WorldWideScience

Sample records for robust host structures

  1. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  2. Robustness of structures

    DEFF Research Database (Denmark)

    Vrouwenvelder, T.; Sørensen, John Dalsgaard

    2009-01-01

    After the collapse of the World Trade Centre towers in 2001 and a number of collapses of structural systems in the beginning of the century, robustness of structural systems has gained renewed interest. Despite many significant theoretical, methodical and technological advances, structural...... of robustness for structural design such requirements are not substantiated in more detail, nor have the engineering profession been able to agree on an interpretation of robustness which facilitates for its uantification. A European COST action TU 601 on ‘Robustness of structures' has started in 2007...... by a group of members of the CSS. This paper describes the ongoing work in this action, with emphasis on the development of a theoretical and risk based quantification and optimization procedure on the one side and a practical pre-normative guideline on the other....

  3. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  4. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  5. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  6. Robustness Assessment of Spatial Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2012-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern buildi...... to robustness of spatial timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern building...... codes consider the need for robustness of structures and provide strategies and methods to obtain robustness. Therefore a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues with respect...

  7. Robustness Analysis of Timber Truss Structure

    DEFF Research Database (Denmark)

    Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning

    2010-01-01

    The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....

  8. Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure....

  9. Robustness of Long Span Reciprocal Timber Structures

    DEFF Research Database (Denmark)

    Balfroid, Nathalie; Kirkegaard, Poul Henning

    2011-01-01

    engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper makes a discussion of such robustness issues related to the future development of reciprocal timber structures. The paper concludes that these kind of structures can have...... a potential as long span timber structures in real projects if they are carefully designed with respect to the overall robustness strategies.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. The interest has also been facilitated due to recently severe structural failures...

  10. Robustness Analysis of Typologies of Reciprocal Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Parigi, Dario

    2013-01-01

    to the future development of typologies of reciprocal timber structures. The paper concludes that these kinds of structures can have a potential as long span timber structures in real projects if they are carefully designed with respect to the overall robustness strategies.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern building...... codes consider the need for robustness in structures and provides strategies and methods to obtain robustness. Therefore a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper outlines robustness issues related...

  11. Danish Requirements for Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Christensen, H. H.

    2006-01-01

    . This paper describes the background of the revised robustness requirements implemented in the Danish Code of Practice for Safety of Structures in 2003 [1, 2, 3]. According to the Danish design rules robustness shall be documented for all structures where consequences of failure are serious. This paper...... describes the background of the design procedure in the Danish codes, which shall be followed in order to document sufficient robustness in the following steps: Step 1: review of loads and possible failure modes/scenarios and determination of acceptable collapse extent. Step 2: review of the structural...

  12. Framework for Robustness Assessment of Timber Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for the design and analysis of robustness of timber structures. This is actualized by a more4 frequent use of advanced types of timber structures with limited redundancy and serious consequences in the case of failure. Combined with increased requirements...... to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential. Further, the collapse of the Ballerup Super Arena, the bad Reichenhall Ice-Arena and a number of other structural systems during the last 10 years has...... increased the interest in robustness. Typically, modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although the importance of robustness for structural design is widely recognized, the code requirements...

  13. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  14. A Robust Controller Structure for Pico-Satellite Applications

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads

    This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...

  15. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  16. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  17. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  18. Robustness Evaluation of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2009-01-01

    Robustness of structural systems has received a renewed interest resulting from the more frequent use of advanced types of structures with limited redundancy and serious consequences in the case of failure.......Robustness of structural systems has received a renewed interest resulting from the more frequent use of advanced types of structures with limited redundancy and serious consequences in the case of failure....

  19. Robustness Analysis of a Timber Structure with Ductile Behaviour in Compression

    DEFF Research Database (Denmark)

    Čizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness assessment. The complex timber structure with a large number of failure modes...... material ductility of timber is taken into account. The robustness is expressed and evaluated by a robustness index....

  20. Structural Robustness Evaluation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Bontempi, Franco

    2010-01-01

    in the framework of a safe design: it depends on different factors, like exposure, vulnerability and robustness. Particularly, the requirement of structural vulnerability and robustness are discussed in this paper and a numerical application is presented, in order to evaluate the effects of a ship collision...

  1. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. A Probabilistic Approach for Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obatined. Therefore the structure can be considered......A probabilistic based robustness analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...

  3. Reliability and Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Cizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    In the last few decades there have been intensely research concerning reliability of timber structures. This is primarily because there is an increased focus on society on sustainability and environmental aspects. Modern timber as a building material is also being competitive compared to concrete...... and steel. However, reliability models applied to timber were always related to individual components but not the systems. as any real structure is a complex system, system behaviour must be of a particular interest. In the chapter 1 of this document an overview of stochastic models for strength and loads...... (deterministic, probabilistic and risk based approaches) of the robustness are given. Chapter 3 deals more detailed with the robustness of timber structures....

  4. Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; čizmar, D.

    2010-01-01

    The present paper outlines results from working group 3 (WG3) in the EU COST Action E55 – ‘Modelling of the performance of timber structures’. The objectives of the project are related to the three main research activities: the identification and modelling of relevant load and environmental...... exposure scenarios, the improvement of knowledge concerning the behaviour of timber structural elements and the development of a generic framework for the assessment of the life-cycle vulnerability and robustness of timber structures....

  5. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile...... behaviour is introduced and for different values of this measure the robustness indices are estimated. The results indicate that the robustness of a timber truss system can be increased by taking the ductile behavior into....

  6. Rotaxane and catenane host structures for sensing charged guest species.

    Science.gov (United States)

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an

  7. Robust structural optimization using Gauss-type quadrature formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  8. Robust structural optimization using Gauss-type quadrature formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chen, Shikui; Chen, Wei [Northwestern University, Illinois (United States)

    2009-07-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  9. Robust Structural Optimization Using Gauss-type Quadrature Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-08-15

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  10. Robust Structural Optimization Using Gauss-type Quadrature Formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty

  11. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  12. The structural robustness of multiprocessor computing system

    Directory of Open Access Journals (Sweden)

    N. Andronaty

    1996-03-01

    Full Text Available The model of the multiprocessor computing system on the base of transputers which permits to resolve the question of valuation of a structural robustness (viability, survivability is described.

  13. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  14. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    -12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...... on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates....... If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory....

  15. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  16. Incommensurate host-guest structures in compressed elements: Hume—Rothery effects as origin

    International Nuclear Information System (INIS)

    Degtyareva, V F

    2015-01-01

    Discovery of the incommensurate structure in the element Ba under pressure 15 years ago was followed by findings of a series of similar structures in other compressed elements. Incommensurately modulated structures of the host-guest type consist of a tetragonal host structure and a guest structure. The guest structure forms chains of atoms embedded in the channels of host atoms so that the axial ratio of these subcells along the c axis is not rational. Two types of the host-guest structures have been found so far: with the host cells containing 8 atoms and 16 atoms; in these both types the guest cells contain 2 atoms. These crystal structures contain a non-integer number of atoms in their unit cell: tI11* in Bi, Sb, As, Ba, Sr, Sc and tI19* in Na, K, Rb. We consider here a close structural relationship of these host-guest structures with the binary alloy phase Au 3 Cd 5 -tI32. This phase is related to the family of the Hume-Rothery phases that is stabilized by the Fermi sphere-Brillouin zone interaction. From similar considerations for alkali and alkaline-earth elements a necessary condition for structural stability emerges in which the valence electrons band overlaps with the upper core electrons and the valence electron count increases under compression. (paper)

  17. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  18. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  19. Structure of Retail Services in the Brazilian Hosting Network

    Directory of Open Access Journals (Sweden)

    Claudio Zancan

    2015-08-01

    Full Text Available this research has identified Brazilian hosting networks through infrastructure services indicators that it was sold to tourists in organizations that form these networks. The theory consulted the discussion of structural techniques present in Social Network Analysis. The study has three stages: documental research, creation of Tourism database and interviews. The results identified three networks with the highest expression in Brazil formed by hotels, lodges, and resorts. Different char-acteristics of infrastructure and services were observed between hosting networks. Future studies suggest a comparative analysis of structural indicators present in other segments of tourism services, as well as the existing international influ-ence on the development of the Brazilian hosting networks.

  20. Robustness of structures- A report on a joint European project

    NARCIS (Netherlands)

    Faber, M.H.; Vrouwenvelder, A.C.W.M.; Sørensen, J.D.; Chryssanthopoulos, M.K.; Narasimhan, H.

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely the development

  1. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  2. Robustness Analysis of Big Span Glulam Truss Structure

    DEFF Research Database (Denmark)

    Rajčié, V.; čizmar, D.; Kirkegaard, Poul Henning

    2010-01-01

    (Eurocode 0 &1, Probabilistic model code etc.) Based on a project of big span glulam truss structure, build in Croatia few years ago, a probabilistic model is made with four failure elements. Reliability analysis of components is conducted and based on this a robustness analysis is preformed. It can...

  3. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  4. The effect of seismic energy scavenging on host structure and harvesting performance

    International Nuclear Information System (INIS)

    Lallart, Mickaël; Wu, Yi-Chieh; Yan, Linjuan; Richard, Claude; Guyomar, Daniel

    2013-01-01

    Cantilevered piezoelectric energy harvesters have been studied extensively in recent years. Numerous techniques have been investigated to achieve optimal power output. However, the extraction of electrical energy from mechanical vibration leads to a reduction of the vibration magnitude of the harvester because of the electromechanical coupling effect, and so a model considering constant vibration magnitude input is no longer valid. Thus, an energy harvesting model excited with a constant force or acceleration magnitude has been adopted to take into account the damping effect induced by the energy harvesting process. This paper extends this model to the effect of energy harvesting on the fixed host structure (mechanical to mechanical coupling). Theoretical developments are presented as a dynamic problem of an electromechanically coupled two-degree-of-freedom (TDOF) spring–mass–damper system. Then, experimental measurements and computations based on finite element modeling (FEM) are carried out to validate theoretical predictions. It is shown that the extracted power obtained from the TDOF model would reach a maximal value by tuning the mass ratio between the host structure and the harvester and optimizing the electric load. The mechanical to mechanical coupling effect due to the harvester leads to a trade-off between the mechanical energy of the host structure and the harvested energy. When the harvester mass to host structure mass ratio is around 10 −3 , the maximal power is obtained and the host structure then has a sudden displacement reduction due to the strong mechanical to mechanical coupling. Experimental measurements have been performed for a mass ratio of around 0.02, with which the harvester effect is not negligible on the host structure behavior as the host structure displacement shows a decrease of more than 3 dB. In addition, the harvested power calculated with the TDOF model is about two times less than with a single-degree-of-freedom (SDOF

  5. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  6. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  7. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  8. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  9. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  10. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  11. Reliability based Robustness of Timber Structures through NDT Data Updating

    DEFF Research Database (Denmark)

    Sousa, Hélder S.; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This work presents a framework for reliability-based assessment of timber structures / members using data gathered from non-destructive test results. These results are used for modeling an update of the mechanical characteristics of timber, using Bayesian methods. Results gathered from ultrasound...... of the structure, thus, being possible to evaluate reliability based in time dependent factors, as well to categorize that structure in terms of robustness. For exemplification of the underlined concepts, three different types of structures are studied....

  12. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.

    Science.gov (United States)

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-12-01

    Human sterile alpha motif domain-containing 9 (SAMD9) protein is a host restriction factor for poxviruses, but it can be overcome by some poxvirus host-range proteins that share homology with vaccinia virus C7 protein. To understand the mechanism of action for this important family of host-range factors, we determined the crystal structures of C7 and myxoma virus M64, a C7 family member that is unable to antagonize SAMD9. Despite their different functions and only 23% sequence identity, the two proteins have very similar overall structures, displaying a previously unidentified fold comprised of a compact 12-stranded antiparallel β-sandwich wrapped in two short α helices. Extensive structure-guided mutagenesis of C7 identified three loops clustered on one edge of the β sandwich as critical for viral replication and binding with SAMD9. The loops are characterized with functionally important negatively charged, positively charged, and hydrophobic residues, respectively, together forming a unique "three-fingered molecular claw." The key residues of the claw are not conserved in two C7 family members that do not antagonize SAMD9 but are conserved in distantly related C7 family members from four poxvirus genera that infect diverse mammalian species. Indeed, we found that all in the latter group of proteins bind SAMD9. Taken together, our data indicate that diverse mammalian poxviruses use a conserved molecular claw in a C7-like protein to target SAMD9 and overcome host restriction.

  13. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  14. Structural and robustness properties of smart-city transportation networks

    International Nuclear Information System (INIS)

    Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min

    2015-01-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)

  15. Hiding the weakness: structural robustness using origami design

    Science.gov (United States)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  16. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  17. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  18. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  19. Robustness studies in covariance structure modeling - An overview and a meta-analysis

    NARCIS (Netherlands)

    Hoogland, Jeffrey J.; Boomsma, A

    In covariance structure modeling, several estimation methods are available. The robustness of an estimator against specific violations of assumptions can be determined empirically by means of a Monte Carlo study. Many such studies in covariance structure analysis have been published, but the

  20. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  1. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  2. Structural and robustness properties of smart-city transportation networks

    Science.gov (United States)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  3. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.

    Science.gov (United States)

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2017-07-12

    Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.

  4. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    Science.gov (United States)

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  5. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    Science.gov (United States)

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in

  6. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  7. Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Shouzhen; Zhang, Shiming; Zhang, Zhensong; Wu, Yukun; Wang, Peng; Guo, Runda; Chen, Yu; Qu, Dalong; Wu, Qingyang; Zhao, Yi, E-mail: yizhao@jlu.edu.cn; Liu, Shiyong

    2013-11-15

    High power efficiency (PE) p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-ph) based fluorescent blue organic light-emitting diode (OLED) is demonstrated by utilizing intermixed host (IH) structure. The PE outperforms those devices based on single host (SH), mixed host (MH), and double emitting layers (DELs). By further optimizing the intermixed layer, peak PE of the IH device is increased up to 8.7 lm/W (1.7 times higher than conventional SH device), which is the highest value among the DSA-ph based blue device reported so far. -- Highlights: • DSA-ph based blue fluorescent OLEDs are fabricated. • The intermixed host structure is first introduced into the blue devices. • Blue device with the highest power efficiency based on DSA-ph is obtained.

  8. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    Science.gov (United States)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  9. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  10. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    Energy Technology Data Exchange (ETDEWEB)

    Jo, HangJin; Kim, Jin Man [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Yeom, Hwasung [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States); Lee, Gi Cheol [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Kiyofumi, Moriyama; Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Sridharan, Kumar; Corradini, Michael [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States)

    2015-09-15

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding.

  11. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  12. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    Science.gov (United States)

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  13. Connection behaviour and the robustness of steel-framed structures in fire

    Directory of Open Access Journals (Sweden)

    Burgess Ian

    2018-01-01

    Full Text Available The full-scale fire tests at Cardington in the 1990s, and the collapse of at least one of the WTC buildings in 2001, illustrated that connections are potentially the most vulnerable parts of a structure in fire. Fracture of connections causes structural discontinuities and reduces the robustness provided by alternative load paths. An understanding of connection performance is essential to the assessment of structural robustness, and so to structural design against progressive collapse. The forces and deformations to which connectionscan be subjected during a fire differ significantly from those assumed in general design. The internal forces i generally start with moment and shear at ambient temperature, then superposing compression in the initial stages of a fire, which finally changes to catenary tension at high temperatures. If a connection does not have sufficient resistance or ductility to accommodate simultaneous large rotations and normal forces, then connections may fracture, leading to extensive damage or progressive collapse of the structure. Practical assessment of the robustness of steel connections in fire will inevitably rely largely on numerical modelling, but this is unlikely to include general-purpose finite element modelling, because of the complexity of such models. The most promising alternative is the component method, a practical approach which can be included within global three-dimensional frame analysis. The connection is represented by an assembly of individual components with known mechanical properties. Component characterization must include high-deflection elevated-temperature behaviour, and represent it up to fracture.In reality a connection may either be able to regain its stability after the initial fracture of one (or a few components, or the first failure may trigger a cascade of failures of other components, leading to complete detachment of the supported member. Numerical modelling must be capable of

  14. Host population structure impedes reversion to drug sensitivity after discontinuation of treatment.

    Directory of Open Access Journals (Sweden)

    Jonas I Liechti

    2017-08-01

    Full Text Available Intense use of antibiotics for the treatment of diseases such as tuberculosis, malaria, Staphylococcus aureus or gonorrhea has led to rapidly increasing population levels of drug resistance. This has generally necessitated a switch to new drugs and the discontinuation of older ones, after which resistance often only declines slowly or even persists indefinitely. These long-term effects are usually ascribed to low fitness costs of resistance in absence of the drug. Here we show that structure in the host population, in particular heterogeneity in number of contacts, also plays an important role in the reversion dynamics. Host contact structure acts both during the phase of intense treatment, leading to non-random distributions of the resistant strain among the infected population, and after the discontinuation of the drug, by affecting the competition dynamics resulting in a mitigation of fitness advantages. As a consequence, we observe both a lower rate of reversion and a lower probability that reversion to sensitivity on the population level occurs after treatment is stopped. Our simulations show that the impact of heterogeneity in the host structure is maximal in the biologically most plausible parameter range, namely when fitness costs of resistance are small.

  15. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  16. Structure homology and interaction redundancy for discovering virus–host protein interactions

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-01-01

    Virus–host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication. PMID:24008843

  17. Structure homology and interaction redundancy for discovering virus-host protein interactions.

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-10-01

    Virus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication.

  18. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  19. Developing a robust wireless sensor network structure for environmental sensing

    Science.gov (United States)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  20. Dynamic Programming Used to Align Protein Structures with a Spectrum Is Robust

    Directory of Open Access Journals (Sweden)

    Allen Holder

    2013-11-01

    Full Text Available Several efficient algorithms to conduct pairwise comparisons among large databases of protein structures have emerged in the recent literature. The central theme is the design of a measure between the Cα atoms of two protein chains, from which dynamic programming is used to compute an alignment. The efficiency and efficacy of these algorithms allows large-scale computational studies that would have been previously impractical. The computational study herein shows that the structural alignment algorithm eigen-decomposition alignment with the spectrum (EIGAs is robust against both parametric and structural variation.

  1. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    Science.gov (United States)

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  2. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  3. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  4. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  6. Study on luminescence characteristics of blue OLED with phosphor-doped host-guest structure

    Science.gov (United States)

    Wang, Zhen; Liu, Fei; Zheng, Xin; Chen, Ai; Xie, Jia-feng; Zhang, Wen-xia

    2018-05-01

    In this study, we design and fabricate phosphor-doped host-guest structure organic light-emitting diodes (OLEDs), where the blue-ray iridium complex electrophosphorescent material FIrpic acts as object material. Properties of the device can be accommodated by changing the host materials, dopant concentration and thickness of the light-emitting layer. The study shows that the host material N,N'-dicarbazolyl-3,5-benzene (mCP) has a higher triplet excited state energy level, which can effectively prevent FIrpic triplet excited state energy backtracking to host material, thus the luminous efficiency is improved. When mCP is selected as the host material, the thickness of the light-emitting layer is 30 nm and the dopant concentration is 8 wt%, the excitons can be effectively confined in the light-emitting region. As a result, the maximum current efficiency and the maximum brightness of the blue device can reach 15.5 cd/A and 7 196.3 cd/m2, respectively.

  7. Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE.

    Directory of Open Access Journals (Sweden)

    Kieran R O'Brien

    Full Text Available PURPOSE: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE and to compare the clinical utility of these robust T1w images against the uniform T1w images. MATERIALS AND METHODS: 8 healthy subjects (29.0 ± 4.1 years; 6 Male, who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test. RESULTS: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004. In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004 from an average volumetric difference across structures of ≈ 6.6% to ≈ 2.4% for the uniform image and robust T1w image respectively. CONCLUSIONS: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.

  8. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  9. Variable-structure approaches analysis, simulation, robust control and estimation of uncertain dynamic processes

    CERN Document Server

    Senkel, Luise

    2016-01-01

    This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.

  10. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  11. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    Science.gov (United States)

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  12. Effects of traffic generation patterns on the robustness of complex networks

    Science.gov (United States)

    Wu, Jiajing; Zeng, Junwen; Chen, Zhenhao; Tse, Chi K.; Chen, Bokui

    2018-02-01

    Cascading failures in communication networks with heterogeneous node functions are studied in this paper. In such networks, the traffic dynamics are highly dependent on the traffic generation patterns which are in turn determined by the locations of the hosts. The data-packet traffic model is applied to Barabási-Albert scale-free networks to study the cascading failures in such networks and to explore the effects of traffic generation patterns on network robustness. It is found that placing the hosts at high-degree nodes in a network can make the network more robust against both intentional attacks and random failures. It is also shown that the traffic generation pattern plays an important role in network design.

  13. Host traits explain the genetic structure of parasites: a meta-analysis

    Czech Academy of Sciences Publication Activity Database

    Blasco-Costa, Maria Isabel; Poulin, R.

    2013-01-01

    Roč. 140, č. 10 (2013), s. 1316-1322 ISSN 0031-1820 EU Projects: European Commission(XE) 252124 - PARAPOPGENE Institutional support: RVO:60077344 Keywords : meta-analysis * host traits * parasite traits * F-statistics * population genetic structure * dispersal * autogenic life cycle * allogenic life cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 2.350, year: 2013

  14. Robust Performance of Systems with Structured Uncertainties in State Space

    DEFF Research Database (Denmark)

    Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...

  15. Changes in host-parasitoid food web structure with elevation.

    Science.gov (United States)

    Maunsell, Sarah C; Kitching, Roger L; Burwell, Chris J; Morris, Rebecca J

    2015-03-01

    temperatures and changes in vegetation communities that are likely to result from climate change may have a restructuring effect on host-parasitoid food webs. Our translocation experiment, however, indicated that leaf miners currently escaping parasitism at high elevations may not automatically experience higher parasitism under warmer conditions and future changes in food web structure may depend on the ability of parasitoids to adapt to novel hosts. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  17. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  18. Spatial and temporal repeatability in parasite community structure of tropical fish hosts.

    Science.gov (United States)

    Vidal-Martínez, V M; Poulin, R

    2003-10-01

    An assessment is made of the repeatability of parasite community structure in space for a marine fish, and in space and time for a freshwater fish from south-eastern Mexico. The marine fish species was the red grouper, Epinephelus morio (collected from 9 localities), and the freshwater species was the cichlid, Cichlasoma urophthalmus (collected from 6 localities: including monthly at 2 localities for 1 year, and bimonthly at 1 locality in 1990 and 1999). Pairwise interspecific associations and analyses of nested patterns in the distributions of parasite species among hosts were used in both fish species, with comparisons over time made only with the cichlid. Positive interspecific associations, and nested patterns were noted in some localities for both fish species, and/or at some sampling times for the cichlid fish. However, non-random patterns in the structure of parasite communities in these 2 host species only were observed sporadically. When present, nestedness in both fish species was apparently linked with a positive association between total infection intensities and fish size. Additionally, adjacent localities were more likely to display similar parasite community structure than distant ones. This preliminary result suggests that distance between localities is an important determinant of predictability in parasite community structure.

  19. A systematic design method for robust synthetic biology to satisfy design specifications.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chih-Hung

    2009-06-30

    Synthetic biology is foreseen to have important applications in biotechnology and medicine, and is expected to contribute significantly to a better understanding of the functioning of complex biological systems. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to intrinsic parameter uncertainties, external disturbances and functional variations of intra- and extra-cellular environments. The design method for a robust synthetic gene network that works properly in a host cell under these intrinsic parameter uncertainties and external disturbances is the most important topic in synthetic biology. In this study, we propose a stochastic model that includes parameter fluctuations and external disturbances to mimic the dynamic behaviors of a synthetic gene network in the host cell. Then, based on this stochastic model, four design specifications are introduced to guarantee that a synthetic gene network can achieve its desired steady state behavior in spite of parameter fluctuations, external disturbances and functional variations in the host cell. We propose a systematic method to select a set of appropriate design parameters for a synthetic gene network that will satisfy these design specifications so that the intrinsic parameter fluctuations can be tolerated, the external disturbances can be efficiently filtered, and most importantly, the desired steady states can be achieved. Thus the synthetic gene network can work properly in a host cell under intrinsic parameter uncertainties, external disturbances and functional variations. Finally, a design procedure for the robust synthetic gene network is developed and a design example is given in silico to confirm the performance of the proposed method. Based on four design specifications, a systematic design procedure is developed for designers to engineer a robust synthetic biology network that can achieve its desired steady state behavior

  20. Robust Performance of Systems with Structured Uncertainties in State Space

    OpenAIRE

    Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...

  1. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Ribeiro Mello

    2011-02-01

    Full Text Available Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i some bat species depend more on fruits than others, and (ii that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2' = 0.37±0.10, mean ± SD and similar nestedness (NODF = 0.56±0.12 than pollination networks. All networks were modular (M = 0.32±0.07, and had on average four cohesive subgroups (modules of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum, although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10 and plants (R = 0.68±0.09. Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.

  2. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  3. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    Science.gov (United States)

    Jalloh, Abdul

    2005-01-01

    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report.

  4. A ROBUST EIGHT–MEMBERED RING MOTIF IN THE HYDROGEN-BONDED STRUCTURE OF -(PHENYLAMINOPYRIDINIUM- DI(METHANESULFONYLAMIDATE

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2002-03-01

    Full Text Available The compound was prepared by dissolving 2-(phenylaminopyridine (0.52 g ; 3.0 mmol and di(methanesulfonylamine (0.51 g; 3.0 mmol in 5 mL methanol. Slow partial evaporation of the solvent at low tempertaure (-30 oC gave a yield of 0.66 g (64% and crystals suitable for X-ray study (m.p. 150-152 oC. The single crystal X-ray result showed that the crystal system was trikline with space group P. The crystal structure of the title compound 2-(phenylaminopyridinium-di(methane-sulfonylamidate forms a robust antidromic ring motif type. The structure testifies to the persistence of the  in question, which was previously detected as a robust supramolecular synthon in 2-aminopyridinium di(benzenesulfonylamidate and in a series of onium di(methane-sulfonylamidates.   Keywords: supramolecule, hydrogen-bond

  5. Robust simulation of buckled structures using reduced order modeling

    International Nuclear Information System (INIS)

    Wiebe, R.; Perez, R.A.; Spottswood, S.M.

    2016-01-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties. (paper)

  6. Robust simulation of buckled structures using reduced order modeling

    Science.gov (United States)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  7. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  8. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  9. Robust determination of the superconducting gap sign structure via quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Hirschfeld, Peter [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Kazan Federal University, Kazan 420008 (Russian Federation); Mazin, Igor [Naval Research Laboratory, Code 6393, Washington, DC 20375 (United States)

    2016-07-01

    Using an electronic theory, we present a qualitative description to identify sign changes of the superconducting order parameter via quasiparticle interference (QPI) measurement in Fe-based superconductors (FeSc). In particular, we point out that the temperature dependence of the momentum-integrated QPI data can be used to differentiate between s{sub +-} and s{sub ++} states in a system with typical iron pnictide Fermi surface. We show that the signed symmetrized and antisymmetrized QPI maps are useful to obtain a characteristic signature of a gap sign change or lack thereof, starting from two-band model up to ab initio based band structure calculation. We further suggest this method as a robust way of the determination of the superconducting gap sign structure in experiment and discuss its application to the LiFeAs compounds.

  10. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    The decentralized robust vibration control with collocated piezoelectric actuator and strain sensor pairs is considered in this paper for spacecraft solar panel structures. Each actuator is driven individually by the output of the corresponding sensor so that only local feedback control is implemented, with each actuator, sensor and controller operating independently. Firstly, an optimal placement method for the location of the collocated piezoelectric actuator and strain gauge sensor pairs is developed based on the degree of observability and controllability indices for solar panel structures. Secondly, a decentralized robust H ∞ controller is designed to suppress the vibration induced by external disturbance. Finally, a numerical comparison between centralized and decentralized control systems is performed in order to investigate their effectiveness to suppress vibration of the smart solar panel. The simulation results show that the vibration can be significantly suppressed with permitted actuator voltages by the controllers. The decentralized control system almost has the same disturbance attenuation level as the centralized control system with a bit higher control voltages. More importantly, the decentralized controller composed of four three-order systems is a better practical implementation than a high-order centralized controller is

  11. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  12. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  13. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  14. Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1992-01-01

    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.

  15. Engineering Robustness of Microbial Cell Factories.

    Science.gov (United States)

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  17. On Robust Stability of Differential-Algebraic Equations with Structured Uncertainty

    Directory of Open Access Journals (Sweden)

    A. Kononov

    2018-03-01

    Full Text Available We consider a linear time-invariant system of differential-algebraic equations (DAE, which can be written as a system of ordinary differential equations with non-invertible coefficients matrices. An important characteristic of DAE is the unsolvability index, which reflects the complexity of the internal structure of the system. The question of the asymptotic stability of DAE containing the uncertainty given by the matrix norm is investigated. We consider a perturbation in the structured uncertainty case. It is assumed that the initial nominal system is asymptotically stable. For the analysis, the original equation is reduced to the structural form, in which the differential and algebraic subsystems are separated. This structural form is equivalent to the input system in the sense of coincidence of sets of solutions, and the operator transforming the DAE into the structural form possesses the inverse operator. The conversion to structural form does not use a change of variables. Regularity of matrix pencil of the source equation is the necessary and sufficient condition of structural form existence. Sufficient conditions have been obtained that perturbations do not break the internal structure of the nominal system. Under these conditions robust stability of the DAE with structured uncertainty is investigated. Estimates for the stability radius of the perturbed DAE system are obtained. The text of the article is from the simpler case, in which the perturbation is present only for an unknown function, to a more complex one, under which the perturbation is also present in the derivative of the unknown function. We used values of the real and the complex stability radii of explicit ordinary differential equations for obtaining the results. We consider the example illustrating the obtained results.

  18. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Science.gov (United States)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  19. Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide.

    Science.gov (United States)

    Morach, Marina; Stephan, Roger; Schmitt, Sarah; Ewers, Christa; Zschöck, Michael; Reyes-Velez, Julian; Gilli, Urs; Del Pilar Crespo-Ortiz, María; Crumlish, Margaret; Gunturu, Revathi; Daubenberger, Claudia A; Ip, Margaret; Regli, Walter; Johler, Sophia

    2018-03-01

    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines.

  20. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...

  1. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap.

    Directory of Open Access Journals (Sweden)

    Rahel M Salathé

    Full Text Available The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp., in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis or whether ecological factors (niche overlap in flower choice shape the distribution of parasite genotypes (the ecological hypothesis. Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.

  2. Robust Watermarking of Video Streams

    Directory of Open Access Journals (Sweden)

    T. Polyák

    2006-01-01

    Full Text Available In the past few years there has been an explosion in the use of digital video data. Many people have personal computers at home, and with the help of the Internet users can easily share video files on their computer. This makes possible the unauthorized use of digital media, and without adequate protection systems the authors and distributors have no means to prevent it.Digital watermarking techniques can help these systems to be more effective by embedding secret data right into the video stream. This makes minor changes in the frames of the video, but these changes are almost imperceptible to the human visual system. The embedded information can involve copyright data, access control etc. A robust watermark is resistant to various distortions of the video, so it cannot be removed without affecting the quality of the host medium. In this paper I propose a video watermarking scheme that fulfills the requirements of a robust watermark. 

  3. Experimentally reducing species abundance indirectly affects food web structure and robustness.

    Science.gov (United States)

    Barbosa, Milton; Fernandes, G Wilson; Lewis, Owen T; Morris, Rebecca J

    2017-03-01

    Studies on the robustness of ecological communities suggest that the loss or reduction in abundance of individual species can lead to secondary and cascading extinctions. However, most such studies have been simulation-based analyses of the effect of primary extinction on food web structure. In a field experiment we tested the direct and indirect effects of reducing the abundance of a common species, focusing on the diverse and self-contained assemblage of arthropods associated with an abundant Brazilian shrub, Baccharis dracunculifolia D.C. (Asteraceae). Over a 5-month period we experimentally reduced the abundance of Baccharopelma dracunculifoliae (Sternorrhyncha: Psyllidae), the commonest galling species associated with B. dracunculifolia, in 15 replicate plots paired with 15 control plots. We investigated direct effects of the manipulation on parasitoids attacking B. dracunculifoliae, as well as indirect effects (mediated via a third species or through the environment) on 10 other galler species and 50 associated parasitoid species. The experimental manipulation significantly increased parasitism on B. dracunculifoliae in the treatment plots, but did not significantly alter either the species richness or abundance of other galler species. Compared to control plots, food webs in manipulated plots had significantly lower values of weighted connectance, interaction evenness and robustness (measured as simulated tolerance to secondary extinction), even when B. dracunculifoliae was excluded from calculations. Parasitoid species were almost entirely specialized to individual galler species, so the observed effects of the manipulation on food web structure could not have propagated via the documented trophic links. Instead, they must have spread either through trophic links not included in the webs (e.g. shared predators) or non-trophically (e.g. through changes in habitat availability). Our results highlight that the inclusion of both trophic and non

  4. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  5. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  6. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of the tleABC Biosynthetic Gene Cluster.

    Science.gov (United States)

    Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-08-03

    Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, althou...

  8. Robust synthetic biology design: stochastic game theory approach.

    Science.gov (United States)

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  9. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.

    Science.gov (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali

    2017-08-01

    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  10. Host restriction factors in retroviral infection: promises in virus-host interaction

    Directory of Open Access Journals (Sweden)

    Zheng Yong-Hui

    2012-12-01

    Full Text Available Abstract Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs, and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

  11. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  12. Evaluation criteria for uranium potential of sedimentary basins based on analysis of host sand body and structurally reworking pattern host sand body has been subject to

    International Nuclear Information System (INIS)

    Chen Zuyi; Guo Qingyin; Liu Hongxu

    2005-01-01

    On the basis of the introduction and the analysis of regional evaluation criteria for sandstone-type uranium deposits summarized by uranium geologists of USA and former Soviet Union, and by introducing new scientific progress in the field of sedimentology of clastic rocks, and basin geodynamics, main evaluation criteria composed of host sand body criterion and the criterion of structurally reworking pattern the host sand body has been subject to, are proposed, and the evaluation model based on analyzing the regional tectonic history and the evolution of prototype basin is set up. Finally, taking the Chaoshui basin as an example, the possibility for hosting epigenetic uranium mineralization in each horizon of the basin cover is discussed, then the main prospecting target horizon is discriminated, and potential ore-formation areas are proposed. (authors)

  13. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  14. Nonlinear model-based robust control of a nuclear reactor using adaptive PIF gains and variable structure controller

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods. (Author)

  15. Nestedness of ectoparasite-vertebrate host networks.

    Directory of Open Access Journals (Sweden)

    Sean P Graham

    2009-11-01

    Full Text Available Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks--including three derived from molecular bloodmeal analysis of mosquito feeding patterns--using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same "generalized" hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks.

  16. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage.

    Science.gov (United States)

    Miller, N J; Birley, A J; Overall, A D J; Tatchell, G M

    2003-09-01

    Microsatellite markers were used to examine the population structure of Pemphigus bursarius, a cyclically parthenogenetic aphid. Substantial allele frequency differences were observed between populations on the primary host plant (collected shortly after sexual reproduction) separated by distances as low as 14 km. This suggested that migratory movements occur over relatively short distances in this species. However, the degree of allele frequency divergence between populations was not correlated with their geographical separation, indicating that isolation by distance was not the sole cause of spatial genetic structuring. Significant excesses of homozygotes were observed in several populations. Substantial allele frequency differences were also found between aphids on the primary host and those sampled from a secondary host plant after several parthenogenetic generations at the same location in two successive years. This could have been due to the existence of obligately parthenogenetic lineages living on the secondary host or genetically divergent populations confined to different secondary host plant species but sharing a common primary host.

  17. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia.

    Science.gov (United States)

    Olival, Kevin J; Dick, Carl W; Simmons, Nancy B; Morales, Juan Carlos; Melnick, Don J; Dittmar, Katharina; Perkins, Susan L; Daszak, Peter; Desalle, Rob

    2013-08-08

    Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus

  18. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    Science.gov (United States)

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure. PMID:10427022

  19. Exploring the Impact of Network Structure and Demand Collaboration on the Dynamics of a Supply Chain Network Using a Robust Control Approach

    Directory of Open Access Journals (Sweden)

    Yongchang Wei

    2015-01-01

    uncertain environment. The impact of network structure and collaboration on the dynamics and robustness of supply chain network, however, remains to be explored. In this paper, a unified state space model for a two-layer supply chain network composed of multiple distributors and multiple retailers is developed. A robust control algorithm is advocated to reduce both order and demand fluctuations for unknown demand. Numerical simulations demonstrate that the robust control approach has the advantage to reduce both inventory and order fluctuations. In the simulation experiment, it is interesting to notice that complex network structure and collaborations might contribute to the reduction of inventory and order oscillations. This paper yields new insights into the overestimated bullwhip effect problem and helps us understand the complexities of supply chain networks.

  20. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  1. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R.

    1994-01-01

    Sodium zirconium phosphate [NZP] structural family, of which NaZr 2 P 3 O 12 is the parent composition, has been reviewed as a host ceramic waste form for nuclear waste immobilization. NZP compounds are characterized for their ionic conductivity, low thermal expansion and structural flexibility to accommodate a large number of multivalent ions. This latter property of the [NZP] structure allows the incorporation of almost all 42 nuclides present in a typical commercial nuclear waste. The leach studies of simulated waste forms based on NZP have shown reasonable resistance for the release of its constituents. The calculation of dissolution rates of NZP structure has demonstrated that it would take 20,000 times longer to dissolved NZP than quartz

  2. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

    Science.gov (United States)

    Wolfe, Benjamin E; Pringle, Anne

    2012-04-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

  3. Information theory perspective on network robustness

    International Nuclear Information System (INIS)

    Schieber, Tiago A.; Carpi, Laura; Frery, Alejandro C.; Rosso, Osvaldo A.; Pardalos, Panos M.; Ravetti, Martín G.

    2016-01-01

    A crucial challenge in network theory is the study of the robustness of a network when facing a sequence of failures. In this work, we propose a dynamical definition of network robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here as a temporal process defined in a sequence. Robustness is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering different probability distributions on networks. In particular, we find that distributions based on distances are more consistent in capturing network structural deviations, as better reflect the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology. - Highlights: • A novel methodology to measure the robustness of a network to component failure or targeted attacks is proposed. • The use of the network's distance PDF allows a precise analysis. • The method provides a dynamic robustness profile showing the response of the topology to each failure event. • The measure is capable to detect network's critical elements.

  4. Robust on-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  5. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  6. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng

    2017-06-29

    Multi-Task Learning (MTL) can enhance a classifier\\'s generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  7. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng; Zhao, Peilin; Gao, Xin

    2017-01-01

    Multi-Task Learning (MTL) can enhance a classifier's generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  8. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  9. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.

    Science.gov (United States)

    Salceanu, Paul L

    2011-07-01

    This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence ina class of dissipative discrete-time dynamical systems on the positive orthant of R(m), generated by maps. Here a united approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of R(m+) to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.

  10. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  11. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  12. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  13. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  14. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  15. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    Science.gov (United States)

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  16. Criteria for robustness of heteroclinic cycles in neural microcircuits

    Science.gov (United States)

    2011-01-01

    We introduce a test for robustness of heteroclinic cycles that appear in neural microcircuits modeled as coupled dynamical cells. Robust heteroclinic cycles (RHCs) can appear as robust attractors in Lotka-Volterra-type winnerless competition (WLC) models as well as in more general coupled and/or symmetric systems. It has been previously suggested that RHCs may be relevant to a range of neural activities, from encoding and binding to spatio-temporal sequence generation. The robustness or otherwise of such cycles depends both on the coupling structure and the internal structure of the neurons. We verify that robust heteroclinic cycles can appear in systems of three identical cells, but only if we require perturbations to preserve some invariant subspaces for the individual cells. On the other hand, heteroclinic attractors can appear robustly in systems of four or more identical cells for some symmetric coupling patterns, without restriction on the internal dynamics of the cells. PMID:22656192

  17. Parasites reduce food web robustness because they are sensitive to secondary extinction as illustrated by an invasive estuarine snail

    Science.gov (United States)

    Lafferty, Kevin D.; Kuris, Armand M.

    2009-01-01

    A robust food web is one in which few secondary extinctions occur after removing species. We investigated how parasites affected the robustness of the Carpinteria Salt Marsh food web by conducting random species removals and a hypothetical, but plausible, species invasion. Parasites were much more likely than free-living species to suffer secondary extinctions following the removal of a free-living species from the food web. For this reason, the food web was less robust with the inclusion of parasites. Removal of the horn snail, Cerithidea californica, resulted in a disproportionate number of secondary parasite extinctions. The exotic Japanese mud snail, Batillaria attramentaria, is the ecological analogue of the native California horn snail and can completely replace it following invasion. Owing to the similarities between the two snail species, the invasion had no effect on predator–prey interactions. However, because the native snail is host for 17 host-specific parasites, and the invader is host to only one, comparison of a food web that includes parasites showed significant effects of invasion on the native community. The hypothetical invasion also significantly reduced the connectance of the web because the loss of 17 native trematode species eliminated many links.

  18. The design of the frame structure used in integral hosting of the nuclear island steel lining cylinder module and problems analysis

    International Nuclear Information System (INIS)

    Yu Xinian; Liu Xiao; Wang Jianguo

    2011-01-01

    The use of the steel frame in the integral hosting of nuclear island steel lining cylinder module made a breakthrough in China's nuclear power construction. The deformation of the cylinder wall is the key issue in the integral lifting process of the nuclear island steel lining. Using the frame in lifting large and thin steel cylinder, the form of frame structure and its deformation will directly affect the radial deformation of the lifted cylinder, the buckling deformation of the distal cylinder, and the cylinder's deformation surround the penetrations. The diameter of nuclear island steel liner is 44 meters. The wall of the cylinder is thin, and the total weight of the cylinder itself and its attached penetrations, walkways and lifting tools, etc. is up to 120 tons, which not only increase the difficulty of lifting, but also have some risks. To ensure the cylinder deformation within the limits, this thesis establishes the parameter structure for the lifting frame, calculates the displacement and analyzes the axial stresses, based on the ANSYS finite element analysis software. The results showed that the models and parameters for integral hosting of the steel lining cylinder modular frame structure is reasonable and feasible, and analyzing the hosting-frame data is necessary, which lay the foundation for the design of the hosting frame and the eventual implementation of the integral hosting scheme of the steel lining cylinder module. (authors)

  19. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    International Nuclear Information System (INIS)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  20. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Stachler, Elyse N.; Bibby, Kyle J. [Department of Civil and Environmental Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 (United States); Stolz, Donna B. [Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 (United States); Shiva, Sruti [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Wang, Zeneng; Hazen, Stanley L. [Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 (United States); Barchowsky, Aaron, E-mail: aab20@pitt.edu [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219 (United States); Stolz, John F. [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  1. Efficient and robust cell detection: A structured regression approach.

    Science.gov (United States)

    Xie, Yuanpu; Xing, Fuyong; Shi, Xiaoshuang; Kong, Xiangfei; Su, Hai; Yang, Lin

    2018-02-01

    Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time. Copyright © 2017. Published by Elsevier B.V.

  2. Non-Price Competition and the Structure of the Online Information Industry: Q-Analysis of Medical Databases and Hosts.

    Science.gov (United States)

    Davies, Roy

    1987-01-01

    Discussion of the online information industry emphasizes the effects of non-price competition on its structure and the firms involved. Q-analysis is applied to data on medical databases and hosts, changes over a three-year period are identified, and an optimum structure for the industry based on economic theory is considered. (Author/LRW)

  3. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  4. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    Science.gov (United States)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM

  6. A kriging metamodel-assisted robust optimization method based on a reverse model

    Science.gov (United States)

    Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao

    2018-02-01

    The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.

  7. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  8. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  9. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    Science.gov (United States)

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  10. A new method for robust video watermarking resistant against key estimation attacks

    Science.gov (United States)

    Mitekin, Vitaly

    2015-12-01

    This paper presents a new method for high-capacity robust digital video watermarking and algorithms of embedding and extraction of watermark based on this method. Proposed method uses password-based two-dimensional pseudonoise arrays for watermark embedding, making brute-force attacks aimed at steganographic key retrieval mostly impractical. Proposed algorithm for 2-dimensional "noise-like" watermarking patterns generation also allows to significantly decrease watermark collision probability ( i.e. probability of correct watermark detection and extraction using incorrect steganographic key or password).. Experimental research provided in this work also shows that simple correlation-based watermark detection procedure can be used, providing watermark robustness against lossy compression and watermark estimation attacks. At the same time, without decreasing robustness of embedded watermark, average complexity of the brute-force key retrieval attack can be increased to 1014 watermark extraction attempts (compared to 104-106 for a known robust watermarking schemes). Experimental results also shows that for lowest embedding intensity watermark preserves it's robustness against lossy compression of host video and at the same time preserves higher video quality (PSNR up to 51dB) compared to known wavelet-based and DCT-based watermarking algorithms.

  11. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  12. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  13. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    Science.gov (United States)

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  14. Controlling the Host-Guest Interaction Mode through a Redox Stimulus.

    Science.gov (United States)

    Szalóki, György; Croué, Vincent; Carré, Vincent; Aubriet, Frédéric; Alévêque, Olivier; Levillain, Eric; Allain, Magali; Aragó, Juan; Ortí, Enrique; Goeb, Sébastien; Sallé, Marc

    2017-12-18

    A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data ( 1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  16. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  17. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  18. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  19. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  20. The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala and their decapod hosts.

    Directory of Open Access Journals (Sweden)

    Christina Nagler

    Full Text Available Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa, and a trophic, root like system situated inside the hosts body (the interna. Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling, we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass and the volume of the entire host. Our results show positive correlations between the volume of (1 entire rhizocephalan (externa + interna and host body, (2 rhizocephalan externa and host body, (3 rhizocephalan visceral mass and rhizocephalan body, (4 egg mass and rhizocephalan externa, (5 rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans.

  1. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host.

    Science.gov (United States)

    Gladieux, Pierre; Zhang, Xiu-Guo; Róldan-Ruiz, Isabel; Caffier, Valérie; Leroy, Thibault; Devaux, Martine; Van Glabeke, Sabine; Coart, Els; Le Cam, Bruno

    2010-02-01

    Evaluating the impact of plant domestication on the population structure of the associated pathogens provides an opportunity to increase our understanding of how and why diseases emerge. Here, we investigated the evolution of the population structure of the apple scab fungus Venturia inaequalis in response to the domestication of its host. Inferences were drawn from multilocus microsatellite data obtained from samples collected on (i) the Central Asian Malus sieversii, the main progenitor of apple, (ii) the European crabapple, Malus sylvestris, a secondary progenitor of apple, and (iii) the cultivated apple, Malus x domestica, in orchards from Europe and Central Asia. Using clustering methods, we identified three distinct populations: (i) a large European population on domesticated and wild apples, (ii) a large Central Asian population on domesticated and wild apples in urban and agricultural areas, and (iii) a more geographically restricted population in M. sieversii forests growing in the eastern mountains of Kazakhstan. Unique allele richness and divergence time estimates supported a host-tracking co-evolutionary scenario in which this latter population represents a relict of the ancestral populations from which current populations found in human-managed habitats were derived. Our analyses indicated that the domestication of apple induced a significant change in the genetic differentiation of populations of V. inaequalis in its centre of origin, but had little impact on its population dynamics and mating system. We discuss how the structure of the apple-based agrosystem may have restricted changes in the population structure of the fungus in response to the domestication of its host.

  2. Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.

    Science.gov (United States)

    Rogers, Emily; Murrugarra, David; Heitsch, Christine

    2017-07-25

    Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones. Copyright © 2017. Published by Elsevier Inc.

  3. Robust H2 performance for sampled-data systems

    DEFF Research Database (Denmark)

    Rank, Mike Lind

    1997-01-01

    Robust H2 performance conditions under structured uncertainty, analogous to well known methods for H∞ performance, have recently emerged in both discrete and continuous-time. This paper considers the extension into uncertain sampled-data systems, taking into account inter-sample behavior. Convex...... conditions for robust H2 performance are derived for different uncertainty sets...

  4. Synthesis of fixed-architecture, robust H 2 and H ∞ controllers

    Directory of Open Access Journals (Sweden)

    Collins Jr. Emmanuel G.

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis

  5. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins

    OpenAIRE

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-01-01

    Productive viral replication requires overcoming many barriers posed by the host innate immune system. Human sterile alpha motif domain-containing 9 (SAMD9) is a newly identified antiviral factor that is specifically targeted by poxvirus proteins belonging to the C7 family of host-range factors. Here we provide the first, to our knowledge, atomic view of two functionally divergent proteins from the C7 family and determine the molecular basis that dictates whether they can target SAMD9 effecti...

  6. Lipooligosaccharide structure is an important determinant in the resistance of Neisseria gonorrhoeae to antimicrobial agents of innate host defense

    Directory of Open Access Journals (Sweden)

    Jacqueline T Balthazar

    2011-02-01

    Full Text Available The strict human pathogen Neisseria gonorrhoeae has caused the sexually transmitted infection termed gonorrhea for thousands of years. Over the millennia, the gonococcus has likely evolved mechanisms to evade host defense systems that operate on the genital mucosal surfaces in both males and females. Past research has shown that the presence or modification of certain cell envelope structures can significantly impact levels of gonococcal susceptibility to host-derived antimicrobial compounds that bathe genital mucosal surfaces and participate in innate host defense against invading pathogens. In order to facilitate the identification of gonococcal genes that are important in determining levels of bacterial susceptibility to mediators of innate host defense, we used the Himar I mariner in vitro mutagenesis system to construct a transposon insertion library in strain F62. As proof of principle that this strategy would be suitable for this purpose, we screened the library for mutants expressing decreased susceptibility to the bacteriolytic action of normal human serum (NHS. We found that a transposon insertion in the lgtD gene, which encodes an N-acetylgalactosamine transferase involved in the extension of the α-chain of lipooligosaccharide (LOS, could confer decreased susceptibility of strain F62 to complement-mediated killing by NHS. By complementation and chemical analyses, we demonstrated both linkage of the transposon insertion to the NHS-resistance phenotype and chemical changes in LOS structure that resulted from loss of LgtD production. Further truncation of the LOS α-chain or loss of phosphoethanolamine (PEA from the lipid A region of LOS also impacted levels of NHS-resistance. PEA decoration of lipid A also increased gonococcal resistance to the model cationic antimicrobial polymyxin B. Taken together, we conclude that the Himar I mariner in vitro mutagenesis procedure can facilitate studies on structures involved in gonococcal

  7. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  8. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis.

    Science.gov (United States)

    Schwarzer, David; Buettner, Falk F R; Browning, Christopher; Nazarov, Sergey; Rabsch, Wolfgang; Bethe, Andrea; Oberbeck, Astrid; Bowman, Valorie D; Stummeyer, Katharina; Mühlenhoff, Martina; Leiman, Petr G; Gerardy-Schahn, Rita

    2012-10-01

    Bacteriophage phi92 is a large, lytic myovirus isolated in 1983 from pathogenic Escherichia coli strains that carry a polysialic acid capsule. Here we report the genome organization of phi92, the cryoelectron microscopy reconstruction of its virion, and the reinvestigation of its host specificity. The genome consists of a linear, double-stranded 148,612-bp DNA sequence containing 248 potential open reading frames and 11 putative tRNA genes. Orthologs were found for 130 of the predicted proteins. Most of the virion proteins showed significant sequence similarities to proteins of myoviruses rv5 and PVP-SE1, indicating that phi92 is a new member of the novel genus of rv5-like phages. Reinvestigation of phi92 host specificity showed that the host range is not limited to polysialic acid-encapsulated Escherichia coli but includes most laboratory strains of Escherichia coli and many Salmonella strains. Structure analysis of the phi92 virion demonstrated the presence of four different types of tail fibers and/or tailspikes, which enable the phage to use attachment sites on encapsulated and nonencapsulated bacteria. With this report, we provide the first detailed description of a multivalent, multispecies phage armed with a host cell adsorption apparatus resembling a nanosized Swiss army knife. The genome, structure, and, in particular, the organization of the baseplate of phi92 demonstrate how a bacteriophage can evolve into a multi-pathogen-killing agent.

  9. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH–YopH chaperone–effector complex

    International Nuclear Information System (INIS)

    Vujanac, Milos; Stebbins, C. Erec

    2013-01-01

    The structure of a SycH–YopH chaperone–effector complex from Yersinia reveals the bacterial state of a protein that adopts different folds in the host and pathogen environments. Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH–YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed

  10. Colony kin structure and host-parasite relatedness in the barnacle goose

    NARCIS (Netherlands)

    Anderholm, S.; Waldeck, P.; Van der Jeugd, H.P.; Marshall, R.C.; Larsson, K.; Andersson, Malte

    2009-01-01

    Conspecific brood parasitism (CBP), females laying eggs in the nest of other 'host' females of the same species, is a common alternative reproductive tactic among birds. For hosts there are likely costs of incubating and rearing foreign offspring, but costs may be low in species with precocial

  11. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  12. Uncovering the drivers of host-associated microbiota with joint species distribution modelling.

    Science.gov (United States)

    Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M

    2018-06-01

    In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.

  13. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  14. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species.

    Science.gov (United States)

    Jones, Thomas S; Bilton, Adam R; Mak, Lorraine; Sait, Steven M

    2015-01-01

    Parasitoids face challenges by switching between host species that influence survival and fitness, determine their role in structuring communities, influence species invasions, and affect their importance as biocontrol agents. In the generalist parasitoid, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), we investigated the costs in encapsulation, survival, and body size on juveniles when adult parasitoids switched from their original host, Plodia interpunctella (Hübner) (Lepidotera, Pyralidae) to a novel host, Ephestia kuehniella (Zeller) (Lepidoptera, Pyralidae), over multiple generations. Switching had an initial survival cost for juvenile parasitoids in the novel host, but increased survival occurred within two generations. Conversely, mortality in the original host increased. Body size, a proxy for fecundity, also increased with the number of generations in the novel host species, reflecting adaptation or maternal effects due to the larger size of the novel host, and therefore greater resources available to the developing parasitoid. Switching to a novel host appears to have initial costs for a parasitoid, even when the novel host may be better quality, but the costs rapidly diminish. We predict that the net cost of switching to a novel host for parasitoids will be complex and will depend on the initial reduction in fitness from parasitizing a novel host versus local adaptations against parasitoids in the original host.

  15. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    Directory of Open Access Journals (Sweden)

    Sara M. Rodríguez

    2017-08-01

    Full Text Available Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm than large molecrabs (<15 mm. Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host

  16. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  17. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    Science.gov (United States)

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI

  18. Robust predictions of the interacting boson model

    International Nuclear Information System (INIS)

    Casten, R.F.; Koeln Univ.

    1994-01-01

    While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data

  19. A robust nonlinear filter for image restoration.

    Science.gov (United States)

    Koivunen, V

    1995-01-01

    A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.

  20. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    Science.gov (United States)

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD

  2. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  3. Host association of Borrelia burgdorferi sensu lato--the key role of host complement.

    Science.gov (United States)

    Kurtenbach, Klaus; De Michelis, Simona; Etti, Susanne; Schäfer, Stefanie M; Sewell, Henna-Sisko; Brade, Volker; Kraiczy, Peter

    2002-02-01

    Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.

  4. Optimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management

    Directory of Open Access Journals (Sweden)

    Abednico Montshiwa

    2016-02-01

    Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.

  5. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  6. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  7. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences

    Science.gov (United States)

    Brooks, Cory L.; Arutyunova, Elena; Lemieux, M. Joanne

    2014-01-01

    Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin. PMID:25286931

  8. Robust D-optimal designs under correlated error, applicable invariantly for some lifetime distributions

    International Nuclear Information System (INIS)

    Das, Rabindra Nath; Kim, Jinseog; Park, Jeong-Soo

    2015-01-01

    In quality engineering, the most commonly used lifetime distributions are log-normal, exponential, gamma and Weibull. Experimental designs are useful for predicting the optimal operating conditions of the process in lifetime improvement experiments. In the present article, invariant robust first-order D-optimal designs are derived for correlated lifetime responses having the above four distributions. Robust designs are developed for some correlated error structures. It is shown that robust first-order D-optimal designs for these lifetime distributions are always robust rotatable but the converse is not true. Moreover, it is observed that these designs depend on the respective error covariance structure but are invariant to the above four lifetime distributions. This article generalizes the results of Das and Lin [7] for the above four lifetime distributions with general (intra-class, inter-class, compound symmetry, and tri-diagonal) correlated error structures. - Highlights: • This paper presents invariant robust first-order D-optimal designs under correlated lifetime responses. • The results of Das and Lin [7] are extended for the four lifetime (log-normal, exponential, gamma and Weibull) distributions. • This paper also generalizes the results of Das and Lin [7] to more general correlated error structures

  9. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  10. Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis

    Science.gov (United States)

    Kim, Juhyun; Salvador, Manuel; Saunders, Elizabeth; González, Jaime; Avignone-Rossa, Claudio

    2016-01-01

    The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation. PMID:27903818

  11. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  12. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-06-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.

  13. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-03-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey (SDSS) r-band images with artificial AGN point sources added which are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source PS is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover PS and host galaxy magnitudes with smaller systematic error and a lower average scatter (49%). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50% if it is trained on multiple PSF's. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN it is more robust and easy to use than parametric methods as it requires no input parameters.

  14. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    Science.gov (United States)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  15. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  16. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  17. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  18. Micro-autoradiographic studies on host-parasite interactions. Pt. 1

    International Nuclear Information System (INIS)

    Mendgen, K.; Heitefuss, R.

    1975-01-01

    Tritium labeled uredospores of Uromyces phaseoli were produced be feeding the host, Phaseolus vulgaris, with 2 H-orotic acid. These spores were allowed to germinate on and to penetrate into a bean leaf. 24 hrs after inoculation, the bean rust had formed the first haustorium. All fungal structures, including the fungus walls, were heavily labeled. No label could be detected in the cells that had come into contact with the hyphae. In the infected host cell, the haustorium was labeled heavily, but the sheath around the haustorium and the host cell remained free of label. These results indicate that no detectable amounts of label leach from the bean rust into the host at this stage of infection although it is known that the rust takes up many metabolites. Since the sheath remains free of label and all fungal structures are evenly labeled, it is concluded that the sheath is formed by the host. (orig.) [de

  19. The Crane Robust Control

    Directory of Open Access Journals (Sweden)

    Marek Hicar

    2004-01-01

    Full Text Available The article is about a control design for complete structure of the crane: crab, bridge and crane uplift.The most important unknown parameters for simulations are burden weight and length of hanging rope. We will use robustcontrol for crab and bridge control to ensure adaptivity for burden weight and rope length. Robust control will be designed for current control of the crab and bridge, necessary is to know the range of unknown parameters. Whole robust will be splitto subintervals and after correct identification of unknown parameters the most suitable robust controllers will be chosen.The most important condition at the crab and bridge motion is avoiding from burden swinging in the final position. Crab and bridge drive is designed by asynchronous motor fed from frequency converter. We will use crane uplift with burden weightobserver in combination for uplift, crab and bridge drive with cooperation of their parameters: burden weight, rope length and crab and bridge position. Controllers are designed by state control method. We will use preferably a disturbance observerwhich will identify burden weight as a disturbance. The system will be working in both modes at empty hook as well asat maximum load: burden uplifting and dropping down.

  20. Structural Consequences of Anionic Host-Cationic Guest Interactions in a Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Johnson, Darren W.; Szigethy, Geza; Davis, Anna V.; Teat, Simon J.; Oliver, Allen G.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-07-09

    The molecular structure of the self-assembled supramolecular assembly [M{sub 4}L{sub 6}]{sup 12-} has been explored with different metals (M = Ga{sup III}, Fe{sup III}, Ti{sup IV}) and different encapsulated guests (NEt{sub 4}{sup +}, BnNMe{sub 3}{sup +}, Cp{sub 2}Co{sup +}, Cp*{sub 2}Co{sup +}) by X-ray crystallography. While the identity of the metal ions at the vertices of the M{sub 4}L{sub 6} structure is found to have little effect on the assembly structure, encapsulated guests significantly distort the size and shape of the interior cavity of the assembly. Cations on the exterior of the assembly are found to interact with the assembly through either {pi}-{pi}, cation-{pi}, or CH-{pi} interactions. In some cases, the exterior guests interact with only one assembly, but cations with the ability to form multiple {pi}-{pi} interactions are able to interact with adjacent assemblies in the crystal lattice. The solvent accessible cavity of the assembly is modeled using the rolling probe method and found to range from 253-434 {angstrom}{sup 3}, depending on the encapsulated guest. Based on the volume of the guest and the volume of the cavity, the packing coefficient for each host-guest complex is found to range from 0.47-0.67.

  1. Viral persistence, liver disease and host response in Hepatitis C-like virus rat model

    DEFF Research Database (Denmark)

    Trivedi, Sheetal; Murthy, Satyapramod; Sharma, Himanshu

    2018-01-01

    The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could...... potentially provide useful surrogate models. We isolated a rodent hepacivirus (RHV) from wild rats (Rattus norvegicus), RHV-rn1, acquired the complete viral genome sequence and developed an infectious reverse genetics system. RHV-rn1 resembles HCV in genomic features including the pattern of polyprotein...... cleavage sites and secondary structures in the viral 5' and 3' UTRs. We used site-directed and random mutagenesis to determine that only the first of the two miR-122 seed sites in viral 5'UTR is required for viral replication and persistence in rats. Next, we used the clone derived virus progeny to infect...

  2. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects.

    Science.gov (United States)

    Bill, Roslyn M; von der Haar, Tobias

    2015-06-01

    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems

    KAUST Repository

    Xing, Chengwen

    2012-04-01

    In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.

  4. The bigger, the better? Volume measurements of parasites and hosts

    DEFF Research Database (Denmark)

    Nagler, Christina; Hörnig, Marie K.; Haug, Joachim T.

    2017-01-01

    ), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost......Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa....... Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan...

  5. Use of Host-like Peptide Motifs in Viral Proteins Is a Prevalent Strategy in Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Tzachi Hagai

    2014-06-01

    Full Text Available Viruses interact extensively with host proteins, but the mechanisms controlling these interactions are not well understood. We present a comprehensive analysis of eukaryotic linear motifs (ELMs in 2,208 viral genomes and reveal that viruses exploit molecular mimicry of host-like ELMs to possibly assist in host-virus interactions. Using a statistical genomics approach, we identify a large number of potentially functional ELMs and observe that the occurrence of ELMs is often evolutionarily conserved but not uniform across virus families. Some viral proteins contain multiple types of ELMs, in striking similarity to complex regulatory modules in host proteins, suggesting that ELMs may act combinatorially to assist viral replication. Furthermore, a simple evolutionary model suggests that the inherent structural simplicity of ELMs often enables them to tolerate mutations and evolve quickly. Our findings suggest that ELMs may allow fast rewiring of host-virus interactions, which likely assists rapid viral evolution and adaptation to diverse environments.

  6. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    Science.gov (United States)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  7. Host population structure and treatment frequency maintain balancing selection on drug resistance

    Science.gov (United States)

    Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc

    2017-01-01

    It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542

  8. Robust wide-range control of nuclear reactors by using the feedforward-feedback concept

    International Nuclear Information System (INIS)

    Weng, C.K.; Edwards, R.M.; Ray, A.

    1994-01-01

    A robust feedforward-feedback controller is proposed for wide-range operations of nuclear reactors. This control structure provides (a) optimized performance over a wide operating range resulting form the feedforward element and (b) guaranteed robust stability and performance resulting from the feedback element. The feedforward control law is synthesized via nonlinear programming, which generates an optimal control sequence over a finite-time horizon under specified constraints. The feedback control is synthesized via the structured singular value μ approach to guarantee robustness in the presence of disturbances and modeling uncertainties. The results of simulation experiments are presented to demonstrate efficacy of the proposed control structure for a large rapid power reduction to avoid unnecessary plant trips

  9. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  10. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  11. Electrochemical insertion in solid media of alkali cations in carbonated host structures (polyacetylene, fullerene and graphite)

    International Nuclear Information System (INIS)

    Lemont, Sylvain

    1994-01-01

    This research thesis reports the investigation of electrochemical insertion of alkali cations in different host carbon containing structures (polyacetylene, fullerene, graphite). After a recall of the main characteristics of the three considered compounds, the author reports a bibliographical survey, describes the different compounds which can be used as solid electrolytes and explains the choice of the studied compounds with respect to their phase diagrams, ionic conductivity, electrochemical stability range. He describes the experimental methods, discusses the results obtained by intercalation of alkali cations (Li + , Na + , K + ) in polyacetylene. He discusses the electrochemical and structural results obtained on intercalation compounds of lithium and sodium ions in fullerene. The structures of several phases have been obtained by electron diffraction. Preliminary studies of electron energy loss spectrometry (EELS) are reported. The last part compares the results obtained on two types of graphite: pellets and spherules [fr

  12. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  13. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    Science.gov (United States)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  14. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  15. Dependence of hydrogen storage characteristics of mechanically milled carbon materials on their host structures

    International Nuclear Information System (INIS)

    Shindo, K.; Kondo, T.; Sakurai, Y.

    2004-01-01

    We investigated whether the hydrogen storage characteristics of carbon materials prepared by mechanical milling in an H 2 atmosphere were dependent on their host structures. We used natural graphite (NG) and activated carbon fibers (ACF) and compared them with activated carbon (AC) powders. The XRD patterns of NG and ACF milled for over 20 h and SEM images of these samples milled for 80 h were almost the same as those of AC. The hydrogen storage capacities of NG and ACF estimated by the inert gas fusion-thermal conductivity method increased with the mechanical milling time up to 10 h and showed little milling time dependence thereafter. The capacities of NG and ACF reached about 3.0 wt.% and were similar to that of AC. However, it should be noted that the hydrogen storage mechanism of NG and ACF mechanically milled in an H 2 atmosphere might be different because the changes in their specific surface areas with milling time were opposite. Thermal desorption mass spectroscopy (TDS) revealed that the desorption spectra of the hydrogen molecules (mass number=2) of NG and ACF milled for 10 h in the same way as AC contained two peaks at about 500 and 800 deg. C. The desorption activation energies of hydrogenated NG and ACF at these peaks calculated from a Kissinger plot were almost with the same as those of hydrogenated AC. This suggests that the state of the hydrogen trapped in the structural defects in NG introduced by the mechanical milling may be almost the same as that of AC. In addition, we assumed the possibility that the state of the hydrogen in ACF hydrogenated by mechanical milling could be almost the same as that in hydrogenated AC. We considered that the nanocarbon materials hydrogenated under our milling conditions had very similar physical shapes and hydrogen storage capacities, independent of their host structures

  16. Continuous host-macroparasite models with application to aquaculture

    Directory of Open Access Journals (Sweden)

    Catherine Bouloux Marquet

    2004-11-01

    Full Text Available We study a continuous deterministic host-macroparasite system which involves populations of hosts, parasites, and larvae. This system leads to a countable number of partial differential equations that under certain hypotheses, is reduced to finitely many equations. Also we assume hypotheses to close the system and to define the global dynamics for the hosts. Then, we analyze the spatially homogeneous model without demography (aquaculture hypothesis, and show some preliminary results for the spatially structured model.

  17. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1–S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  18. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  19. Robust multi-model control of an autonomous wind power system

    Science.gov (United States)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  20. Robust Refinement as Implemented in TOPAS

    Energy Technology Data Exchange (ETDEWEB)

    Stone, K.; Stephens, P

    2010-01-01

    A robust refinement procedure is implemented in the program TOPAS through an iterative reweighting of the data. Examples are given of the procedure as applied to fitting partially overlapped peaks by full and partial models and also of the structures of ibuprofen and acetaminophen in the presence of unmodeled impurity contributions

  1. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.

  2. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  3. Transducer placement for robustness to variations in boundary conditions for active structural acoustic control

    Science.gov (United States)

    Sprofera, Joseph D.; Clark, Robert L.; Cabell, Randolph H.; Gibbs, Gary P.

    2005-05-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  4. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  5. The metal-enriched host of an energetic γ-ray burst at z ≈ 1.6

    Science.gov (United States)

    Krühler, T.; Fynbo, J. P. U.; Geier, S.; Hjorth, J.; Malesani, D.; Milvang-Jensen, B.; Levan, A. J.; Sparre, M.; Watson, D. J.; Zafar, T.

    2012-10-01

    Context. The star-forming nature of long γ-ray burst (GRB) host galaxies provides invaluable constraints on the progenitors of GRBs and might open a short-cut to the characteristics of typical star-forming galaxies throughout the history of the Universe. Due to the absence of near-infrared (NIR) spectroscopy, however, detailed investigations, specifically a determination of the gas-phase metallicity of gamma-ray burst hosts, was largely limited to redshifts z 1 GRB host in unprecedented detail and investigate the relation between GRB hosts and field galaxies. Methods: We availed of VLT/X-shooter optical/NIR spectroscopy to measure the metallicity, electron density, star-formation rate (SFR), and reddening of the host of GRB 080605. Specifically, we used different strong-line diagnostics to robustly measure the gas-phase metallicity within the interstellar medium (ISM) for the first time based on [N ii] at this redshift. Results: The host of the energetic (Eγ,iso ~ 2 × 1053 erg) GRB 080605 at z ~ 1.64 is a morphologically complex, vigorously star-forming galaxy with an Hα-derived SFR of 31-6+12 M⊙ yr-1. Its ISM is significantly enriched with metals. Specifically, [N ii]/Hα = 0.14 ± 0.02, which yields an oxygen abundance 12 + log (O/H) between 8.3 and 8.6 depending on the adopted strong-line calibrator. This corresponds to values in the range of 0.4 - 0.8 Z⊙. For its measured stellar mass M* = 8.0-1.6+1.3 × 109 M⊙ and SFR, this value is consistent with the fundamental metallicity relation defined by star-forming field galaxies. The absence of strong Lyα emission constrains the escape fraction of resonantly-scattered Lyα photons to fesc ≲ 0.08. Conclusions: Our observations provide a detailed picture of the conditions in the ISM of a highly star-forming galaxy with irregular morphology at z ~ 1.6. They include the first robust metallicity measurement based on [N ii] for a GRB host at z > 1 and directly illustrate that GRB hosts are not necessarily

  6. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

    Science.gov (United States)

    Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle

    2013-02-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.

  7. Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus.

    Directory of Open Access Journals (Sweden)

    Fanny Gascuel

    Full Text Available Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i endemicity is favoured by intermediate host population sizes, (ii in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.

  8. Host Resistance, Population Structure and the Long-Term Persistence of Bubonic Plague: Contributions of a Modelling Approach in the Malagasy Focus

    Science.gov (United States)

    Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine

    2013-01-01

    Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar. PMID:23675291

  9. Population structure of the soft tick Ornithodoros maritimus and its associated infectious agents within a colony of its seabird host Larus michahellis

    Directory of Open Access Journals (Sweden)

    Marlene Dupraz

    2017-08-01

    Full Text Available The epidemiology of vector-borne zoonoses depends on the movement of both hosts and vectors, which can differ greatly in intensity across spatial scales. Because of their life history traits and small size, vector dispersal may be frequent, but limited in distance. However, little information is available on vector movement patterns at local spatial scales, and particularly for ticks, transmitting the greatest diversity of recognized infectious agents. To test the degree to which ticks can disperse and disseminate pathogens at local scales, we investigated the temporal dynamics and population structure of the soft tick Ornithodoros maritimus within a colony of its seabird host, the Yellow-legged gull Larus michahellis. Ticks were repeatedly sampled at a series of nests during the host breeding season. In half of the nests, ticks were collected (removal sampling, in the other half, ticks were counted and returned to the nest. A subsample of ticks was screened for known bacteria, viruses and parasites using a high throughput real-time PCR system to examine their distribution within the colony. The results indicate a temporal dynamic in the presence of tick life stages over the season, with the simultaneous appearance of juvenile ticks and hatched chicks, but no among-nest spatial structure in tick abundance. Removal sampling significantly reduced tick numbers, but only from the fourth visit onward. Seven bacterial isolates, one parasite species and one viral isolate were detected but no spatial structure in their presence within the colony was found. These results suggest weak isolation among nests and that tick dispersal is likely frequent enough to quickly recolonize locally-emptied patches and disseminate pathogens across the colony. Vector-mediated movements at local scales may therefore play a key role in pathogen emergence and needs to be considered in conjunction with host movements for predicting pathogen circulation and for establishing

  10. Robust design method and thermostatic experiment for multiple piezoelectric vibration absorber system

    International Nuclear Information System (INIS)

    Nambu, Yohsuke; Takashima, Toshihide; Inagaki, Akiya

    2015-01-01

    This paper examines the effects of connecting multiplexing shunt circuits composed of inductors and resistors to piezoelectric transducers so as to improve the robustness of a piezoelectric vibration absorber (PVA). PVAs are well known to be effective at suppressing the vibration of an adaptive structure; their weakness is low robustness to changes in the dynamic parameters of the system, including the main structure and the absorber. In the application to space structures, the temperature-dependency of capacitance of piezoelectric ceramics is the factor that causes performance reduction. To improve robustness to the temperature-dependency of the capacitance, this paper proposes a multiple-PVA system that is composed of distributed piezoelectric transducers and several shunt circuits. The optimization problems that determine both the frequencies and the damping ratios of the PVAs are multi-objective problems, which are solved using a real-coded genetic algorithm in this paper. A clamped aluminum beam with four groups of piezoelectric ceramics attached was considered in simulations and experiments. Numerical simulations revealed that the PVA systems designed using the proposed method had tolerance to changes in the capacitances. Furthermore, experiments using a thermostatic bath were conducted to reveal the effectiveness and robustness of the PVA systems. The maximum peaks of the transfer functions of the beam with the open circuit, the single-PVA system, the double-PVA system, and the quadruple-PVA system at 20 °C were 14.3 dB, −6.91 dB, −7.47 dB, and −8.51 dB, respectively. The experimental results also showed that the multiple-PVA system is more robust than a single PVA in a variable temperature environment from −10 °C to 50 °C. In conclusion, the use of multiple PVAs results in an effective, robust vibration control method for adaptive structures. (paper)

  11. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  12. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  13. Ectoparasite infestation and sex-biased local recruitment of hosts

    NARCIS (Netherlands)

    Heeb, P.; Werner, I.; Mateman, A.C.; Kolliker, M.; Brinkhof, M.W.G.; Lessells, C.M.; Richner, H.

    1999-01-01

    Dispersal patterns of organisms are a fundamental aspect of their ecology, modifying the genetic and social structure of local populations(1-4). Parasites reduce the reproductive success and survival of hosts and thereby exert selection pressure on host life-history traits(4-6), possibly affecting

  14. Dual host specificity of phage SP6 is facilitated by tailspike rotation

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Jiagang [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States); Park, Taehyun [Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712 (United States); Morado, Dustin R. [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States); Hughes, Kelly T. [Department of Biology, University of Utah, Salt Lake City, UT 84112 (United States); Molineux, Ian J., E-mail: molineux@austin.utexas.edu [Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030 (United States)

    2017-07-15

    Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspike orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.

  15. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains?

    NARCIS (Netherlands)

    Juárez, M.L.; Schöfl, G.; Vera, M.T.; Vilardi, J.C.; Murúa, M.G.; Willink, E.; Hänniger, S.; Heckel, D.G.; Groot, A.T.

    2014-01-01

    Determining which factors contribute to the formation and maintenance of genetic divergence to evaluate their relative importance as a cause of biological differentiation is among the major challenges in evolutionary biology. In Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) two host strains

  16. Atomically manufactured nickel-silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    Science.gov (United States)

    Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.

    2017-12-01

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.

  17. Optimization of robustness of interdependent network controllability by redundant design.

    Directory of Open Access Journals (Sweden)

    Zenghu Zhang

    Full Text Available Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy or DBS (degree based strategy for node backup and HDF(high degree first for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability.

  18. Optimal design of robust piezoelectric unimorph microgrippers

    DEFF Research Database (Denmark)

    Ruiz, David; Díaz-Molina, Alex; Sigmund, Ole

    2018-01-01

    Topology optimization can be used to design piezoelectric actuators by simultaneous design of host structure and polarization profile. Subsequent micro-scale fabrication leads us to overcome important manufacturing limitations: difficulties in placing a piezoelectric layer on both top and bottom...

  19. Structural Basis of the Interaction of a Trypanosoma cruzi Surface Molecule Implicated in Oral Infection with Host Cells and Gastric Mucin

    Science.gov (United States)

    Cortez, Cristian; Yoshida, Nobuko; Bahia, Diana; Sobreira, Tiago J.P.

    2012-01-01

    Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal β-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the α-helix. Located downstream and close to the α-helix was the gp82 gastric mucin binding site, which plays a central role in oral T. cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route, whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues. PMID:22860068

  20. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  1. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  2. Robustness of numerical TIG welding simulation of 3D structures in stainless steel 316L

    International Nuclear Information System (INIS)

    El-Ahmar, W.

    2007-04-01

    The numerical welding simulation is considered to be one of those mechanical problems that have the great level of nonlinearity and which requires a good knowledge in various scientific fields. The 'Robustness Analysis' is a suitable tool to control the quality and guarantee the reliability of numerical welding results. The robustness of a numerical simulation of welding is related to the sensitivity of the modelling assumptions on the input parameters. A simulation is known as robust if the result that it produces is not very sensitive to uncertainties of the input data. The term 'Robust' was coined in statistics by G.E.P. Box in 1953. Various definitions of greater or lesser mathematical rigor are possible for the term, but in general, referring to a statistical estimator, it means 'insensitive to small deviation from the idealized assumptions for which the estimator is optimized. In order to evaluate the robustness of numerical welding simulation, sensitivity analyses on thermomechanical models and parameters have been conducted. At the first step, we research a reference solution which gives the best agreement with the thermal and mechanical experimental results. The second step consists in determining through numerical simulations which parameters have the largest influence on residual stresses induced by the welding process. The residual stresses were predicted using finite element method performed with Code-Aster of EDF and SYSWELD of ESI-GROUP. An analysis of robustness can prove to be heavy and expensive making it an unjustifiable route. However, only with development such tool of analysis can predictive methods become a useful tool for industry. (author)

  3. Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model

    Directory of Open Access Journals (Sweden)

    WANG Bin

    2015-06-01

    Full Text Available Based on the Newton-Gauss iterative algorithm of weighted total least squares (WTLS, a robust WTLS (RWTLS model is presented. The model utilizes the standardized residuals to construct the weight factor function and the square root of the variance component estimator with robustness is obtained by introducing the median method. Therefore, the robustness in both the observation and structure spaces can be simultaneously achieved. To obtain standardized residuals, the linearly approximate cofactor propagation law is employed to derive the expression of the cofactor matrix of WTLS residuals. The iterative calculation steps for RWTLS are also described. The experiment indicates that the model proposed in this paper exhibits satisfactory robustness for gross errors handling problem of WTLS, the obtained parameters have no significant difference with the results of WTLS without gross errors. Therefore, it is superior to the robust weighted total least squares model directly constructed with residuals.

  4. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  5. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  6. Citizen science data reveal ecological, historical and evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi.

    Science.gov (United States)

    Heilmann-Clausen, Jacob; Maruyama, Pietro K; Bruun, Hans Henrik; Dimitrov, Dimitar; Laessøe, Thomas; Frøslev, Tobias Guldberg; Dalsgaard, Bo

    2016-12-01

    Woody plants host diverse communities of associated organisms, including wood-inhabiting fungi. In this group, host effects on species richness and interaction network structure are not well understood, especially not at large geographical scales. We investigated ecological, historical and evolutionary determinants of fungal species richness and network modularity, that is, subcommunity structure, across woody hosts in Denmark, using a citizen science data set comprising > 80 000 records of > 1000 fungal species on 91 genera of woody plants. Fungal species richness was positively related to host size, wood pH, and the number of species in the host genus, with limited influence of host frequency and host history, that is, time since host establishment in the area. Modularity patterns were unaffected by host history, but largely reflected host phylogeny. Notably, fungal communities differed substantially between angiosperm and gymnosperm hosts. Host traits and evolutionary history appear to be more important than host frequency and recent history in structuring interactions between hosts and wood-inhabiting fungi. High wood acidity appears to act as a stress factor reducing fungal species richness, while large host size, providing increased niche diversity, enhances it. In some fungal groups that are known to interact with live host cells in the establishment phase, host selectivity is common, causing a modular community structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. On the Probabilistic Characterization of Robustness and Resilience

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Qin, J.; Miraglia, Simona

    2017-01-01

    Over the last decade significant research efforts have been devoted to the probabilistic modeling and analysis of system characteristics. Especially performance characteristics of systems subjected to random disturbances, such as robustness and resilience have been in the focus of these efforts...... in the modeling of robustness and resilience in the research areas of natural disaster risk management, socio-ecological systems and social systems and we propose a generic decision analysis framework for the modeling and analysis of systems across application areas. The proposed framework extends the concept...... of direct and indirect consequences and associated risks in probabilistic systems modeling formulated by the Joint Committee on Structural Safety (JCSS) to facilitate the modeling and analysis of resilience in addition to robustness and vulnerability. Moreover, based on recent insights in the modeling...

  8. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  9. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    International Nuclear Information System (INIS)

    McGowan, S E; Albertini, F; Lomax, A J; Thomas, S J

    2015-01-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties. (paper)

  10. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    Science.gov (United States)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  11. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    Science.gov (United States)

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  12. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  13. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  14. A robust frame element with cyclic plasticity and local joint effects

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2018-01-01

    A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam member with end joints with properties permitting representation of the effect of section forces in adjoining members, like axial forces. By use of the equilibrium formulation...... is developed, using a mid-step state to obtain representative information about the return path. The element is implemented in a co-rotational large-deformation computer program for frame structures. The formulation is illustrated by application to a couple of typical offshore frame structures, and comparison...... of different representations of the plastic effects illustrates the importance of a robust element with realistic representation of the cyclic plastic mechanisms....

  15. Puumala hantavirus infections in bank vole populations: host and virus dynamics in Central Europe.

    Science.gov (United States)

    Reil, Daniela; Rosenfeld, Ulrike M; Imholt, Christian; Schmidt, Sabrina; Ulrich, Rainer G; Eccard, Jana A; Jacob, Jens

    2017-02-28

    In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.

  16. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    International Nuclear Information System (INIS)

    Bin Abas, Faizulsalihin; Takayama, Shigeru

    2015-01-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and ''Cloud'' System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster

  17. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  18. Attack robustness and centrality of complex networks.

    Directory of Open Access Journals (Sweden)

    Swami Iyer

    Full Text Available Many complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks.

  19. Spatial structures in a simple model of population dynamics for parasite-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  20. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  1. Robust Object Tracking Using Valid Fragments Selection.

    Science.gov (United States)

    Zheng, Jin; Li, Bo; Tian, Peng; Luo, Gang

    Local features are widely used in visual tracking to improve robustness in cases of partial occlusion, deformation and rotation. This paper proposes a local fragment-based object tracking algorithm. Unlike many existing fragment-based algorithms that allocate the weights to each fragment, this method firstly defines discrimination and uniqueness for local fragment, and builds an automatic pre-selection of useful fragments for tracking. Then, a Harris-SIFT filter is used to choose the current valid fragments, excluding occluded or highly deformed fragments. Based on those valid fragments, fragment-based color histogram provides a structured and effective description for the object. Finally, the object is tracked using a valid fragment template combining the displacement constraint and similarity of each valid fragment. The object template is updated by fusing feature similarity and valid fragments, which is scale-adaptive and robust to partial occlusion. The experimental results show that the proposed algorithm is accurate and robust in challenging scenarios.

  2. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  3. Robust stability bounds for multi-delay networked control systems

    Science.gov (United States)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  4. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  5. Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate

    NARCIS (Netherlands)

    Duuren, van J.B.J.H.

    2011-01-01

    Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate

    from benzoate P. putida KT2440 was used as biocatalyst given its versatile and energetically robust metabolism.

    Therefore, a mutant was generated and a process developed based on which a

  6. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  7. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.

    Science.gov (United States)

    Tsai, Yi-Hsin Erica; Manos, Paul S

    2010-09-28

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.

  8. Machine learning meliorates computing and robustness in discrete combinatorial optimization problems.

    Directory of Open Access Journals (Sweden)

    Fushing Hsieh

    2016-11-01

    Full Text Available Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all subjects of a system under study. We point out that such a data ensemble in fact embeds with system's information content that is not directly used in defining the combinatorial optimization problems. Can machine learning algorithms extract such information content and make combinatorial optimizing tasks more efficient? Would such algorithmic computations bring new perspectives into this classic topic of Applied Mathematics and Theoretical Computer Science? We show that answers to both questions are positive. One key reason is due to permutation invariance. That is, the data ensemble of subjects' measurement vectors is permutation invariant when it is represented through a subject-vs-measurement matrix. An unsupervised machine learning algorithm, called Data Mechanics (DM, is applied to find optimal permutations on row and column axes such that the permuted matrix reveals coupled deterministic and stochastic structures as the system's information content. The deterministic structures are shown to facilitate geometry-based divide-and-conquer scheme that helps optimizing task, while stochastic structures are used to generate an ensemble of mimicries retaining the deterministic structures, and then reveal the robustness pertaining to the original version of optimal solution. Two simulated systems, Assignment problem and Traveling Salesman problem, are considered. Beyond demonstrating computational advantages and intrinsic robustness in the two systems, we propose brand new robust optimal solutions. We believe such robust versions of optimal solutions are potentially more realistic and practical in real world settings.

  9. Robust digital controllers for uncertain chaotic systems: A digital redesign approach

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)

    2007-03-15

    In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.

  10. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  11. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  12. Phase and gain control policies for robust active vibration control of flexible structures

    International Nuclear Information System (INIS)

    Zhang, K; Ichchou, M N; Scorletti, G; Mieyeville, F

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H ∞  control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H ∞  control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞  controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  13. STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping, E-mail: cytseng@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-12-20

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1–2) × 10{sup 5} times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  14. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  15. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen

    2012-09-01

    In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  16. Robust control charts in statistical process control

    NARCIS (Netherlands)

    Nazir, H.Z.

    2014-01-01

    The presence of outliers and contaminations in the output of the process highly affects the performance of the design structures of commonly used control charts and hence makes them of less practical use. One of the solutions to deal with this problem is to use control charts which are robust

  17. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase.

    Science.gov (United States)

    Munawar, Nayla; Engel, Paul C

    2013-01-01

    Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.

  18. Host age modulates parasite infectivity, virulence and reproduction.

    Science.gov (United States)

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  19. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  20. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  1. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    Science.gov (United States)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  2. Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting

    Science.gov (United States)

    Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein

    2016-06-01

    In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.

  3. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Xiaofei [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-12-12

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochastic systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.

  4. A Robust Mathematical Model On Infectious Diseases | Omorogbe ...

    African Journals Online (AJOL)

    The paper presents a robust epidemiological compartment model on infectious diseases. The model obviates the limitations of the classical epidemiological model by accommodating different levels of vulnerability and susceptibility to infections within different social class and spatial structures. Unlike the classical model ...

  5. Modelling Project Feasibility Robustness by Use of Scenarios

    DEFF Research Database (Denmark)

    Moshøj, Claus Rehfeld; Leleur, Steen

    1998-01-01

    , SEAM secures a consistent inclusion of actual scenario elements in the quantitative impact modelling and facilitates a transparent project feasibility robustness analysis. SEAM is implemented as part of a decision support system with a toolbox structure applicable to different types of transport...

  6. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yik-Chung

    2012-01-01

    forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  7. The Host RNAs in Retroviral Particles

    Directory of Open Access Journals (Sweden)

    Alice Telesnitsky

    2016-08-01

    Full Text Available As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA, some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs’ packaging determinants differ from the viral genome’s, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1 reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs—if any—have remained elusive.

  8. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  9. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  10. Robustness from flexibility in the fungal circadian clock

    Directory of Open Access Journals (Sweden)

    Akman Ozgur E

    2010-06-01

    Full Text Available Abstract Background Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. Results The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq gene inhibits its transcriptional activator white collar-1 (wc-1, interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on

  11. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells.

    Science.gov (United States)

    Bos, Sandra; Viranaicken, Wildriss; Turpin, Jonathan; El-Kalamouni, Chaker; Roche, Marjolaine; Krejbich-Trotot, Pascale; Desprès, Philippe; Gadea, Gilles

    2018-03-01

    Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Departure mechanisms for host search on high-density patches by the Meteorus pulchricornis.

    Science.gov (United States)

    Sheng, Sheng; Feng, Sufang; Meng, Ling; Li, Baoping

    2014-01-01

    Less attention has been paid to the parasitoid-host system in which the host occurs in considerably high density with a hierarchical patch structure in studies on time allocation strategies of parasitoids. This study used the parasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) and the Oriental leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) as the parasitoids-host model system to investigate patch-leaving mechanisms as affected by the high-host density, hierarchical patch structure, and foraging behaviors on both former and current patches. The results showed that three out of eight covariates tested had significant effects on the patch-leaving tendency, including the host density, ovipositor insertion, and host rejection on the current patch. The parasitoid paid more visits to the patch with high-density hosts. While the patch with higher host densities decreased the leaving tendency, the spatial distribution of hosts examined had no effect on the leaving tendency. Both oviposition and host rejection decreased the patch-leaving tendency. The variables associated with the former patch, such as the host density and number of ovipositor insertions, however, did not have an effect on the leaving tendency. Our study suggested that M. pulchricornis females may use an incremental mechanism to exploit high-density patches to the fullest. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. An Evolutionary Approach for Robust Layout Synthesis of MEMS

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, Jiachuan; Goodman, Erik

    2005-01-01

    The paper introduces a robust design method for layout synthesis of MEM resonators subject to inherent geometric uncertainties such as the fabrication error on the sidewall of the structure. The robust design problem is formulated as a multi-objective constrained optimisation problem after certain...... assumptions and treated with multiobjective genetic algorithm (MOGA), a special type of evolutionary computing approaches. Case study based on layout synthesis of a comb-driven MEM resonator shows that the approach proposed in this paper can lead to design results that meet the target performance and are less...

  15. Centrality Robustness and Link Prediction in Complex Social Networks

    DEFF Research Database (Denmark)

    Davidsen, Søren Atmakuri; Ortiz-Arroyo, Daniel

    2012-01-01

    . Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved......This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present am analysis on the robustness of centrality measures that extend the work presented in Borgati et al. using three types of complex network structures and one real social network...

  16. Unique physiology of host-parasite interactions in microsporidia infections.

    Science.gov (United States)

    Williams, Bryony A P

    2009-11-01

    Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.

  17. Robust Growth Determinants

    OpenAIRE

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-01

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsi- monious mixture modeling that allows for fat-tailed errors compared to the normal benchmark case. Applying robust model averaging to growth determinants, the paper finds that eight out of eighteen variables found to be significantly related to economic growth ...

  18. Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system.

    Science.gov (United States)

    Li, Hao-Sen; Xue, Xiao-Feng; Hong, Xiao-Yue

    2014-09-01

    The superfamily Eriophyoidea is exceptionally diverse and its members are highly host-specific. Currently, the taxonomy of this group is based on morphology only. However, phylogenetic relationships in this group could be incorrect if the diagnostic morphological characters are homoplastic. Therefore, the phylogeny of 112 representative taxa of Eriophyoidea from China was determined using 18S, 28S D2-5 and D9-10 rRNA. Phylogenetic relationships were inferred through Bayesian, maximum likelihood and maximum parsimony methods, and then a number of clades or major clades were defined according to robust phylogenetic topologies combined with morphological comparison. Tests of monophyly showed that two of three families of Eriophyoidea as well as one subfamily and four tribes were not monophyletic. Ancestral character state reconstruction (ACSR) showed that five diagnostic morphological characters evolved several times, confounding the current taxonomy. Additionally, reconstruction of the history of host plant colonization suggested host switching occurred in a limited range of host plants. The host association data made it possible to determine taxonomic relationships more accurately. These results show that by integrating morphological and molecular information and host plant choice, it is possible to obtain a more accurate taxonomy and a deeper phylogenetic understanding of Eriophyoidea. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  20. Tracer techniques for the study of host-parasite relations

    International Nuclear Information System (INIS)

    Mendgen, K.

    1975-01-01

    Autoradiographic techniques have been used to study the interaction of many facultative and obligate parasites, including viruses. After feeding the host plant with labelled substrates, labelled material accumulates in the infected cells and seems to penetrate into structures of the parasite. After labelling the parasite, its influence on the host may be studied. We use this technique to study the interaction of host (bean) and parasite (bean rust) during the infection process. After infection with uredospores labelled with tritiated orotic acid, the radioactivity is retained almost completely within the young haustorium at 22 h after inoculation. This may indicate a very small influence of the parasite on its compatible host. In incompatible host-parasite combinations, the infection process proceeds in a different way. The use of autoradiographic techniques to compare combinations of varying compatibilities will be discussed. (author)

  1. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  2. SU-E-J-137: Incorporating Tumor Regression Into Robust Plan Optimization for Head and Neck Radiotherapy

    International Nuclear Information System (INIS)

    Zhang, P; Hu, J; Tyagi, N; Mageras, G; Lee, N; Hunt, M

    2014-01-01

    Purpose: To develop a robust planning paradigm which incorporates a tumor regression model into the optimization process to ensure tumor coverage in head and neck radiotherapy. Methods: Simulation and weekly MR images were acquired for a group of head and neck patients to characterize tumor regression during radiotherapy. For each patient, the tumor and parotid glands were segmented on the MR images and the weekly changes were formulated with an affine transformation, where morphological shrinkage and positional changes are modeled by a scaling factor, and centroid shifts, respectively. The tumor and parotid contours were also transferred to the planning CT via rigid registration. To perform the robust planning, weekly predicted PTV and parotid structures were created by transforming the corresponding simulation structures according to the weekly affine transformation matrix averaged over patients other than him/herself. Next, robust PTV and parotid structures were generated as the union of the simulation and weekly prediction contours. In the subsequent robust optimization process, attainment of the clinical dose objectives was required for the robust PTV and parotids, as well as other organs at risk (OAR). The resulting robust plans were evaluated by looking at the weekly and total accumulated dose to the actual weekly PTV and parotid structures. The robust plan was compared with the original plan based on the planning CT to determine its potential clinical benefit. Results: For four patients, the average weekly change to tumor volume and position was −4% and 1.2 mm laterally-posteriorly. Due to these temporal changes, the robust plans resulted in an accumulated PTV D95 that was, on average, 2.7 Gy higher than the plan created from the planning CT. OAR doses were similar. Conclusion: Integration of a tumor regression model into target delineation and plan robust optimization is feasible and may yield improved tumor coverage. Part of this research is supported

  3. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis me...

  4. Worms at war: interspecific parasite competition and host resources alter trematode colony structure and fitness.

    Science.gov (United States)

    Mouritsen, Kim N; Andersen, Cecillie

    2017-09-01

    Parasites competing over limited host resources are faced with a tradeoff between reproductive success and host overexploitation jeopardizing survival. Surprisingly little is known about the outcome of such competitive scenarios, and we therefore aimed at elucidating interactions between the trematodes Himasthla elongata and Renicola roscovita coinfecting the periwinkle first intermediate host. The results show that the success of Himasthla colonies (rediae) in terms of cercarial emission is unaffected by Renicola competition (sporocysts), whereas deteriating host condition decreases fitness. Furthermore, double infection has no bearing on Himasthla's colony size but elevated the proportion of non-reproductive rediae that play a decisive role in colony defence. Opposite, the development of the Renicola colony (size/maturity), and in turn fitness, is markedly reduced in presence of Himasthla, whereas the nutritional state of the host appears less important. Hence, the intramolluscan competition between Himasthla and Renicola is asymmetrical, Himasthla being the superior competitor. Himasthla not only adjusts its virulence according to the hosts immediate nutritional state, it also nullifies the negative impact of a heterospecific competitor on own fitness. The latter is argued to follow in part from direct predation on the competitor, for which purpose more defensive non-reproductive rediae are strategically produced.

  5. Multi-focus Image Fusion Using Epifluorescence Microscopy for Robust Vascular Segmentation

    OpenAIRE

    Pelapur, Rengarajan; Prasath, Surya; Palaniappan, Kannappan

    2014-01-01

    We are building a computerized image analysis system for Dura Mater vascular network from fluorescence microscopy images. We propose a system that couples a multi-focus image fusion module with a robust adaptive filtering based segmentation. The robust adaptive filtering scheme handles noise without destroying small structures, and the multi focal image fusion considerably improves the overall segmentation quality by integrating information from multiple images. Based on the segmenta...

  6. Creating geometrically robust designs for highly sensitive problems using topology optimization: Acoustic cavity design

    DEFF Research Database (Denmark)

    Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.

    2015-01-01

    Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust...... and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...... further improves the robustness of the designs....

  7. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  8. Symmetry conditions of a nodal superconductor for generating robust flat-band Andreev bound states at its dirty surface

    Science.gov (United States)

    Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro

    2018-05-01

    We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .

  9. The Texas horned lizard as model for robust capillary structures for passive directional transport of cooling lubricants

    Science.gov (United States)

    Comanns, Philipp; Winands, Kai; Pothen, Mario; Bott, Raya A.; Wagner, Hermann; Baumgartner, Werner

    2016-04-01

    Moisture-harvesting lizards, such as the Texas horned lizard Phrynosoma cornutum, have remarkable adaptations for inhabiting arid regions. Special skin structures, in particular capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and to transport it to the snout for ingestion. This fluid transport is passive and directional towards the lizard's snout. The directionality is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, these principles were transferred to technical prototype design and manufacturing. Capillary structures, 50 μm to 300 μm wide and approx. 70 μm deep, were realized by use of a pulsed picosecond laser in hot working tool steel, hardened to 52 HRC. In order to achieve highest functionality, strategies were developed to minimize potential structural inaccuracies, which can occur at the bottom of the capillary structures caused by the laser process. Such inaccuracies are in the range of 10 μm to 15 μm and form sub-capillary structures with greater capillary forces than the main channels. Hence, an Acceleration Compensation Algorithm was developed for the laser process to minimize or even avoid these inaccuracies. The capillary design was also identified to have substantial influence; by a hexagonal capillary network of non-parallel capillaries potential influences of sub-capillaries on the functionality were reduced to realize a robust passive directional capillary transport. Such smart surface structures can lead to improvements of technical systems by decreasing energy consumption and increasing the resource efficiency.

  10. Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda)

    Czech Academy of Sciences Publication Activity Database

    Štefka, Jan; Hypša, Václav; Scholz, Tomáš

    2009-01-01

    Roč. 18, č. 6 (2009), s. 1187-1206 ISSN 0962-1083 R&D Projects: GA MŠk LC06073; GA ČR GA524/08/0885; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : cryptic speciation * geographical isolation * host specificity * microsatellites * parasite * population structure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 5.960, year: 2009

  11. Robust and Secure Watermarking Using Sparse Information of Watermark for Biometric Data Protection

    Directory of Open Access Journals (Sweden)

    Rohit M Thanki

    2016-08-01

    Full Text Available Biometric based human authentication system is used for security purpose in many organizations in the present world. This biometric authentication system has several vulnerable points. Two of vulnerable points are protection of biometric templates at system database and protection of biometric templates at communication channel between two modules of biometric authentication systems. In this paper proposed a robust watermarking scheme using the sparse information of watermark biometric to secure vulnerable point like protection of biometric templates at the communication channel of biometric authentication systems. A compressive sensing theory procedure is used for generation of sparse information on watermark biometric data using detail wavelet coefficients. Then sparse information of watermark biometric data is embedded into DCT coefficients of host biometric data. This proposed scheme is robust to common signal processing and geometric attacks like JPEG compression, adding noise, filtering, and cropping, histogram equalization. This proposed scheme has more advantages and high quality measures compared to existing schemes in the literature.

  12. Quasipolynomial Approach to Simultaneous Robust Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Nikolaj Semenič

    2014-01-01

    Full Text Available A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.

  13. Measure of robustness for complex networks

    Science.gov (United States)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect

  14. Sunyaev–Zel’Dovich Signal from Quasar Hosts: Implications for Detection of Quasar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Dhruba Dutta; Chatterjee, Suchetana, E-mail: dhruba.duttachowdhury@yale.edu [Department of Physics, Presidency University, Kolkata, 700073 (India)

    2017-04-10

    Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev–Zel’dovich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars, we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to an unconstrained high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift ( z < 1.5) from our analysis. However, at higher redshifts ( z > 2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.

  15. Sunyaev–Zel’Dovich Signal from Quasar Hosts: Implications for Detection of Quasar Feedback

    International Nuclear Information System (INIS)

    Chowdhury, Dhruba Dutta; Chatterjee, Suchetana

    2017-01-01

    Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev–Zel’dovich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars, we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to an unconstrained high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift ( z < 1.5) from our analysis. However, at higher redshifts ( z > 2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.

  16. Robust Optimization Model for Production Planning Problem under Uncertainty

    Directory of Open Access Journals (Sweden)

    Pembe GÜÇLÜ

    2017-01-01

    Full Text Available Conditions of businesses change very quickly. To take into account the uncertainty engendered by changes has become almost a rule while planning. Robust optimization techniques that are methods of handling uncertainty ensure to produce less sensitive results to changing conditions. Production planning, is to decide from which product, when and how much will be produced, with a most basic definition. Modeling and solution of the Production planning problems changes depending on structure of the production processes, parameters and variables. In this paper, it is aimed to generate and apply scenario based robust optimization model for capacitated two-stage multi-product production planning problem under parameter and demand uncertainty. With this purpose, production planning problem of a textile company that operate in İzmir has been modeled and solved, then deterministic scenarios’ and robust method’s results have been compared. Robust method has provided a production plan that has higher cost but, will result close to feasible and optimal for most of the different scenarios in the future.

  17. Robust Semi-Supervised Manifold Learning Algorithm for Classification

    Directory of Open Access Journals (Sweden)

    Mingxia Chen

    2018-01-01

    Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.

  18. Robustness of Visual Place Cells in Dynamic Indoor and Outdoor Environment

    Directory of Open Access Journals (Sweden)

    C. Giovannangeli

    2006-06-01

    Full Text Available In this paper, a model of visual place cells (PCs based on precise neurobiological data is presented. The robustness of the model in real indoor and outdoor environments is tested. Results show that the interplay between neurobiological modelling and robotic experiments can promote the understanding of the neural structures and the achievement of robust robot navigation algorithms. Short Term Memory (STM, soft competition and sparse coding are important for both landmark identification and computation of PC activities. The extension of the paradigm to outdoor environments has confirmed the robustness of the vision-based model and pointed to improvements in order to further foster its performance.

  19. An investigation of the co-evolutionary relationships between onchobothriid tapeworms and their elasmobranch hosts.

    Science.gov (United States)

    Caira, J N; Jensen, K

    2001-07-01

    limited available data suggest that, at least in this system, strict host specificity is not necessarily indicative of strict co-evolution. This study was extremely limited by the lack of available robust phylogenies for onchobothriids and elasmobranchs.

  20. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  1. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  2. Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    Science.gov (United States)

    Lee, Yun; Lafontaine Rivera, Jimmy G; Liao, James C

    2014-09-01

    Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have evolved such that they are intrinsically robust in their network structure. In this article, we presented Ensemble Modeling for Robustness Analysis (EMRA), which combines a continuation method with the Ensemble Modeling approach, for investigating the robustness issue of non-native pathways. EMRA investigates a large ensemble of reference models with different parameters, and determines the effects of parameter drifting until a bifurcation point, beyond which a stable steady state disappears and system failure occurs. A pathway is considered to have high bifurcational robustness if the probability of system failure is low in the ensemble. To demonstrate the utility of EMRA, we investigate the bifurcational robustness of two synthetic central metabolic pathways that achieve carbon conservation: non-oxidative glycolysis and reverse glyoxylate cycle. With EMRA, we determined the probability of system failure of each design and demonstrated that alternative designs of these pathways indeed display varying degrees of bifurcational robustness. Furthermore, we demonstrated that target selection for flux improvement should consider the trade-offs between robustness and performance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs

    Science.gov (United States)

    Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2018-03-01

    Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.

  4. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection.

    Science.gov (United States)

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng'an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-05-06

    Aerolysins are virulence factors belonging to the bacterial β-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.

  5. Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Directory of Open Access Journals (Sweden)

    M. Cedillo-Hernandez

    2015-04-01

    Full Text Available In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR, Visual Information Fidelity (VIF and Structural Similarity Index (SSIM. The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided.

  6. Robust Layout Synthesis of a MEM Crab-Leg Resonator Using a Constrained Genetic Algorithm

    DEFF Research Database (Denmark)

    Fan, Zhun; Achiche, Sofiane

    2007-01-01

    The research work carried out in this paper introduces a robust design method for layout synthesis of MEM resonator subject to inherent geometric uncertainties such as the fabrication error on the sidewall of the structure. The robust design problem is formulated as a multi-objective constrained...

  7. Host partitioning by parasites in an intertidal crustacean community.

    Science.gov (United States)

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  8. A host-endoparasite network of Neotropical marine fish: are there organizational patterns?

    Science.gov (United States)

    Bellay, Sybelle; Lima, Dilermando P; Takemoto, Ricardo M; Luque, José L

    2011-12-01

    Properties of ecological networks facilitate the understanding of interaction patterns in host-parasite systems as well as the importance of each species in the interaction structure of a community. The present study evaluates the network structure, functional role of all species and patterns of parasite co-occurrence in a host-parasite network to determine the organization level of a host-parasite system consisting of 170 taxa of gastrointestinal metazoans of 39 marine fish species on the coast of Brazil. The network proved to be nested and modular, with a low degree of connectance. Host-parasite interactions were influenced by host phylogeny. Randomness in parasite co-occurrence was observed in most modules and component communities, although species segregation patterns were also observed. The low degree of connectance in the network may be the cause of properties such as nestedness and modularity, which indicate the presence of a high number of peripheral species. Segregation patterns among parasite species in modules underscore the role of host specificity. Knowledge of ecological networks allows detection of keystone species for the maintenance of biodiversity and the conduction of further studies on the stability of networks in relation to frequent environmental changes.

  9. Emergency rabies control in a community of two high-density hosts

    Directory of Open Access Journals (Sweden)

    Singer Alexander

    2012-06-01

    Full Text Available Abstract Background Rabies is a fatal viral disease that potentially can affect all mammals. Terrestrial rabies is not present in the United Kingdom and has been eliminated from Western Europe. Nevertheless the possibility remains that rabies could be introduced to England, where it would find two potentially suitable hosts, red foxes and badgers. With the aim to analyse the spread and emergency control of rabies in this two species host community, a simulation model was constructed. Different control strategies involving anti-rabies vaccination and population culling were developed, considering control application rates, spatial extent and timing. These strategies were evaluated for efficacy and feasibility to control rabies in hypothetical rural areas in the South of England immediately after a disease outbreak. Results The model confirmed that both fox and badger populations, separately, were competent hosts for the spread of rabies. Realistic vaccination levels were not sufficient to control rabies in high-density badger populations. The combined species community was a very strong rabies host. However, disease spread within species appeared to be more important than cross-species infection. Thus, the drivers of epidemiology depend on the potential of separate host species to sustain the disease. To control a rabies outbreak in the two species, both species had to be targeted. Realistic and robust control strategies involved vaccination of foxes and badgers, but also required badger culling. Although fox and badger populations in the UK are exceptionally dense, an outbreak of rabies can be controlled with a higher than 90% chance, if control response is quick and follows a strict regime. This requires surveillance and forceful and repeated control campaigns. In contrast, an uncontrolled rabies outbreak in the South of England would quickly develop into a strong epizootic involving tens of thousands of rabid foxes and badgers. Conclusions If

  10. Design optimization for cost and quality: The robust design approach

    Science.gov (United States)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  11. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  12. Empirical evaluation of neutral interactions in host-parasite networks.

    Science.gov (United States)

    Canard, E F; Mouquet, N; Mouillot, D; Stanko, M; Miklisova, D; Gravel, D

    2014-04-01

    While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization.

  13. Robust and distributed hypothesis testing

    CERN Document Server

    Gül, Gökhan

    2017-01-01

    This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the boo...

  14. Robustness Property of Robust-BD Wald-Type Test for Varying-Dimensional General Linear Models

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2018-03-01

    Full Text Available An important issue for robust inference is to examine the stability of the asymptotic level and power of the test statistic in the presence of contaminated data. Most existing results are derived in finite-dimensional settings with some particular choices of loss functions. This paper re-examines this issue by allowing for a diverging number of parameters combined with a broader array of robust error measures, called “robust- BD ”, for the class of “general linear models”. Under regularity conditions, we derive the influence function of the robust- BD parameter estimator and demonstrate that the robust- BD Wald-type test enjoys the robustness of validity and efficiency asymptotically. Specifically, the asymptotic level of the test is stable under a small amount of contamination of the null hypothesis, whereas the asymptotic power is large enough under a contaminated distribution in a neighborhood of the contiguous alternatives, thus lending supports to the utility of the proposed robust- BD Wald-type test.

  15. The Bcl-2 Family in Host-Virus Interactions.

    Science.gov (United States)

    Kvansakul, Marc; Caria, Sofia; Hinds, Mark G

    2017-10-06

    Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.

  16. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  17. Simulation model structure numerically robust to changes in magnitude and combination of input and output variables

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1999-01-01

    Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....

  18. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces.

    Science.gov (United States)

    Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan

    2018-01-01

    Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as

  19. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  20. Image-adaptive and robust digital wavelet-domain watermarking for images

    Science.gov (United States)

    Zhao, Yi; Zhang, Liping

    2018-03-01

    We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.

  1. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    Science.gov (United States)

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction

  2. Robust structural identification via polyhedral template matching

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Schmidt, Søren; Schiøtz, Jakob

    2016-01-01

    Successful scientific applications of large-scale molecular dynamics often rely on automated methods for identifying the local crystalline structure of condensed phases. Many existing methods for structural identification, such as common neighbour analysis, rely on interatomic distances (or thres...... is made available under a Free and Open Source Software license....

  3. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  4. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  5. Robust filtering and prediction for systems with embedded finite-state Markov-Chain dynamics

    International Nuclear Information System (INIS)

    Pate, E.B.

    1986-01-01

    This research developed new methodologies for the design of robust near-optimal filters/predictors for a class of system models that exhibit embedded finite-state Markov-chain dynamics. These methodologies are developed through the concepts and methods of stochastic model building (including time-series analysis), game theory, decision theory, and filtering/prediction for linear dynamic systems. The methodology is based on the relationship between the robustness of a class of time-series models and quantization which is applied to the time series as part of the model identification process. This relationship is exploited by utilizing the concept of an equivalence, through invariance of spectra, between the class of Markov-chain models and the class of autoregressive moving average (ARMA) models. This spectral equivalence permits a straightforward implementation of the desirable robust properties of the Markov-chain approximation in a class of models which may be applied in linear-recursive form in a linear Kalman filter/predictor structure. The linear filter/predictor structure is shown to provide asymptotically optimal estimates of states which represent one or more integrations of the Markov-chain state. The development of a new saddle-point theorem for a game based on the Markov-chain model structure gives rise to a technique for determining a worst case Markov-chain process, upon which a robust filter/predictor design if based

  6. Investigation on changes of modularity and robustness by edge-removal mutations in signaling networks.

    Science.gov (United States)

    Truong, Cong-Doan; Kwon, Yung-Keun

    2017-12-21

    Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks. In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis. Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.

  7. Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Nason, John D; Heard, Stephen B; Williams, Frederick R

    2002-07-01

    Careful study of apparently generalist phytophagous insects often reveals that they instead represent complexes of genetically differentiated host races or cryptic species. The goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis, attacks two goldenrods in the Solidago canadensis complex: S. altissima and S. gigantea (Asteraceae). We tested for host-associated genetic differentiation in G. gallaesolidaginis via analysis of variation at 12 allozyme loci among larvae collected at six sites in Iowa, Minnesota, and Nebraska. Gnorimoschema gallaesolidaginis from each host are highly polymorphic (3.6-4.7 alleles/locus and expected heterozygosity 0.28-0.38 within site-host combinations). Although there were no fixed differences between larvae from S. altissima and S. gigantea at any site, these represent well differentiated host forms, with 11 of 12 loci showing significantly different allele frequencies between host-associated collections at one or more sites. Host plant has a larger effect on genetic structure among populations than does location (Wright's FST = 0.16 between host forms vs. F(ST) = 0.061 and 0.026 among altissima and gigantea populations, respectively). The estimated F(ST) between host forms suggests that the historical effective rate of gene flow has been low (N(e)m approximately 1.3). Consistent with this historical estimate is the absence of detectable recombinant (hybrid and introgressant between host form) individuals in contemporary populations (none of 431 genotyped individuals). Upper 95% confidence limits for the frequency of recombinant individuals range from 5% to 9%. Host association is tight, but imperfect, with only one likely example of a host mismatch (a larva galling the wrong host species). Our inferences about hybridization and host association are based on new maximum-likelihood methods for estimating frequencies of genealogical classes (in this case, two parental classes, F1 and F2 hybrids, and backcrosses) in a population

  8. Plug and Play Robust Distributed Control with Ellipsoidal Parametric Uncertainty System

    Directory of Open Access Journals (Sweden)

    Hong Wang-jian

    2016-01-01

    Full Text Available We consider a continuous linear time invariant system with ellipsoidal parametric uncertainty structured into subsystems. Since the design of a local controller uses only information on a subsystem and its neighbours, we combine the plug and play idea and robust distributed control to propose one distributed control strategy for linear system with ellipsoidal parametric uncertainty. Firstly for linear system with ellipsoidal parametric uncertainty, a necessary and sufficient condition for robust state feedback control is proposed by means of linear matrix inequality. If this necessary and sufficient condition is satisfied, this robust state feedback gain matrix can be easily derived to guarantee robust stability and prescribed closed loop performance. Secondly the plug and play idea is introduced in the design process. Finally by one example of aircraft flutter model parameter identification, the efficiency of the proposed control strategy can be easily realized.

  9. Robustness Beamforming Algorithms

    Directory of Open Access Journals (Sweden)

    Sajad Dehghani

    2014-04-01

    Full Text Available Adaptive beamforming methods are known to degrade in the presence of steering vector and covariance matrix uncertinity. In this paper, a new approach is presented to robust adaptive minimum variance distortionless response beamforming make robust against both uncertainties in steering vector and covariance matrix. This method minimize a optimization problem that contains a quadratic objective function and a quadratic constraint. The optimization problem is nonconvex but is converted to a convex optimization problem in this paper. It is solved by the interior-point method and optimum weight vector to robust beamforming is achieved.

  10. A DNA-based nanomechanical device with three robust states.

    Science.gov (United States)

    Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C

    2008-11-11

    DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy intermediate or even a floppy end state. We describe a system in which three different structurally robust end states can be obtained, all resulting from the addition of different set strands to a single floppy intermediate. This system is an extension of the PX-JX(2) DNA device. The three states are related to each other by three different motions, a twofold rotation, a translation of approximately 2.1-2.5 nm, and a twofold screw rotation, which combines these two motions. We demonstrate the transitions by gel electrophoresis, by fluorescence resonance energy transfer, and by atomic force microscopy. The control of this system by DNA strands opens the door to trinary logic and to systems containing N devices that are able to attain 3(N) structural states.

  11. Genetic structure and natural variation associated with host of origin in Penicillium expansum strains causing blue mould.

    Science.gov (United States)

    Sanzani, S M; Montemurro, C; Di Rienzo, V; Solfrizzo, M; Ippolito, A

    2013-07-15

    Blue mould, caused by Penicillium expansum, is one of the most economically damaging postharvest diseases of pome fruits, although it may affect a wider host range, including sweet cherries and table grapes. Several reports on the role of mycotoxins in plant pathogenesis have been published, but few focussed on the influence of mycotoxins on the variation in host preference amongst producing fungi. In the present study the influence of the host on P. expansum pathogenicity/virulence was investigated, focussing mainly on the relationship with patulin production. Three P. expansum strain groups, originating from apples, sweet cherries, and table grapes (7 strains per host) were grown on their hosts of isolation and on artificial media derived from them. Strains within each P. expansum group proved to be more aggressive and produced more patulin than the other two groups under evaluation when grown on the host from which they originated. Table grape strains were the most aggressive (81% disease incidence) and strongest patulin producers (up to 554μg/g). The difference in aggressiveness amongst strains was appreciable only in the presence of a living host, suggesting that the complex pathogen-host interaction significantly influenced the ability of P. expansum to cause the disease. Incidence/severity of the disease and patulin production proved to be positively correlated, supporting the role of patulin as virulence/pathogenicity factor. The existence of genetic variation amongst isolates was confirmed by the High Resolution Melting method that was set up herein, which permitted discrimination of P. expansum from other species (P. chrysogenum and P. crustosum) and, within the same species, amongst the host of origin. Host effect on toxin production appeared to be exerted at a transcriptional level. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  13. Planning for robust reserve networks using uncertainty analysis

    Science.gov (United States)

    Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.

    2006-01-01

    Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.

  14. Structural robustness with suboptimal responses for linear state space model

    Science.gov (United States)

    Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan

    1989-01-01

    A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.

  15. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    Directory of Open Access Journals (Sweden)

    Fillipe L. R. do Carmo

    2018-04-01

    Full Text Available Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp, this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs, and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.

  16. Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats.

    Science.gov (United States)

    Wilder, Aryn P; Kunz, Thomas H; Sorenson, Michael D

    2015-11-01

    Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White-nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis. © 2015 John Wiley & Sons Ltd.

  17. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  18. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NARCIS (Netherlands)

    Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S.

    2017-01-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source

  19. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  20. Markov chain algorithms: a template for building future robust low-power systems

    Science.gov (United States)

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  1. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    Science.gov (United States)

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host

  2. Robust Inference of Population Structure for Ancestry Prediction and Correction of Stratification in the Presence of Relatedness

    Science.gov (United States)

    Conomos, Matthew P.; Miller, Mike; Thornton, Timothy

    2016-01-01

    Population structure inference with genetic data has been motivated by a variety of applications in population genetics and genetic association studies. Several approaches have been proposed for the identification of genetic ancestry differences in samples where study participants are assumed to be unrelated, including principal components analysis (PCA), multi-dimensional scaling (MDS), and model-based methods for proportional ancestry estimation. Many genetic studies, however, include individuals with some degree of relatedness, and existing methods for inferring genetic ancestry fail in related samples. We present a method, PC-AiR, for robust population structure inference in the presence of known or cryptic relatedness. PC-AiR utilizes genome-screen data and an efficient algorithm to identify a diverse subset of unrelated individuals that is representative of all ancestries in the sample. The PC-AiR method directly performs PCA on the identified ancestry representative subset and then predicts components of variation for all remaining individuals based on genetic similarities. In simulation studies and in applications to real data from Phase III of the HapMap Project, we demonstrate that PC-AiR provides a substantial improvement over existing approaches for population structure inference in related samples. We also demonstrate significant efficiency gains, where a single axis of variation from PC-AiR provides better prediction of ancestry in a variety of structure settings than using ten (or more) components of variation from widely used PCA and MDS approaches. Finally, we illustrate that PC-AiR can provide improved population stratification correction over existing methods in genetic association studies with population structure and relatedness. PMID:25810074

  3. The most vagile host as the main determinant of population connectivity in marine macroparasites

    DEFF Research Database (Denmark)

    Feis, Marieke; Thieltges, David W.; Jensen, K.T.

    2015-01-01

    in the sea. Here, we tested whether a marine trematode parasite that utilises migratory birds exhibited weaker population genetic structure than those whose life cycle utilises marine fish as the vagile host. Part of the mitochondrial cytochrome c oxidase 1 (COI) gene was sequenced from individual sporocysts...... that populations of parasites with only freshwater hosts are more structured than those with terrestrial or airborne hosts. Until now, the same has not been tested for marine systems, where, in theory, a fully marine life cycle might sustain high dispersal rates because of the absence of obvious physical barriers...

  4. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    Science.gov (United States)

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  5. Hierarchical, decentralized control system for large-scale smart-structures

    International Nuclear Information System (INIS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-01-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown. (paper)

  6. Robust portfolio choice with ambiguity and learning about return predictability

    DEFF Research Database (Denmark)

    Larsen, Linda Sandris; Branger, Nicole; Munk, Claus

    2013-01-01

    We analyze the optimal stock-bond portfolio under both learning and ambiguity aversion. Stock returns are predictable by an observable and an unobservable predictor, and the investor has to learn about the latter. Furthermore, the investor is ambiguity-averse and has a preference for investment...... strategies that are robust to model misspecifications. We derive a closed-form solution for the optimal robust investment strategy. We find that both learning and ambiguity aversion impact the level and structure of the optimal stock investment. Suboptimal strategies resulting either from not learning...... or from not considering ambiguity can lead to economically significant losses....

  7. International Conference on Robust Statistics

    CERN Document Server

    Filzmoser, Peter; Gather, Ursula; Rousseeuw, Peter

    2003-01-01

    Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.

  8. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    Science.gov (United States)

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  9. Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs

    Science.gov (United States)

    Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun

    2018-03-01

    Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.

  10. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  11. Adaptive Robust Motion Control of Direct-Drive DC Motors with Continuous Friction Compensation

    Directory of Open Access Journals (Sweden)

    Jianyong Yao

    2013-01-01

    Full Text Available Uncertainties including the structured and unstructured, especially the nonlinear frictions, always exist in physical servo systems and degrade their tracking accuracy. In this paper, a practical method named adaptive robust controller (ARC is synthesized with a continuous differentiable friction model for high accuracy motion control of a direct-drive dc motor, which results in a continuous control input and thus is more suitable for application. To further reduce the noise sensitivity and improve the tracking accuracy, a desired compensation version of the proposed adaptive robust controller is also developed and its stability is guaranteed by a proper robust law. The proposed controllers not only account for the structured uncertainties (e.g., parametric uncertainties but also for the unstructured uncertainties (e.g., unconsidered nonlinear frictions. Furthermore, the controllers theoretically guarantee a prescribed output tracking transient performance and final tracking accuracy in both structured and unstructured uncertainties while achieving asymptotic output tracking in the absence of unstructured uncertainties, which is very important for high accuracy control of motion systems. Extensive comparative experimental results are obtained to verify the high-performance nature of the proposed control strategies.

  12. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  13. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]....

  14. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    Science.gov (United States)

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  15. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  16. Robust permanence for ecological equations with internal and external feedbacks.

    Science.gov (United States)

    Patel, Swati; Schreiber, Sebastian J

    2018-07-01

    Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecological models accounting for internal and external feedbacks. Specifically, we use average Lyapunov functions and Morse decompositions to develop sufficient and necessary conditions for robust permanence, a form of coexistence robust to large perturbations of the population densities and small structural perturbations of the models. We illustrate how our results can be applied to verify permanence in non-autonomous models, structured population models, including those with frequency-dependent feedbacks, and models of eco-evolutionary dynamics. In these applications, we discuss how our results relate to previous results for models with particular types of feedbacks.

  17. Robust two degree of freedom vehicle steering control satisfying mixed sensitivity constraint

    OpenAIRE

    Aksun-Güvenc, B.; Güvenc, L.; Odenthal, D.; Bünte, T.

    2001-01-01

    Robust steering control is used here for improving the yaw dynamics of a passenger car. A specific two degree of freedom control structure is adapted to the vehicle yaw dynamics problem and shown to robustly improve performance. The design study is based on six operating conditions for vehicle speed and the coefficient of friction between the tires and the road representing the operating domain of the vehicle. The relevant design specifications are formulated as attaining Hurwitz stability a...

  18. Robust Trust in Expert Testimony

    Directory of Open Access Journals (Sweden)

    Christian Dahlman

    2015-05-01

    Full Text Available The standard of proof in criminal trials should require that the evidence presented by the prosecution is robust. This requirement of robustness says that it must be unlikely that additional information would change the probability that the defendant is guilty. Robustness is difficult for a judge to estimate, as it requires the judge to assess the possible effect of information that the he or she does not have. This article is concerned with expert witnesses and proposes a method for reviewing the robustness of expert testimony. According to the proposed method, the robustness of expert testimony is estimated with regard to competence, motivation, external strength, internal strength and relevance. The danger of trusting non-robust expert testimony is illustrated with an analysis of the Thomas Quick Case, a Swedish legal scandal where a patient at a mental institution was wrongfully convicted for eight murders.

  19. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  20. Robust topology optimization accounting for spatially varying manufacturing errors

    DEFF Research Database (Denmark)

    Schevenels, M.; Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    This paper presents a robust approach for the design of macro-, micro-, or nano-structures by means of topology optimization, accounting for spatially varying manufacturing errors. The focus is on structures produced by milling or etching; in this case over- or under-etching may cause parts...... optimization problem is formulated in a probabilistic way: the objective function is defined as a weighted sum of the mean value and the standard deviation of the structural performance. The optimization problem is solved by means of a Monte Carlo method: in each iteration of the optimization scheme, a Monte...

  1. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.

    Directory of Open Access Journals (Sweden)

    Brian L Weiss

    Full Text Available Tsetse flies (Glossina spp. vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb and epithelial (inducible nitric oxide synthase and dual oxidase immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo adults present a structurally compromised peritrophic matrix (PM, which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results

  2. Qualitative Robustness in Estimation

    Directory of Open Access Journals (Sweden)

    Mohammed Nasser

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif";} Qualitative robustness, influence function, and breakdown point are three main concepts to judge an estimator from the viewpoint of robust estimation. It is important as well as interesting to study relation among them. This article attempts to present the concept of qualitative robustness as forwarded by first proponents and its later development. It illustrates intricacies of qualitative robustness and its relation with consistency, and also tries to remove commonly believed misunderstandings about relation between influence function and qualitative robustness citing some examples from literature and providing a new counter-example. At the end it places a useful finite and a simulated version of   qualitative robustness index (QRI. In order to assess the performance of the proposed measures, we have compared fifteen estimators of correlation coefficient using simulated as well as real data sets.

  3. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  4. Synchronization of a class of chaotic signals via robust observer design

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco 02200, Mexico, D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, San Pablo 180, Reynosa-Tamaulipas, Azcapotzalco 02200, Mexico, D.F. (Mexico); Departamento de Control Automatico, CINVESTAV IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-07-15

    In this paper the signal synchronization of a class of chaotic systems based on robust observer design is tackled. The task is the synchronization of the signals generated by two Chen oscillators with different initial condition. The proposed observer is robust against model uncertainties and noisy output measurements. An alternative system representation is proposed to transform the measured disturbance onto system disturbance, which leads a more adequate observer structure. The proposed methodology contains an uncertainty estimator based on the predictive contribution to infer the unobservable uncertainties and corrective contribution to estimate the observable uncertainties; which provides robustness against noisy measurements and model uncertainties. Convergence analysis of the proposed estimation methodology is realized, analyzing the dynamic equation of the estimation error, where asymptotic convergence is shown. Numerical experiments illustrate the good performance of the proposed methodology.

  5. Synchronization of a class of chaotic signals via robust observer design

    International Nuclear Information System (INIS)

    Aguilar-Lopez, Ricardo; Martinez-Guerra, Rafael

    2008-01-01

    In this paper the signal synchronization of a class of chaotic systems based on robust observer design is tackled. The task is the synchronization of the signals generated by two Chen oscillators with different initial condition. The proposed observer is robust against model uncertainties and noisy output measurements. An alternative system representation is proposed to transform the measured disturbance onto system disturbance, which leads a more adequate observer structure. The proposed methodology contains an uncertainty estimator based on the predictive contribution to infer the unobservable uncertainties and corrective contribution to estimate the observable uncertainties; which provides robustness against noisy measurements and model uncertainties. Convergence analysis of the proposed estimation methodology is realized, analyzing the dynamic equation of the estimation error, where asymptotic convergence is shown. Numerical experiments illustrate the good performance of the proposed methodology

  6. A DNA-based nanomechanical device with three robust states

    OpenAIRE

    Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2008-01-01

    DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy interme...

  7. Robustness in econometrics

    CERN Document Server

    Sriboonchitta, Songsak; Huynh, Van-Nam

    2017-01-01

    This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

  8. Robust Reliability or reliable robustness? - Integrated consideration of robustness and reliability aspects

    DEFF Research Database (Denmark)

    Kemmler, S.; Eifler, Tobias; Bertsche, B.

    2015-01-01

    products are and vice versa. For a comprehensive understanding and to use existing synergies between both domains, this paper discusses the basic principles of Reliability- and Robust Design theory. The development of a comprehensive model will enable an integrated consideration of both domains...

  9. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Chen Bi-Juan; Deng Zheng; Wang Xian-Cheng; Feng Shao-Min; Yuan Zhen; Zhang Si-Jia; Liu Qing-Qing; Jin Chang-Qing

    2016-01-01

    The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized. Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor. (special topic)

  10. SU-F-T-187: Quantifying Normal Tissue Sparing with 4D Robust Optimization of Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Newpower, M; Ge, S; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To report an approach to quantify the normal tissue sparing for 4D robustly-optimized versus PTV-optimized IMPT plans. Methods: We generated two sets of 90 DVHs from a patient’s 10-phase 4D CT set; one by conventional PTV-based optimization done in the Eclipse treatment planning system, and the other by an in-house robust optimization algorithm. The 90 DVHs were created for the following scenarios in each of the ten phases of the 4DCT: ± 5mm shift along x, y, z; ± 3.5% range uncertainty and a nominal scenario. A Matlab function written by Gay and Niemierko was modified to calculate EUD for each DVH for the following structures: esophagus, heart, ipsilateral lung and spinal cord. An F-test determined whether or not the variances of each structure’s DVHs were statistically different. Then a t-test determined if the average EUDs for each optimization algorithm were statistically significantly different. Results: T-test results showed each structure had a statistically significant difference in average EUD when comparing robust optimization versus PTV-based optimization. Under robust optimization all structures except the spinal cord received lower EUDs than PTV-based optimization. Using robust optimization the average EUDs decreased 1.45% for the esophagus, 1.54% for the heart and 5.45% for the ipsilateral lung. The average EUD to the spinal cord increased 24.86% but was still well below tolerance. Conclusion: This work has helped quantify a qualitative relationship noted earlier in our work: that robust optimization leads to plans with greater normal tissue sparing compared to PTV-based optimization. Except in the case of the spinal cord all structures received a lower EUD under robust optimization and these results are statistically significant. While the average EUD to the spinal cord increased to 25.06 Gy under robust optimization it is still well under the TD50 value of 66.5 Gy from Emami et al. Supported in part by the NCI U19 CA021239.

  11. Robust visual tracking via multiscale deep sparse networks

    Science.gov (United States)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  12. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  14. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  15. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  16. Dynamic robustness of knowledge collaboration network of open source product development community

    Science.gov (United States)

    Zhou, Hong-Li; Zhang, Xiao-Dong

    2018-01-01

    As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.

  17. Importance of host feeding for parasitoids that attack honeydew-producing hosts

    NARCIS (Netherlands)

    Burger, J.M.S.; Komany, A.; Lenteren, van J.C.; Vet, L.E.M.

    2005-01-01

    Insect parasitoids lay their eggs in arthropods. Some parasitoid species not only use their arthropod host for oviposition but also for feeding. Host feeding provides nutrients to the adult female parasitoid. However, in many species, host feeding destroys an opportunity to oviposit. For parasitoids

  18. Host defense, dendritic cells and the human lung

    NARCIS (Netherlands)

    J.M.W. van Haarst (Jan Maarten)

    1995-01-01

    textabstractHost defense mechanisms protect the body against microorganisms and other foreign structures. These mechanisms can be divided in nonspecific, or innate, and specific, or acquired, immunity. In both branches of immunity the several types of leukocytes (white blood cells) play a dominant

  19. Effects of host species and environment on the skin microbiome of Plethodontid salamanders

    Science.gov (United States)

    Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2018-01-01

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that

  20. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene...... family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...... on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host...

  1. Principle of a 'retro reflecting' or 'backfire' LH antenna. A robust efficiently cooled launching structure for LH waves in reactor grade plasmas

    International Nuclear Information System (INIS)

    Bibet, Ph.; Litaudon, X.; Moreau, D.

    1994-01-01

    Up to now, lower hybrid current drive launchers have been made of waveguide arrays. To extrapolate present techniques despite the thermal power load and the mechanical stress, it is necessary to develop an advanced launcher concept which is simpler and more robust. To simplify the antennas between RF vacuum windows and plasma, studies have been carried, for example, the hyperguide for JET, the toroidal oversized waveguide for JT-60U and the poloidal mode converter for Tore Supra. For plasma-facing components, it has been proposed to use diffraction through rod arrays although this suffers from bad coupling per pass. Here a new concept is given which seems to be robust, and should leave enough space for efficient water cooling. The front part near plasma can be easily replaced by remote handling. Its principle is explained, and the description is made. The coupling properties of the proposed structure have been studied by using the SWAN code, and good agreement between the SWAN calculation and the coupling measurement performed at Tore Supra has been reported previously. (K.I.)

  2. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  3. Robust Backstepping Control for Cold Rolling Main Drive System with Nonlinear Uncertainties

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-01-01

    Full Text Available The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of strip material quality, is built. By transformation, the lower triangular structure form of main drive system is obtained. The backstepping algorithm based on signal compensation is proposed to design a linear time-invariant (LTI robust controller, including a nominal controller and a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is also appropriated to high speed dynamic rolling process.

  4. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  5. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  6. Robustness in Railway Operations (RobustRailS)

    DEFF Research Database (Denmark)

    Jensen, Jens Parbo; Nielsen, Otto Anker

    This study considers the problem of enhancing railway timetable robustness without adding slack time, hence increasing the travel time. The approach integrates a transit assignment model to assess how passengers adapt their behaviour whenever operations are changed. First, the approach considers...

  7. Robust and Air-Stable Sandwiched Organo-Lead Halide Perovskites for Photodetector Applications

    KAUST Repository

    Mohammed, Omar F.; Banavoth, Murali; Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Pan, Jun; Liu, Jiakai; Peng, Wei; Bakr, Osman

    2016-01-01

    We report the simplest possible method to date for fabricating robust, air-stable, sandwiched perovskite photodetectors. Our proposed sandwiched structure is devoid of electron or hole transporting layers and also the expensive electrodes

  8. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  9. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki; Umarov, Ramzan; Almasri, Islam; Gao, Xin

    2017-01-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  10. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2017-03-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  11. Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja

    CERN Document Server

    Taskinen, Sara

    2015-01-01

    Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

  12. Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de L.J.; Langevelde, van F.

    2018-01-01

    Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  13. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Robust statistical methods with R

    CERN Document Server

    Jureckova, Jana

    2005-01-01

    Robust statistical methods were developed to supplement the classical procedures when the data violate classical assumptions. They are ideally suited to applied research across a broad spectrum of study, yet most books on the subject are narrowly focused, overly theoretical, or simply outdated. Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on practical application.The authors work from underlying mathematical tools to implementation, paying special attention to the computational aspects. They cover the whole range of robust methods, including differentiable statistical functions, distance of measures, influence functions, and asymptotic distributions, in a rigorous yet approachable manner. Highlighting hands-on problem solving, many examples and computational algorithms using the R software supplement the discussion. The book examines the characteristics of robustness, estimators of real parameter, large sample properties, and goodness-of-fit tests. It...

  15. Study on the influence of optical electronegativity of fluoride host structures on the crystal field components' position of the [Xe]4f15d1-configuration of trivalent praseodymium

    International Nuclear Information System (INIS)

    Herden, Benjamin

    2014-03-01

    As alternative radiation sources for mercury containing lamps LEDs cover the normal range, but efficient alternatives for UV radiations are still not available. Xenon excimer discharge lamps could be candidate as alternatives to mercury low-pressure discharge lamps. The discharge wavelength of these lamps is 172 nm that has to be converted in other spectral ranges. The theses deals with trivalent praseodymium as activator ion in binary and ternary fluoride host structures. The host structure and the crystallographic position of the praseodymium ion influence the development of emissions line and bands and the energetic position of the emission. The results are explained by the interaction of the nephelauxetic effect and the crystal field splitting of 5d orbitals, called optical electronegativity.

  16. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  17. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  18. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  19. Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise

    International Nuclear Information System (INIS)

    Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym

    2008-01-01

    This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method

  20. Parasites affect food web structure primarily through increased diversity and complexity.

    Directory of Open Access Journals (Sweden)

    Jennifer A Dunne

    Full Text Available Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity, particularly when including concomitant links (links from predators to parasites of their prey. However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic

  1. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis

    OpenAIRE

    Ong, Shyue Ping; Richards, William Davidson; Jain, Anubhav; Hautier, Geoffroy; Kocher, Michael; Cholia, Shreyas; Gunter, Dan; Chevrier, Vincent L.; Persson, Kristin A.; Ceder, Gerbrand

    2012-01-01

    We present the Python Materials Genomics (pymatgen) library, a robust, open-source Python library for materials analysis. A key enabler in high-throughput computational materials science efforts is a robust set of software tools to perform initial setup for the calculations (e.g., generation of structures and necessary input files) and post-calculation analysis to derive useful material properties from raw calculated data. The pymatgen library aims to meet these needs by (1) defining core Pyt...

  2. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    Directory of Open Access Journals (Sweden)

    Das Pralay

    2011-05-01

    Full Text Available Abstract Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide, respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.

  3. Robust control design for the plasma horizontal position control on J-TEXT Tokamak

    International Nuclear Information System (INIS)

    Yu, W.Z.; Chen, Z.P.; Zhuang, G.; Wang, Z.J.

    2013-01-01

    It is extremely important for tokamak to control the plasma position during routine discharge. However, the model of plasma in tokamak usually contains much of the uncertainty, such as structured uncertainties and unmodeled dynamics. Compared with the traditional PID control approach, robust control theory is more suitable to handle this problem. In the paper, we propose a H ∞ robust control scheme to control the horizontal position of plasma during the flat-top phase of discharge on Joint Texas Experimental Tokamak (J-TEXT) tokamak. First, the model of our plant for plasma horizontal position control is obtained from the position equilibrium equations. Then the H ∞ robust control framework is used to synthesize the controller. Based on this, an H ∞ controller is designed to minimize the regulation/tracking error. Finally, a comparison study is conducted between the optimized H ∞ robust controller and the traditional PID controller in simulations. The simulation results of the H ∞ robust controller show a significant improvement of the performance with respect to those obtained with traditional PID controller, which is currently used on our machine

  4. H∞ Robust Current Control for DFIG Based Wind Turbine subject to Grid Voltage Distortions

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Gong, Wenming

    2016-01-01

    This paper proposes an H∞ robust current controller for doubly fed induction generator (DFIG) based wind turbines (WTs) subject to grid voltage distortions. The controller is to mitigate the impact of the grid voltage distortions on rotor currents with DFIG parameter perturbation. The grid voltage...... distortions considered include asymmetric voltage dips and grid background harmonics. An uncertain DFIG model is developed with uncertain factors originating from distorted stator voltage, and changed generator parameters due to the flux saturation effect, the skin effect, etc. Weighting functions...... are designed to efficiently track the unbalanced current components and the 5th and 7th background harmonics. The robust stability (RS) and robust performance (RP) of the proposed controller are verified by the structured singular value µ. The performance of the H∞ robust current controller was demonstrated...

  5. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  6. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    Science.gov (United States)

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  7. Efficient Computation of Info-Gap Robustness for Finite Element Models

    International Nuclear Information System (INIS)

    Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.

    2012-01-01

    A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers an alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.

  8. Insect Gallers and Their Plant Hosts: From Omics Data to Systems Biology

    Directory of Open Access Journals (Sweden)

    Caryn N. Oates

    2016-11-01

    Full Text Available Gall-inducing insects are capable of exerting a high level of control over their hosts’ cellular machinery to the extent that the plant’s development, metabolism, chemistry, and physiology are all altered in favour of the insect. Many gallers are devastating pests in global agriculture and the limited understanding of their relationship with their hosts prevents the development of robust management strategies. Omics technologies are proving to be important tools in elucidating the mechanisms involved in the interaction as they facilitate analysis of plant hosts and insect effectors for which little or no prior knowledge exists. In this review, we examine the mechanisms behind insect gall development using evidence from omics-level approaches. The secretion of effector proteins and induced phytohormonal imbalances are highlighted as likely mechanisms involved in gall development. However, understanding how these components function within the system is far from complete and a number of questions need to be answered before this information can be used in the development of strategies to engineer or breed plants with enhanced resistance.

  9. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    Science.gov (United States)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  10. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    Science.gov (United States)

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  11. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    Science.gov (United States)

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  12. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  13. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Robust procedures in chemometrics

    DEFF Research Database (Denmark)

    Kotwa, Ewelina

    properties of the analysed data. The broad theoretical background of robust procedures was given as a very useful supplement to the classical methods, and a new tool, based on robust PCA, aiming at identifying Rayleigh and Raman scatters in excitation-mission (EEM) data was developed. The results show...

  15. Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function

    Directory of Open Access Journals (Sweden)

    Jacob W. Bledsoe

    2018-05-01

    Full Text Available The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae, specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1 or overall composition (weighted and unweighted UniFrac and UniFrac distances showed no correlation with host genetic distances (Rst according to Mantel tests. The microbiota of environmental samples (diet and water were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI. The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while

  16. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  17. Robust canonical correlations: A comparative study

    OpenAIRE

    Branco, JA; Croux, Christophe; Filzmoser, P; Oliveira, MR

    2005-01-01

    Several approaches for robust canonical correlation analysis will be presented and discussed. A first method is based on the definition of canonical correlation analysis as looking for linear combinations of two sets of variables having maximal (robust) correlation. A second method is based on alternating robust regressions. These methods axe discussed in detail and compared with the more traditional approach to robust canonical correlation via covariance matrix estimates. A simulation study ...

  18. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2016-07-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  19. Synthesis of Robust Control System Using Double-Mass Electro-Mechanical

    Directory of Open Access Journals (Sweden)

    O. F. Opeyko

    2009-01-01

    Full Text Available The paper describes conditions under which a single-mass model can be applied for system synthesis where elastic vibrations take place. This measure makes it possible to ensure the required indices of system quality without its structure complication. A small-parameter method is applied in the paper. A ratio of the required characteristic frequency of the synthesized system to own frequency of free vibrations of an elastic member is taken as a small parameter.The synthesized system is a robust (low-sensitive to changes of the object parameters one. Results of mathematical modeling prove the possibility to ensure acceptable indices of quality and robustness of the synthesized system. 

  20. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR.

    Science.gov (United States)

    Kunth, M; Witte, C; Schröder, L

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  1. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  2. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  3. Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate

    OpenAIRE

    Duuren, van, J.B.J.H.

    2011-01-01

    Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate P. putida KT2440 was used as biocatalyst given its versatile and energetically robust metabolism. Therefore, a mutant was generated and a process developed based on which a life cycle assessment (LCA) was performed. Additionally, the growth related parameters were experimentally obtained to constrain the metabolic model iJP815 further. The mutant Pseudomonas putida KT2440-JD1 was deri...

  4. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  5. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    Science.gov (United States)

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-08

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  6. New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems

    Directory of Open Access Journals (Sweden)

    Matthew R. Pennington

    2017-11-01

    Full Text Available Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1, canid alphaherpesvirus 1 (CHV-1 and felid alphaherpesvirus 1 (FHV-1, infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections.

  7. Reduced conservatism in stability robustness bounds by state transformation

    Science.gov (United States)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  8. Intercalation of paracetamol into the hydrotalcite-like host

    Science.gov (United States)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  9. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  10. Robust topology optimization accounting for geometric imperfections

    DEFF Research Database (Denmark)

    Schevenels, M.; Jansen, M.; Lombaert, Geert

    2013-01-01

    performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...... of the EOLE method. In each iteration of the optimization process, the relevant statistics of the structural response are evaluated by means of a Monte Carlo simulation. The proposed methodology is successfully applied to a test problem involving the design of a compliant mechanism (for the first type...

  11. Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity

    OpenAIRE

    Lee, Elizabeth C.; Kelly, Michael R.; Ochocki, Brad M.; Akinwumi, Segun M.; Hamre, Karen E. S.; Tien, Joseph H.; Eisenberg, Marisa C.

    2016-01-01

    Mathematical models of cholera and waterborne disease vary widely in their structures, in terms of transmission pathways, loss of immunity, and other features. These differences may yield different predictions and parameter estimates from the same data. Given the increasing use of models to inform public health decision-making, it is important to assess distinguishability (whether models can be distinguished based on fit to data) and inference robustness (whether model inferences are robust t...

  12. Robust PD Sway Control of a Lifted Load for a Crane Using a Genetic Algorithm

    Science.gov (United States)

    Kawada, Kazuo; Sogo, Hiroyuki; Yamamoto, Toru; Mada, Yasuhiro

    PID control schemes still continue to be widely used for most industrial control systems. This is mainly because PID controllers have simple control structures, and are simple to maintain and tune. However, it is difficult to find a set of suitable control parameters in the case of time-varying and/or nonlinear systems. For such a problem, the robust controller has been proposed.Although it is important to choose the suitable nominal model in designing the robust controller, it is not usually easy.In this paper, a new robust PD controller design scheme is proposed, which utilizes a genetic algorithm.

  13. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit.

    Directory of Open Access Journals (Sweden)

    Franck Tarendeau

    Full Text Available Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design

  14. Robust controller with adaptation within the boundary layer: application to nuclear underwater inspection robot

    International Nuclear Information System (INIS)

    Park, Gee Yong; Yoon, Ji Sup; Hong, Dong Hee; Jeong, Jae Hoo

    2002-01-01

    In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improve control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer. Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement

  15. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  16. THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS

    International Nuclear Information System (INIS)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-01-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm ), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, M d , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ∼25 mJy for 1 M ☉ hosts and a power-law scaling L mm ∝M * 1.5-2.0 . We suggest that a reasonable treatment of dust temperature in the conversion from L mm to M d favors an inherently linear M d ∝M * scaling, with a typical disk-to-star mass ratio of ∼0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ∼40 on the inferred M d (or L mm ) at any given host mass. We argue that this relationship between M d and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the

  17. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts

    Science.gov (United States)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-07-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet

  18. Robust sawtooth period control based on adaptive online optimization

    International Nuclear Information System (INIS)

    Bolder, J.J.; Witvoet, G.; De Baar, M.R.; Steinbuch, M.; Van de Wouw, N.; Haring, M.A.M.; Westerhof, E.; Doelman, N.J.

    2012-01-01

    The systematic design of a robust adaptive control strategy for the sawtooth period using electron cyclotron current drive (ECCD) is presented. Recent developments in extremum seeking control (ESC) are employed to derive an optimized controller structure and offer practical tuning guidelines for its parameters. In this technique a cost function in terms of the desired sawtooth period is optimized online by changing the ECCD deposition location based on online estimations of the gradient of the cost function. The controller design does not require a detailed model of the sawtooth instability. Therefore, the proposed ESC is widely applicable to any sawtoothing plasma or plasma simulation and is inherently robust against uncertainties or plasma variations. Moreover, it can handle a broad class of disturbances. This is demonstrated by time-domain simulations, which show successful tracking of time-varying sawtooth period references throughout the whole operating space, even in the presence of variations in plasma parameters, disturbances and slow launcher mirror dynamics. Due to its simplicity and robustness the proposed ESC is a valuable sawtooth control candidate for any experimental tokamak plasma, and may even be applicable to other fusion-related control problems. (paper)

  19. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    International Nuclear Information System (INIS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-01-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation. (paper)

  20. Distinct temporal roles for the promyelocytic leukaemia (PML protein in the sequential regulation of intracellular host immunity to HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Thamir Alandijany

    2018-01-01

    Full Text Available Detection of viral nucleic acids plays a critical role in the induction of intracellular host immune defences. However, the temporal recruitment of immune regulators to infecting viral genomes remains poorly defined due to the technical difficulties associated with low genome copy-number detection. Here we utilize 5-Ethynyl-2'-deoxyuridine (EdU labelling of herpes simplex virus 1 (HSV-1 DNA in combination with click chemistry to examine the sequential recruitment of host immune regulators to infecting viral genomes under low multiplicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear bodies (PML-NBs rapidly entrapped viral DNA (vDNA leading to a block in viral replication in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma Inducible Protein 16 and the induction of interferon stimulated gene (ISG expression, demonstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes associated with ICP4, and led to the induction of ISG expression. This induced innate immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK-dependent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA polymerase activity is required for the robust induction of ISG expression during HSV-1 infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and innate immunity to HSV-1 infection that are dependent on viral genome delivery to the nucleus and the onset of vDNA replication, respectively. These intracellular host defences are counteracted by ICP0, which targets PML for degradation from the outset of nuclear infection to promote v

  1. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  2. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  3. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack

    Directory of Open Access Journals (Sweden)

    WenJie Kang

    2018-05-01

    Full Text Available Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( N I as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on N I of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS, Disassortative Coupling in Subnets (DCIS, and Random Coupling in Subnets (RCIS. Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of

  4. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.

    Science.gov (United States)

    Kang, WenJie; Hu, Gang; Zhu, PeiDong; Liu, Qiang; Hang, Zhi; Liu, Xin

    2018-05-24

    Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( N I ) as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on N I of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of the smart grid

  5. A robust standard deviation control chart

    NARCIS (Netherlands)

    Schoonhoven, M.; Does, R.J.M.M.

    2012-01-01

    This article studies the robustness of Phase I estimators for the standard deviation control chart. A Phase I estimator should be efficient in the absence of contaminations and resistant to disturbances. Most of the robust estimators proposed in the literature are robust against either diffuse

  6. Spatial structure and nest demography reveal the influence of competition, parasitism and habitat quality on slavemaking ants and their hosts.

    Science.gov (United States)

    Scharf, Inon; Fischer-Blass, Birgit; Foitzik, Susanne

    2011-03-28

    Natural communities are structured by intra-guild competition, predation or parasitism and the abiotic environment. We studied the relative importance of these factors in two host-social parasite ecosystems in three ant communities in Europe (Bavaria) and North America (New York, West Virginia). We tested how these factors affect colony demography, life-history and the spatial pattern of colonies, using a large sample size of more than 1000 colonies. The strength of competition was measured by the distance to the nearest competitor. Distance to the closest social parasite colony was used as a measure of parasitism risk. Nest sites (i.e., sticks or acorns) are limited in these forest ecosystems and we therefore included nest site quality as an abiotic factor in the analysis. In contrast to previous studies based on local densities, we focus here on the positioning and spatial patterns and we use models to compare our predictions to random expectations. Colony demography was universally affected by the size of the nest site with larger and more productive colonies residing in larger nest sites of higher quality. Distance to the nearest competitor negatively influenced host demography and brood production in the Bavarian community, pointing to an important role of competition, while social parasitism was less influential in this community. The New York community was characterized by the highest habitat variability, and productive colonies were clustered in sites of higher quality. Colonies were clumped on finer spatial scales, when we considered only the nearest neighbors, but more regularly distributed on coarser scales. The analysis of spatial positioning within plots often produced different results compared to those based on colony densities. For example, while host and slavemaker densities are often positively correlated, slavemakers do not nest closer to potential host colonies than expected by random. The three communities are differently affected by biotic and

  7. Spatial structure and nest demography reveal the influence of competition, parasitism and habitat quality on slavemaking ants and their hosts

    Directory of Open Access Journals (Sweden)

    Fischer-Blass Birgit

    2011-03-01

    Full Text Available Abstract Background Natural communities are structured by intra-guild competition, predation or parasitism and the abiotic environment. We studied the relative importance of these factors in two host-social parasite ecosystems in three ant communities in Europe (Bavaria and North America (New York, West Virginia. We tested how these factors affect colony demography, life-history and the spatial pattern of colonies, using a large sample size of more than 1000 colonies. The strength of competition was measured by the distance to the nearest competitor. Distance to the closest social parasite colony was used as a measure of parasitism risk. Nest sites (i.e., sticks or acorns are limited in these forest ecosystems and we therefore included nest site quality as an abiotic factor in the analysis. In contrast to previous studies based on local densities, we focus here on the positioning and spatial patterns and we use models to compare our predictions to random expectations. Results Colony demography was universally affected by the size of the nest site with larger and more productive colonies residing in larger nest sites of higher quality. Distance to the nearest competitor negatively influenced host demography and brood production in the Bavarian community, pointing to an important role of competition, while social parasitism was less influential in this community. The New York community was characterized by the highest habitat variability, and productive colonies were clustered in sites of higher quality. Colonies were clumped on finer spatial scales, when we considered only the nearest neighbors, but more regularly distributed on coarser scales. The analysis of spatial positioning within plots often produced different results compared to those based on colony densities. For example, while host and slavemaker densities are often positively correlated, slavemakers do not nest closer to potential host colonies than expected by random. Conclusions The

  8. Robustness of Adaptive Survey Designs to Inaccuracy of Design Parameters

    Directory of Open Access Journals (Sweden)

    Burger Joep

    2017-09-01

    Full Text Available Adaptive survey designs (ASDs optimize design features, given 1 the interactions between the design features and characteristics of sampling units and 2 a set of constraints, such as a budget and a minimum number of respondents. Estimation of the interactions is subject to both random and systematic error. In this article, we propose and evaluate four viewpoints to assess robustness of ASDs to inaccuracy of design parameter estimates: the effect of both imprecision and bias on both ASD structure and ASD performance. We additionally propose three distance measures to compare the structure of ASDs. The methodology is illustrated using a simple simulation study and a more complex but realistic case study on the Dutch Travel Survey. The proposed methodology can be applied to other ASD optimization problems. In our simulation study and case study, the ASD was fairly robust to imprecision, but not to realistic dynamics in the design parameters. To deal with the sensitivity of ASDs to changing design parameters, we recommend to learn and update the design parameters.

  9. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

    Directory of Open Access Journals (Sweden)

    Stinus Lindgreen

    2014-10-01

    Full Text Available Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

  10. DECENTRALIZED SOCIAL NETWORK SERVICE USING THE WEB HOSTING SERVER FOR PRIVACY PRESERVATION

    Directory of Open Access Journals (Sweden)

    Yoonho Nam

    2013-10-01

    Full Text Available In recent years, the number of subscribers of the social network services such as Facebook and Twitter has increased rapidly. In accordance with the increasing popularity of social network services, concerns about user privacy are also growing. Existing social network services have a centralized structure that a service provider collects all the user’s profile and logs until the end of the connection. The information collected typically useful for commercial purposes, but may lead to a serious user privacy violation. The user’s profile can be compromised for malicious purposes, and even may be a tool of surveillance extremely. In this paper, we remove a centralized structure to prevent the service provider from collecting all users’ information indiscriminately, and present a decentralized structure using the web hosting server. The service provider provides only the service applications to web hosting companies, and the user should select a web hosting company that he trusts. Thus, the user’s information is distributed, and the user’s privacy is guaranteed from the service provider.

  11. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Science.gov (United States)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  12. QFT Framework for Robust Tuning of Power System Stabilizers

    DEFF Research Database (Denmark)

    Alavi, Seyyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper discusses the use of conventional quantitative feedback design for Power System Stabilizer (PSS). An appropriate control structure of the PSS that is directly applicable to PSS, is described. Two desired performances are also proposed in order to achieve an overall improvement in damping...... and robustness. The efficiency of the proposed method is demonstrated on Single Machine Infinite Bus (SMIB) power system with level of uncertainty....

  13. Host specificity and the structure of helminth parasite communities of fishes in a Neotropical river in Mexico

    Science.gov (United States)

    Salgado-Maldonado, Guillermo; Novelo-Turcotte, María Teresa; Caspeta-Mandujano, Juan Manuel; Vazquez-Hurtado, Gabriela; Quiroz-Martínez, Benjamin; Mercado-Silva, Norman; Favila, Mario

    2016-01-01

    In a tropical locality of Río La Antigua, Veracruz, Mexico, 11 fish species, represented by 244 individual fish from six freshwater fish families living sympatrically and synchronically, were examined for helminth parasites. A total of 36 taxa of helminths were recorded, 24 autogenic and 12 allogenic forms, including 6 monogeneans, 14 trematodes, 1 cestode, and 15 nematodes. Most helminth taxa were recovered for 10/11 of the component communities we analyzed. The results contribute empirical evidence that host specificity is an important force in the development of helminth communities of freshwater fishes. Each fish family has their own set of parasites, host species belonging to the same taxon share parasite species. High component community similarity among related host species was recorded, demonstrated by high prevalence and abundance, as well as dominance, of autogenic specialist species in each component community. Most autogenic helminth species are numerically and reproductively successful in relatively few host species. Autogenic helminths common in one host species are not common in others. Our findings give empirical support to the idea that low levels of sharing of parasites favor animal coexistence and high species richness, because large phylogenetic differences allow potentially competing animals to consume the same resources without being sensitive of another’s parasites. PMID:28004635

  14. Intercalation of paracetamol into the hydrotalcite-like host

    International Nuclear Information System (INIS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-01-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg–Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets.▪ Highlights: ► Paracetamol was intercalated in Mg–Al hydrotalcite-like host by rehydration/reconstruction procedure. ► Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. ► Molecular simulations showed disordered arrangement of guest molecules in the interlayer. ► Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  15. An algorithm for robust non-linear analysis of radioimmunoassays and other bioassays

    International Nuclear Information System (INIS)

    Normolle, D.P.

    1993-01-01

    The four-parameter logistic function is an appropriate model for many types of bioassays that have continuous response variables, such as radioimmunoassays. By modelling the variance of replicates in an assay, one can modify the usual parameter estimation techniques (for example, Gauss-Newton or Marquardt-Levenberg) to produce parameter estimates for the standard curve that are robust against outlying observations. This article describes the computation of robust (M-) estimates for the parameters of the four-parameter logistic function. It describes techniques for modelling the variance structure of the replicates, modifications to the usual iterative algorithms for parameter estimation in non-linear models, and a formula for inverse confidence intervals. To demonstrate the algorithm, the article presents examples where the robustly estimated four-parameter logistic model is compared with the logit-log and four-parameter logistic models with least-squares estimates. (author)

  16. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    Science.gov (United States)

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities.

    Science.gov (United States)

    Leiman, Petr G; Battisti, Anthony J; Bowman, Valorie D; Stummeyer, Katharina; Mühlenhoff, Martina; Gerardy-Schahn, Rita; Scholl, Dean; Molineux, Ian J

    2007-08-17

    External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.

  18. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  19. Host specialization in ticks and transmission of tick-borne diseases: a review.

    Science.gov (United States)

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  20. Robustness: confronting lessons from physics and biology.

    Science.gov (United States)

    Lesne, Annick

    2008-11-01

    The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self-organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems.