyapunov analysis. Finally, the extensive simulation results are presented to illustrate the effectiveness of the proposed control scheme.
Robust adaptive fuzzy control scheme for nonlinear system with uncertainty
Mingjun ZHANG; Huaguang ZHANG
2006-01-01
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.
Robust Control of Urban Industrial Water Mismatching Uncertain System
LI Kebai
2013-02-01
Full Text Available Urban industrial water system parameter fluctuation producing uncertainty may not occur in a control input channel, can be applied mismatching uncertain system to describe. Based on Lyapunov direct method and linear matrix inequality, design the urban industrial water mismatching uncertain system feedback stabilization robust control scheme. Avoid the defects that the feedback stabilization control method based on the matrix Riccati equation need to preset equation parameters, easier to solve and can reduce the conservative.
Robust Control for Linear Systems with Structured Uncertainty
1988-11-01
IEEE Transactions on Automatic Control , Vol. AC-29, no. 10, pp. 935-936, 1984. 4. Bose, N. K., "A...1985. 5. Anderson, B. D. 0., Jury, E. I., and Mansour, M., "On Robust Hurwitz Polynomials", IEEE Transactions on Automatic Control , Vol. AC-32, pp. 809...B., Berger, C. S., and Dabke, K. P., "On Stability of Polynomials with Perturbed Coefficients", IEEE Transactions on Automatic Control , Vol. AC-30,
Robust and optimal control a two-port framework approach
Tsai, Mi-Ching
2014-01-01
A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · �...
Robust Optimal Adaptive Control Method with Large Adaptive Gain
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient
Zaiyue Yang
2014-01-01
Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.
A practical nonlinear robust control approach of electro-hydraulic load simulator
Wang Chengwen; Jiao Zongxia; Wu Shuai; Shang Yaoxing
2014-01-01
This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS). The tracking performance of the EHLS is mainly limited by the actuator’s motion disturbance, flow nonlinearity, and friction, etc. The developed controller is developed based on the nonlinear motion loading model. The problems of the actuator’s disturbance and flow nonlinearity are considered. To address the friction problem, the friction model of the loading motor is identified experimentally. The friction disturbance is compensated using the obtained friction model. Therefore, this paper considers the main three factors comprehensively. The devel-oped algorithm is easy to apply since the controller can be obtained just with one step back-stepping design. The stability of the developed algorithm is proven via Lyapunov analysis. Both co-simula-tion and experiments are performed to verify the effectiveness of this method.
Adaptive-robust Control of a Smart Beam with Support Excitation Using Piezoelectric Layers
Mohammad Azadi
2013-04-01
Full Text Available In this paper, vibrations of a beam with support excitation and a tip mass are suppressed using piezoelectric layers. The beam is fixed to a motion support from one end and the other end is free with an attached mass. The beam is considered as an Euler-Bernoulli beam. The governing equations of motion are derived based on the generalized function theory and Lagrange-Rayleigh-Ritz technique. An adaptive-robust control scheme is applied to control the vibrations of the beam. The mathematical modelling of the beam with control algorithm is derived and in purpose to study the effect of the amount of tip mass, size and location of the piezoelectric layers and the type of the support excitation on the beam vibrations, the system is simulated. Finally, the results of simulation are presented.
Robust chaotic control of Lorenz system by backstepping design
Peng, C.-C. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan (China); Chen, C.-L. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan (China)], E-mail: chiehli@mail.ncku.edu.tw
2008-07-15
This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos.
Provably Safe and Robust Learning-Based Model Predictive Control
Aswani, Anil; Sastry, S Shankar; Tomlin, Claire
2011-01-01
Controller design for systems typically faces a trade-off between robustness and performance, and the reliability of linear controllers has caused many control practitioners to focus on the former. However, there is a renewed interest in improving system performance to deal with growing energy and pollution constraints. This paper describes a learning-based model predictive control (MPC) scheme. The MPC provides deterministic guarantees on robustness and safety, and the learning is used to identify richer models of the system to improve controller performance. Our scheme uses a linear model with bounds on its uncertainty to construct invariant sets which help to provide the guarantees, and it can be generalized to other classes of models and to pseudo-spectral methods. This framework allows us to handle state and input constraints and optimize system performance with respect to a cost function. The learning occurs through the use of an oracle which returns the value and gradient of unmodeled dynamics at discr...
Identification of uncertain nonlinear systems for robust fuzzy control.
Senthilkumar, D; Mahanta, Chitralekha
2010-01-01
In this paper, we consider fuzzy identification of uncertain nonlinear systems in Takagi-Sugeno (T-S) form for the purpose of robust fuzzy control design. The uncertain nonlinear system is represented using a fuzzy function having constant matrices and time varying uncertain matrices that describe the nominal model and the uncertainty in the nonlinear system respectively. The suggested method is based on linear programming approach and it comprises the identification of the nominal model and the bounds of the uncertain matrices and then expressing the uncertain matrices into uncertain norm bounded matrices accompanied by constant matrices. It has been observed that our method yields less conservative results than the other existing method proposed by Skrjanc et al. (2005). With the obtained fuzzy model, we showed the robust stability condition which provides a basis for different robust fuzzy control design. Finally, different simulation examples are presented for identification and control of uncertain nonlinear systems to illustrate the utility of our proposed identification method for robust fuzzy control.
Robust time-optimal control of uncertain structural dynamic systems
Wie, Bong; Sinha, Ravi; Liu, Qiang
1993-01-01
A time-optimal open-loop control problem of flexible spacecraft in the presence of modeling uncertainty has been investigated. The results indicate that the proposed approach significantly reduces the residual structural vibrations caused by modeling uncertainty. The results also indicate the importance of proper jet placement for practical tradeoffs among the maneuvering time, fuel consumption, and performance robustness.
Robust control for a class of uncertain switched fuzzy systems
Hong YANG; Jun ZHAO
2007-01-01
A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented.Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.
Robust Neural Sliding Mode Control of Robot Manipulators
Hiep, Nguyen Tran; cat, Pham Thuong
2009-03-01
This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method
Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control
Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen
2005-01-01
This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness towa...
Chang, Yeong-Chan; Yen, Hui-Min
2012-02-01
This article addresses the motion tracking control for a class of flexible-joint robotic manipulators actuated by brushed direct current motors. This class of electrically driven flexible-joint robots is perturbed by time-varying parametric uncertainties and external disturbances. A novel observer-based robust dynamic feedback tracking controller without velocity measurements will be developed such that the resulting closed-loop system is locally stable, all the states and signals are bounded and the trajectory tracking errors can be made as small as possible. Only the measurements of link position and armature current are required for feedback and so the number of sensors in the practical implementation of the developed control scheme can be greatly reduced. The observer structure is of reduced order in the sense that the observer is constructed only to estimate the velocity signals and whose dimension is half of the dimension of flexible-joint robots. Especially, for the set-point regulation problem, the developed controller is simplified to a linear time-invariant controller. Consequently, the robust tracking control scheme developed in this study can be extended to handle a broader class of uncertain electrically driven flexible-joint robots and the developed robust control schemes possess the properties of computational simplicity and easy implementation. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control algorithms.
Robust stabilization for a class of nonlinear networked control systems
Jinfeng GAO; Hongye SU; Xiaofu JI; Jian CHU
2008-01-01
The problem of robust stabilization for a class of uncertain networked control systems(NCSs)with nonlinearities satisfying a given sector condition is investigated in this paper.By introducing a new model of NCSs with parameter uncertainty,network.induced delay,nonlinearity and data packet dropout in the transmission,a strict linear matrix inequality(LMI)criterion is proposed for robust stabilization of the uncenmn nonlinear NCSs based on the Lyapunov stability theory.The maximum allowable transfer interval(MATI)can be derived by solving the feasibility problem of the corresponding LMI.Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.
Robust adaptive control of nonlinearly parameterized systems with unmodeled dynamics
LIU Yu-sheng; CHEN Jiang; LI Xing-yuan
2006-01-01
Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties.How to control such systems effectively is one of the most challenging problems.This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems.The controller can be used in cases where there exist parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The design of the controller is based on the control Lyapunov function method.A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics,nonlinear uncertainties and unknown bounded disturbances.The backstepping procedure is employed to overcome the complexity in the design.With the proposed method,the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters.there are.It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system.Furthermore,all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately.Simulation results illustrate the effectiveness of the proposed robust adaptive controller.
Microgrid Stability Controller Based on Adaptive Robust Total SMC
Su, Xiaoling; Han, Minxiao; Guerrero, Josep M.
2015-01-01
and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC) system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances......This paper presents a microgrid stability controller (MSC) in order to provide existing DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics....... The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing DG’s output power. When the microgrid is operating...
Robust reactor power control system design by genetic algorithm
Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)
1997-12-31
The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)
Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control
Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei
2014-04-15
This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In this paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.
Variable Neural Adaptive Robust Control: A Switched System Approach
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.
Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih
2012-03-01
This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).
Robust Nonlinear Control with Compensation Operator for a Peltier System
Sheng-Jun Wen
2014-01-01
Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.
Robust trajectory tracking: differential game/cheap control approach
Turetsky, Vladimir; Glizer, Valery Y.; Shinar, Josef
2014-11-01
A robust trajectory tracking problem is treated in the framework of a zero-sum linear-quadratic differential game of a general type. For the cheap control version of this game, a novel solvability condition is derived. The sufficient condition, guaranteeing that the tracking problem is solved by the optimal strategy of the minimiser in the cheap control game, is established. The boundedness of the time realisations of this strategy is analysed. An illustrative example is presented.
Robust control design techniques for active flutter suppression
Ozbay, Hitay; Bachmann, Glen R.
1994-01-01
In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.
Robust Sliding Mode Fuzzy Control of a Car Suspension System
Ayman A. Aly
2013-01-01
Different characteristics can be considered in a suspension system design like: ride comfort, body travel, road handling and suspension travel. No suspension system can optimize all these parameters together but a better tradeoff among these parameters can be achieved in active suspension system.Objective of this paper is to establish a robust control technique of the active suspension system for a quarter-car model. The paper describes also the model and controller used in the study and dis...
A nonlinear robust PI controller for an uncertain system
Aguilar-Ibañez, Carlos; Mendoza-Mendoza, Julio A.; Suarez-Castanon, Miguel S.; Davila, Jorge
2014-05-01
This paper presents a smooth control strategy for the regulation problem of an uncertain system, which assures uniform ultimate boundedness of the closed-loop system inside of the zero-state neighbourhood. This neighbourhood can be made arbitrarily small. To this end, a class of nonlinear proportional integral controllers or PI controllers was designed. The behaviour of this controller emulates very close a sliding mode controller. To accomplish this behaviour saturation functions were combined with traditional PI controller. The controller did not need a high-gain controller or a sliding mode controller to accomplish robustness against unmodelled persistent perturbations. The obtained closed-solution has a finite time of convergence in a small vicinity. The corresponding stability convergence analysis was done applying the traditional Lyapunov method. Numerical simulations were carried out to assess the effectiveness of the obtained controller.
Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.
Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max
2013-04-01
In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.
JIN Qibing; LIU Qie; WANG Qi; TIAN Yuqi; WANG Yuanfei
2013-01-01
The IMC (Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity (Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID (Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
Model-reference robust tuning of PID controllers
Alfaro, Victor M
2016-01-01
This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...
A Comprehensive Robust Adaptive Controller for Gust Load Alleviation
Elisa Capello
2014-01-01
Full Text Available The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required.
Analysis and design of robust decentralized controllers for nonlinear systems
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Robust adaptive control for interval time-delay systems
Yizhong WANG; Huaguang ZHANG; Jun YANG
2006-01-01
This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bounded by high-order polynomial functions with unknown gains. Firstly, the adaptive feedback controller which can guarantee the stability of the closed-loop system in the sense of uniform ultimate boundedness is proposed. Then the proposed adaptive idea is extended to robust stabilizing designing method for a class of large-scale interconnected systems. Here, another problem we address is to design a decentralized feedback adaptive controller such that the closed-loop system is stable in the sense of uniform ultimate boundedness for all admissible uncertainties and time-delay. Finally, an illustrative example is given to show the validity of the proposed approach.
Fault Tolerant Robust Control Applied for Induction Motor (LMI approach
Hamouda KHECHINI
2007-09-01
Full Text Available This paper foregrounds fault tolerant robust control of uncertain dynamic linear systems in the state space representation. In fact, the industrial systems are more and more complex and the diagnosis process becomes indispensable to guarantee their surety of functioning and availability, that’s why a fault tolerant control law is imperative to achieve the diagnosis. In this paper, we address the problem of state feedback H2 /H∞ mixed with regional pole placement for linear continuous uncertain system. Sufficient conditions for feasibility are derived for a general class of convex regions of the complex plan. The conditions are presented as a collection of linear matrix inequalities (LMI 's. The efficiency and performance of this approach are then tested taking into consideration the robust control of a three- phase induction motor drive with the fluctuation of its parameters during the functioning.
Designing robust control-based HIV-treatment
Fredy Andrés Olarte Dussán
2010-04-01
Full Text Available Designing a robust control-based treatment for human immunodeficiency virus (HIV-infected patients was studied. The dynamics of the immune system’s response to infection was modelled using a 5th order nonlinear model with separate efficacy coefficients for protease inhibitor (PIs and reverse transcriptase inhibitors (RTIs. The immune res-ponse has been represented as an uncertain system due to errors in parameter estimation and the existence of un-modelled dynamics. A polytopic system was constructed incorporating all possible system parameter values. A con-trol system was designed using robust pole location techniques stabilising the polytopic system around an equilibrium point having a low viral load. Numerical simulation results (including the organism’s pharmacokinetical response to anti-retroviral drugs showed that the control law could lead to long-term stable conditions, even in extreme cases.
Robust Performance And Dissipation of Stochastic Control Systems
Thygesen, Uffe Høgsbro
The topic of the present dissertation is robustness and performance issues in nonlinear control systems. The control systems in our study are described by nominal models consisting of nonlinear deterministic or stochastic differential equations in a Euclidean state space. The nominal models...... and topology on the space of supply rates. For instance, we give conditions under which the available storage is a continuous convex function of the supply rate. Dissipation theory in the existing literature applies only to deterministic systems. This is unfortunate since robust control applications typically...... are subject to perturbations which are completely unknown dynamic systems, except that they are known to possess certain properties of dissipation. A dissipation property restricts the dynamic behaviour of the perturbation to conform with a bounded resource; for instance energy. The main contribution...
Robust guaranteed cost tracking control of quadrotor UAV with uncertainties.
Xu, Zhiwei; Nian, Xiaohong; Wang, Haibo; Chen, Yinsheng
2017-07-01
In this paper, a robust guaranteed cost controller (RGCC) is proposed for quadrotor UAV system with uncertainties to address set-point tracking problem. A sufficient condition of the existence for RGCC is derived by Lyapunov stability theorem. The designed RGCC not only guarantees the whole closed-loop system asymptotically stable but also makes the quadratic performance level built for the closed-loop system have an upper bound irrespective to all admissible parameter uncertainties. Then, an optimal robust guaranteed cost controller is developed to minimize the upper bound of performance level. Simulation results verify the presented control algorithms possess small overshoot and short setting time, with which the quadrotor has ability to perform set-point tracking task well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Robust controller for a class of uncertain switched fuzzy systems
YANG Hong; ZHAO Jun
2007-01-01
A robustness control of uncertain switched fuzzy systems is presented.Using the switching technique and the Lyapunov function method,a continuous state feedback controller is built to ensure that for all allowable uncertainties the relevant closed-loop system is asymptotically stable.Furthermore,a switching strategy that achieves system global asymptotic stability of the uncertain switched fuzzy system is given.In this model,each subsystem of the switched system is an uncertain fuzzy system,and a common parallel distributed compensation controller is presented.The main condition is given in the form of convex combinations which are more solvable.This method transforms a certain switched system and has strong robustness for various system parameters.Simulations show the feasibility and the effectiveness of this method.
Robust, Decoupled, Flight Control Design with Rate Saturating Actuators
Snell, S. A.; Hess, R. A.
1997-01-01
Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.
Robust adaptive output feedback control of nonlinearly parameterized systems
LIU Yusheng; LI Xingyuan
2007-01-01
The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.
Robustness of controllability for networks based on edge-attack.
Sen Nie
Full Text Available We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.
The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy
Yang, Z.; Blanke, Mogens; Verhagen, M.
2001-01-01
This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...
The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy
Yang, Z.; Blanke, Mogens; Verhagen, M.
2001-01-01
This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...... of one space robot arm system subjected to failures....
Robust Adaptive Speed Control of Induction Motor Drives
Bidstrup, N.
This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly...... dependent of the operating point, which is characterised by the speed and load. If the requirements to the controller performance is large, then it is difficult to maintain specified controller performance with a fixed controller, because of the open loop variations. An auto-tuner based on least squares......, (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...
Robust Adaptive Speed Control of Induction Motor Drives
Bidstrup, N.
This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly...... dependent of the operating point, which is characterised by the speed and load. If the requirements to the controller performance is large, then it is difficult to maintain specified controller performance with a fixed controller, because of the open loop variations. An auto-tuner based on least squares......, (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...
Robust concentration and frequency control in oscillatory homeostats.
Kristian Thorsen
Full Text Available Homeostatic and adaptive control mechanisms are essential for keeping organisms structurally and functionally stable. Integral feedback is a control theoretic concept which has long been known to keep a controlled variable A robustly (i.e. perturbation-independent at a given set-point A(set by feeding the integrated error back into the process that generates A. The classical concept of homeostasis as robust regulation within narrow limits is often considered as unsatisfactory and even incompatible with many biological systems which show sustained oscillations, such as circadian rhythms and oscillatory calcium signaling. Nevertheless, there are many similarities between the biological processes which participate in oscillatory mechanisms and classical homeostatic (non-oscillatory mechanisms. We have investigated whether biological oscillators can show robust homeostatic and adaptive behaviors, and this paper is an attempt to extend the homeostatic concept to include oscillatory conditions. Based on our previously published kinetic conditions on how to generate biochemical models with robust homeostasis we found two properties, which appear to be of general interest concerning oscillatory and homeostatic controlled biological systems. The first one is the ability of these oscillators ("oscillatory homeostats" to keep the average level of a controlled variable at a defined set-point by involving compensatory changes in frequency and/or amplitude. The second property is the ability to keep the period/frequency of the oscillator tuned within a certain well-defined range. In this paper we highlight mechanisms that lead to these two properties. The biological applications of these findings are discussed using three examples, the homeostatic aspects during oscillatory calcium and p53 signaling, and the involvement of circadian rhythms in homeostatic regulation.
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
motions and other stochastic processes. For the control of both continuous time and discrete time finite dimensional linear systems with quadratic...problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...2010 30-Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Optimal Control of Stochastic Systems Driven by Fractional Brownian
Xiuchun Li
2013-01-01
Full Text Available When the parameters of both drive and response systems are all unknown, an adaptive sliding mode controller, strongly robust to exotic perturbations, is designed for realizing generalized function projective synchronization. Sliding mode surface is given and the controlled system is asymptotically stable on this surface with the passage of time. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding controller is designed to ensure the occurrence of the sliding motion. Finally, numerical simulations are presented to verify the effectiveness and robustness of the proposed method even when both drive and response systems are perturbed with external disturbances.
Robust control, multidimensional systems and multivariable Nevanlinna-Pick interpolation
Ball, J A
2009-01-01
The connection between the standard $H^\\infty$-problem in control theory and Nevanlinna-Pick interpolation in operator theory was established in the 1980s, and has led to a fruitful cross-pollination between the two fields since. In the meantime, research in $H^\\infty$-control theory has moved on to the study of robust control for systems with structured uncertainties and to various types of multidimensional systems, while Nevanlinna-Pick interpolation theory has moved on independently to a variety of multivariable settings. Here we review these developments and indicate the precise connections which survive in the more general multidimensional/multivariable incarnations of the two theories.
A new robust fuzzy method for unmanned flying vehicle control
Mojtaba Mirzaei; Mohammad Eghtesad; Mohammad Mahdi Alishahi
2015-01-01
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles (UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control (IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
Less Conservative Optimal Robust Control of a 3-DOF Helicopter
L. F. S. Buzachero
2015-01-01
Full Text Available This work proposes an improved technique for design and optimization of robust controllers norm for uncertain linear systems, with state feedback, including the possibility of time-varying the uncertainty. The synthesis techniques used are based on LMIs (linear matrix inequalities formulated on the basis of Lyapunov’s stability theory, using Finsler’s lemma. The design has used the addition of the decay rate restriction, including a parameter γ in the LMIs, responsible for decreasing the settling time of the feedback system. Qualitative and quantitative comparisons were made between methods of synthesis and optimization of the robust controllers norm, seeking alternatives with lower cost and better performance that meet the design restrictions. A practical application illustrates the efficiency of the proposed method with a failure purposely inserted in the system.
Robust Collimation Control of Laser-Generated Ion Beam
Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X
2015-01-01
The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.
Robust direct adaptive fuzzy control for nonlinear MIMO systems
ZHANG Huaguang; ZHANG Mingjun
2006-01-01
For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.
Controlling motion prediction errors in radiotherapy with relevance vector machines.
Dürichen, Robert; Wissel, Tobias; Schweikard, Achim
2015-04-01
Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.
Hard and Soft Sub-Time-Optimal Robust Controllers
Kulczycki, Piotr; Wisniewski, Rafal; Kowalski, Piotr
2010-01-01
has been treated as a stochastic process, is presented in this paper. As a result, through a generalization of the classic switching curve occurring in the time-optimal approach, two control structures have been investigated: the hard, defined on the basis of the rules of the statistical decision...... theory, and also the soft, which additionally allows the elimination of rapid changes in control values. The methodology proposed here may be easily adopted for other elements commonly found in mechanical systems, e.g. parameters of drive or motion resistance, giving the sub-time-optimal controlling...
Uncertainty Quantification for Robust Control of Wind Turbines using Sliding Mode Observer
Schulte, Horst
2016-09-01
A new quantification method of uncertain models for robust wind turbine control using sliding-mode techniques is presented with the objective to improve active load mitigation. This approach is based on the so-called equivalent output injection signal, which corresponds to the average behavior of the discontinuous switching term, establishing and maintaining a motion on a so-called sliding surface. The injection signal is directly evaluated to obtain estimates of the uncertainty bounds of external disturbances and parameter uncertainties. The applicability of the proposed method is illustrated by the quantification of a four degree-of-freedom model of the NREL 5MW reference turbine containing uncertainties.
Fault-tolerant control of linear uncertain systems using H∞ robust predictive control
Chen Xueqin; Geng Yunhai; Zhang Yingchun; Wang Feng
2008-01-01
The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.
IMC based robust PID controller tuning for disturbance rejection
Mohammad Shamsuzzoha
2016-01-01
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gainKc0. It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak (overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
CAN-based Synchronized Motion Control for Induction Motors
Jun Ren; Chun-Wen Li; De-Zong Zhao
2009-01-01
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed.The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results,the multi-motor synchronized motion control system,via the CAN bus,has been successfully implemented.With the employment of the advanced synchronized motion control strategy,the synchronization performance can be significantly improved.
Robust control charts in industrial production of olive oil
Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.
2014-10-01
Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.
A positive theory of monetary policy and robust control
Juha Kilponen
2004-01-01
This paper applies the robust control approach to a simple positive theory of monetary policy, when the central bank’s model of the economy is subject to misspecifications. It is shown that a central bank should react more aggressively to supply shocks when the model misspecifications grow larger. Moreover, the model misspecifications aggravate the inflation bias and a trade-off between output stabilisation and inflation worsens when the uncertainty surrounding the central bank’s model increa...
An adaptive robust controller for time delay maglev transportation systems
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Robust output LQ optimal control via integral sliding modes
Fridman, Leonid; Bejarano, Francisco Javier
2014-01-01
Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...
Robust nonlinear variable selective control for networked systems
Rahmani, Behrooz
2016-10-01
This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.
Robust PID Steering Control in Parameter Space for Highly Automated Driving
Mümin Tolga Emirler
2014-01-01
Full Text Available This paper is on the design of a parameter space based robust PID steering controller. This controller is used for automated steering in automated path following of a midsized sedan. Linear and nonlinear models of this midsized sedan are presented in the paper. Experimental results are used to validate the longitudinal and lateral dynamic models of this vehicle. This paper is on automated steering control and concentrates on the lateral direction of motion. The linear model is used to design a PID steering controller in parameter space that satisfies D-stability. The PID steering controller that is designed is used in a simulation study to illustrate the effectiveness of the proposed method. Simulation results for a circular trajectory and for a curved trajectory are presented and discussed in detail. This study is part of a larger research effort aimed at implementing highly automated driving in a midsized sedan.
Sartori, Mary Ann; Bauske, Terri; Lunenburg, Fred C.
2000-01-01
Investigated students' perceptions of teachers pupil-control behavior, classroom robustness, and student self-control, highlighting possible differences between public and military secondary schools. Humanistic approaches had more positive, interrelated effects among these variables. Military (custodial) classrooms were perceived as less robust,…
Robust Control Methods for On-Line Statistical Learning
Capobianco Enrico
2001-01-01
Full Text Available The issue of controlling that data processing in an experiment results not affected by the presence of outliers is relevant for statistical control and learning studies. Learning schemes should thus be tested for their capacity of handling outliers in the observed training set so to achieve reliable estimates with respect to the crucial bias and variance aspects. We describe possible ways of endowing neural networks with statistically robust properties by defining feasible error criteria. It is convenient to cast neural nets in state space representations and apply both Kalman filter and stochastic approximation procedures in order to suggest statistically robustified solutions for on-line learning.
Beck, R. [RWTH Aachen (Germany). Inst. fuer Regelungstechnik; Saenger Zetina, S.; Neiss, K. [DaimlerChrysler Corp., Troy, MI (United States); Bollig, A. [Siemens AG, Muenchen (Germany)
2007-07-15
Hybrid electric vehicles increasingly gain importance mainly due to the potential fuel saving but also because of the additional agility achieved by the increased peak torques during boosting. An important aspect of a hybrid architecture is the transition between pure electric and hybrid operation, which is exemplarily investigated in a flexible hybrid transmission under a parallel engagement configuration. A clutch which separates the transmission input side (engine side) from the rest of the drivetrain is engaged in order to achieve the transition. A noticeable jerk during the engagement process or an interruption of the drive torque cannot be tolerated since the driving comfort must not be reduced. Special attention was given to the robustness of the controller, since the transition has to be carried out reliably and comfortably under varying vehicle properties and drive conditions. (orig.)
Robust adaptive neural network control with supervisory controller
张天平; 梅建东
2004-01-01
The problem of direct adaptive neural network control for a class of uncertain nonlinear systems with unknown constant control gain is studied in this paper. Based on the supervisory control strategy and the approximation capability of multilayer neural networks (MNNs), a novel design scheme of direct adaptive neural network controller is proposed.The adaptive law of the adjustable parameter vector and the matrix of weights in the neural networks and the gain of sliding mode control term to adaptively compensate for the residual and the approximation error of MNNs is determined by using a Lyapunov method. The approach does not require the optimal approximation error to be square-integrable or the supremum of the optimal approximation error to be known. By theoretical analysis, the closed-loop control system is proven to be globally stable in the sense that all signals involved are bounded, with tracking error converging to zero.Simulation results demonstrate the effectiveness of the approach.
Effective and Robust Generalized Predictive Speed Control of Induction Motor
Patxi Alkorta
2013-01-01
Full Text Available This paper presents and validates a new proposal for effective speed vector control of induction motors based on linear Generalized Predictive Control (GPC law. The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is demonstrated by the poles placement method for several typical cases of uncertainties in induction motors. The controller has been tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID and Sliding Mode (SM control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties, unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.
Robust spacecraft attitude tracking control using hybrid actuators with uncertainties
Cao, Xibin; Wu, Baolin
2017-07-01
The problem of spacecraft attitude tracking using hybrid actuators with uncertainties is addressed in this paper. A hybrid actuators configuration that combines reaction wheels for fine pointing and single gimbal control moment gyros for rapid maneuvering is employed for agile spacecraft. A robust control algorithm for the spacecraft attitude tracking problem when the torque axis direction and/or input scaling of the actuators are uncertain is developed. Furthermore, a torque allocation method is proposed for the hybrid actuator configuration to allow a smooth switch between single gimbal control moment gyros and reaction wheels. With this method, single gimbal control moment gyros are used for the phase of rapid maneuvering, while reaction wheels are used for the phase of fine pointing. Simulation results demonstrate the effectiveness of the proposed control scheme.
Robust Adaptive Reactive Power Control for Doubly Fed Induction Generator
Huabin Wen
2014-01-01
Full Text Available The problem of reactive power control for mains-side inverter (MSI in doubly fed induction generator (DFIG is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.
ROBUST ELECTRONIC DIFFERENTIAL CONTROLLER FOR AN ELECTRIC VEHICLE
A. Ravi
2013-01-01
Full Text Available This study presents an efficient and robust control scheme of electronic differential system for an electric vehicle. The proposed system consists of two Brushless DC motors (BLDC that ensure the drive of the two back driving wheels of an electric vehicle. Electronic Differential Controller (EDC ensures the maximum torque and it can control both the driving wheel independently to turn at different speeds in any curve and also distribute the power to each motor according to the steering angle. EDC is designed to facilitate experimentation with an electric vehicle using the PIC 16F877A. The BLDC motor has been controlled by the method of back EMF zero crossing detection. The effectiveness and substantiation of the proposed methods are ascertained in the MATLAB/Simulink environment and also experimentally validated. The experimental results give satisfactory performance with the proposed electronic control scheme which also ensures the stability of the vehicle in all road conditions.
Improved Robustness of Generalized Predictive Control for Uncertain Systems
Khelifa, Khelifi Otmane; Noureddine, Bali; Lazhari, Nezli
2015-01-01
An off-line methodology has been developed to improve the robustness of an initial generalized predictive control (GPC) through convex optimization of the Youla parameter. However, this method is restricted with the case of the systems affected only by unstructured uncertainties. This paper proposes an extension of this method to the systems subjected to both unstructured and polytopic uncertainties. The basic idea consists in adding supplementary constraints to the optimization problem which validates the Lipatov stability condition at each vertex of the polytope. These polytopic uncertainties impose a non convex quadratically constrained quadratic programming (QCQP) problem. Based on semidefinite programming (SDP), this problem is relaxed and solved. Therefore, the robustification provides stability robustness towards unstructured uncertainties for the nominal system, while guaranteeing stability properties over a specified polytopic domain of uncertainties. Finally, we present a numerical example to demonstrate the proposed method.
Blackwell, C. C.
1987-01-01
A relevant facet of the application of Lyapunov gradient-generated robust control to unstable linear autonomous plants is explored. It is demonstrated that if the plant, the output, and the nominal stabilizing control satisfy certain conditions, then the robust component alone stabilizes the nominal plant. An example characterized by two zero eigenvalues and two negative real value poles is presented. These results assure that the robust component will fulfill the role of nominal stabilization successfully so long as the possible magnitude of the robust component can overcome the contribution of the instability to positiveness of the Lyapunov rate.
Blackwell, C. C.
1987-01-01
A relevant facet of the application of Lyapunov gradient-generated robust control to unstable linear autonomous plants is explored. It is demonstrated that if the plant, the output, and the nominal stabilizing control satisfy certain conditions, then the robust component alone stabilizes the nominal plant. An example characterized by two zero eigenvalues and two negative real value poles is presented. These results assure that the robust component will fulfill the role of nominal stabilization successfully so long as the possible magnitude of the robust component can overcome the contribution of the instability to positiveness of the Lyapunov rate.
A robust decentralized load frequency controller for interconnected power systems.
Dong, Lili; Zhang, Yao; Gao, Zhiqiang
2012-05-01
A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.
COA based robust output feedback UPFC controller design
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-12-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.
Motion control simulation based on VR for humanoid robot
He, Huaiqing; Tang, Haoxuan
2004-03-01
This paper describes the motion control simulation based on VR for humanoid robot aiming at walking and running. To insure that the motion rhythm of humanoid robot conforms to the motion laws of humans, the body geometrical model based on skeleton and its kinematics models based on the graph of time sequences are presented firstly. Then a control algorithm based on Jacobian matrix is proposed to generate the periodical walking and running. Finally, computer simulation experiments demonstrate the feasibility of the models and the algorithm. The simulation system developed makes us interactively regulate the motion direction and velocity for humanoid robot.
Robust Redundant Input Reliable Tracking Control for Omnidirectional Rehabilitative Training Walker
Ping Sun
2014-01-01
Full Text Available The problem of robust reliable tracking control on the omnidirectional rehabilitative training walker is examined. The new nonlinear redundant input method is proposed when one wheel actuator fault occurs. The aim of the study is to design an asymptotically stable controller that can guarantee the safety of the user and ensure tracking on a training path planned by a physical therapist. The redundant degrees of freedom safety control and the asymptotically zero state detectable concept of the walker are presented, the model of redundant degree is constructed, and the property of center of gravity constant shift is obtained. A controller that can satisfy asymptotic stability is obtained using a common Lyapunov function for admissible uncertainties resulting from an actuator fault. Simulation results confirm the effectiveness of the proposed method and verify that the walker can provide safe sequential motion when one wheel actuator is at fault.
Robust generalized H2 control:time-delay case
刘飞
2004-01-01
Generalized H2 control problem is considered for a class of linear time-delay systems covering linear timeinvariant (LTI) case and time-varying but norm-bounded linear differential inclusion (NLDI) case. The issues focus on the synthesis of so-called generalized H2 controller, which guarantees internal/robust stability and a certain performance level of generalized H2 norm of resulting closed-loop system. By using Lyapunov functional technique, sufficient conditions for the existence of such a kind of controllers are obtained in terms of two linear matrix inequalities (LMIs).In the state space, for memoryless state feedback case, we treat the controller design in a unified framework for both LTI and NLDI. The presented results are illustrated by numerical examples.
Robust adaptive backstepping control for piezoelectric nano-manipulating systems
Zhang, Yangming; Yan, Peng; Zhang, Zhen
2017-01-01
In this paper we present a systematic modeling and control approach for nano-manipulations of a two-dimensional PZT (piezoelectric transducer) actuated servo stage. The major control challenges associated with piezoelectric nano-manipulators typically include the nonlinear dynamics of hysteresis, model uncertainties, and various disturbances. The adverse effects of these complications will result in significant performance loss, unless effectively eliminated. The primary goal of the paper is on the ultra high precision control of such systems by handling various model uncertainties and disturbances simultaneously. To this end, a novel robust adaptive backstepping-like control approach is developed such that parametric uncertainties can be estimated adaptively while the nonlinear dynamics and external disturbances are treated as bounded disturbances for robust elimination. Meanwhile, the L2-gain of the closed-loop system is considered, and an H∞ optimization problem is formulated to improve the tracking accuracy. Numerical simulations and real time experiments are finally conducted, which significantly outperform conventional PID methods and achieve around 1% tracking error for circular contouring tasks.
Microgrid Stability Controller Based on Adaptive Robust Total SMC
Xiaoling Su
2015-03-01
Full Text Available This paper presents a microgrid stability controller (MSC in order to provide existing distributed generation units (DGs the additional functionality of working in islanding mode without changing their control strategies in grid-connected mode and to enhance the stability of the microgrid. Microgrid operating characteristics and mathematical models of the MSC indicate that the system is inherently nonlinear and time-variable. Therefore, this paper proposes an adaptive robust total sliding-mode control (ARTSMC system for the MSC. It is proved that the ARTSMC system is insensitive to parametric uncertainties and external disturbances. The MSC provides fast dynamic response and robustness to the microgrid. When the system is operating in grid-connected mode, it is able to improve the controllability of the exchanged power between the microgrid and the utility grid, while smoothing the DGs’ output power. When the microgrid is operating in islanded mode, it provides voltage and frequency support, while guaranteeing seamless transition between the two operation modes. Simulation and experimental results show the effectiveness of the proposed approach.
Robust controller design for fuzzy parametric uncertain systems: an optimal control approach.
Patre, Balasaheb M; Bhiwani, R J
2013-03-01
A new approach of designing a robust controller for fuzzy parametric uncertain systems is proposed. A linear time invariant (LTI) system with fuzzy coefficients is called as fuzzy parametric uncertain system (FPUS). The proposed method envisages conversion of the FPUS into an uncertain (interval) state space controllable canonical form system in terms of its alpha cut. Further, the problem of designing a robust controller is translated into an optimal control problem minimizing a cost function. For matched uncertainty, it is shown that the optimal control problem is a linear quadratic regulator (LQR) problem, which can be solved to obtain a robust controller for FPUS. The numerical examples and simulation results show the effectiveness of the proposed method in terms of robustness of the controller. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun
2015-04-01
This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller.
Robust observer-based adaptive fuzzy sliding mode controller
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Cheng, Xiang-Qin; Qu, Jing-Yuan; Yan, Zhe-Ping; Bian, Xin-Qian
2010-03-01
In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain. Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the H∞ controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.
Robust algebraic image enhancement for intelligent control systems
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Robust adaptive control of underwater vehicles: A comparative study
Thor I. Fossen
1996-01-01
Full Text Available Robust adaptive control of underwater vehicles in 6 DOF is analysed in the context of measurement noise. The performance of the adaptive control laws of Sadegh and Harowitz (1990 and Slotine and Benedetto (1990 are compared. Both these schemes require that all states are measured, that is the velocities and positions in surge, sway, heave, roll, pitch and yaw. However, for underwater vehicles it is difficult to measure the linear velocities whereas angular velocity measurements can be obtained by using a 3 axes angular rate sensor. This problem is addressed by designing a nonlinear observer for linear velocity state estimation. The proposed observer requires that the position and the attitude are measured, e.g. by using a hydroacoustic positioning system for linear positions, two gyros for roll and pitch and a compass for yaw. In addition angular rate measurements will be assumed available from a 3-axes rate sensor or a state estimator. It is also assumed that the measurement rate is limited to 2 Hz for all the sensors. Simulation studies with a 3 DOF AUV model are used to demonstrate the convergence and robustness of the adaptive control laws and the velocity state observer.
Robust control of novel pendulum-type vibration isolation system
Tsai, Meng-Shiun; Sun, Yann-Shuoh; Liu, Chun-Hsieh
2011-08-01
A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of -14 dB in the 2-60 Hz bandwidth range and -35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40-60 kg.
Thang-Long MAI; Yaonan WANG
2014-01-01
In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomic-constraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.
Robust H∞ control for uncertain descriptor systems with state and control delay
Piao Fengxian; Zhang Qingling; Ma Xiuzhen
2006-01-01
The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robust stabilization is to design a memoryless state feedback law such that the resulting closed-loop system is robustly stable. A sufficient condition that uncertain continuous descriptor system is robustly stabilizabled by state feedback law is derived in terms of linear matrix inequality (LMI). Finally, a numerical example is provided to demonstrate the application of the proposed method.
Gust Load Alleviation with Robust Control for a Flexible Wing
Xiang Liu
2016-01-01
Full Text Available Traditional methods for gust alleviation of aircraft are mostly proposed based on a specific flight condition. In this paper, robust control laws are designed for a large flexible wing with uncertainty in Mach number and dynamic pressure. To accurately describe the aeroelastic model over a large flight envelope, a nonlinear parameter-varying model is developed which is a function of both Mach number and dynamic pressure. Then a linear fractional transformation is established accordingly and a modified model order reduction technique is applied to reduce the size of the uncertainty block. The developed model, in which the statistic nature of the gust is considered by using the Dryden power spectral density function, enables the use of μ-synthesis procedures for controller design. The simulations show that the μ controller can always effectively reduce the wing root shear force and bending moment at a given range of Mach number and dynamic pressure.
ROBUST REPETITIVE CONTROL FOR IMPROVING RATE SMOOTHNESS OF TEST TURNTABLE
LIUYu; ZENGMing; SUBao-ku
2005-01-01
A robust repetitive control scheme is used to improve the rate smoothness of a brushless DC motor (BLDCM) driven test turntable. The method synthesizes variable structure control (VSC) laws and repetitive control (RC) laws in a complementary manner. The VSC strategy can stabilize the system and suppress uncertainties, such as the aperiodic disturbance and noises, while RC strategy can eliminate the periodic rate fluctuation in a steady state. The convergence of the repetitive learning process is also guaranteed by VSC. A general nonlinear system model is discussed. The model can be considered as an extension of BLDCMs. The stability and asymptotic position tracking performance are validated by using Lyapunov functions. Simulation results show the effectiveness of the proposed approach for improving the rate smoothness.
Robust Inversion and Data Compression in Control Allocation
Hodel, A. Scottedward
2000-01-01
We present an off-line computational method for control allocation design. The control allocation function delta = F(z)tau = delta (sub 0) (z) mapping commanded body-frame torques to actuator commands is implicitly specified by trim condition delta (sub 0) (z) and by a robust pseudo-inverse problem double vertical line I - G(z) F(z) double vertical line less than epsilon (z) where G(z) is a system Jacobian evaluated at operating point z, z circumflex is an estimate of z, and epsilon (z) less than 1 is a specified error tolerance. The allocation function F(z) = sigma (sub i) psi (z) F (sub i) is computed using a heuristic technique for selecting wavelet basis functions psi and a constrained least-squares criterion for selecting the allocation matrices F (sub i). The method is applied to entry trajectory control allocation for a reusable launch vehicle (X-33).
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan
2015-11-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.
Robust Vector Control of Induction Motors Without Speed Sensor
Kim, Jin Soo; Kim, Sang Uk; Kim, Young Seok [Inha University, Inchon (Korea, Republic of)
1998-05-01
In this paper, a new approached to high performance variable drive system for the induction motors without speed sensor is proposed. The speed sensorless vector control realized in this paper has the robustness to the load and parameter variation and the excellent dynamic characteristics in comparison with the conventional speed sensorless vector control scheme. the conventional adaptive sliding observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering generated due to the infinite feedback gain and that the discontinuous control input result in torque chartering and excite mechanical resonance. This paper presents a new speed sensorless vector control of induction motors using the adaptive binary observer for the purpose of alleviating the high-frequency chattering in the sliding observer. The binary observer can generate the continuous control input under the effects of delay and various constraints in the switching frequency. The binary observer estimates the rotor speed and rotor flux with alleviation of the been implemented by 32-bit floating point TMS 320C31 DSP. The high performance speed control characteristics are verified by the experimental results, and the feasibility of the proposed controller without the speed and the rotor flux sensors under variable speed range is exemplified via the experiments. (author). 12 refs., 15 figs., 1 tab.
Morimitsu, Hidetaka; Katsura, Seiichiro
Recently, the Peltier device has been attracting attention as a haptic device that can transfer heat, because it has relatively fast response characteristics among thermal devices. To transmit the thermal sensation, temperature control is considered to be important. However, it is difficult to design a controller because of factors such as parameter variations, nonlinear characteristics of the device, and heat that flows from an external object. Moreover, it is preferable that the tracking performance and disturbance suppression characteristics be designed independently. To address these factors, this paper proposes a heat disturbance observer, which is constructed by using the disturbance observer commonly used in the field of motion control. When the observer is used, the thermal system becomes robust to the above-mentioned factors. In addition, it is possible to design the tracking performance independent of the disturbance suppression characteristics. The validity of the proposal is confirmed by experimental results.
Design and analysis of a rotary motion controller
Julio Cesar Caye
2015-12-01
Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.
Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control
Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen
2005-01-01
This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...... towards structured (parametric) and unstructured (unmodeled dynamics) uncertainties. A third-order model of the actuated system is used to develop a sliding mode control which is implemented and tested on a simulation model. To avoid measurement of velocity and acceleration a simple first-order model...... is furthermore used to develop a simple sliding mode control (SSMC). The performance of the two controllers are compared and discussed....
Adaptive Iterative Learning Control for High Precision Motion Systems
Rotariu, I.; Steinbuch, M.; Ellenbroek, R.
2008-01-01
Iterative learning control (ILC) is a very effective technique to reduce systematic errors that occur in systems that repetitively perform the same motion or operation. However, several characteristics have prevented standard ILC from being widely used for high precision motion systems. Most importa
In Search of Bibliographic Control for Instructional Motion Picture Films.
Coover, Robert W.
This historical study report describes phases in the development of applicable standards for cataloging instructional motion picture films. Steps leading to the present state of the art are objectively presented, focusing on standards developed to establish bibliographic control of instructional motion picture films, contemporary reaction to such…
Efficient Motion Planning and Control for Underwater Gliders
Mahmoudian, Nina
2009-01-01
Underwater gliders are highly efficient, winged autonomous underwater vehicles that propel themselves by modifying their buoyancy and their center of mass. The center of mass is controlled by a set of servo-actuators which move one or more internal masses relative to the vehicle's frame. Underwater gliders are so efficient because they spend most of their time in stable, steady motion, expending control energy only when changing their equilibrium state. Motion control thus reduces to varyin...
Topics in Guided Motion Control of Marine Vehicles
Breivik, Morten
2010-01-01
A mix between a monograph and an article collection, this PhD thesis considers the concept of guided motion control for marine vehicles, in particular focusing on underactuated marine surface vehicles. The motion control scheme is defined to involve the combination of a guidance system which issues meaningful velocity commands with a velocity control system which has been specifically designed to take vehicle maneuverability and agility constraints into account when fulfilling these commands ...
An Interval Type-2 Fuzzy Neural Network Control on Two-Axis Motion System
Ye Xiaoting
2013-11-01
Full Text Available In this paper, an interval type-2 fuzzy neural network (IT2FNN control system is proposed to control a two-axis motion system, which is composed of two permanent magnet linear synchronous motors. The IT2FNN control system, which combines the merits of an interval type-2 fuzzy logic system and a neural network, is developed to approximate an unknown dynamic function. Moreover, adaptive learning algorithms that can train the parameters of the IT2FNN online are derived using the Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties. To relax the requirement for the value of the lumped uncertainty in the robust controller, an adaptive lumped uncertainty estimation law is also investigated. The proposed control algorithms are implemented. From the simulated and experimental results, the contour tracking performance of the two-axis motion control system is significantly improved and the robustness can be obtained as well using the proposed IT2FNN control system.
Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.
David J Mellert
Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.
Geometric control of active collective motion
Theillard, Maxime; Saintillan, David
2016-01-01
Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in confined suspensions of active self-propelled swimmers using a mean-field kinetic theory where conservation equations for the particle configurations are coupled to the forced Navier-Stokes equations for the self-generated fluid flow. In circular domains, a systematic exploration of the parameter space casts light on three distinct states: equilibrium with no flow, stable vortex, and chaotic motion, and the transitions between these are explained and predicted quantitatively using a linearized theory. In periodic racetracks, similar transitions from equilibrium to net pumping to traveling waves to chaos are observed in ag...
Robust isothermal electric control of exchange bias at room temperature
Binek, Christian
2011-03-01
Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia
Intelligent Mobile Robot Motion Control in Unstructured Environments
Gyula Mester
2010-11-01
Full Text Available This paper presents the intelligent wheeled mobile robot motion control inunstructured environments. The fuzzy control of a wheeled mobile robot motion inunstructured environments with obstacles and slopes is proposed. Outputs of the fuzzycontroller are the angular speed difference between the left and right wheels of the mobilerobot and the mobile robot velocity. The simulation results show the effectiveness and thevalidity of the obstacle avoidance behavior in an unstructured environment and the velocitycontrol of a wheeled mobile robot motion of the proposed fuzzy control strategy. Wirelesssensor-based remote control of mobile robots motion in unstructured environments usingthe Sun SPOT technology is proposed. The proposed method has been implemented on theminiature mobile robot Khepera that is equipped with sensors. Finally, the effectivenessand efficiency of the proposed sensor-based remote control strategy are demonstrated byexperimental studies and good experimental results.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
E. M. Ismaili Aalaoui
2009-02-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
Ibn-Elhaj E
2009-01-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
An EMG-based robot control scheme robust to time-varying EMG signal features.
Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J
2010-05-01
Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.
Abdeldjabar, Benrabah; Xu, Dianguo; Wang, Xiongfei;
2016-01-01
This paper deals with the problem of LCL filter resonance in grid connected inverter control. The system equations are reformulated to allow the application of the active disturbance rejection control (ADRC). The resonance, assumed unknown, is treated as a disturbance, then estimated and mitigated....... By using this new robust control, a high level of performance is achieved with a minimum complexity in the controller design, and without any adaptive algorithm. It is demonstrated that the true quality of the control system is obtained by the proposed solution. Furthermore, it is shown that this control...... is robust against parameter variations and disturbances....
Robust reliable control design for networked control system with sampling communication
Sakthivel, R.; Santra, Srimanta; Mathiyalagan, K.; Su, Hongye
2015-12-01
In this article, the problem of robust exponential stability and reliable stabilisation for a class of continuous-time networked control systems (NCSs) with a sample-data controller and unknown time-varying sampling rate is considered. The analysis is based on average dwell-time, Lyapunov-Krasovskii functional and linear matrix inequality (LMI) technique. The delay-dependent criteria are developed for ensuring the robust exponential stability of the considered NCSs. The obtained conditions are formulated in terms of LMIs that can easily be solved by using standard software packages. Furthermore, the result is extended to study the robust stabilisation for NCS with parameter uncertainties. A state feedback controller is constructed in terms of the solution to a set of LMIs, which guarantee the robust exponential stabilisation of NCS and the controller. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.
Yi, Jianbing, E-mail: yijianbing8@163.com [College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China and College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000 (China); Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn [College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518000 (China); Chen, Guoliang, E-mail: glchen@szu.edu.cn [National High Performance Computing Center at Shenzhen, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518000 (China)
2015-10-15
Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the
Griffiths, Tricia; Connors, Anne
2013-01-01
As the regulatory environment for compounding pharmacies continues to evolve, facilities can take immediate steps to strengthen their quality-control microbiology and environmental monitoring programs. Robust programs that are timely, comprehensive, and effective will minimize risk and help support positive patient outcomes. This article provides a roadmap for putting in place a robust quality-control microbiology program in the face of United States Pharmacopeia Chapter 797 standards, and highlights several technologies for environmental monitoring that support a successful program.
Robust parameter design for automatically controlled systems and nanostructure synthesis
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor
Adaptive Sliding Mode Control Using Robust Feedback Compensator for MEMS Gyroscope
Juntao Fei
2013-01-01
Full Text Available An adaptive sliding mode control using robust feedback compensator is presented for a MEMS gyroscope in the presence of external disturbances and parameter uncertainties. An adaptive controller with a robust term is used to improve the robustness of the control system and compensate the system nonlinearities. The proposed robust adaptive control can estimate the angular velocity and all the system parameters including damping and stiffness coefficients in the Lyapunov framework. In addition, standard adaptive control scheme without robust algorithm is compared with the proposed robust adaptive scheme in the aspect of numerical simulation and algorithm derivation. Numerical simulations show that the robust adaptive control has better robustness in the presence of external disturbances than the standard adaptive control.
Robust Backstepping Control of Wing Rock Using Disturbance Observer
Dawei Wu
2017-02-01
Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.
A Robust H ∞ Controller for an UAV Flight Control System.
López, J; Dormido, R; Dormido, S; Gómez, J P
2015-01-01
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.
High-throughput electrical characterization for robust overlay lithography control
Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.
2017-03-01
Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.
Electric Wheelchair Controlled by Human Body Motion Interface
Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua
This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.
Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
Zhang, Qin; Hosoda, Ryo; Venture, Gentiane
2013-01-01
This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
Winters, Scott Eric [Univ. of California, Davis, CA (United States)
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments have the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H_{∞} controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.
Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments
Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel
2010-01-01
A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...... and to reduce the sensitivity to accuracy of flux linkage estimation. An I-f strategy is used for starting, by prescribing a ramped reference frequency and a constant current, and then the seamless transition to close loop sensorless control takes place. The proposed control system is detailed and validated...
Hybrid control and motion planning of dynamical legged locomotion
2012-01-01
"This book provides a comprehensive presentation of issues and challenges faced by researchers and practicing engineers in motion planning and hybrid control of dynamical legged locomotion. The major features range from offline and online motion planning algorithms to generate desired feasible periodic walking and running motions and tow-level control schemes, including within-stride feedback laws, continuous time update laws and event-based update laws, to asymptotically stabilize the generated desired periodic orbits. This book describes the current state of the art and future directions across all domains of dynamical legged locomotion so that readers can extend proposed motion planning algorithms and control methodologies to other types of planar and 3D legged robots".
Control Strategies for Guided Collective Motion
2015-01-30
Proceedings of the American Control Conference , Washington...of multiple robots using a modified Kuramoto model. Proceedings of the American Control Conference , Washington, DC, USA, pages 6138– 6144. 2014 ACODS...L.B. Arranz, A. Seuret, and C.C. de Wit, “Contraction control of a fleet circular formation of AUVs under limited communication range,” Proceedings of the American Control
Robustness study of the pounding tuned mass damper for vibration control of subsea jumpers
Li, Hongnan; Zhang, Peng; Song, Gangbing; Patil, Devendra; Mo, Yilung
2015-09-01
A previous study by the authors proposed a new type of damper, the pounding tuned mass damper (PTMD), which uses the impact of a tuned mass with viscoelastic materials to effectively dissipate vibration energy, for structural vibration control. However, the control performance is unknown if the PTMD is not tuned to the targeted frequency of the primary structure. This paper aims to study the robustness of the PTMD against the detuning effect both numerically and experimentally. The control object was chosen as a subsea jumper, which is a flexible M-shaped pipeline structure commonly used in offshore oil and gas production. In this paper, a 15.2 m (50 feet) long jumper incorporated with a PTMD was set up. To enable the numerical study, the equation of motion of the jumper along with the PTMD was derived. Three testing cases were numerically studied: free vibration, forced vibration and forced vibration with varied frequencies. In all cases, the PTMD can effectively suppress the structural vibration when the natural frequency was off-tuned. Furthermore, experimental studies were conducted. The experimental results also implied the robustness of the proposed PTMD.
A robust active control system for shimmy damping in the presence of free play and uncertainties
Orlando, Calogero; Alaimo, Andrea
2017-02-01
Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.
PID motion control tuning rules in a damping injection framework
Tadele, Tadele Shiferaw; Vries, de Theo; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
Robust Task Space Trajectory Tracking Control of Robotic Manipulators
Galicki, M.
2016-08-01
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph
2015-02-21
Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.
Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph
2015-02-01
Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.
Identification and robust control of linear parameter-varying systems
Lee, Lawton Hubert
This dissertation deals with linear parameter-varying (LPV) systems: linear dynamic systems that depend on time-varying parameters. These systems appear in gain scheduling problems, and much recent research has been devoted to their prospective usefulness for systematic gain scheduling. We primarily focus on robust control of uncertain LPV systems and identification of LPV systems that are modelable as linear-fractional transformations (LFTs). Using parameter-dependent quadratic Lyapunov functions, linear matrix inequalities (LMIs), and scaled small-gain arguments, we define notions of stability and induced-{cal L}sb2 performance for uncertain LPV systems whose parameters and rates of parameter variation satisfy given bounds. The performance criterion involves integral quadratic constraints and implies naturally parameter-dependent induced-{cal L}sb2 norm bounds. We formulate and solve an {cal H}sb{infty}-like control problem for an LPV plant with measurable parameters and an "Output/State Feedback" structure: the feedback outputs include some noiselessly measured states. Necessary and sufficient solvability conditions reduce to LMIs that can be solved approximately using finite-dimensional convex programming. Reduced-order LPV controllers are constructed from the LMI solutions. A D-K iteration-like procedure provides robustness to structured, time-varying, parametric uncertainty. The design method is applied to a motivating example: flight control for the F-16 VISTA throughout its subsonic flight envelope. Parameter-dependent weights and {cal H}sb{infty} design principles describe the performance objectives. Closed-loop responses exhibited by nonlinear simulations indicate satisfactory flying qualities. Identification of linear-fractional LPV systems is treated using maximum-likelihood parameter estimation. Computing the gradient and Hessian of a maximum-likelihood cost function reduces to simulating one LPV filter per identified parameter. We use nonlinear
From bounded-noise data to robust PI-controller design
Steinbuch, Luc; Keesman, K.J.
2015-01-01
An approach is presented to design a robust PI-controller from bounded noise measurement data of a first order process with and without time delay. This controller guarantees a known robust performance. It is shown that in the case without time delay, the conservatism of the robust approach can b
Stochastic boundary control design for Timoshenko beams with large motions
Do, K. D.
2017-08-01
This paper considers modeling and boundary control of Timoshenko beams with large motions under both deterministic and stochastic external loads. The original nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The control design is based on the Lyapunov direct method. The proposed controllers guarantee globally practically K∞-exponentially p-stability of the beam motions at the reference state. Well-posedness and stability are analyzed based on a Lyapunov-type theorem developed to study well-posedness and stability for a class of stochastic evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Visual Flight Control of a Quadrotor Using Bioinspired Motion Detector
Lei Zhang
2012-01-01
Full Text Available Motion detection in the fly is extremely fast with low computational requirements. Inspired from the fly's vision system, we focus on a real-time flight control on a miniquadrotor with fast visual feedback. In this work, an elaborated elementary motion detector (EMD is utilized to detect local optical flow. Combined with novel receptive field templates, the yaw rate of the quadrotor is estimated through a lookup table established with this bioinspired visual sensor. A closed-loop control system with the feedback of yaw rate estimated by EMD is designed. With the motion of the other degrees of freedom stabilized by a camera tracking system, the yaw-rate of the quadrotor during hovering is controlled based on EMD feedback under real-world scenario. The control performance of the proposed approach is compared with that of conventional approach. The experimental results demonstrate the effectiveness of utilizing EMD for quadrotor control.
Liu, W; Schild, S; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Liao, Z; Sahoo, N [MD Anderson Cancer Center, Houston, TX (United States); Park, P [Scottsdale, GA (United States); Li, H [M.D. Anderson Cancer Center, Houston, TX (United States); Li, Y [Varian Medical Systems, Houston, TX (United States); Li, X; Shen, J [Mayo Clinic Arizona, Phoenix, AA (United States); Anand, A [Mayo Clinic Arizona, Phoenix (United States); Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States); Zhu, X; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)
2014-06-01
Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly
Robust motion estimation on a low-power multi-core DSP
Igual, Francisco D.; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco
2013-12-01
This paper addresses the efficient implementation of a robust gradient-based optical flow model in a low-power platform based on a multi-core digital signal processor (DSP). The aim of this work was to carry out a feasibility study on the use of these devices in autonomous systems such as robot navigation, biomedical assistance, or tracking, with not only power restrictions but also real-time requirements. We consider the C6678 DSP from Texas Instruments (Dallas, TX, USA) as the target platform of our implementation. The interest of this research is particularly relevant in optical flow scope because this system can be considered as an alternative solution for mid-range video resolutions when a combination of in-processor parallelism with optimizations such as efficient memory-hierarchy exploitation and multi-processor parallelization are applied.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.
Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty
Sun, Liang; Huo, Wei
2015-11-01
This paper provides a solution for the position tracking and attitude synchronization problem of the close proximity phase in spacecraft rendezvous and docking. The chaser spacecraft must be driven to a certain fixed position along the docking port direction of the target spacecraft, while the attitude of the two spacecraft must be synchronized for subsequent docking operations. The kinematics and dynamics for relative position and relative attitude are modeled considering dynamic coupling, parametric uncertainties and external disturbances. The relative motion model has a new form with a novel definition of the unknown parameters. An original robust adaptive control method is developed for the concerned problem, and a proof of the asymptotic stability is given for the six degrees of freedom closed-loop system. A numerical example is displayed in simulation to verify the theoretical results.
Sensing human hand motions for controlling dexterous robots
Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.
1988-01-01
The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.
S-variable approach to LMI-based robust control
Ebihara, Yoshio; Arzelier, Denis
2015-01-01
This book shows how the use of S-variables (SVs) in enhancing the range of problems that can be addressed with the already-versatile linear matrix inequality (LMI) approach to control can, in many cases, be put on a more unified, methodical footing. Beginning with the fundamentals of the SV approach, the text shows how the basic idea can be used for each problem (and when it should not be employed at all). The specific adaptations of the method necessitated by each problem are also detailed. The problems dealt with in the book have the common traits that: analytic closed-form solutions are not available; and LMIs can be applied to produce numerical solutions with a certain amount of conservatism. Typical examples are robustness analysis of linear systems affected by parametric uncertainties and the synthesis of a linear controller satisfying multiple, often conflicting, design specifications. For problems in which LMI methods produce conservative results, the SV approach is shown to achieve greater accuracy...
Boundary-controlled spin chains for robust quantum state transfer
Zwick, Analia; Stolze, Joachim; Osenda, Omar
2011-01-01
Quantum state transfer in the presence of noise is one of the main challenges for building quantum computers. We compare the quantum state transfer properties for two classes of qubit chains under the influence of static randomness. In fully engineered chains all nearest-neighbor couplings are tuned in such a way that a single-qubit state can be transferred perfectly between the ends of the chain, while in boundary-controlled chains only the two couplings between the transmitting and receiving qubits and the remainder of the chain can be optimized. We study how the noise in the couplings affects the state transfer fidelity depending on the noise model and strength as well as the chain type and length. We show that the desired level of fidelity and transfer time are important factors in designing a chain. In particular we demonstrate that transfer efficiency comparable or better than that of the most robust engineered systems can also be reached in boundary-controlled chains without the demanding engineering o...
Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming
2017-08-01
In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.
ROBUST ATTITUDE CONTROL OF A 3DOF HELICOPTER WITH MULTI-OPERATION POINTS
Yao YU; Yisheng ZHONG
2009-01-01
A 3DOF (three degrees of freedom) helicopter attitude control system with multi-operation points is described as a MIMO time-varying uncertain nonlinear system with unknown constant param-eters, bounded disturbance and nonlinear uncertainty, and a robust output feedback control method based on signal compensation is proposed. A controller designed by this method consists of a nominal controller and a robust compensator. The controller is linear time-invariant and can be realized easily. Robust attitude tracking property of closed-loop system is proven and experimental results show that the designed control system can guarantee high precision robust attitude control under multi-operation points.
High-speed precision motion control
Yamaguchi, Takashi; Pang, Chee Khiang
2011-01-01
Written for researchers and postgraduate students in Control Engineering, as well as professionals in the Hard Disk Drive industry, this book discusses high-precision and fast servo controls in Hard Disk Drives (HDDs). The editors present a number of control algorithms that enable fast seeking and high precision positioning, and propose problems from commercial products, making the book valuable to researchers in HDDs. Each chapter is self contained, and progresses from concept to technique, present application examples that can be used within automotive, aerospace, aeronautical, and manufactu
Spatial design and control of graphene flake motion
Ghorbanfekr-Kalashami, H.; Peeters, F. M.; Novoselov, K. S.; Neek-Amal, M.
2017-08-01
The force between a sharp scanning probe tip and a surface can drive a graphene flake over crystalline substrates. The recent design of particular patterns of structural defects on a graphene surface allows us to propose an alternative approach for controlling the motion of a graphene flake over a graphene substrate. The thermally induced motion of a graphene flake is controlled by engineering topological defects in the substrate. Such defect regions lead to an inhomogeneous energy landscape and are energetically unfavorable for the motion of the flake, and will invert and scatter graphene flakes when they are moving toward the defect line. Engineering the distribution of these energy barriers results in a controllable trajectory for the thermal motion of the flake without using any external force. We predict superlubricity of the graphene flake for motion along and between particular defect lines. This Rapid Communication provides insights into the frictional forces of interfaces and opens a route to the engineering of the stochastic motion of a graphene flake over any crystalline substrate.
Theoretical modeling and computational simulation of robust control for Mars aircraft
Oh, Seyool
) and Athena Vortex Lattice (AVL) programs. The uncertainty based on the stability and control derivatives of Marsflyer II was defined by running these programs. In addition, the comparisons of different trim conditions ascertain the need for gain scheduling about a linear controller system. An controller and H-infinity controller were applied to the design candidate aircraft controller systems. Simulations of the controller show that the H-infinity controller was more robust than the controller. The gain scheduled method was utilized for Marsflyer II inside a flight envelope using a linearized model from two selected trim points. The gain scheduling of Marsflyer II with both no gust and various gusts was achieved between these trim points. The controller derived from each trim point shows stable motion at the same trim condition. Both simulations of high altitude flight in the Earth`s atmosphere and the corresponding low altitude flight in the Martian atmosphere were completed using the robust controller for Marsflyer II. This research incorporates gain scheduling as well as robust control. The flight simulation of Marsflyer II was implemented within the Matlab/Simulink environment.
Controlling the Motion of a Nanoparticle Trapped in Vacuum
Vovrosh, Jamie; Hempston, David; Bateman, James; Ulbricht, Hendrik
2016-01-01
We demonstrate a simple and robust geometry for optical trapping in vacuum of a single nanoparticle based on a parabolic mirror and the optical gradient force, and we demonstrate rapid parametric feedback cooling of all three motional degrees of freedom from room temperature to a few mK. A single laser at 1550nm, and a single photodiode, are used for trapping, position detection, and cooling for all three dimensions. Particles with diameters from 26nm to 160nm are trapped without feedback to 10$^{-5}$mbar and with feedback engaged the pressure is reduced to 10$^{-6}$mbar. Modifications to the harmonic motion in the presence of noise and feedback are studied, and an experimental mechanical quality factor $>4\\times 10^7$ is estimated.
Galvanometer control system design of aerial camera motion compensation
Qiao, Mingrui; Cao, Jianzhong; Wang, Huawei; Guo, Yunzeng; Hu, Changchang; Tang, Hong; Niu, Yuefeng
2015-10-01
Aerial cameras exist the image motion on the flight. The image motion has seriously affected the image quality, making the image edge blurred and gray scale loss. According to the actual application situation, when high quality and high precision are required, the image motion compensation (IMC) should be adopted. This paper designs galvanometer control system of IMC. The voice coil motor as the actuator has a simple structure, fast dynamic response and high positioning accuracy. Double-loop feedback is also used. PI arithmetic and Hall sensors are used at the current feedback. Fuzzy-PID arithmetic and optical encoder are used at the speed feedback. Compared to conventional PID control arithmetic, the simulation results show that the control system has fast response and high control accuracy.
Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring
Yuya Kitaguchi
2015-10-01
Full Text Available Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices.
Real-time simulation of hand motion for prosthesis control.
Blana, Dimitra; Chadwick, Edward K; van den Bogert, Antonie J; Murray, Wendy M
2017-04-01
Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control.
Motion control and vibration suppression of flexible lumped systems via sensorless LQR control
Çelebi, Beşir; Celebi, Besir; Çevik, Gülnihal; Cevik, Gulnihal; Mehmet, Berkem; Shoukry Mohammed Khalil, Islam; ŞABANOVIÇ, Asif; SABANOVIC, Asif
2011-01-01
This work attempts to achieve motion control along with vibration suppression of flexible systems by developing a sensorless closed loop LQR controller. Vibration suppression is used as a performance index that has to be minimized so that motion control is achieved with zero residual vibration. An estimation algorithm is combined with the regular LQR to develop sensorless motion and vibration controller that is capable of positioning multi degrees of freedom flexible system point of interest ...
Analytical one parameter method for PID motion controller settings
Dijk, van J.; Aarts, R.G.K.M.
2012-01-01
In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over fre
IPMSM Motion-Sensorless Direct Torque and Flux Control
Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede
2005-01-01
The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...
IPMSM Motion-Sensorless Direct Torque and Flux Control
Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede
2005-01-01
The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...
Mu-Synthesis robust control of 3D bar structure vibration using piezo-stack actuators
Mystkowski, Arkadiusz; Koszewnik, Andrzej Piotr
2016-10-01
This paper presents an idea for the Mu-Synthesis robust control of 3D bar structure vibration with using a piezo-stack actuators. A model of the 3D bar structure with uncertain parameters is presented as multi-input multi-output (MIMO) dynamics. Nominal stability and nominal performances of the open-loop 3D bar structure dynamic model is developed. The uncertain model-based robust controller is derived due to voltage control signal saturation and selected parameter perturbations. The robust control performances and robustness of the system due to uncertainties influence is evaluated by using singular values and a small gain theorem. Finally, simulation investigations and experimental results shown that system response of the 3D bar structure dynamic model with taken into account perturbed parameters met desired robust stability and system limits. The proposed robust controller ensures a good dynamics of the closed-loop system, robustness, and vibration attenuation.
Yiyao Ye-Lin
2014-01-01
Full Text Available Electrohysterography (EHG is a noninvasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique.
Designing a robust minimum variance controller using discrete slide mode controller approach.
Alipouri, Yousef; Poshtan, Javad
2013-03-01
Designing minimum variance controllers (MVC) for nonlinear systems is confronted with many difficulties. The methods able to identify MIMO nonlinear systems are scarce. Harsh control signals produced by MVC are among other disadvantages of this controller. Besides, MVC is not a robust controller. In this article, the Vector ARX (VARX) model is used for simultaneously modeling the system and disturbance in order to tackle these disadvantages. For ensuring the robustness of the control loop, the discrete slide mode controller design approach is used in designing MVC and generalized MVC (GMVC). The proposed method for controller design is tested on a nonlinear experimental Four-Tank benchmark process and is compared with nonlinear MVCs designed by neural networks. In spite of the simplicity of designing GMVCs for the VARX models with uncertainty, the results show that the proposed method is accurate and implementable.
On Optimal Control of a Brownian Motion.
1982-06-01
barriers. Puterman [9] uses diffusion processes to model production and inventory processes. In both cases they assume the existence of a stationary... Puterman , A diffusion model for a storage system, Logistic, M. Geisler ed., North-Holland 197S. [101 J. Rath, The optimal policy for a controlled
Brouard, Olivier; Delannay, Fabrice; Ricordel, Vincent; Barba, Dominique
2007-01-01
4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...
岳明; 王爽; 张永顺
2013-01-01
非完整轮式移动机器人的路径跟踪,需要在保证机器人姿态跟踪精度的同时,增强其地面适应性能.为实现这种运动/力的协调控制目标,本文提出双闭环的控制系统结构:外环能够增加运动精度,内环则可以增强机器人对地面动态摩阻的适应性.同时,考虑到地面摩阻的慢时变性,本文通过构造观测器对其进行估计.在具体算法实现方面,采用反步法在外环构建运动控制器:而在内环,则是应用积分型的滑模技术设计力控制器与观测器.最后,对控制系统进行仿真,仿真结果证明所提出控制方法的有效性.%Path following of a nonholonomic wheeled mobile robot should harmoniously guarantee the accurate robot posture tracking and the enhancing terrain-adaptive performance.To realize this coordinated motion/force objective,we propose a double closed-loop control structure with the outer loop to improve the motion accuracy and the inner loop to enhance the dynamic terrain friction adaptability.Meanwhile,the uncertain terrain friction is estimated by an observer considering its slow time-varying characteristic.In order to realize the control algorithms,we developed the motion controller for the outer loop via backstepping method; and apply the integral sliding mode technique to design the observer and the force controller for the inner loop.Simulations are performed and the results demonstrate the effectiveness of the proposed control schemes.
Li Zhengcai
2014-01-01
Full Text Available Mobility control is one of the most essential parts of planetary rovers’ research and development. The goal of this research is to let the planetary rovers be able to achieve demand of motion from upper level with satisfied control performance under the rough and deformable planetary terrain that often lead to longitudinal slip. The longitudinal slip influences the mobility efficiency obviously, especially on the major deformable slopes. Compared with the past works on normal stiff terrains, properties of soil and interaction between wheels and soil should be considered additionally. Therefore, to achieve the final goal, in this paper, wheel-soil dynamic model for six-wheel planetary rovers while climbing up deformable slopes with longitudinal slip is first built and control based in order to account for slip phenomena. These latter effects are then taken into account within terramechanics theory, relying upon nonlinear control techniques; finally, a robust adaptive fuzzy control strategy with longitudinal slip compensation is developed to reduce the effects induced by slip phenomena and modeling error. Capabilities of this control scheme are demonstrated via full scale simulations carried out with a six-wheel robot moving on sloped deformable terrain, whose real time was computed relying uniquely upon RoSTDyn, a dynamic software.
Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe
2016-11-01
For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
Motion synchronization in unmanned aircrafts formation control with communication delays
Rezaee, Hamed; Abdollahi, Farzaneh
2013-03-01
This paper proposes a formation control strategy for unmanned aircrafts using a virtual structure. Cross coupled sliding mode controllers are introduced to cope with uncertainties in the attitude measurement systems of the unmanned aircrafts and unmeasurable bounded external disturbances such as wind effects, and also to provide motion synchronization in the multi-agent system. This motion synchronization strategy improves the agents convergence to their desired positions, and this is useful for a multi-agent system with faulty agents. Moreover, the proposed motion synchronization strategy is not restricted to specific communication topologies, and sufficient conditions are provided to guarantee the multi-agent system stability in the presence of communication delays. Numerical simulations are presented for a team of five unmanned aircrafts to make a pentagon formation and confirm the accepted performance of the proposed control strategy.
Robustness-tracking control based on sliding mode and H∞ theory for linear servo system
TIAN Yan-feng; GUO Qing-ding
2005-01-01
A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
Synthesis of fixed-architecture, robust H 2 and H ∞ controllers
Collins Jr. Emmanuel G.
2000-01-01
Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis
Synthesis of fixed-architecture, robust H2 and H∞ controllers
Emmanuel G. Collins
2000-01-01
Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.
Robust reliable sampled-data control for switched systems with application to flight control
Sakthivel, R.; Joby, Maya; Shi, P.; Mathiyalagan, K.
2016-11-01
This paper addresses the robust reliable stabilisation problem for a class of uncertain switched systems with random delays and norm bounded uncertainties. The main aim of this paper is to obtain the reliable robust sampled-data control design which involves random time delay with an appropriate gain control matrix for achieving the robust exponential stabilisation for uncertain switched system against actuator failures. In particular, the involved delays are assumed to be randomly time-varying which obeys certain mutually uncorrelated Bernoulli distributed white noise sequences. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and employing an average-dwell time approach, a new set of criteria is derived for ensuring the robust exponential stability of the closed-loop switched system. More precisely, the Schur complement and Jensen's integral inequality are used in derivation of stabilisation criteria. By considering the relationship among the random time-varying delay and its lower and upper bounds, a new set of sufficient condition is established for the existence of reliable robust sampled-data control in terms of solution to linear matrix inequalities (LMIs). Finally, an illustrative example based on the F-18 aircraft model is provided to show the effectiveness of the proposed design procedures.
基于运动矢量的鲁棒视频去抖动算法%Robust Video Stabilization Based on Motion Vectors
SONG Li; ZHOU Yuan-hua; ZHOU Jun
2005-01-01
This paper proposes a new robust video stabilization algorithm to remove unwanted vibrations in video sequences. A complete theoretical analysis is first established for video stabilization, providing a basis for new stabilization algorithm. Secondly, a new robust global motion estimation (GME) algorithm is proposed. Different from classic methods, the GME algorithm is based on spatial-temporal filtered motion vectors computed by block-matching methods. In addition, effective schemes are employed in correction phase to prevent boundary artifacts and error accumulation. Experiments show that the proposed algorithm has satisfactory stabilization effects while maintaining good tradeoff between speed and precision.
Visual Features Involving Motion Seen from Airport Control Towers
Ellis, Stephen R.; Liston, Dorion
2010-01-01
Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.
Sliding modes in power electronics and motion control
Şabanoviç, Asif; Sabanovic, Asif
2004-01-01
In the paper the general approach to motion control systems in the sliding mode framework is discussed in details. It has been shown that, due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed on n 2 d.o.f systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constrain. Such a formulation leads naturally to sliding mode methods...
Robust H∞ control for singular systems with time-varying uncertainties
DONG Xinzhuang; ZHANG Qingling
2006-01-01
In this paper,we investigate the problem of robust H∞ control for singular systems with polytopic time-varying parameter uncertainties.By introducing the notion of generalized quadratic H∞ performance,the relationship between the existence of a robust H∞ dynamic state feedback controller and that of a robust H∞ static state feedback controller is given.By using matrix inequalities,the existence conditions of robust H∞ static state feedback and dynamic output feedback controllers are derived.Moreover,the design methods for such controllers are provided in terms of the solutions of matrix inequalities.An example is also presented to demonstrate the validity of the proposed methods.
Robust Distributed Power Control in Cognitive Radio Networks
fard, Saeideh Parsaei
2011-01-01
We propose a robust distributed uplink power allocation algorithm for underlay cognitive radio networks (CRNs) with a view to maximizing the total utility of secondary users (SUs) when channel gains from SUs to primary base stations, and interference caused by primary users (PUs) to the SUs' base station are uncertain. In doing so, we utilize the worst-case robust optimization to keep the interference caused by SUs to each primary base station below a given threshold, and satisfy the SUs' quality of service for all realizations of uncertainty. We model each uncertain parameter by a bounded distance between its estimated and exact values, and formulate the robust power allocation problem via protection values for constraints. We demonstrate that the convexity of our problem is preserved, and in some cases converts into a geometric programming problem, which we solve via a distributed algorithm by using Lagrange dual decomposition. To reduce the cost of robustness, defined as the reduction in the total utility ...
Robust Multivariate Control Charts to Detect Small Shifts in Mean
Habshah Midi
2011-01-01
Full Text Available The classical multivariate CUSUM and EWMA charts are commonly used to detect small shifts in the mean vectors. It is now evident that those charts are easily affected by outliers which may be due to small or moderate changes in the mean vector. In this paper, we propose a robust multivariate CUSUM and Robust multivariate EWMA charts to remedy the problem of small changed in scatter outliers. Both the empirical and simulation results indicate that the proposed robust multivariate CUSUM and EWMA charts offer substantial improvement over other multivariate CUSUM and EWMA charts. This article also discussed the robustness of the proposed charts, when there is a small or moderate sustained shift in the data set.
Control design for robust stability in linear regulators: Application to aerospace flight control
Yedavalli, R. K.
1986-01-01
Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.
DIGITAL MOTION CONTROL HARDWARE A SURVEY PAPER
I N Satya Kumara
2009-12-01
Full Text Available Teknik pengaturan motor listrik telah berkembang sangat pesat khususnya sejak dua dekade terakhir. Pengaturan kecepatan dan torsi motor yang presisi dan cepat sudah bisa dicapai, khususnya untuk motor ac yang memiliki karakteristik nonlinier dan terkopling. Teknik estimasi untuk mengurangi sensor fisik juga berkembang sebagai upaya meningkatkan keandalan dari drive. Hal-hal di atasi dimungkinkan karena perkembangan teknologi mikroelektronika dan semikonduktor daya. Perkembangan teknologi mikroelektronika khususnya VSLAmemungkinkan pengimplementasian teknik-teknik pengaturan lanjut untuk menghasilkan sistem pengaturan motor listrik dengan unjuk kerja tinggi dan dengan perangkat keras yang ekonomis. Teknologi semikonduktor daya memungkinkan dihasilkannya konverter statis yang efisien, kompak serta ekonomis. Paper ini mencoba me-review sistem perangkat keras yang tersedia untuk mengimplementasikan pengaturan motor listrik dengan teknik digitalmotion control.
Do common systems control eye movements and motion extrapolation?
Makin, Alexis D J; Poliakoff, Ellen
2011-07-01
People are able to judge the current position of occluded moving objects. This operation is known as motion extrapolation. It has previously been suggested that motion extrapolation is independent of the oculomotor system. Here we revisited this question by measuring eye position while participants completed two types of motion extrapolation task. In one task, a moving visual target travelled rightwards, disappeared, then reappeared further along its trajectory. Participants discriminated correct reappearance times from incorrect (too early or too late) with a two-alternative forced-choice button press. In the second task, the target travelled rightwards behind a visible, rectangular occluder, and participants pressed a button at the time when they judged it should reappear. In both tasks, performance was significantly different under fixation as compared to free eye movement conditions. When eye movements were permitted, eye movements during occlusion were related to participants' judgements. Finally, even when participants were required to fixate, small changes in eye position around fixation (<2°) were influenced by occluded target motion. These results all indicate that overlapping systems control eye movements and judgements on motion extrapolation tasks. This has implications for understanding the mechanism underlying motion extrapolation.
IT-tool Concept for Design and Intelligent Motion Control
Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben
2000-01-01
The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....
Dynamics and control of Lorentz-augmented spacecraft relative motion
Yan, Ye; Yang, Yueneng
2017-01-01
This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.
Hybrid Force Motion Synchronization Control of Robot Manipulators
Fikkan, Kristoffer
2010-01-01
The main objective of this thesis was to combine the theory on synchronization of robot manipulators with the concept of hybrid force/motion control; resulting in a controller capable of following both the trajectory of another robot and a desired force trajectory at the same time. This report includes a short introduction to synchronization theory for robot manipulators, and a more thorough summary of existing hybrid control schemes. An intuitive method for describing constraints caused...
Toolkits Control Motion of Complex Robotics
2010-01-01
That space is a hazardous environment for humans is common knowledge. Even beyond the obvious lack of air and gravity, the extreme temperatures and exposure to radiation make the human exploration of space a complicated and risky endeavor. The conditions of space and the space suits required to conduct extravehicular activities add layers of difficulty and danger even to tasks that would be simple on Earth (tightening a bolt, for example). For these reasons, the ability to scout distant celestial bodies and perform maintenance and construction in space without direct human involvement offers significant appeal. NASA has repeatedly turned to complex robotics for solutions to extend human presence deep into space at reduced risk and cost and to enhance space operations in low Earth orbit. At Johnson Space Center, engineers explore the potential applications of dexterous robots capable of performing tasks like those of an astronaut during extravehicular activities and even additional ones too delicate or dangerous for human participation. Johnson's Dexterous Robotics Laboratory experiments with a wide spectrum of robot manipulators, such as the Mitsubishi PA-10 and the Robotics Research K-1207i robotic arms. To simplify and enhance the use of these robotic systems, Johnson researchers sought generic control methods that could work effectively across every system.
Robust Control of Uncertain Systems via Dissipative LQG-Type Controllers
Joshi, Suresh M.
2000-01-01
Optimal controller design is addressed for a class of linear, time-invariant systems which are dissipative with respect to a quadratic power function. The system matrices are assumed to be affine functions of uncertain parameters confined to a convex polytopic region in the parameter space. For such systems, a method is developed for designing a controller which is dissipative with respect to a given power function, and is simultaneously optimal in the linear-quadratic-Gaussian (LQG) sense. The resulting controller provides robust stability as well as optimal performance. Three important special cases, namely, passive, norm-bounded, and sector-bounded controllers, which are also LQG-optimal, are presented. The results give new methods for robust controller design in the presence of parametric uncertainties.
Controlling the motion of multiple objects on a Chladni plate
Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville
2016-09-01
The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.
Leap Motion Device Used to Control a Real Anthropomorphic Gripper
Ionel Staretu
2016-06-01
Full Text Available This paper presents for the first time the use of the Leap Motion device to control an anthropomorphic gripper with five fingers. First, a description of the Leap Motion device is presented, highlighting its main functional characteristics, followed by testing of its use for capturing the movements of a human hand's fingers in different configurations. Next, the HandCommander soft module and the Interface Controller application are described. The HandCommander is a software module created to facilitate interaction between a human hand and the GraspIT virtual environment, and the Interface Controller application is required to send motion data to the virtual environment and to test the communication protocol. For the test, a prototype of an anthropomorphic gripper with five fingers was made, including a proper hardware system of command and control, which is briefly presented in this paper. Following the creation of the prototype, the command system performance test was conducted under real conditions, evaluating the recognition efficiency of the objects to be gripped and the efficiency of the command and control strategies for the gripping process. The gripping test is exemplified by the gripping of an object, such as a screw spanner. It was found that the command system, both in terms of capturing human hand gestures with the Leap Motion device and effective object gripping, is operational. Suggestive figures are presented as examples.
Robust H∞ control for uncertain stochastic saturating systems with time delays
谢立; 何星; 张卫东; 许晓鹏
2004-01-01
The robust H∞ control problem for uncertain stochastic time-delay systems containing nonlinear actuators is considered. The uncertainties in the systems are assumed to satisfy specific match condition. The time delays exitst in state as well as control input. The new stochastic robust stabilization criterion and a sufficient condition for the existence of stochastic robust stabilizing control law are derived. The delay-independent memoryless robust H∞ controllers are constructed to stabilize the given systems in terms of a group of linear matrix inequalities. A numerical simulation example is presented to show that the proposed approach is valid.
H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions
Wang, Yun; Wu, Qiuwei; Gong, Wenming;
2016-01-01
are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated......This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...
Roshani, Amir; Erfanian, Abbas
2016-08-01
Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS
DSP applications in advanced, intelligent motion control: the future
Beierke, S. [Texas Instruments Deutschland GmBh, Freising (Germany); Vas, P. [Univ. of Aberdeen, Dept. of Engineering (United Kingdom)
2000-08-01
Recently there has been a rapid increase in the number of DSPs for various motion control applications. However, in the future, further significant increase is expected due to wider applications in existing and new areas (e.g. household appliances, automotive auxiliaries, micro-electromechanical systems, military applications, etc.). The present paper discusses the state-of-art Texas Instruments fixed point and floating point DSPs used in motion control applications and will also focus on future activities. Currently new chip technologies are being developed which involve copper interconnects, silicon-on-insulator wafers, insulators with- low dielectric constants, etc. It is expected that future single-chip DSPs for advanced intelligent motion control will have higher performance, reduced costs, simpler designs, will incorporate various sensors, different modules for optimised PWM generation, efficiency control, vector and direct torque control (sensorless and quasisensorless solutions as well), condition monitoring, selfcommissioning, artificial-intelligence-based control, etc. A manufacturer's task of implementing sensorless and/or quasisensorless torque control schemes for induction, synchronous and switched reluctance motor drives will be significantly reduced by the application of the newly developed DSPs. The paper will discuss these issues and will also show some implementation results in various sensorless (classical DTC; DTC with torque-ripple reduction schemes; vector) and quasisensorless ac drives (e.g. a vector controlled induction motor drive). (orig.)
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Stabilization of rotational motion with application to spacecraft attitude control
Wisniewski, Rafal
2000-01-01
on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...
In Control of Motion : From Molecular Switches to Molecular Motors
Feringa, Bernard
2001-01-01
The design of molecular systems in which controlled linear and rotary motion can be achieved under the influence of an external signal is a major endeavor toward future nanoscale machinery. In this Account we describe the development of molecular switches and the discoveries that culminated in the
Optimal control of the ballistic motion of Airy beams.
Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang
2010-07-01
We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.
Vision based motion control for a humanoid head
Visser, L.C.; Carloni, R.; Stramigioli, S.
2009-01-01
This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed an
Two-pulse laser control of nuclear and electronic motion
Grønager, Michael; Henriksen, Niels Engholm
1997-01-01
We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability) oscilla...
Motion Control of Disc Electrode by Electrorheological Fluids
Tsuda, Kazutoshi; Hirose, Yuji; Ogura, Hironao; Otsubo, Yasufumi
2008-07-01
The electrorheological(ER) suspensions are sandwiched between two flat disc electrodes with the radial line patterns. The pattern electrodes are fixed on the parallel plate geometry on a stress-controlled rheometer which was modified for the ER experiments. The motion of disk electrodes analyzed as a function of electrification modes to obtain the basic data for ER actuators.
Controller Requirements for Uncoupled Aircraft Motion. Volume 2.
1984-09-01
discussed in Section 12. 42 0 Maximum Deflection CniuainBeku edad Maneuver Force at No. 0 of N.oConigraio Be kutDedbnd Gradient (Over Maximum Comments No 1...168, were formed by using a sum of five sine waves as the input to the roll controller. The target motions were recorded on magnetic media and then
Observation Quality Control with a Robust Ensemble Kalman Filter
Roh, Soojin
2013-12-01
Current ensemble-based Kalman filter (EnKF) algorithms are not robust to gross observation errors caused by technical or human errors during the data collection process. In this paper, the authors consider two types of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was tested and it was found that the new approach greatly improves the performance of the filter in the presence of gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.
Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment
Ikhwan Kim
2015-06-01
Full Text Available Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE. We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives.
Robust FOPI controller design for power control of PHWR under step-back condition
Bhase, S.S., E-mail: swapnil.sbhase@gmail.com; Patre, B.M., E-mail: bmpatre@ieee.org
2014-07-01
Highlights: • Robust stabilization of a highly nonlinear PHWR process. • A robust FOPI controller for a typical fractional-order NIOPTD-II plant. • Flat phase constraint is proposed to obtain a controller giving wide flat phase at gain crossover frequency. • FOPI controller designed for an operating condition of the PHWR produces a constant Phase margin for wide range of frequencies. • The proposed FOPI controller gives better performance compared to existing in the literature. - Abstract: This paper presents a stabilizing fractional-order proportional integral (FOPI) controller design for the power control of a highly nonlinear Pressurized Heavy Water Reactor (PHWR) under step-back condition. A single robust FOPI controller is designed utilizing stability boundary locus method for eight nuclear reactor models of the PHWR linearized at different operating points. A set of stabilizing controller parameters is obtained for a typical fractional-order two non-integer order plus time delay (NIOPTD-II) model of the reactor satisfying design specifications of phase margin and gain crossover frequency. Then a flat phase constraint is developed to find a controller giving wide flat phase at the desired gain crossover frequency. The controller obtained is found to give iso-damped closed-loop response for all linearized models of PHWR. Simulation results show that the proposed FOPI controller applied for active step-back in the reactor give a deadbeat tracking performance without any undershoot for all operating points, defined for variation in initial power level or control rod drop. The efficacy of the proposed FOPI controller is verified by comparing its performance with existing methods in the literature.
FPGA Implementation of Real-Time Ethernet for Motion Control
Chen Youdong
2013-01-01
Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.
Robust digital controllers for uncertain chaotic systems: A digital redesign approach
Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)
2007-03-15
In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.
Sliding-Mode Control Applied for Robust Control of a Highly Unstable Aircraft
Vetter, Travis Kenneth
2002-01-01
An investigation into the application of an observer based sliding mode controller for robust control of a highly unstable aircraft and methods of compensating for actuator dynamics is performed. After a brief overview of some reconfigurable controllers, sliding mode control (SMC) is selected because of its invariance properties and lack of need for parameter identification. SMC is reviewed and issues with parasitic dynamics, which cause system instability, are addressed. Utilizing sliding manifold boundary layers, the nonlinear control is converted to a linear control and sliding manifold design is performed in the frequency domain. An additional feedback form of model reference hedging is employed which is similar to a prefilter and has large benefits to system performance. The effects of inclusion of actuator dynamics into the designed plant is heavily investigated. Multiple Simulink models of the full longitudinal dynamics and wing deflection modes of the forward swept aero elastic vehicle (FSAV) are constructed. Additionally a linear state space models to analyze effects from various system parameters. The FSAV has a pole at +7 rad/sec and is non-minimum phase. The use of 'model actuators' in the feedback path, and varying there design, is heavily investigated for the resulting effects on plant robustness and tolerance to actuator failure. The use of redundant actuators is also explored and improved robustness is shown. All models are simulated with severe failure and excellent tracking, and task dependent handling qualities, and low pilot induced oscillation tendency is shown.
Stabilization of rotational motion with application to spacecraft attitude control
Wisniewski, Rafal
2001-01-01
on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...... control problems are addressed: stabilization in the inertial frame, magnetic libration damping for the gravity gradient stabilization and a slew maneuver with obstacle avoidance...
Coordinated Control of Wave Energy Converters Subject to Motion Constraints
2016-01-01
In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO) damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four convert...
Repetitive motion planning and control of redundant robot manipulators
Zhang, Yunong
2013-01-01
Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...
Active Control Does Not Eliminate Motion-Induced Illusory Displacement
Ian M. Thornton
2011-05-01
Full Text Available When the sine-wave grating of a Gabor patch drifts to the left or right, the perceived position of the entire object is shifted in the direction of local motion. In the current work we explored whether active control of the physical position of the patch overcomes such motion induced illusory displacement. In Experiment 1 we created a simple computer game and asked participants to continuously guide a Gabor patch along a randomly curving path using a joystick. When the grating inside the Gabor patch was stationary, participants could perform this task without error. When the grating drifted to either left or right, we observed systematic errors consistent with previous reports of motion-induced illusory displacement. In Experiment 2 we created an iPad application where the built-in accelerometer tilt control was used to steer the patch through as series of “gates”. Again, we observed systematic guidance errors that depended on the direction and speed of local motion. In conclusion, we found no evidence that participants could adapt or compensate for illusory displacement given active control of the target.
The Redundant Arm Self-motion Control Based on Self-tuning Fuzzy PID Controller
Liu Yu(刘宇); Sun Lining; Du Zhijiang
2004-01-01
A fuzzy control algorithm based on self-tuning PID proportional factor is presented. To a certain degree, it overcomes robot motion control's nonlinearity and uncertainty caused by joints coupled and friction, and decreases overshoot of end manipulator's tracking desired curves. The controller's structure is very simple but effective. With this control method, a 7-DOF redundant arm's self-motion developed by the authors is investigated. Research results show that the said controller restrains track overshoot and possesses preferable merits.
Robust Semi-Active Ride Control Under Stochastic Excitation (Briefing Charts)
2014-03-04
ROBUST SEMI-ACTIVE RIDE CONTROL UNDER STOCHASTIC EXCITATION Jeremy Kolansky- Virginia Tech Amandeep Singh, Jill Goryca- US Army TARDEC...4. TITLE AND SUBTITLE ROBUST SEMI-ACTIVE RIDE CONTROL UNDER STOCHASTIC EXCITATION 5a. CONTRACT NUMBER W56hzv-04-2-0001 5b. GRANT NUMBER 5c...range • Robust for unknown input • Comparison • Conclusions Outline 3 2014-01-0145 UNCLASSIFIED SAE INTERNATIONAL Ride comfort for
Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties
Byung Woo Kim
2016-06-01
Full Text Available The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme.
Research on robust fault-tolerant control for networked control system with packet dropout
Huo Zhihong; Fang Huajing
2007-01-01
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
Optimized Fuzzy Control For Natural Trajectory Based Fes- Swinging Motion
B.S.K.K Ibrahim
2011-12-01
Full Text Available The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES. FES is a promising method to restore mobility to individuals paralyzed due to spinal cord injury (SCI. A crucial issue of FES is the control of motor function by the artificial activation of paralyzed muscles due to the various characteristics of the underlying physiological/biomechanical system. Muscle response characteristics are nonlinear and time-varying. After developing a nonlinear model describing the dynamic behavior of the knee joint and muscles, a closed-loop approach of control strategy to track the reference trajectory is assessed in computer simulations. Then, the controller was validated through experimental work. In this approach only the quadriceps muscle is stimulated to perform the swinging motion by controlling the amount of stimulation pulsewidth. An approach of fuzzy trajectory tracking control of swinging motion optimized with genetic algorithm is presented. The results show the effectiveness of the approach in controlling FES-induced swinging motion in the simulation as well as in the practical environment.
Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.
Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M
2016-07-01
In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme.
Evaluation of Grasping Motion Using a Virtual Prosthetic Control System
Fukuda, Osamu; Bu, Nan; Ueno, Naohiro
Electromyogram (EMG) signals can be measured from human muscles and can be used to anticipate movements. In fact, many researchers have tried to use these signals as an interface tool for a prosthetic hand. However, most of these studies focused on the discrimination performance of the EMG signals, and only discussed the control method for the prosthetic hand. Evaluation of the operating performance was seldom reported. This paper proposes a virtual prosthetic control system and presents the analyses of a grasp motion under two different EMG control methods: on/off control and proportional control. The proportional control is able to proportionally control the grasping velocity based on the amplitude of the EMG signal. The on/off control controls the hand at a uniform rate while the amplitude of the EMG signal is greater than a predefined threshold. We conducted experiments with five subjects, and confirmed the usefulness of the developed system.
Delayless acceleration measurement method for motion control applications
Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics
1997-12-31
Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.
A measurement system of magnetism parameters for motion control
WANG Xiao-ming; HUANG Xu-yan; LEI Tao
2007-01-01
Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts. The measurement unit presented in the paper can be applied to get the position and the speed feedback information from the measurement of electromagnetism parameters, and can constitute the untouched feedback sensing unit in the closed-loop motion control, and it adapts to the diversified feedback control of electromagnetic actuator. The digital miniaturization meter, based on MSP430 single chip processor, which can do the multiformance evaluation and improvement, and also the online quality control in production process. Both real-time data graph and data table can be displayed in the meter. The paper presents the system's structure, describes the principle, discusses the working modes, and shows the software flowchart and the measuring results.
Fast and Robust Control of Excitation Systems:A Finite-time Method
WANG Yu-zhen; CHENG Dai-zhan; HONG Yi-guang; QIN Hua-shu
2001-01-01
Using finite-time control approach, this paper proposes a new design method for nonlinear robust excitation control of a widely used 5th-order model of synchronous generators. The finite-time excitation controller achieved here can improve the system's behaviors in some aspects such as quick convergence and robustness for uncertainties. Simulations demonstrate that the finite-time excitation controller is more effective than some other excitation controllers.
Robust H∞ Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics1）
WANGXing-Ping; CHENGZhao-Lin
2004-01-01
The problem of robust H∞ control of a class of nonlinear systems with input dynamicaluncertainty is dealt with. By the recursive design approach, a robust controller is constructed suchthat the closed-loop system has an arbitrarily small L2 gain from disturbance to output and in theabsence of disturbance, the closed-loop system is globally asymptotically stable.
Robust Non-Linear Control of a 400 kW Wind Turbine
Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben
1996-01-01
The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....
Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins
Subramanian Ramasamy
2010-01-01
Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.
MohammadReza Davoodi
2009-12-01
Full Text Available This paper offers a design procedure for robust stability, robust H-infinity control and robust H2 control via dynamic output feedback for a class of uncertain linear systems. The uncertainties are of norm bounded type. Then in order to support a high-speed energy storage flywheel, these procedures are applied to an active radial magnetic bearing system. The state space matrices of this controller are the solution of some linear matrix inequalities (LMIs.
Xizheng Zhang
2014-01-01
Full Text Available The design of a variable structure sliding-mode controller (SMC for a variable speed wind turbine with double-fed induction-generator, based on the fuzzy logic, is described in this paper. The purpose of this controller is to maximize the energy capture by operating the turbine at the optimal rotational speed as well as fast and stable generator response. The dynamics of both the turbine and the generator are modeled to exhibit their mechanical/electrical characteristics. Two global sliding-mode controllers, which eliminate the reaching phase of SMC and the sliding-mode motion starts from the beginning, are designed to guarantee the robust tracking of both the optimal blade-rotor speed and the reference generator torque/flux in the whole process, despite the parametric uncertainty and external disturbance. To reduce the adverse chattering effect of the conventional SMC, the adaptive fuzzy inference strategy is adopted to deduce the adjustable switch gain, instead of the fixed gains. Simulation results show that the proposed controller achieves global asymptotic tracking, satisfied torque/flux responses, and has better performance and higher utilization ratio of wind energy than the conventional feedback-linearization method.
A simple and robust speed control scheme of permanent magnet synchronous motor
Dianguo XU; Yang GAO
2004-01-01
This paper presents a simple and robust speed control scheme of Permanent Magnet Synchronous Motor(PMSM). It is to achieve accurate control peffommance m the presence of load torque and plant parameter variation. A robust disturbance cancellation feed forward controller is used to estimate the torque disturbance. The simple and practical control scheme is easily implemented on a PMSM driver using a TMS320LF2407 DSP. The effectiveness of the proposed robust speed control approach is demonstrated by simulation and experimental results.
Robust control of uncertain time delay system: a novel sliding mode control design via LMI
Qu Shaocheng; Wang Yongji
2006-01-01
The sliding mode control problem (SMC) is studied for a class of uncertain delay system in the presence of both parameter uncertainties and external disturbances. A novel virtual feedback control method is presented. Based on Lyapunov theory, sufficient conditions for design of the robust sliding mode plane are derived. Sliding mode controller based on reaching law concept is developed, which is to ensure system trajectories from any initial conditions asymptotically convergent to sliding mode plane. The global asymptotically stability of the closed-loop system is guaranteed. A numerical example with simulation results is given to illustrate the effectiveness of the methodology.
Velocity and Motion Control of a Self-balancing Vehicle based on a Cascade Control Strategy
Miguel Velazquez
2016-06-01
Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.
Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy
Miguel Velazquez
2016-06-01
Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.
Observer-Based Robust Control of Uncertain Switched Fuzzy Systems with Combined Switching Controller
Hong Yang
2013-01-01
Full Text Available The observer-based robust control for a class of switched fuzzy (SF time-delay systems involving uncertainties and external disturbances is investigated in this paper. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a combined switching controller is proposed. The designed controller based on the observer instead of the state information integrates the advantages of both the switching controllers and the supplementary controllers but eliminates their disadvantages. The proposed controller provides good performance during the transient period, and the chattering effect is removed when the system state approaches the origin. Sufficient condition for the solvability of the robust control problem is given for the case that the state of system is not available. Since convex combination techniques are used to derive the delay-independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach.
Delay-dependent robust H∞ control for uncertain discrete time-delay fuzzy systems
Gong Cheng; Su Baoku
2009-01-01
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy tems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust H∞ controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
GUO Yi-shen; CHEN Li
2008-01-01
The control problem of coordinated motion of a free-floating space rigid manipulator with external disturbance is discussed. By combining linear momentum conversion and the Lagrangian approach, the full-control dynamic equation and the Jacobian relation of a free-floating space rigid manipulator are established and then inverted to the state equation for control design. Based on the terminal sliding mode control (SMC) technique, a mathematical expression of the terminal sliding surface is proposed. The terminal SMC scheme is then developed for coordinated motion between the base's attitude and the end-effect or of the free-floating space manipulator with external disturbance. This proposed control scheme not only guarantees the existence of the sliding phase of the closed-loop system, but also ensures that the output tracking error converges to zero in finite time. In addition, because the initial system state is always at the terminal sliding surface, the control scheme can eliminate reaching phase of the SMC and guarantee global robustness and stability of the closed-loop system. A planar free-floating space rigid manipulator is simulated to verify the feasibility of the proposed control scheme.
Pan, Indranil; Ghosh, Soumyajit; Gupta, Amitava; 10.1109/PACC.2011.5978958
2012-01-01
Networked Control Systems (NCSs) are often associated with problems like random data losses which might lead to system instability. This paper proposes a method based on the use of variable controller gains to achieve maximum parametric robustness of the plant controlled over a network. Stability using variable controller gains under data loss conditions is analyzed using a suitable Linear Matrix Inequality (LMI) formulation. Also, a Particle Swarm Optimization (PSO) based technique is used to maximize parametric robustness of the plant.
Yang Jian; Xu Bing; Yang Huayong
2005-01-01
A robust control algorithm is proposed to focus on the non-linearity and parameters'uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications.Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.
Lin, Faa-Jeng; Shieh, Po-Huang
2006-12-01
A recurrent radial basis function network (RBFN) based fuzzy neural network (FNN) control system is proposed to control the position of an X-Y-theta motion control stage using linear ultrasonic motors (LUSMs) to track various contours in this study. The proposed recurrent RBFN-based FNN combines the merits of self-constructing fuzzy neural network (SCFNN), recurrent neural network (RNN), and RBFN. Moreover, the structure and the parameter learning phases of the recurrent RBFN-based FNN are performed concurrently and on line. The structure learning is based on the partition of input space, and the parameter learning is based on the supervised gradient decent method using a delta adaptation law. The experimental results due to various contours show that the dynamic behaviors of the proposed recurrent RBFN-based FNN control system are robust with regard to uncertainties.
Design of Sugarcane Peeling Machine Based on Motion Controller
Zhang Dehui
2015-04-01
Full Text Available Sugarcane is a common raw material for sugar, but in the process of machining, there will be suspended solids in the cane juice, in order to process better, the sugarcane should be peeled. Traditional way of peeling is by man, production efficiency is low. In this study, a kind of sugarcane peeling machine was designed based on motion controller, it can realize the automation of input, peeling and output. It can make certain contribution for sugarcane processing.
Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion
Hau-Wei Lee
2013-01-01
Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.