WorldWideScience

Sample records for robust estimation method

  1. Improved stove programs need robust methods to estimate carbon offsets

    OpenAIRE

    Johnson, Michael; Edwards, Rufus; Masera, Omar

    2010-01-01

    Current standard methods result in significant discrepancies in carbon offset accounting compared to approaches based on representative community based subsamples, which provide more realistic assessments at reasonable cost. Perhaps more critically, neither of the currently approved methods incorporates uncertainties inherent in estimates of emission factors or non-renewable fuel usage (fNRB). Since emission factors and fNRB contribute 25% and 47%, respectively, to the overall uncertainty in ...

  2. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  3. A Robust Real Time Direction-of-Arrival Estimation Method for Sequential Movement Events of Vehicles.

    Science.gov (United States)

    Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang

    2018-03-27

    Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.

  4. A new method for robust video watermarking resistant against key estimation attacks

    Science.gov (United States)

    Mitekin, Vitaly

    2015-12-01

    This paper presents a new method for high-capacity robust digital video watermarking and algorithms of embedding and extraction of watermark based on this method. Proposed method uses password-based two-dimensional pseudonoise arrays for watermark embedding, making brute-force attacks aimed at steganographic key retrieval mostly impractical. Proposed algorithm for 2-dimensional "noise-like" watermarking patterns generation also allows to significantly decrease watermark collision probability ( i.e. probability of correct watermark detection and extraction using incorrect steganographic key or password).. Experimental research provided in this work also shows that simple correlation-based watermark detection procedure can be used, providing watermark robustness against lossy compression and watermark estimation attacks. At the same time, without decreasing robustness of embedded watermark, average complexity of the brute-force key retrieval attack can be increased to 1014 watermark extraction attempts (compared to 104-106 for a known robust watermarking schemes). Experimental results also shows that for lowest embedding intensity watermark preserves it's robustness against lossy compression of host video and at the same time preserves higher video quality (PSNR up to 51dB) compared to known wavelet-based and DCT-based watermarking algorithms.

  5. Qualitative Robustness in Estimation

    Directory of Open Access Journals (Sweden)

    Mohammed Nasser

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif";} Qualitative robustness, influence function, and breakdown point are three main concepts to judge an estimator from the viewpoint of robust estimation. It is important as well as interesting to study relation among them. This article attempts to present the concept of qualitative robustness as forwarded by first proponents and its later development. It illustrates intricacies of qualitative robustness and its relation with consistency, and also tries to remove commonly believed misunderstandings about relation between influence function and qualitative robustness citing some examples from literature and providing a new counter-example. At the end it places a useful finite and a simulated version of   qualitative robustness index (QRI. In order to assess the performance of the proposed measures, we have compared fifteen estimators of correlation coefficient using simulated as well as real data sets.

  6. WTA estimates using the method of paired comparison: tests of robustness

    Science.gov (United States)

    Patricia A. Champ; John B. Loomis

    1998-01-01

    The method of paired comparison is modified to allow choices between two alternative gains so as to estimate willingness to accept (WTA) without loss aversion. The robustness of WTA values for two public goods is tested with respect to sensitivity of theWTA measure to the context of the bundle of goods used in the paired comparison exercise and to the scope (scale) of...

  7. More recent robust methods for the estimation of mean and standard deviation of data

    International Nuclear Information System (INIS)

    Kanisch, G.

    2003-01-01

    Outliers in a data set result in biased values of mean and standard deviation. One way to improve the estimation of a mean is to apply tests to identify outliers and to exclude them from the calculations. Tests according to Grubbs or to Dixon, which are frequently used in practice, especially within laboratory intercomparisons, are not very efficient in identifying outliers. Since more than ten years now so-called robust methods are used more and more, which determine mean and standard deviation by iteration and down-weighting values far from the mean, thereby diminishing the impact of outliers. In 1989 the Analytical Methods Committee of the British Royal Chemical Society published such a robust method. Since 1993 the US Environmental Protection Agency published a more efficient and quite versatile method. Mean and standard deviation are calculated by iteration and application of a special weight function for down-weighting outlier candidates. In 2000, W. Cofino et al. published a very efficient robust method which works quite different from the others. It applies methods taken from the basics of quantum mechanics, such as ''wave functions'' associated with each laboratory mean value and matrix algebra (solving eigenvalue problems). In contrast to the other ones, this method includes the individual measurement uncertainties. (orig.)

  8. Modified generalized method of moments for a robust estimation of polytomous logistic model

    Directory of Open Access Journals (Sweden)

    Xiaoshan Wang

    2014-07-01

    Full Text Available The maximum likelihood estimation (MLE method, typically used for polytomous logistic regression, is prone to bias due to both misclassification in outcome and contamination in the design matrix. Hence, robust estimators are needed. In this study, we propose such a method for nominal response data with continuous covariates. A generalized method of weighted moments (GMWM approach is developed for dealing with contaminated polytomous response data. In this approach, distances are calculated based on individual sample moments. And Huber weights are applied to those observations with large distances. Mellow-type weights are also used to downplay leverage points. We describe theoretical properties of the proposed approach. Simulations suggest that the GMWM performs very well in correcting contamination-caused biases. An empirical application of the GMWM estimator on data from a survey demonstrates its usefulness.

  9. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.

    Science.gov (United States)

    Ci, Wenyan; Huang, Yingping

    2016-10-17

    Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.

  10. A robust method for estimating motorbike count based on visual information learning

    Science.gov (United States)

    Huynh, Kien C.; Thai, Dung N.; Le, Sach T.; Thoai, Nam; Hamamoto, Kazuhiko

    2015-03-01

    Estimating the number of vehicles in traffic videos is an important and challenging task in traffic surveillance, especially with a high level of occlusions between vehicles, e.g.,in crowded urban area with people and/or motorbikes. In such the condition, the problem of separating individual vehicles from foreground silhouettes often requires complicated computation [1][2][3]. Thus, the counting problem is gradually shifted into drawing statistical inferences of target objects density from their shape [4], local features [5], etc. Those researches indicate a correlation between local features and the number of target objects. However, they are inadequate to construct an accurate model for vehicles density estimation. In this paper, we present a reliable method that is robust to illumination changes and partial affine transformations. It can achieve high accuracy in case of occlusions. Firstly, local features are extracted from images of the scene using Speed-Up Robust Features (SURF) method. For each image, a global feature vector is computed using a Bag-of-Words model which is constructed from the local features above. Finally, a mapping between the extracted global feature vectors and their labels (the number of motorbikes) is learned. That mapping provides us a strong prediction model for estimating the number of motorbikes in new images. The experimental results show that our proposed method can achieve a better accuracy in comparison to others.

  11. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2015-08-01

    Full Text Available Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method.

  12. Robust estimation and hypothesis testing

    CERN Document Server

    Tiku, Moti L

    2004-01-01

    In statistical theory and practice, a certain distribution is usually assumed and then optimal solutions sought. Since deviations from an assumed distribution are very common, one cannot feel comfortable with assuming a particular distribution and believing it to be exactly correct. That brings the robustness issue in focus. In this book, we have given statistical procedures which are robust to plausible deviations from an assumed mode. The method of modified maximum likelihood estimation is used in formulating these procedures. The modified maximum likelihood estimators are explicit functions of sample observations and are easy to compute. They are asymptotically fully efficient and are as efficient as the maximum likelihood estimators for small sample sizes. The maximum likelihood estimators have computational problems and are, therefore, elusive. A broad range of topics are covered in this book. Solutions are given which are easy to implement and are efficient. The solutions are also robust to data anomali...

  13. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera

    Directory of Open Access Journals (Sweden)

    Wenyan Ci

    2016-10-01

    Full Text Available Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.

  14. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  15. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez

    2013-10-01

    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  16. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....

  17. A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2015-04-01

    Full Text Available With the development of modern society, the scale of the power system is rapidly increased accordingly, and the framework and mode of running of power systems are trending towards more complexity. It is nowadays much more important for the dispatchers to know exactly the state parameters of the power network through state estimation. This paper proposes a robust power system WLS state estimation method integrating a wide-area measurement system (WAMS and SCADA technology, incorporating phasor measurements and the results of the traditional state estimator in a post-processing estimator, which greatly reduces the scale of the non-linear estimation problem as well as the number of iterations and the processing time per iteration. This paper firstly analyzes the wide-area state estimation model in detail, then according to the issue that least squares does not account for bad data and outliers, the paper proposes a robust weighted least squares (WLS method that combines a robust estimation principle with least squares by equivalent weight. The performance assessment is discussed through setting up mathematical models of the distribution network. The effectiveness of the proposed method was proved to be accurate and reliable by simulations and experiments.

  18. Robust statistical methods with R

    CERN Document Server

    Jureckova, Jana

    2005-01-01

    Robust statistical methods were developed to supplement the classical procedures when the data violate classical assumptions. They are ideally suited to applied research across a broad spectrum of study, yet most books on the subject are narrowly focused, overly theoretical, or simply outdated. Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on practical application.The authors work from underlying mathematical tools to implementation, paying special attention to the computational aspects. They cover the whole range of robust methods, including differentiable statistical functions, distance of measures, influence functions, and asymptotic distributions, in a rigorous yet approachable manner. Highlighting hands-on problem solving, many examples and computational algorithms using the R software supplement the discussion. The book examines the characteristics of robustness, estimators of real parameter, large sample properties, and goodness-of-fit tests. It...

  19. Robust AIC with High Breakdown Scale Estimate

    Directory of Open Access Journals (Sweden)

    Shokrya Saleh

    2014-01-01

    Full Text Available Akaike Information Criterion (AIC based on least squares (LS regression minimizes the sum of the squared residuals; LS is sensitive to outlier observations. Alternative criterion, which is less sensitive to outlying observation, has been proposed; examples are robust AIC (RAIC, robust Mallows Cp (RCp, and robust Bayesian information criterion (RBIC. In this paper, we propose a robust AIC by replacing the scale estimate with a high breakdown point estimate of scale. The robustness of the proposed methods is studied through its influence function. We show that, the proposed robust AIC is effective in selecting accurate models in the presence of outliers and high leverage points, through simulated and real data examples.

  20. Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method

    International Nuclear Information System (INIS)

    Alavi, Seyed Arash; Ahmadian, Ali; Aliakbar-Golkar, Masoud

    2015-01-01

    Highlights: • Energy management is necessary in the active distribution network to reduce operation costs. • Uncertainty modeling is essential in energy management studies in active distribution networks. • Point estimate method is a suitable method for uncertainty modeling due to its lower computation time and acceptable accuracy. • In the absence of Probability Distribution Function (PDF) robust optimization has a good ability for uncertainty modeling. - Abstract: Uncertainty can be defined as the probability of difference between the forecasted value and the real value. As this probability is small, the operation cost of the power system will be less. This purpose necessitates modeling of system random variables (such as the output power of renewable resources and the load demand) with appropriate and practicable methods. In this paper, an adequate procedure is proposed in order to do an optimal energy management on a typical micro-grid with regard to the relevant uncertainties. The point estimate method is applied for modeling the wind power and solar power uncertainties, and robust optimization technique is utilized to model load demand uncertainty. Finally, a comparison is done between deterministic and probabilistic management in different scenarios and their results are analyzed and evaluated

  1. Robust power spectral estimation for EEG data.

    Science.gov (United States)

    Melman, Tamar; Victor, Jonathan D

    2016-08-01

    Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Robust estimation for ordinary differential equation models.

    Science.gov (United States)

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  3. PROCESS CAPABILITY ESTIMATION FOR NON-NORMALLY DISTRIBUTED DATA USING ROBUST METHODS - A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Yerriswamy Wooluru

    2016-06-01

    Full Text Available Process capability indices are very important process quality assessment tools in automotive industries. The common process capability indices (PCIs Cp, Cpk, Cpm are widely used in practice. The use of these PCIs based on the assumption that process is in control and its output is normally distributed. In practice, normality is not always fulfilled. Indices developed based on normality assumption are very sensitive to non- normal processes. When distribution of a product quality characteristic is non-normal, Cp and Cpk indices calculated using conventional methods often lead to erroneous interpretation of process capability. In the literature, various methods have been proposed for surrogate process capability indices under non normality but few literature sources offer their comprehensive evaluation and comparison of their ability to capture true capability in non-normal situation. In this paper, five methods have been reviewed and capability evaluation is carried out for the data pertaining to resistivity of silicon wafer. The final results revealed that the Burr based percentile method is better than Clements method. Modelling of non-normal data and Box-Cox transformation method using statistical software (Minitab 14 provides reasonably good result as they are very promising methods for non - normal and moderately skewed data (Skewness <= 1.5.

  4. Robust bearing estimation for 3-component stations

    International Nuclear Information System (INIS)

    CLAASSEN, JOHN P.

    2000-01-01

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the inherent information in the arrival at every step of the process to achieve near-optimal results. In particular the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, and finally to apply bias corrections when calibration information is available to yield a single final estimate. The algorithm was applied to a small but challenging set of events in a seismically active region. It demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted from these findings

  5. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    of such signals from unconstrained frequency estimates (UFEs). A minimum variance distortionless response (MVDR) method is proposed as an optimal solution to minimize the variance of UFEs considering the constraint of integer harmonics. The MVDR filter is designed based on noise statistics making it robust...

  6. Robust methods for data reduction

    CERN Document Server

    Farcomeni, Alessio

    2015-01-01

    Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analy

  7. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    Science.gov (United States)

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-11-20

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  8. Second order statistics of bilinear forms of robust scatter estimators

    KAUST Repository

    Kammoun, Abla

    2015-08-12

    This paper lies in the lineage of recent works studying the asymptotic behaviour of robust-scatter estimators in the case where the number of observations and the dimension of the population covariance matrix grow at infinity with the same pace. In particular, we analyze the fluctuations of bilinear forms of the robust shrinkage estimator of covariance matrix. We show that this result can be leveraged in order to improve the design of robust detection methods. As an example, we provide an improved generalized likelihood ratio based detector which combines robustness to impulsive observations and optimality across the shrinkage parameter, the optimality being considered for the false alarm regulation.

  9. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  10. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  11. Second order statistics of bilinear forms of robust scatter estimators

    KAUST Repository

    Kammoun, Abla; Couillet, Romain; Pascal, Fré dé ric

    2015-01-01

    . In particular, we analyze the fluctuations of bilinear forms of the robust shrinkage estimator of covariance matrix. We show that this result can be leveraged in order to improve the design of robust detection methods. As an example, we provide an improved

  12. Robust position estimation of a mobile vehicle

    International Nuclear Information System (INIS)

    Conan, V.

    1994-01-01

    The ability to estimate the position of a mobile vehicle is a key task for navigation over large distances in complex indoor environments such as nuclear power plants. Schematics of the plants are available, but they are incomplete, as real settings contain many objects, such as pipes, cables or furniture, that mask part of the model. The position estimation method described in this paper matches 3-D data with a simple schematic of a plant. It is basically independent of odometer information and viewpoint, robust to noisy data and spurious points and largely insensitive to occlusions. The method is based on a hypothesis/verification paradigm and its complexity is polynomial; it runs in O(m 4 n 4 ), where m represents the number of model patches and n the number of scene patches. Heuristics are presented to speed up the algorithm. Results on real 3-D data show good behaviour even when the scene is very occluded. (authors). 16 refs., 3 figs., 1 tab

  13. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  14. Robust estimation of track parameters in wire chambers

    International Nuclear Information System (INIS)

    Bogdanova, N.B.; Bourilkov, D.T.

    1988-01-01

    The aim of this paper is to compare numerically the possibilities of the least square fit (LSF) and robust methods for modelled and real track data to determine the linear regression parameters of charged particles in wire chambers. It is shown, that Tukey robust estimate is superior to more standard (versions of LSF) methods. The efficiency of the method is illustrated by tables and figures for some important physical characteristics

  15. Introduction to Robust Estimation and Hypothesis Testing

    CERN Document Server

    Wilcox, Rand R

    2012-01-01

    This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations.Introduction to R

  16. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  17. Robust median estimator in logisitc regression

    Czech Academy of Sciences Publication Activity Database

    Hobza, T.; Pardo, L.; Vajda, Igor

    2008-01-01

    Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf

  18. Evaluation of Robust Estimators Applied to Fluorescence Assays

    Directory of Open Access Journals (Sweden)

    U. Ruotsalainen

    2007-12-01

    Full Text Available We evaluated standard robust methods in the estimation of fluorescence signal in novel assays used for determining the biomolecule concentrations. The objective was to obtain an accurate and reliable estimate using as few observations as possible by decreasing the influence of outliers. We assumed the true signals to have Gaussian distribution, while no assumptions about the outliers were made. The experimental results showed that arithmetic mean performs poorly even with the modest deviations. Further, the robust methods, especially the M-estimators, performed extremely well. The results proved that the use of robust methods is advantageous in the estimation problems where noise and deviations are significant, such as in biological and medical applications.

  19. Heteroscedasticity resistant robust covariance matrix estimator

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2010-01-01

    Roč. 17, č. 27 (2010), s. 33-49 ISSN 1212-074X Grant - others:GA UK(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10750506 Keywords : Regression * Covariance matrix * Heteroscedasticity * Resistant Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/SI/visek-heteroscedasticity resistant robust covariance matrix estimator.pdf

  20. Robust estimation of the noise variance from background MR data

    NARCIS (Netherlands)

    Sijbers, J.; Den Dekker, A.J.; Poot, D.; Bos, R.; Verhoye, M.; Van Camp, N.; Van der Linden, A.

    2006-01-01

    In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance (MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is revisited and a new, robust, and easy to use method is presented based on maximum

  1. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  2. Robust Optical Richness Estimation with Reduced Scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E.S.; /LBL, Berkeley; Koester, B.P.; /Chicago U. /Chicago U., KICP; Rozo, E.; /Chicago U. /Chicago U., KICP; Annis, J.; /Fermilab; Evrard, A.E.; /Michigan U. /Michigan U., MCTP; Hansen, S.M.; /Lick Observ.; Hao, J.; /Fermilab; Johnston, D.E.; /Fermilab; McKay, T.A.; /Michigan U. /Michigan U., MCTP; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC

    2012-06-07

    Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009b), and evaluate their impact on the scatter in X-ray luminosity at fixed richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that {sigma}{sub ln L{sub X}|{lambda}} = 0.63 {+-} 0.02 for clusters with M{sub 500c} {approx}> 1.6 x 10{sup 14} h{sub 70}{sup -1} M{sub {circle_dot}}. The corresponding scatter in mass at fixed richness is {sigma}{sub ln M|{lambda}} {approx} 0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 {angstrom} break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix A includes 'easy-bake' instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog with the {lambda} richness measured for each cluster.

  3. Contributions to robust methods of creep analysis

    International Nuclear Information System (INIS)

    Penny, B.K.

    1991-01-01

    Robust methods for the predictions of deformations and lifetimes of components operating in the creep range are presented. The ingredients used for this are well-tried numerical techniques combined with the concepts of continuum damage and so-called reference stresses. The methods described are derived in order to obtain the maximum benefit during the early stages of design where broad assessments of the influences of material choice, loadings and geometry need to be made quickly and with economical use of computers. It is also intended that the same methods will be of value during operation if estimates of damage or if exercises in life extension or inspection timing are required. (orig.)

  4. Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

    DEFF Research Database (Denmark)

    Barrett, Jessica K; Henderson, Robin; Rosthøj, Susanne

    2014-01-01

    We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331-355, 2003). We formulate a doubly robust version of the regret-regression appro......We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331-355, 2003). We formulate a doubly robust version of the regret......-regression approach of Almirall et al. (in Biometrics 66:131-139, 2010) and Henderson et al. (in Biometrics 66:1192-1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins' efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp....... 189-326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex...

  5. a comparative study of some robust ridge and liu estimators

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    estimation techniques such as Ridge and Liu Estimators are preferable to Ordinary Least Square. On the other hand, when outliers exist in the data, robust estimators like M, MM, LTS and S. Estimators, are preferred. To handle these two problems jointly, the study combines the Ridge and Liu Estimators with Robust.

  6. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  7. A robust bayesian estimate of the concordance correlation coefficient.

    Science.gov (United States)

    Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir

    2015-01-01

    A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student's t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.

  8. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.

    Science.gov (United States)

    Sidler, Dominik; Schwaninger, Arthur; Riniker, Sereina

    2016-10-21

    In molecular dynamics (MD) simulations, free-energy differences are often calculated using free energy perturbation or thermodynamic integration (TI) methods. However, both techniques are only suited to calculate free-energy differences between two end states. Enveloping distribution sampling (EDS) presents an attractive alternative that allows to calculate multiple free-energy differences in a single simulation. In EDS, a reference state is simulated which "envelopes" the end states. The challenge of this methodology is the determination of optimal reference-state parameters to ensure equal sampling of all end states. Currently, the automatic determination of the reference-state parameters for multiple end states is an unsolved issue that limits the application of the methodology. To resolve this, we have generalised the replica-exchange EDS (RE-EDS) approach, introduced by Lee et al. [J. Chem. Theory Comput. 10, 2738 (2014)] for constant-pH MD simulations. By exchanging configurations between replicas with different reference-state parameters, the complexity of the parameter-choice problem can be substantially reduced. A new robust scheme to estimate the reference-state parameters from a short initial RE-EDS simulation with default parameters was developed, which allowed the calculation of 36 free-energy differences between nine small-molecule inhibitors of phenylethanolamine N-methyltransferase from a single simulation. The resulting free-energy differences were in excellent agreement with values obtained previously by TI and two-state EDS simulations.

  9. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  10. Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Hua

    2018-03-01

    Full Text Available This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.

  11. Robust estimation of adaptive tensors of curvature by tensor voting.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  12. Estimating nonrigid motion from inconsistent intensity with robust shape features

    International Nuclear Information System (INIS)

    Liu, Wenyang; Ruan, Dan

    2013-01-01

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided

  13. Robust Algebraic Multilevel Methods and Algorithms

    CERN Document Server

    Kraus, Johannes

    2009-01-01

    This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. Provides a systematic presentation of the recent advances in robust algebraic multilevel methods. Can be used for advanced courses on the topic.

  14. A robust methodology for modal parameters estimation applied to SHM

    Science.gov (United States)

    Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio

    2017-10-01

    The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.

  15. Robust optimum design with maximum entropy method; Saidai entropy ho mochiita robust sei saitekika sekkeiho

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, K; Egashira, Y; Watanabe, G [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Vehicle and unit performance change according to not only external causes represented by the environment such as temperature or weather, but also internal causes which are dispersion of component characteristics and manufacturing processes or aged deteriorations. We developed the design method to estimate thus performance distributions with maximum entropy method and to calculate specifications with high performance robustness using Fuzzy theory. This paper describes the details of these methods and examples applied to power window system. 3 refs., 7 figs., 4 tabs.

  16. A comparative study of some robust ridge and liu estimators ...

    African Journals Online (AJOL)

    In multiple linear regression analysis, multicollinearity and outliers are two main problems. When multicollinearity exists, biased estimation techniques such as Ridge and Liu Estimators are preferable to Ordinary Least Square. On the other hand, when outliers exist in the data, robust estimators like M, MM, LTS and S ...

  17. Robust keyword retrieval method for OCRed text

    Science.gov (United States)

    Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu

    2011-01-01

    Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.

  18. Histogram equalization with Bayesian estimation for noise robust speech recognition.

    Science.gov (United States)

    Suh, Youngjoo; Kim, Hoirin

    2018-02-01

    The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.

  19. Comparative Analysis for Robust Penalized Spline Smoothing Methods

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models are perceived to be the most promising methods for coping with this issue, due to their flexibilities in capturing the nonlinear trends in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly comparative analysis of two popular robust smoothing techniques, the M-type estimator and S-estimation for penalized regression splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared with the nonrobust penalized LS spline regression method. Furthermore, the M-estimator exerts stable performance only for the observations with moderate perturbation error, whereas the S-estimator behaves fairly well even for heavily contaminated observations, but consuming more execution time. These findings can be served as guidance to the selection of appropriate approach for smoothing the noisy data.

  20. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  1. Robust w-Estimators for Cryo-EM Class Means

    Science.gov (United States)

    Huang, Chenxi; Tagare, Hemant D.

    2016-01-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the “class mean”, improves the signal-to-noise ratio in single particle reconstruction (SPR). The averaging step is often compromised because of outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods is done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a “w-estimator” of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions (CTFs) is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers. PMID:26841397

  2. The comparison between several robust ridge regression estimators in the presence of multicollinearity and multiple outliers

    Science.gov (United States)

    Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said

    2014-09-01

    In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.

  3. Fast and Robust Nanocellulose Width Estimation Using Turbidimetry.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Nishiyama, Yoshiharu; Iwamoto, Shinichiro; Yano, Hiroyuki; Isogai, Akira; Endo, Takashi

    2016-10-01

    The dimensions of nanocelluloses are important factors in controlling their material properties. The present study reports a fast and robust method for estimating the widths of individual nanocellulose particles based on the turbidities of their water dispersions. Seven types of nanocellulose, including short and rigid cellulose nanocrystals and long and flexible cellulose nanofibers, are prepared via different processes. Their widths are calculated from the respective turbidity plots of their water dispersions, based on the theory of light scattering by thin and long particles. The turbidity-derived widths of the seven nanocelluloses range from 2 to 10 nm, and show good correlations with the thicknesses of nanocellulose particles spread on flat mica surfaces determined using atomic force microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail

    2012-04-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  5. Robustness analysis method for orbit control

    Science.gov (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan

    2017-08-01

    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  6. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Robust-BD Estimation and Inference for General Partially Linear Models

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2017-11-01

    Full Text Available The classical quadratic loss for the partially linear model (PLM and the likelihood function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of “robust-Bregman divergence (BD” estimators of both the parametric and nonparametric components in the general partially linear model (GPLM, which allows the distribution of the response variable to be partially specified, without being fully known. Using the local-polynomial function estimation method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric component β o . For inference procedures of β o in the GPLM, we show that the Wald-type test statistic W n constructed from the “robust-BD” estimators is asymptotically distribution free under the null, whereas the likelihood ratio-type test statistic Λ n is not. This provides an insight into the distinction from the asymptotic equivalence (Fan and Huang 2005 between W n and Λ n in the PLM constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and robust Wald-type test in the appearance of outlying observations.

  8. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  9. On the robust nonparametric regression estimation for a functional regressor

    OpenAIRE

    Azzedine , Nadjia; Laksaci , Ali; Ould-Saïd , Elias

    2009-01-01

    On the robust nonparametric regression estimation for a functional regressor correspondance: Corresponding author. (Ould-Said, Elias) (Azzedine, Nadjia) (Laksaci, Ali) (Ould-Said, Elias) Departement de Mathematiques--> , Univ. Djillali Liabes--> , BP 89--> , 22000 Sidi Bel Abbes--> - ALGERIA (Azzedine, Nadjia) Departement de Mathema...

  10. Robust estimation of event-related potentials via particle filter.

    Science.gov (United States)

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Robust efficient estimation of heart rate pulse from video

    Science.gov (United States)

    Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde

    2014-01-01

    We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294

  12. Robust Visual Tracking Using the Bidirectional Scale Estimation

    Directory of Open Access Journals (Sweden)

    An Zhiyong

    2017-01-01

    Full Text Available Object tracking with robust scale estimation is a challenging task in computer vision. This paper presents a novel tracking algorithm that learns the translation and scale filters with a complementary scheme. The translation filter is constructed using the ridge regression and multidimensional features. A robust scale filter is constructed by the bidirectional scale estimation, including the forward scale and backward scale. Firstly, we learn the scale filter using the forward tracking information. Then the forward scale and backward scale can be estimated using the respective scale filter. Secondly, a conservative strategy is adopted to compromise the forward and backward scales. Finally, the scale filter is updated based on the final scale estimation. It is effective to update scale filter since the stable scale estimation can improve the performance of scale filter. To reveal the effectiveness of our tracker, experiments are performed on 32 sequences with significant scale variation and on the benchmark dataset with 50 challenging videos. Our results show that the proposed tracker outperforms several state-of-the-art trackers in terms of robustness and accuracy.

  13. Experimental estimation of snare detectability for robust threat monitoring.

    Science.gov (United States)

    O'Kelly, Hannah J; Rowcliffe, J Marcus; Durant, Sarah; Milner-Gulland, E J

    2018-02-01

    Hunting with wire snares is rife within many tropical forest systems, and constitutes one of the severest threats to a wide range of vertebrate taxa. As for all threats, reliable monitoring of snaring levels is critical for assessing the relative effectiveness of management interventions. However, snares pose a particular challenge in terms of tracking spatial or temporal trends in their prevalence because they are extremely difficult to detect, and are typically spread across large, inaccessible areas. As with cryptic animal targets, any approach used to monitor snaring levels must address the issue of imperfect detection, but no standard method exists to do so. We carried out a field experiment in Keo Seima Wildlife Reserve in eastern Cambodia with the following objectives: (1) To estimate the detection probably of wire snares within a tropical forest context, and to investigate how detectability might be affected by habitat type, snare type, or observer. (2) To trial two sets of sampling protocols feasible to implement in a range of challenging field conditions. (3) To conduct a preliminary assessment of two potential analytical approaches to dealing with the resulting snare encounter data. We found that although different observers had no discernible effect on detection probability, detectability did vary between habitat type and snare type. We contend that simple repeated counts carried out at multiple sites and analyzed using binomial mixture models could represent a practical yet robust solution to the problem of monitoring snaring levels both inside and outside of protected areas. This experiment represents an important first step in developing improved methods of threat monitoring, and such methods are greatly needed in southeast Asia, as well as in as many other regions.

  14. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis me...

  15. Robust EM Continual Reassessment Method in Oncology Dose Finding

    Science.gov (United States)

    Yuan, Ying; Yin, Guosheng

    2012-01-01

    The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092

  16. Inverse probability weighting and doubly robust methods in correcting the effects of non-response in the reimbursed medication and self-reported turnout estimates in the ATH survey.

    Science.gov (United States)

    Härkänen, Tommi; Kaikkonen, Risto; Virtala, Esa; Koskinen, Seppo

    2014-11-06

    To assess the nonresponse rates in a questionnaire survey with respect to administrative register data, and to correct the bias statistically. The Finnish Regional Health and Well-being Study (ATH) in 2010 was based on a national sample and several regional samples. Missing data analysis was based on socio-demographic register data covering the whole sample. Inverse probability weighting (IPW) and doubly robust (DR) methods were estimated using the logistic regression model, which was selected using the Bayesian information criteria. The crude, weighted and true self-reported turnout in the 2008 municipal election and prevalences of entitlements to specially reimbursed medication, and the crude and weighted body mass index (BMI) means were compared. The IPW method appeared to remove a relatively large proportion of the bias compared to the crude prevalence estimates of the turnout and the entitlements to specially reimbursed medication. Several demographic factors were shown to be associated with missing data, but few interactions were found. Our results suggest that the IPW method can improve the accuracy of results of a population survey, and the model selection provides insight into the structure of missing data. However, health-related missing data mechanisms are beyond the scope of statistical methods, which mainly rely on socio-demographic information to correct the results.

  17. Robust linear discriminant analysis with distance based estimators

    Science.gov (United States)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  18. Robust estimation for partially linear models with large-dimensional covariates.

    Science.gov (United States)

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  19. Implicitly Weighted Methods in Robust Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 44, č. 3 (2012), s. 449-462 ISSN 0924-9907 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robustness * high breakdown point * outlier detection * robust correlation analysis * template matching * face recognition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.767, year: 2012

  20. Electrical estimating methods

    CERN Document Server

    Del Pico, Wayne J

    2014-01-01

    Simplify the estimating process with the latest data, materials, and practices Electrical Estimating Methods, Fourth Edition is a comprehensive guide to estimating electrical costs, with data provided by leading construction database RS Means. The book covers the materials and processes encountered by the modern contractor, and provides all the information professionals need to make the most precise estimate. The fourth edition has been updated to reflect the changing materials, techniques, and practices in the field, and provides the most recent Means cost data available. The complexity of el

  1. A Robust Threshold for Iterative Channel Estimation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    A. Kalaycioglu

    2010-04-01

    Full Text Available A novel threshold computation method for pilot symbol assisted iterative channel estimation in OFDM systems is considered. As the bits are transmitted in packets, the proposed technique is based on calculating a particular threshold for each data packet in order to select the reliable decoder output symbols to improve the channel estimation performance. Iteratively, additional pilot symbols are established according to the threshold and the channel is re-estimated with the new pilots inserted to the known channel estimation pilot set. The proposed threshold calculation method for selecting additional pilots performs better than non-iterative channel estimation, no threshold and fixed threshold techniques in poor HF channel simulations.

  2. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    Science.gov (United States)

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  3. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    Science.gov (United States)

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Robust estimation of the correlation matrix of longitudinal data

    KAUST Repository

    Maadooliat, Mehdi

    2011-09-23

    We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL⊤D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD2L⊤ using simulations and a real dataset. © 2011 Springer Science+Business Media, LLC.

  5. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  6. Robust methods for multivariate data analysis A1

    DEFF Research Database (Denmark)

    Frosch, Stina; Von Frese, J.; Bro, Rasmus

    2005-01-01

    Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust methods reduce or remove the effect of outlying data points and allow the ?good? data to primarily...... determine the result. This article reviews the most commonly used robust multivariate regression and exploratory methods that have appeared since 1996 in the field of chemometrics. Special emphasis is put on the robust versions of chemometric standard tools like PCA and PLS and the corresponding robust...

  7. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study.

    Science.gov (United States)

    Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P

    2014-06-26

    To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.

  8. Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies

    KAUST Repository

    Chen, Yi-Hau

    2009-03-01

    Case-control association studies often aim to investigate the role of genes and gene-environment interactions in terms of the underlying haplotypes (i.e., the combinations of alleles at multiple genetic loci along chromosomal regions). The goal of this article is to develop robust but efficient approaches to the estimation of disease odds-ratio parameters associated with haplotypes and haplotype-environment interactions. We consider "shrinkage" estimation techniques that can adaptively relax the model assumptions of Hardy-Weinberg-Equilibrium and gene-environment independence required by recently proposed efficient "retrospective" methods. Our proposal involves first development of a novel retrospective approach to the analysis of case-control data, one that is robust to the nature of the gene-environment distribution in the underlying population. Next, it involves shrinkage of the robust retrospective estimator toward a more precise, but model-dependent, retrospective estimator using novel empirical Bayes and penalized regression techniques. Methods for variance estimation are proposed based on asymptotic theories. Simulations and two data examples illustrate both the robustness and efficiency of the proposed methods.

  9. Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies

    KAUST Repository

    Chen, Yi-Hau; Chatterjee, Nilanjan; Carroll, Raymond J.

    2009-01-01

    Case-control association studies often aim to investigate the role of genes and gene-environment interactions in terms of the underlying haplotypes (i.e., the combinations of alleles at multiple genetic loci along chromosomal regions). The goal of this article is to develop robust but efficient approaches to the estimation of disease odds-ratio parameters associated with haplotypes and haplotype-environment interactions. We consider "shrinkage" estimation techniques that can adaptively relax the model assumptions of Hardy-Weinberg-Equilibrium and gene-environment independence required by recently proposed efficient "retrospective" methods. Our proposal involves first development of a novel retrospective approach to the analysis of case-control data, one that is robust to the nature of the gene-environment distribution in the underlying population. Next, it involves shrinkage of the robust retrospective estimator toward a more precise, but model-dependent, retrospective estimator using novel empirical Bayes and penalized regression techniques. Methods for variance estimation are proposed based on asymptotic theories. Simulations and two data examples illustrate both the robustness and efficiency of the proposed methods.

  10. A Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms

    Directory of Open Access Journals (Sweden)

    Bangyan Zhu

    2016-07-01

    Full Text Available Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.

  11. Highly Robust Methods in Data Mining

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2013-01-01

    Roč. 8, č. 1 (2013), s. 9-24 ISSN 1452-4864 Institutional support: RVO:67985807 Keywords : data mining * robust statistics * high-dimensional data * cluster analysis * logistic regression * neural networks Subject RIV: BB - Applied Statistics, Operational Research

  12. Geomagnetic matching navigation algorithm based on robust estimation

    Science.gov (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  13. Robust regularized least-squares beamforming approach to signal estimation

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2017-05-12

    In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors. The two vectors are linearly related to the steering vector and the received signal snapshot, respectively. The linear operator, in both cases, is the square root of the covariance matrix. A regularized least-squares (RLS) approach is proposed to estimate these two vectors and to provide robustness without exploiting prior information. Simulation results show that the RLS beamformer using the proposed regularization algorithm outperforms state-of-the-art beamforming algorithms, as well as another RLS beamformers using a standard regularization approaches.

  14. Influence of binary mask estimation errors on robust speaker identification

    DEFF Research Database (Denmark)

    May, Tobias

    2017-01-01

    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different...... approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating....... Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable...

  15. A fully robust PARAFAC method for analyzing fluorescence data

    DEFF Research Database (Denmark)

    Engelen, Sanne; Frosch, Stina; Jørgensen, Bo

    2009-01-01

    and Rayleigh scatter. Recently, a robust PARAFAC method that circumvents the harmful effects of outlying samples has been developed. For removing the scatter effects on the final PARAFAC model, different techniques exist. Newly, an automated scatter identification tool has been constructed. However......, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method...

  16. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    Science.gov (United States)

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  17. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    Science.gov (United States)

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  18. Robust Methods for Image Processing in Anthropology and Biomedicine

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    -, č. 86 (2011), s. 53-53 ISSN 0926-4981 Institutional research plan: CEZ:AV0Z10300504 Keywords : image analysis * robust estimation * forensic anthropology Subject RIV: BB - Applied Statistics, Operational Research

  19. Estimation of State of Charge of Lithium-Ion Batteries Used in HEV Using Robust Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Suleiman M. Sharkh

    2012-04-01

    Full Text Available A robust extended Kalman filter (EKF is proposed as a method for estimation of the state of charge (SOC of lithium-ion batteries used in hybrid electric vehicles (HEVs. An equivalent circuit model of the battery, including its electromotive force (EMF hysteresis characteristics and polarization characteristics is used. The effect of the robust EKF gain coefficient on SOC estimation is analyzed, and an optimized gain coefficient is determined to restrain battery terminal voltage from fluctuating. Experimental and simulation results are presented. SOC estimates using the standard EKF are compared with the proposed robust EKF algorithm to demonstrate the accuracy and precision of the latter for SOC estimation.

  20. Robustness study in SSNTD method validation: indoor radon quality

    International Nuclear Information System (INIS)

    Dias, D.C.S.; Silva, N.C.; Bonifácio, R.L.

    2017-01-01

    Quality control practices are indispensable to organizations aiming to reach analytical excellence. Method validation is an essential component to quality systems in laboratories, serving as a powerful tool for standardization and reliability of outcomes. This paper presents a study of robustness conducted over a SSNTD technique validation process, with the goal of developing indoor radon measurements at the highest level of quality. This quality parameter indicates how well a technique is able to provide reliable results in face of unexpected variations along the measurement. In this robustness study, based on the Youden method, 7 analytical conditions pertaining to different phases of the SSNTD technique (with focus on detector etching) were selected. Based on the ideal values for each condition as reference, extreme levels regarded as high and low were prescribed to each condition. A partial factorial design of 8 unique etching procedures was defined, where each presented their own set of high and low condition values. The Youden test provided 8 indoor radon concentration results, which allowed percentage estimations that indicate the potential influence of each analytical condition on the SSNTD technique. As expected, detector etching factors such as etching solution concentration, temperature and immersion time were identified as the most critical parameters to the technique. Detector etching is a critical step in the SSNTD method – one that must be carefully designed during validation and meticulously controlled throughout the entire process. (author)

  1. Robustness study in SSNTD method validation: indoor radon quality

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D.C.S.; Silva, N.C.; Bonifácio, R.L., E-mail: danilacdias@gmail.com [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2017-07-01

    Quality control practices are indispensable to organizations aiming to reach analytical excellence. Method validation is an essential component to quality systems in laboratories, serving as a powerful tool for standardization and reliability of outcomes. This paper presents a study of robustness conducted over a SSNTD technique validation process, with the goal of developing indoor radon measurements at the highest level of quality. This quality parameter indicates how well a technique is able to provide reliable results in face of unexpected variations along the measurement. In this robustness study, based on the Youden method, 7 analytical conditions pertaining to different phases of the SSNTD technique (with focus on detector etching) were selected. Based on the ideal values for each condition as reference, extreme levels regarded as high and low were prescribed to each condition. A partial factorial design of 8 unique etching procedures was defined, where each presented their own set of high and low condition values. The Youden test provided 8 indoor radon concentration results, which allowed percentage estimations that indicate the potential influence of each analytical condition on the SSNTD technique. As expected, detector etching factors such as etching solution concentration, temperature and immersion time were identified as the most critical parameters to the technique. Detector etching is a critical step in the SSNTD method – one that must be carefully designed during validation and meticulously controlled throughout the entire process. (author)

  2. HOTELLING'S T2 CONTROL CHARTS BASED ON ROBUST ESTIMATORS

    Directory of Open Access Journals (Sweden)

    SERGIO YÁÑEZ

    2010-01-01

    Full Text Available Under the presence of multivariate outliers, in a Phase I analysis of historical set of data, the T 2 control chart based on the usual sample mean vector and sample variance covariance matrix performs poorly. Several alternative estimators have been proposed. Among them, estimators based on the minimum volume ellipsoid (MVE and the minimum covariance determinant (MCD are powerful in detecting a reasonable number of outliers. In this paper we propose a T 2 control chart using the biweight S estimators for the location and dispersion parameters when monitoring multivariate individual observations. Simulation studies show that this method outperforms the T 2 control chart based on MVE estimators for a small number of observations.

  3. Robust fractional order differentiators using generalized modulating functions method

    KAUST Repository

    Liu, Dayan; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.

  4. Robust fractional order differentiators using generalized modulating functions method

    KAUST Repository

    Liu, Dayan

    2015-02-01

    This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.

  5. ROBUST ALGORITHMS OF PARAMETRIC ESTIMATION IN SOME STABILIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    A.A. Vedyakov

    2016-07-01

    Full Text Available Subject of Research.The tasks of dynamic systems provision in the stable state by means of ensuring of trite solution stability for various dynamic systems in the education regime with the aid of their parameters tuning are considered. Method. The problems are solved by application of ideology of the robust finitely convergent algorithms creation. Main Results. The concepts of parametric algorithmization of stability and steady asymptotic stability are introduced and the results are presented on synthesis of coarsed gradient algorithms solving the proposed tasks for finite number of iterations with the purpose of the posed problems decision. Practical Relevance. The article results may be called for decision of practical stabilization tasks in the process of various engineering constructions and devices operation.

  6. Efficient and robust estimation for longitudinal mixed models for binary data

    DEFF Research Database (Denmark)

    Holst, René

    2009-01-01

    This paper proposes a longitudinal mixed model for binary data. The model extends the classical Poisson trick, in which a binomial regression is fitted by switching to a Poisson framework. A recent estimating equations method for generalized linear longitudinal mixed models, called GEEP, is used...... as a vehicle for fitting the conditional Poisson regressions, given a latent process of serial correlated Tweedie variables. The regression parameters are estimated using a quasi-score method, whereas the dispersion and correlation parameters are estimated by use of bias-corrected Pearson-type estimating...... equations, using second moments only. Random effects are predicted by BLUPs. The method provides a computationally efficient and robust approach to the estimation of longitudinal clustered binary data and accommodates linear and non-linear models. A simulation study is used for validation and finally...

  7. Efficient estimation of the robustness region of biological models with oscillatory behavior.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Robustness is an essential feature of biological systems, and any mathematical model that describes such a system should reflect this feature. Especially, persistence of oscillatory behavior is an important issue. A benchmark model for this phenomenon is the Laub-Loomis model, a nonlinear model for cAMP oscillations in Dictyostelium discoideum. This model captures the most important features of biomolecular networks oscillating at constant frequencies. Nevertheless, the robustness of its oscillatory behavior is not yet fully understood. Given a system that exhibits oscillating behavior for some set of parameters, the central question of robustness is how far the parameters may be changed, such that the qualitative behavior does not change. The determination of such a "robustness region" in parameter space is an intricate task. If the number of parameters is high, it may be also time consuming. In the literature, several methods are proposed that partially tackle this problem. For example, some methods only detect particular bifurcations, or only find a relatively small box-shaped estimate for an irregularly shaped robustness region. Here, we present an approach that is much more general, and is especially designed to be efficient for systems with a large number of parameters. As an illustration, we apply the method first to a well understood low-dimensional system, the Rosenzweig-MacArthur model. This is a predator-prey model featuring satiation of the predator. It has only two parameters and its bifurcation diagram is available in the literature. We find a good agreement with the existing knowledge about this model. When we apply the new method to the high dimensional Laub-Loomis model, we obtain a much larger robustness region than reported earlier in the literature. This clearly demonstrates the power of our method. From the results, we conclude that the biological system underlying is much more robust than was realized until now.

  8. Robust experiment design for estimating myocardial β adrenergic receptor concentration using PET

    International Nuclear Information System (INIS)

    Salinas, Cristian; Muzic, Raymond F. Jr.; Ernsberger, Paul; Saidel, Gerald M.

    2007-01-01

    Myocardial β adrenergic receptor (β-AR) concentration can substantially decrease in congestive heart failure and significantly increase in chronic volume overload, such as in severe aortic valve regurgitation. Positron emission tomography (PET) with an appropriate ligand-receptor model can be used for noninvasive estimation of myocardial β-AR concentration in vivo. An optimal design of the experiment protocol, however, is needed for sufficiently precise estimates of β-AR concentration in a heterogeneous population. Standard methods of optimal design do not account for a heterogeneous population with a wide range of β-AR concentrations and other physiological parameters and consequently are inadequate. To address this, we have developed a methodology to design a robust two-injection protocol that provides reliable estimates of myocardial β-AR concentration in normal and pathologic states. A two-injection protocol of the high affinity β-AR antagonist [ 18 F]-(S)-fluorocarazolol was designed based on a computer-generated (or synthetic) population incorporating a wide range of β-AR concentrations. Timing and dosage of the ligand injections were optimally designed with minimax criterion to provide the least bad β-AR estimates for the worst case in the synthetic population. This robust experiment design for PET was applied to experiments with pigs before and after β-AR upregulation by chemical sympathectomy. Estimates of β-AR concentration were found by minimizing the difference between the model-predicted and experimental PET data. With this robust protocol, estimates of β-AR concentration showed high precision in both normal and pathologic states. The increase in β-AR concentration after sympathectomy predicted noninvasively with PET is consistent with the increase shown by in vitro assays in pig myocardium. A robust experiment protocol was designed for PET that yields reliable estimates of β-AR concentration in a population with normal and pathologic

  9. Robust and efficient parameter estimation in dynamic models of biological systems.

    Science.gov (United States)

    Gábor, Attila; Banga, Julio R

    2015-10-29

    Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance. Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior knowledge in a systematic way. We illustrate the performance of the presented method with seven case studies of different nature and increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We show how our method ensures improved estimations with faster and more stable convergence. We also show how the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a wide variety of calibration problems. Here we provide a parameter estimation strategy which combines efficient global optimization with a regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively fighting overfitting and allowing the incorporation of prior information.

  10. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.

    Science.gov (United States)

    Linden, Ariel

    2017-08-01

    When a randomized controlled trial is not feasible, health researchers typically use observational data and rely on statistical methods to adjust for confounding when estimating treatment effects. These methods generally fall into 3 categories: (1) estimators based on a model for the outcome using conventional regression adjustment; (2) weighted estimators based on the propensity score (ie, a model for the treatment assignment); and (3) "doubly robust" (DR) estimators that model both the outcome and propensity score within the same framework. In this paper, we introduce a new DR estimator that utilizes marginal mean weighting through stratification (MMWS) as the basis for weighted adjustment. This estimator may prove more accurate than treatment effect estimators because MMWS has been shown to be more accurate than other models when the propensity score is misspecified. We therefore compare the performance of this new estimator to other commonly used treatment effects estimators. Monte Carlo simulation is used to compare the DR-MMWS estimator to regression adjustment, 2 weighted estimators based on the propensity score and 2 other DR methods. To assess performance under varied conditions, we vary the level of misspecification of the propensity score model as well as misspecify the outcome model. Overall, DR estimators generally outperform methods that model one or the other components (eg, propensity score or outcome). The DR-MMWS estimator outperforms all other estimators when both the propensity score and outcome models are misspecified and performs equally as well as other DR estimators when only the propensity score is misspecified. Health researchers should consider using DR-MMWS as the principal evaluation strategy in observational studies, as this estimator appears to outperform other estimators in its class. © 2017 John Wiley & Sons, Ltd.

  11. Detection of heart beats in multimodal data: a robust beat-to-beat interval estimation approach.

    Science.gov (United States)

    Antink, Christoph Hoog; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    The heart rate and its variability play a vital role in the continuous monitoring of patients, especially in the critical care unit. They are commonly derived automatically from the electrocardiogram as the interval between consecutive heart beat. While their identification by QRS-complexes is straightforward under ideal conditions, the exact localization can be a challenging task if the signal is severely contaminated with noise and artifacts. At the same time, other signals directly related to cardiac activity are often available. In this multi-sensor scenario, methods of multimodal sensor-fusion allow the exploitation of redundancies to increase the accuracy and robustness of beat detection.In this paper, an algorithm for the robust detection of heart beats in multimodal data is presented. Classic peak-detection is augmented by robust multi-channel, multimodal interval estimation to eliminate false detections and insert missing beats. This approach yielded a score of 90.70 and was thus ranked third place in the PhysioNet/Computing in Cardiology Challenge 2014: Robust Detection of Heart Beats in Muthmodal Data follow-up analysis.In the future, the robust beat-to-beat interval estimator may directly be used for the automated processing of multimodal patient data for applications such as diagnosis support and intelligent alarming.

  12. Evaluation of the robustness of estimating five components from a skin spectral image

    Science.gov (United States)

    Akaho, Rina; Hirose, Misa; Tsumura, Norimichi

    2018-04-01

    We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.

  13. Order Tracking Based on Robust Peak Search Instantaneous Frequency Estimation

    International Nuclear Information System (INIS)

    Gao, Y; Guo, Y; Chi, Y L; Qin, S R

    2006-01-01

    Order tracking plays an important role in non-stationary vibration analysis of rotating machinery, especially to run-up or coast down. An instantaneous frequency estimation (IFE) based order tracking of rotating machinery is introduced. In which, a peak search algorithms of spectrogram of time-frequency analysis is employed to obtain IFE of vibrations. An improvement to peak search is proposed, which can avoid strong non-order components or noises disturbing to the peak search work. Compared with traditional methods of order tracking, IFE based order tracking is simplified in application and only software depended. Testing testify the validity of the method. This method is an effective supplement to traditional methods, and the application in condition monitoring and diagnosis of rotating machinery is imaginable

  14. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  15. Robust regularized least-squares beamforming approach to signal estimation

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill

  16. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  17. Robust Discontinuity Preserving Optical Flow Methods

    Directory of Open Access Journals (Sweden)

    Nelson Monzón

    2016-11-01

    Full Text Available In this work, we present an implementation of discontinuity-preserving strategies in TV-L1 optical flow methods. These are based on exponential functions that mitigate the regularization at image edges, which usually provide precise flow boundaries. Nevertheless, if the smoothing is not well controlled, it may produce instabilities in the computed motion fields. We present an algorithm that allows three regularization strategies: the first one uses an exponential function together with a TV process; the second one combines this strategy with a small constant that ensures a minimum isotropic smoothing; the third one is a fully automatic approach that adapts the diffusion depending on the histogram of the image gradients. The last two alternatives are aimed at reducing the effect of instabilities. In the experiments, we observe that the pure exponential function is highly unstable while the other strategies preserve accurate motion contours for a large range of parameters.

  18. Semiparametric efficient and robust estimation of an unknown symmetric population under arbitrary sample selection bias

    KAUST Repository

    Ma, Yanyuan

    2013-09-01

    We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice. © 2013 American Statistical Association.

  19. Face Value: Towards Robust Estimates of Snow Leopard Densities.

    Directory of Open Access Journals (Sweden)

    Justine S Alexander

    Full Text Available When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01 individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87. Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality.

  20. Robust subspace estimation using low-rank optimization theory and applications

    CERN Document Server

    Oreifej, Omar

    2014-01-01

    Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book,?the authors?discuss fundame

  1. Robust optimization methods for cardiac sparing in tangential breast IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudzadeh, Houra, E-mail: houra@mie.utoronto.ca [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Lee, Jenny [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Chan, Timothy C. Y. [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada); Purdie, Thomas G. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada)

    2015-05-15

    Purpose: In left-sided tangential breast intensity modulated radiation therapy (IMRT), the heart may enter the radiation field and receive excessive radiation while the patient is breathing. The patient’s breathing pattern is often irregular and unpredictable. We verify the clinical applicability of a heart-sparing robust optimization approach for breast IMRT. We compare robust optimized plans with clinical plans at free-breathing and clinical plans at deep inspiration breath-hold (DIBH) using active breathing control (ABC). Methods: Eight patients were included in the study with each patient simulated using 4D-CT. The 4D-CT image acquisition generated ten breathing phase datasets. An average scan was constructed using all the phase datasets. Two of the eight patients were also imaged at breath-hold using ABC. The 4D-CT datasets were used to calculate the accumulated dose for robust optimized and clinical plans based on deformable registration. We generated a set of simulated breathing probability mass functions, which represent the fraction of time patients spend in different breathing phases. The robust optimization method was applied to each patient using a set of dose-influence matrices extracted from the 4D-CT data and a model of the breathing motion uncertainty. The goal of the optimization models was to minimize the dose to the heart while ensuring dose constraints on the target were achieved under breathing motion uncertainty. Results: Robust optimized plans were improved or equivalent to the clinical plans in terms of heart sparing for all patients studied. The robust method reduced the accumulated heart dose (D10cc) by up to 801 cGy compared to the clinical method while also improving the coverage of the accumulated whole breast target volume. On average, the robust method reduced the heart dose (D10cc) by 364 cGy and improved the optBreast dose (D99%) by 477 cGy. In addition, the robust method had smaller deviations from the planned dose to the

  2. Selection of robust methods. Numerical examples and results

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2005-01-01

    Roč. 21, č. 11 (2005), s. 1-58 ISSN 1212-074X R&D Projects: GA ČR(CZ) GA402/03/0084 Institutional research plan: CEZ:AV0Z10750506 Keywords : robust regression * model selection * uniform consistency of M-estimators Subject RIV: BA - General Mathematics

  3. Weak Properties and Robustness of t-Hill Estimators

    Czech Academy of Sciences Publication Activity Database

    Jordanova, P.; Fabián, Zdeněk; Hermann, P.; Střelec, L.; Rivera, A.; Girard, S.; Torres, S.; Stehlík, M.

    2016-01-01

    Roč. 19, č. 4 (2016), s. 591-626 ISSN 1386-1999 Institutional support: RVO:67985807 Keywords : asymptotic properties of estimators * point estimation * t-Hill estimator * t-lgHill estimator Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.679, year: 2016

  4. Robust Homography Estimation Based on Nonlinear Least Squares Optimization

    Directory of Open Access Journals (Sweden)

    Wei Mou

    2014-01-01

    Full Text Available The homography between image pairs is normally estimated by minimizing a suitable cost function given 2D keypoint correspondences. The correspondences are typically established using descriptor distance of keypoints. However, the correspondences are often incorrect due to ambiguous descriptors which can introduce errors into following homography computing step. There have been numerous attempts to filter out these erroneous correspondences, but it is unlikely to always achieve perfect matching. To deal with this problem, we propose a nonlinear least squares optimization approach to compute homography such that false matches have no or little effect on computed homography. Unlike normal homography computation algorithms, our method formulates not only the keypoints’ geometric relationship but also their descriptor similarity into cost function. Moreover, the cost function is parametrized in such a way that incorrect correspondences can be simultaneously identified while the homography is computed. Experiments show that the proposed approach can perform well even with the presence of a large number of outliers.

  5. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio

    2012-01-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general

  6. Robust Pose Estimation using the SwissRanger SR-3000 Camera

    DEFF Research Database (Denmark)

    Gudmundsson, Sigurjon Arni; Larsen, Rasmus; Ersbøll, Bjarne Kjær

    2007-01-01

    In this paper a robust method is presented to classify and estimate an objects pose from a real time range image and a low dimensional model. The model is made from a range image training set which is reduced dimensionally by a nonlinear manifold learning method named Local Linear Embedding (LLE)......). New range images are then projected to this model giving the low dimensional coordinates of the object pose in an efficient manner. The range images are acquired by a state of the art SwissRanger SR-3000 camera making the projection process work in real-time....

  7. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  8. Robust best linear estimation for regression analysis using surrogate and instrumental variables.

    Science.gov (United States)

    Wang, C Y

    2012-04-01

    We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.

  9. Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Rahmann Sven

    2004-06-01

    Full Text Available Abstract Background In phylogenetic analysis we face the problem that several subclade topologies are known or easily inferred and well supported by bootstrap analysis, but basal branching patterns cannot be unambiguously estimated by the usual methods (maximum parsimony (MP, neighbor-joining (NJ, or maximum likelihood (ML, nor are they well supported. We represent each subclade by a sequence profile and estimate evolutionary distances between profiles to obtain a matrix of distances between subclades. Results Our estimator of profile distances generalizes the maximum likelihood estimator of sequence distances. The basal branching pattern can be estimated by any distance-based method, such as neighbor-joining. Our method (profile neighbor-joining, PNJ then inherits the accuracy and robustness of profiles and the time efficiency of neighbor-joining. Conclusions Phylogenetic analysis of Chlorophyceae with traditional methods (MP, NJ, ML and MrBayes reveals seven well supported subclades, but the methods disagree on the basal branching pattern. The tree reconstructed by our method is better supported and can be confirmed by known morphological characters. Moreover the accuracy is significantly improved as shown by parametric bootstrap.

  10. Determinants of long-term growth : New results applying robust estimation and extreme bounds analysis

    NARCIS (Netherlands)

    Sturm, J.-E.; de Haan, J.

    2005-01-01

    Two important problems exist in cross-country growth studies: outliers and model uncertainty. Employing Sala-i-Martin's (1997a,b) data set, we first use robust estimation and analyze to what extent outliers influence OLS regressions. We then use both OLS and robust estimation techniques in applying

  11. Robust Estimation and Forecasting of the Capital Asset Pricing Model

    NARCIS (Netherlands)

    G. Bian (Guorui); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2013-01-01

    textabstractIn this paper, we develop a modified maximum likelihood (MML) estimator for the multiple linear regression model with underlying student t distribution. We obtain the closed form of the estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more

  12. Robust Estimation and Forecasting of the Capital Asset Pricing Model

    NARCIS (Netherlands)

    G. Bian (Guorui); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2010-01-01

    textabstractIn this paper, we develop a modified maximum likelihood (MML) estimator for the multiple linear regression model with underlying student t distribution. We obtain the closed form of the estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more

  13. Reducing Inventory System Costs by Using Robust Demand Estimators

    OpenAIRE

    Raymond A. Jacobs; Harvey M. Wagner

    1989-01-01

    Applications of inventory theory typically use historical data to estimate demand distribution parameters. Imprecise knowledge of the demand distribution adds to the usual replenishment costs associated with stochastic demands. Only limited research has been directed at the problem of choosing cost effective statistical procedures for estimating these parameters. Available theoretical findings on estimating the demand parameters for (s, S) inventory replenishment policies are limited by their...

  14. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization

    Science.gov (United States)

    Casas, R.; Marco, A.; Guerrero, J. J.; Falcó, J.

    2006-12-01

    Indoor localization systems are undoubtedly of interest in many application fields. Like outdoor systems, they suffer from non-line-of-sight (NLOS) errors which hinder their robustness and accuracy. Though many ad hoc techniques have been developed to deal with this problem, unfortunately most of them are not applicable indoors due to the high variability of the environment (movement of furniture and of people, etc.). In this paper, we describe the use of robust regression techniques to detect and reject NLOS measures in a location estimation using multilateration. We show how the least-median-of-squares technique can be used to overcome the effects of NLOS errors, even in environments with little infrastructure, and validate its suitability by comparing it to other methods described in the bibliography. We obtained remarkable results when using it in a real indoor positioning system that works with Bluetooth and ultrasound (BLUPS), even when nearly half the measures suffered from NLOS or other coarse errors.

  15. A Maximum Entropy Method for a Robust Portfolio Problem

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-06-01

    Full Text Available We propose a continuous maximum entropy method to investigate the robustoptimal portfolio selection problem for the market with transaction costs and dividends.This robust model aims to maximize the worst-case portfolio return in the case that allof asset returns lie within some prescribed intervals. A numerical optimal solution tothe problem is obtained by using a continuous maximum entropy method. Furthermore,some numerical experiments indicate that the robust model in this paper can result in betterportfolio performance than a classical mean-variance model.

  16. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data.

    Science.gov (United States)

    Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S

    2005-05-15

    Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE

  17. National South African HIV prevalence estimates robust despite ...

    African Journals Online (AJOL)

    Approximately 18% of all people living with HIV in 2013 were estimated to live in South Africa (SA),[1] which ... 1 Research Department of Infection and Population Health, Institute for Global Health, University College London, UK.

  18. Robust Estimation of Productivity Changes in Japanese Shinkin Banks

    Directory of Open Access Journals (Sweden)

    Jianzhong DAI

    2014-05-01

    Full Text Available This paper estimates productivity changes in Japanese shinkin banks during the fiscal years 2001 to 2008 using the Malmquist index as the measure of productivity change. Data envelopment analysis (DEA is used to estimate the index. We also apply a smoothed bootstrapping approach to set up confidence intervals for estimates and study their statistical characteristics. By analyzing estimated scores, we identify trends in productivity changes in Japanese shinkin banks during the study period and investigate the sources of these trends. We find that in the latter half of the study period, productivity has significantly declined, primarily because of deterioration in technical efficiency, but scale efficiency has been significantly improved. Grouping the total sample according to the levels of competition reveals more details of productivity changes in shinkin banks.

  19. Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN

    Directory of Open Access Journals (Sweden)

    Jeon Seong Kang

    2018-04-01

    Full Text Available Recently, real-time human age estimation based on facial images has been applied in various areas. Underneath this phenomenon lies an awareness that age estimation plays an important role in applying big data to target marketing for age groups, product demand surveys, consumer trend analysis, etc. However, in a real-world environment, various optical and motion blurring effects can occur. Such effects usually cause a problem in fully capturing facial features such as wrinkles, which are essential to age estimation, thereby degrading accuracy. Most of the previous studies on age estimation were conducted for input images almost free from blurring effect. To overcome this limitation, we propose the use of a deep ResNet-152 convolutional neural network for age estimation, which is robust to various optical and motion blurring effects of visible light camera sensors. We performed experiments with various optical and motion blurred images created from the park aging mind laboratory (PAL and craniofacial longitudinal morphological face database (MORPH databases, which are publicly available. According to the results, the proposed method exhibited better age estimation performance than the previous methods.

  20. Can genetic estimators provide robust estimates of the effective number of breeders in small populations?

    Directory of Open Access Journals (Sweden)

    Marion Hoehn

    Full Text Available The effective population size (N(e is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of N(e. Because geckos have overlapping generations, our goal was to demographically estimate N(bI, the inbreeding effective number of breeders and to calculate the N(bI/N(a ratio (N(a =number of adults for four populations. Demographically estimated N(bI ranged from 1 to 65 individuals. The mean reduction in the effective number of breeders relative to census size (N(bI/N(a was 0.1 to 1.1. We identified the variance in reproductive success as the most important variable contributing to reduction of this ratio. We used four methods to estimate the genetic based inbreeding effective number of breeders N(bI(gen and the variance effective populations size N(eV(gen estimates from the genotype data. Two of these methods - a temporal moment-based (MBT and a likelihood-based approach (TM3 require at least two samples in time, while the other two were single-sample estimators - the linkage disequilibrium method with bias correction LDNe and the program ONeSAMP. The genetic based estimates were fairly similar across methods and also similar to the demographic estimates excluding those estimates, in which upper confidence interval boundaries were uninformative. For example, LDNe and ONeSAMP estimates ranged from 14-55 and 24-48 individuals, respectively. However, temporal methods suffered from a large variation in confidence intervals and concerns about the prior information. We conclude that the single-sample estimators are an acceptable short-cut to estimate N(bI for species such as geckos and will be of great importance for the monitoring of species in fragmented landscapes.

  1. Robust Wavelet Estimation to Eliminate Simultaneously the Effects of Boundary Problems, Outliers, and Correlated Noise

    Directory of Open Access Journals (Sweden)

    Alsaidi M. Altaher

    2012-01-01

    Full Text Available Classical wavelet thresholding methods suffer from boundary problems caused by the application of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial wavelet regression and local polynomial wavelet regression effectively reduce the risk of this problem, the estimates from these two methods can be easily affected by the presence of correlated noise and outliers, giving inaccurate estimates. This paper introduces two robust methods in which the effects of boundary problems, outliers, and correlated noise are simultaneously taken into account. The proposed methods combine thresholding estimator with either a local polynomial model or a polynomial model using the generalized least squares method instead of the ordinary one. A primary step that involves removing the outlying observations through a statistical function is considered as well. The practical performance of the proposed methods has been evaluated through simulation experiments and real data examples. The results are strong evidence that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating the effects of outliers and correlated noise.

  2. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    Science.gov (United States)

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R

  3. A robust method to forecast volcanic ash clouds

    Science.gov (United States)

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an

  4. Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    2001-01-01

    Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.

  5. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Many natural signals, such as voiced speech and some musical instruments, are approximately periodic over short intervals. These signals are often described in mathematics by the sum of sinusoids (harmonics) with frequencies that are proportional to the fundamental frequency, or pitch. In sensor...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  6. The Robust Control Mixer Module Method for Control Reconfiguration

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, M.

    1999-01-01

    into a LTI dynamical system, and furthermore multiple dynamical control mixer modules can be employed in our consideration. The H_{\\infty} control theory is used for the analysis and design of the robust control mixer modules. Finally, one practical robot arm system as benchmark is used to test the proposed......The control mixer concept is efficient in improving an ordinary control system into a fault tolerant one, especially for these control systems of which the real-time and on-line redesign of the control laws is very difficult. In order to consider the stability, performance and robustness...... of the reconfigurated system simultaneously, and to deal with a more general controller reconfiguration than the static feedback mechanism by using the control mixer approach, the robust control mixer module method is proposed in this paper. The form of the control mixer module extends from a static gain matrix...

  7. Robust estimators based on generalization of trimmed mean

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Bejda, P.

    (2018) ISSN 0361-0918 Institutional support: RVO:67985556 Keywords : Breakdown point * Estimators * Geometric median * Location * Trimmed mean Subject RIV: BA - General Mathematics Impact factor: 0.457, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/adam-0481224.pdf

  8. Perception-oriented methodology for robust motion estimation design

    NARCIS (Netherlands)

    Heinrich, A.; Vleuten, van der R.J.; Haan, de G.

    2014-01-01

    Optimizing a motion estimator (ME) for picture rate conversion is challenging. This is because there are many types of MEs and, within each type, many parameters, which makes subjective assessment of all the alternatives impractical. To solve this problem, we propose an automatic design methodology

  9. Reconstruction of financial networks for robust estimation of systemic risk

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-01-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks

  10. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  11. Robust Estimation and Moment Selection in Dynamic Fixed-effects Panel Data Models

    NARCIS (Netherlands)

    Cizek, P.; Aquaro, M.

    2015-01-01

    This paper extends an existing outlier-robust estimator of linear dynamic panel data models with fixed effects, which is based on the median ratio of two consecutive pairs of first-differenced data. To improve its precision and robust properties, a general procedure based on many pairwise

  12. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  13. International Conference on Robust Rank-Based and Nonparametric Methods

    CERN Document Server

    McKean, Joseph

    2016-01-01

    The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...

  14. Robustness of SOC Estimation Algorithms for EV Lithium-Ion Batteries against Modeling Errors and Measurement Noise

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-01-01

    Full Text Available State of charge (SOC is one of the most important parameters in battery management system (BMS. There are numerous algorithms for SOC estimation, mostly of model-based observer/filter types such as Kalman filters, closed-loop observers, and robust observers. Modeling errors and measurement noises have critical impact on accuracy of SOC estimation in these algorithms. This paper is a comparative study of robustness of SOC estimation algorithms against modeling errors and measurement noises. By using a typical battery platform for vehicle applications with sensor noise and battery aging characterization, three popular and representative SOC estimation methods (extended Kalman filter, PI-controlled observer, and H∞ observer are compared on such robustness. The simulation and experimental results demonstrate that deterioration of SOC estimation accuracy under modeling errors resulted from aging and larger measurement noise, which is quantitatively characterized. The findings of this paper provide useful information on the following aspects: (1 how SOC estimation accuracy depends on modeling reliability and voltage measurement accuracy; (2 pros and cons of typical SOC estimators in their robustness and reliability; (3 guidelines for requirements on battery system identification and sensor selections.

  15. Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Feten Gannouni

    2017-01-01

    Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.

  16. A Robust Shape Reconstruction Method for Facial Feature Point Detection

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed and applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression and gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment dictionary and the local appearance dictionary are learned in a regressive manner to select robust features and fit shape increments. Additionally, to make the learned model more generalized, we select the best matched parameter set through extensive validation tests. Experimental results on three public datasets demonstrate that the proposed method achieves a better robustness over the state-of-the-art methods.

  17. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem; Heilbron, Fabian Caba; Niebles, Juan Carlos; Thabet, Ali Kassem

    2015-01-01

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  18. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem

    2015-06-02

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  19. Robust Control Methods for On-Line Statistical Learning

    Directory of Open Access Journals (Sweden)

    Capobianco Enrico

    2001-01-01

    Full Text Available The issue of controlling that data processing in an experiment results not affected by the presence of outliers is relevant for statistical control and learning studies. Learning schemes should thus be tested for their capacity of handling outliers in the observed training set so to achieve reliable estimates with respect to the crucial bias and variance aspects. We describe possible ways of endowing neural networks with statistically robust properties by defining feasible error criteria. It is convenient to cast neural nets in state space representations and apply both Kalman filter and stochastic approximation procedures in order to suggest statistically robustified solutions for on-line learning.

  20. Robust Estimation of Diffusion-Optimized Ensembles for Enhanced Sampling

    DEFF Research Database (Denmark)

    Tian, Pengfei; Jónsson, Sigurdur Æ.; Ferkinghoff-Borg, Jesper

    2014-01-01

    The multicanonical, or flat-histogram, method is a common technique to improve the sampling efficiency of molecular simulations. The idea is that free-energy barriers in a simulation can be removed by simulating from a distribution where all values of a reaction coordinate are equally likely......, and subsequently reweight the obtained statistics to recover the Boltzmann distribution at the temperature of interest. While this method has been successful in practice, the choice of a flat distribution is not necessarily optimal. Recently, it was proposed that additional performance gains could be obtained...

  1. Projected estimators for robust semi-supervised classification

    NARCIS (Netherlands)

    Krijthe, J.H.; Loog, M.

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the

  2. National South African HIV prevalence estimates robust despite substantial test non-participation

    Directory of Open Access Journals (Sweden)

    Guy Harling

    2017-07-01

    Full Text Available Background. South African (SA national HIV seroprevalence estimates are of crucial policy relevance in the country, and for the worldwide HIV response. However, the most recent nationally representative HIV test survey in 2012 had 22% test non-participation, leaving the potential for substantial bias in current seroprevalence estimates, even after controlling for selection on observed factors. Objective. To re-estimate national HIV prevalence in SA, controlling for bias due to selection on both observed and unobserved factors in the 2012 SA National HIV Prevalence, Incidence and Behaviour Survey. Methods. We jointly estimated regression models for consent to test and HIV status in a Heckman-type bivariate probit framework. As selection variable, we used assigned interviewer identity, a variable known to predict consent but highly unlikely to be associated with interviewees’ HIV status. From these models, we estimated the HIV status of interviewed participants who did not test. Results. Of 26 710 interviewed participants who were invited to test for HIV, 21.3% of females and 24.3% of males declined. Interviewer identity was strongly correlated with consent to test for HIV; declining a test was weakly associated with HIV serostatus. Our HIV prevalence estimates were not significantly different from those using standard methods to control for bias due to selection on observed factors: 15.1% (95% confidence interval (CI 12.1 - 18.6 v. 14.5% (95% CI 12.8 - 16.3 for 15 - 49-year-old males; 23.3% (95% CI 21.7 - 25.8 v. 23.2% (95% CI 21.3 - 25.1 for 15 - 49-year-old females. Conclusion. The most recent SA HIV prevalence estimates are robust under the strongest available test for selection bias due to missing data. Our findings support the reliability of inferences drawn from such data.

  3. Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.

    Science.gov (United States)

    Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas

    2014-01-01

    In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.

  4. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    International Nuclear Information System (INIS)

    McGowan, S E; Albertini, F; Lomax, A J; Thomas, S J

    2015-01-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties. (paper)

  5. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    Science.gov (United States)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  6. Projected estimators for robust semi-supervised classification

    DEFF Research Database (Denmark)

    Krijthe, Jesse H.; Loog, Marco

    2017-01-01

    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Unlike other approaches to semi-supervised learning, the procedure...... specifically, we prove that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over...... the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy typically considered in practice....

  7. On projection methods, convergence and robust formulations in topology optimization

    DEFF Research Database (Denmark)

    Wang, Fengwen; Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    alleviated using various projection methods. In this paper we show that simple projection methods do not ensure local mesh-convergence and propose a modified robust topology optimization formulation based on erosion, intermediate and dilation projections that ensures both global and local mesh-convergence.......Mesh convergence and manufacturability of topology optimized designs have previously mainly been assured using density or sensitivity based filtering techniques. The drawback of these techniques has been gray transition regions between solid and void parts, but this problem has recently been...

  8. Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer's disease clinical trials.

    Science.gov (United States)

    Hua, Xue; Hibar, Derrek P; Ching, Christopher R K; Boyle, Christina P; Rajagopalan, Priya; Gutman, Boris A; Leow, Alex D; Toga, Arthur W; Jack, Clifford R; Harvey, Danielle; Weiner, Michael W; Thompson, Paul M

    2013-02-01

    Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Robust and bias-corrected estimation of the coefficient of tail dependence

    DEFF Research Database (Denmark)

    Dutang, C.; Goegebeur, Y.; Guillou, A.

    2014-01-01

    We introduce a robust and asymptotically unbiased estimator for the coefficient of tail dependence in multivariate extreme value statistics. The estimator is obtained by fitting a second order model to the data by means of the minimum density power divergence criterion. The asymptotic properties ...

  10. Robust estimation and moment selection in dynamic fixed-effects panel data models

    NARCIS (Netherlands)

    Cizek, Pavel; Aquaro, Michele

    Considering linear dynamic panel data models with fixed effects, existing outlier–robust estimators based on the median ratio of two consecutive pairs of first-differenced data are extended to higher-order differencing. The estimation procedure is thus based on many pairwise differences and their

  11. Estimator-based multiobjective robust control strategy for an active pantograph in high-speed railways

    DEFF Research Database (Denmark)

    Lu, Xiaobing; Liu, Zhigang; Song, Yang

    2018-01-01

    Active control of the pantograph is one of the promising measures for decreasing fluctuation in the contact force between the pantograph and the catenary. In this paper, an estimator-based multiobjective robust control strategy is proposed for an active pantograph, which consists of a state estim...

  12. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  13. Boundary methods for mode estimation

    Science.gov (United States)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  14. Robust time estimation reconciles views of the antiquity of placental mammals.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kitazoe

    2007-04-01

    Full Text Available Molecular studies have reported divergence times of modern placental orders long before the Cretaceous-Tertiary boundary and far older than paleontological data. However, this discrepancy may not be real, but rather appear because of the violation of implicit assumptions in the estimation procedures, such as non-gradual change of evolutionary rate and failure to correct for convergent evolution.New procedures for divergence-time estimation robust to abrupt changes in the rate of molecular evolution are described. We used a variant of the multidimensional vector space (MVS procedure to take account of possible convergent evolution. Numerical simulations of abrupt rate change and convergent evolution showed good performance of the new procedures in contrast to current methods. Application to complete mitochondrial genomes identified marked rate accelerations and decelerations, which are not obtained with current methods. The root of placental mammals is estimated to be approximately 18 million years more recent than when assuming a log Brownian motion model. Correcting the pairwise distances for convergent evolution using MVS lowers the age of the root about another 20 million years compared to using standard maximum likelihood tree branch lengths. These two procedures combined revise the root time of placental mammals from around 122 million years ago to close to 84 million years ago. As a result, the estimated distribution of molecular divergence times is broadly consistent with quantitative analysis of the North American fossil record and traditional morphological views.By including the dual effects of abrupt rate change and directly accounting for convergent evolution at the molecular level, these estimates provide congruence between the molecular results, paleontological analyses and morphological expectations. The programs developed here are provided along with sample data that reproduce the results of this study and are especially

  15. Heuristic introduction to estimation methods

    International Nuclear Information System (INIS)

    Feeley, J.J.; Griffith, J.M.

    1982-08-01

    The methods and concepts of optimal estimation and control have been very successfully applied in the aerospace industry during the past 20 years. Although similarities exist between the problems (control, modeling, measurements) in the aerospace and nuclear power industries, the methods and concepts have found only scant acceptance in the nuclear industry. Differences in technical language seem to be a major reason for the slow transfer of estimation and control methods to the nuclear industry. Therefore, this report was written to present certain important and useful concepts with a minimum of specialized language. By employing a simple example throughout the report, the importance of several information and uncertainty sources is stressed and optimal ways of using or allowing for these sources are presented. This report discusses optimal estimation problems. A future report will discuss optimal control problems

  16. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  17. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  18. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization

    Directory of Open Access Journals (Sweden)

    Marco A

    2006-01-01

    Full Text Available Indoor localization systems are undoubtedly of interest in many application fields. Like outdoor systems, they suffer from non-line-of-sight (NLOS errors which hinder their robustness and accuracy. Though many ad hoc techniques have been developed to deal with this problem, unfortunately most of them are not applicable indoors due to the high variability of the environment (movement of furniture and of people, etc.. In this paper, we describe the use of robust regression techniques to detect and reject NLOS measures in a location estimation using multilateration. We show how the least-median-of-squares technique can be used to overcome the effects of NLOS errors, even in environments with little infrastructure, and validate its suitability by comparing it to other methods described in the bibliography. We obtained remarkable results when using it in a real indoor positioning system that works with Bluetooth and ultrasound (BLUPS, even when nearly half the measures suffered from NLOS or other coarse errors.

  19. A robust fusion method for multiview distributed video coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Ascenso, Joao; Brites, Catarina

    2014-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the redundancy of the source (video) at the decoder side, as opposed to predictive coding, where the encoder leverages the redundancy. To exploit the correlation between views, multiview predictive video codecs require the encoder...... with a robust fusion system able to improve the quality of the fused SI along the decoding process through a learning process using already decoded data. We shall here take the approach to fuse the estimated distributions of the SIs as opposed to a conventional fusion algorithm based on the fusion of pixel...... values. The proposed solution is able to achieve gains up to 0.9 dB in Bjøntegaard difference when compared with the best-performing (in a RD sense) single SI DVC decoder, chosen as the best of an inter-view and a temporal SI-based decoder one....

  20. Robust DOA Estimation of Harmonic Signals Using Constrained Filters on Phase Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In array signal processing, distances between receivers, e.g., microphones, cause time delays depending on the direction of arrival (DOA) of a signal source. We can then estimate the DOA from the time-difference of arrival (TDOA) estimates. However, many conventional DOA estimators based on TDOA...... estimates are not optimal in colored noise. In this paper, we estimate the DOA of a harmonic signal source from multi-channel phase estimates, which relate to narrowband TDOA estimates. More specifically, we design filters to apply on phase estimates to obtain a DOA estimate with minimum variance. Using...

  1. Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems

    International Nuclear Information System (INIS)

    Jin, Maolin; Chang, Pyung Hun

    2009-01-01

    This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lue system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings. Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.

  2. Total focusing method (TFM) robustness to material deviations

    Science.gov (United States)

    Painchaud-April, Guillaume; Badeau, Nicolas; Lepage, Benoit

    2018-04-01

    The total focusing method (TFM) is becoming an accepted nondestructive evaluation method for industrial inspection. What was a topic of discussion in the applied research community just a few years ago is now being deployed in critical industrial applications, such as inspecting welds in pipelines. However, the method's sensitivity to unexpected parametric changes (material and geometric) has not been rigorously assessed. In this article, we investigate the robustness of TFM in relation to unavoidable deviations from modeled nominal inspection component characteristics, such as sound velocities and uncertainties about the parts' internal and external diameters. We also review TFM's impact on the standard inspection modes often encountered in industrial inspections, and we present a theoretical model supported by empirical observations to illustrate the discussion.

  3. A less field-intensive robust design for estimating demographic parameters with Mark-resight data

    Science.gov (United States)

    McClintock, B.T.; White, Gary C.

    2009-01-01

    The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs. ?? 2009 by the Ecological Society of America.

  4. Dynamic Output Feedback Robust Model Predictive Control via Zonotopic Set-Membership Estimation for Constrained Quasi-LPV Systems

    Directory of Open Access Journals (Sweden)

    Xubin Ping

    2015-01-01

    Full Text Available For the quasi-linear parameter varying (quasi-LPV system with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC is investigated. The estimation error set is represented by a zonotope and refreshed by the zonotopic set-membership estimation method. By properly refreshing the estimation error set online, the bounds of true state at the next sampling time can be obtained. Furthermore, the feasibility of the main optimization problem at the next sampling time can be determined at the current time. A numerical example is given to illustrate the effectiveness of the approach.

  5. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  6. A ROBUST METHOD FOR STEREO VISUAL ODOMETRY BASED ON MULTIPLE EUCLIDEAN DISTANCE CONSTRAINT AND RANSAC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2017-07-01

    Full Text Available Visual Odometry (VO is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC and Random Sample Consensus (RANSAC algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation. The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.

  7. A new robust method for the treatment of analytical data

    International Nuclear Information System (INIS)

    Pearton, D.C.G.

    1982-01-01

    A new robust method is proposed for the calculation of the median and the relative standard deviation for a set of data containing unsymmetrically placed outliers. Examples of the advantages of the new method are given, the findings being confirmed by Monte Carlo tests. At Mintek mass-spectrometric data are often unsymmetrical, and all outliers are often at one of the extremities, either all high or all low. In some instances the outliers can be seen visually, and would therefore be rejected on sight. However, when large sets of results are processed, such as those from mass-spectrometric, X-ray fluorescence, and neutron-activation analyses, or in fields such as the assignment of values to reference materials, the sets of results are often too large for visual inspection and are processed within the computer

  8. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data.

    Science.gov (United States)

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-10-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses.

  9. Order statistics & inference estimation methods

    CERN Document Server

    Balakrishnan, N

    1991-01-01

    The literature on order statistics and inferenc eis quite extensive and covers a large number of fields ,but most of it is dispersed throughout numerous publications. This volume is the consolidtion of the most important results and places an emphasis on estimation. Both theoretical and computational procedures are presented to meet the needs of researchers, professionals, and students. The methods of estimation discussed are well-illustrated with numerous practical examples from both the physical and life sciences, including sociology,psychology,a nd electrical and chemical engineering. A co

  10. Methods for estimating the semivariogram

    DEFF Research Database (Denmark)

    Lophaven, Søren Nymand; Carstensen, Niels Jacob; Rootzen, Helle

    2002-01-01

    . In the existing literature various methods for modelling the semivariogram have been proposed, while only a few studies have been made on comparing different approaches. In this paper we compare eight approaches for modelling the semivariogram, i.e. six approaches based on least squares estimation...... maximum likelihood performed better than the least squares approaches. We also applied maximum likelihood and least squares estimation to a real dataset, containing measurements of salinity at 71 sampling stations in the Kattegat basin. This showed that the calculation of spatial predictions...

  11. Estimating open population site occupancy from presence-absence data lacking the robust design.

    Science.gov (United States)

    Dail, D; Madsen, L

    2013-03-01

    Many animal monitoring studies seek to estimate the proportion of a study area occupied by a target population. The study area is divided into spatially distinct sites where the detected presence or absence of the population is recorded, and this is repeated in time for multiple seasons. However, when occupied sites are detected with probability p Ecology 84, 2200-2207) developed a multiseason model for estimating seasonal site occupancy (ψt ) while accounting for unknown p. Their model performs well when observations are collected according to the robust design, where multiple sampling occasions occur during each season; the repeated sampling aids in the estimation p. However, their model does not perform as well when the robust design is lacking. In this paper, we propose an alternative likelihood model that yields improved seasonal estimates of p and Ψt in the absence of the robust design. We construct the marginal likelihood of the observed data by conditioning on, and summing out, the latent number of occupied sites during each season. A simulation study shows that in cases without the robust design, the proposed model estimates p with less bias than the MacKenzie et al. model and hence improves the estimates of Ψt . We apply both models to a data set consisting of repeated presence-absence observations of American robins (Turdus migratorius) with yearly survey periods. The two models are compared to a third estimator available when the repeated counts (from the same study) are considered, with the proposed model yielding estimates of Ψt closest to estimates from the point count model. Copyright © 2013, The International Biometric Society.

  12. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  13. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A

    2013-01-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)

  14. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    Science.gov (United States)

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods

    OpenAIRE

    Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping

    2016-01-01

    To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). They are sensitive to contaminated data, even when using bounded positive definite kernels. First, we propose robust kernel covariance operator (robust kernel CO) and robust kernel crosscovariance operator (robust kern...

  16. Robust Backlash Estimation for Industrial Drive-Train Systems—Theory and Validation

    DEFF Research Database (Denmark)

    Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik

    2018-01-01

    Backlash compensation is used in modern machinetool controls to ensure high-accuracy positioning. When wear of a machine causes deadzone width to increase, high-accuracy control may be maintained if the deadzone is accurately estimated. Deadzone estimation is also an important parameter to indica......-of-the-art Siemens equipment. The experiments validate the theory and show that expected performance and robustness to parameter uncertainties are both achieved....

  17. Advances in Modal Analysis Using a Robust and Multiscale Method

    Science.gov (United States)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  18. Advances in Modal Analysis Using a Robust and Multiscale Method

    Directory of Open Access Journals (Sweden)

    Frisson Christian

    2010-01-01

    Full Text Available Abstract This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  19. Robust Estimation for a CSTR Using a High Order Sliding Mode Observer and an Observer-Based Estimator

    Directory of Open Access Journals (Sweden)

    Esteban Jiménez-Rodríguez

    2016-12-01

    Full Text Available This paper presents an estimation structure for a continuous stirred-tank reactor, which is comprised of a sliding mode observer-based estimator coupled with a high-order sliding-mode observer. The whole scheme allows the robust estimation of the state and some parameters, specifically the concentration of the reactive mass, the heat of reaction and the global coefficient of heat transfer, by measuring the temperature inside the reactor and the temperature inside the jacket. In order to verify the results, the convergence proof of the proposed structure is done, and numerical simulations are presented with noiseless and noisy measurements, suggesting the applicability of the posed approach.

  20. Efficient and robust implementation of the TLISMNI method

    Science.gov (United States)

    Aboubakr, Ahmed K.; Shabana, Ahmed A.

    2015-09-01

    The dynamics of large scale and complex multibody systems (MBS) that include flexible bodies and contact/impact pairs is governed by stiff equations. Because explicit integration methods can be inefficient and often fail in the case of stiff problems, the use of implicit numerical integration methods is recommended in this case. This paper presents a new and efficient implementation of the two-loop implicit sparse matrix numerical integration (TLISMNI) method proposed for the solution of constrained rigid and flexible MBS differential and algebraic equations. The TLISMNI method has desirable features that include avoiding numerical differentiation of the forces, allowing for an efficient sparse matrix implementation, and ensuring that the kinematic constraint equations are satisfied at the position, velocity and acceleration levels. In this method, a sparse Lagrangian augmented form of the equations of motion that ensures that the constraints are satisfied at the acceleration level is used to solve for all the accelerations and Lagrange multipliers. The generalized coordinate partitioning or recursive methods can be used to satisfy the constraint equations at the position and velocity levels. In order to improve the efficiency and robustness of the TLISMNI method, the simple iteration and the Jacobian-Free Newton-Krylov approaches are used in this investigation. The new implementation is tested using several low order formulas that include Hilber-Hughes-Taylor (HHT), L-stable Park, A-stable Trapezoidal, and A-stable BDF methods. The HHT method allows for including numerical damping. Discussion on which method is more appropriate to use for a certain application is provided. The paper also discusses TLISMNI implementation issues including the step size selection, the convergence criteria, the error control, and the effect of the numerical damping. The use of the computer algorithm described in this paper is demonstrated by solving complex rigid and flexible tracked

  1. Unrecorded Alcohol Consumption: Quantitative Methods of Estimation

    OpenAIRE

    Razvodovsky, Y. E.

    2010-01-01

    unrecorded alcohol; methods of estimation In this paper we focused on methods of estimation of unrecorded alcohol consumption level. Present methods of estimation of unrevorded alcohol consumption allow only approximate estimation of unrecorded alcohol consumption level. Tacking into consideration the extreme importance of such kind of data, further investigation is necessary to improve the reliability of methods estimation of unrecorded alcohol consumption.

  2. A modern robust approach to remotely estimate chlorophyll in coastal and inland zones

    Science.gov (United States)

    Shanmugam, Palanisamy; He, Xianqiang; Singh, Rakesh Kumar; Varunan, Theenathayalan

    2018-05-01

    The chlorophyll concentration of a water body is an important proxy for representing the phytoplankton biomass. Its estimation from multi or hyper-spectral remote sensing data in natural waters is generally achieved by using (i) the waveband ratioing in two or more bands in the blue-green or (ii) by using a combination of the radiance peak position and magnitude in the red-near-infrared (NIR) spectrum. The blue-green ratio algorithms have been extensively used with satellite ocean color data to investigate chlorophyll distributions in open ocean and clear waters and the application of red-NIR algorithms is often restricted to turbid productive water bodies. These issues present the greatest obstacles to our ability to formulate a modern robust method suitable for quantitative assessments of the chlorophyll concentration in a diverse range of water types. The present study is focused to investigate the normalized water-leaving radiance spectra in the visible and NIR region and propose a robust algorithm (Generalized ABI, GABI algorithm) for chlorophyll concentration retrieval based on Algal Bloom index (ABI) which separates phytoplankton signals from other constituents in the water column. The GABI algorithm is validated using independent in-situ data from various regional to global waters and its performance is further evaluated by comparison with the blue-green waveband ratios and red-NIR algorithms. The results revealed that GABI yields significantly more accurate chlorophyll concentrations (with uncertainties less than 13.5%) and remains more stable in different waters types when compared with the blue-green waveband ratios and red-NIR algorithms. The performance of GABI is further demonstrated using HICO images from nearshore turbid productive waters and MERIS and MODIS-Aqua images from coastal and offshore waters of the Arabian Sea, Bay of Bengal and East China Sea.

  3. Estimating temporary emigration and breeding proportions using capture-recapture data with Pollock's robust design

    Science.gov (United States)

    Kendall, W.L.; Nichols, J.D.; Hines, J.E.

    1997-01-01

    Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.

  4. A robust nonparametric method for quantifying undetected extinctions.

    Science.gov (United States)

    Chisholm, Ryan A; Giam, Xingli; Sadanandan, Keren R; Fung, Tak; Rheindt, Frank E

    2016-06-01

    How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per-species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions. © 2016 Society for Conservation Biology.

  5. Robust estimation of autoregressive processes using a mixture-based filter-bank

    Czech Academy of Sciences Publication Activity Database

    Šmídl, V.; Anthony, Q.; Kárný, Miroslav; Guy, Tatiana Valentine

    2005-01-01

    Roč. 54, č. 4 (2005), s. 315-323 ISSN 0167-6911 R&D Projects: GA AV ČR IBS1075351; GA ČR GA102/03/0049; GA ČR GP102/03/P010; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian estimation * probabilistic mixtures * recursive estimation Subject RIV: BC - Control Systems Theory Impact factor: 1.239, year: 2005 http://library.utia.cas.cz/separaty/historie/karny-robust estimation of autoregressive processes using a mixture-based filter- bank .pdf

  6. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  7. Robust and efficient method for matching features in omnidirectional images

    Science.gov (United States)

    Zhu, Qinyi; Zhang, Zhijiang; Zeng, Dan

    2018-04-01

    Binary descriptors have been widely used in many real-time applications due to their efficiency. These descriptors are commonly designed for perspective images but perform poorly on omnidirectional images, which are severely distorted. To address this issue, this paper proposes tangent plane BRIEF (TPBRIEF) and adapted log polar grid-based motion statistics (ALPGMS). TPBRIEF projects keypoints to a unit sphere and applies the fixed test set in BRIEF descriptor on the tangent plane of the unit sphere. The fixed test set is then backprojected onto the original distorted images to construct the distortion invariant descriptor. TPBRIEF directly enables keypoint detecting and feature describing on original distorted images, whereas other approaches correct the distortion through image resampling, which introduces artifacts and adds time cost. With ALPGMS, omnidirectional images are divided into circular arches named adapted log polar grids. Whether a match is true or false is then determined by simply thresholding the match numbers in a grid pair where the two matched points located. Experiments show that TPBRIEF greatly improves the feature matching accuracy and ALPGMS robustly removes wrong matches. Our proposed method outperforms the state-of-the-art methods.

  8. Estimation non-paramétrique robuste pour données fonctionnelles

    OpenAIRE

    Crambes , Christophe; Delsol , Laurent; Laksaci , Ali

    2009-01-01

    International audience; L'estimation robuste présente une approche alternative aux méthodes de régression classiques, par exemple lorsque les observations sont affectées par la présence de données aberrantes. Récemment, ces estimateurs robustes ont été considérés pour des modèles avec données fonctionnelles. Dans cet exposé, nous considérons un modèle de régression robuste avec une variable d'intérêt réelle et une variable explicative fonctionnelle. Nous définissons un estimateur non-paramétr...

  9. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    KAUST Repository

    Wei, Jiawei

    2012-12-04

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  10. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Mü ller, Ursula U.; Keilegom, Ingrid Van; Chatterjee, Nilanjan

    2012-01-01

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  11. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    Science.gov (United States)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  12. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter

    International Nuclear Information System (INIS)

    Li, Q; Mark, R G; Clifford, G D

    2008-01-01

    Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing data, which lead to large errors in the estimation of the heart rate (HR) and ABP. A robust HR estimation method is described that compensates for these problems. The method is based upon the concept of fusing multiple signal quality indices (SQIs) and HR estimates derived from multiple electrocardiogram (ECG) leads and an invasive ABP waveform recorded from ICU patients. Physiological SQIs were obtained by analyzing the statistical characteristics of each waveform and their relationships to each other. HR estimates from the ECG and ABP are tracked with separate Kalman filters, using a modified update sequence based upon the individual SQIs. Data fusion of each HR estimate was then performed by weighting each estimate by the Kalman filters' SQI-modified innovations. This method was evaluated on over 6000 h of simultaneously acquired ECG and ABP from a 437 patient subset of ICU data by adding real ECG and realistic artificial ABP noise. The method provides an accurate HR estimate even in the presence of high levels of persistent noise and artifact, and during episodes of extreme bradycardia and tachycardia

  13. Data preprocessing methods for robust Fourier ptychographic microscopy

    Science.gov (United States)

    Zhang, Yan; Pan, An; Lei, Ming; Yao, Baoli

    2017-12-01

    Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that achieves gigapixel images with both high resolution and large field-of-view. In the current FPM experimental setup, the dark-field images with high-angle illuminations are easily overwhelmed by stray lights and background noises due to the low signal-to-noise ratio, thus significantly degrading the achievable resolution of the FPM approach. We provide an overall and systematic data preprocessing scheme to enhance the FPM's performance, which involves sampling analysis, underexposed/overexposed treatments, background noises suppression, and stray lights elimination. It is demonstrated experimentally with both US Air Force (USAF) 1951 resolution target and biological samples that the benefit of the noise removal by these methods far outweighs the defect of the accompanying signal loss, as part of the lost signals can be compensated by the improved consistencies among the captured raw images. In addition, the reported nonparametric scheme could be further cooperated with the existing state-of-the-art algorithms with a great flexibility, facilitating a stronger noise-robust capability of the FPM approach in various applications.

  14. Estimating the Robustness of Composite CBA and MCDA Assessments by Variation of Criteria Importance Order

    DEFF Research Database (Denmark)

    Jensen, Anders Vestergaard; Barfod, Michael Bruhn; Leleur, Steen

    2011-01-01

    described is based on the fact that when using MCA as a decision-support tool, questions often arise about the weighting (or prioritising) of the included criteria. This part of the MCA is seen as the most subjective part and could give reasons for discussion among the decision makers or stakeholders......Abstract This paper discusses the concept of using rank variation concerning the stakeholder prioritising of importance criteria for exploring the sensitivity of criteria weights in multi-criteria analysis (MCA). Thereby the robustness of the MCA-based decision support can be tested. The analysis....... Furthermore, the relative weights can make a large difference in the resulting assessment of alternatives (Hobbs and Meier 2000). Therefore it is highly relevant to introduce a procedure for estimating the importance of criteria weights. This paper proposes a methodology for estimating the robustness...

  15. Estimating the robustness of composite CBA & MCA assessments by variation of criteria importance order

    DEFF Research Database (Denmark)

    Jensen, Anders Vestergaard; Barfod, Michael Bruhn; Leleur, Steen

    is based on the fact that when using MCA as a decision-support tool, questions often arise about the weighting (or prioritising) of the included criteria. This part of the MCA is seen as the most subjective part and could give reasons for discussion among the decision makers or stakeholders. Furthermore......This paper discusses the concept of using rank variation concerning the stake-holder prioritising of importance criteria for exploring the sensitivity of criteria weights in multi-criteria analysis (MCA). Thereby the robustness of the MCA-based decision support can be tested. The analysis described......, the relative weights can make a large difference in the resulting assessment of alternatives [1]. Therefore it is highly relevant to introduce a procedure for estimating the importance of criteria weights. This paper proposes a methodology for estimating the robustness of weights used in additive utility...

  16. Highly Robust Statistical Methods in Medical Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 32, č. 2 (2012), s. 3-16 ISSN 0208-5216 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust statistics * classification * faces * robust image analysis * forensic science Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.208, year: 2012 http://www.ibib.waw.pl/bbe/bbefulltext/BBE_32_2_003_FT.pdf

  17. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  18. A Robust Parametric Technique for Multipath Channel Estimation in the Uplink of a DS-CDMA System

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The problem of estimating the multipath channel parameters of a new user entering the uplink of an asynchronous direct sequence-code division multiple access (DS-CDMA system is addressed. The problem is described via a least squares (LS cost function with a rich structure. This cost function, which is nonlinear with respect to the time delays and linear with respect to the gains of the multipath channel, is proved to be approximately decoupled in terms of the path delays. Due to this structure, an iterative procedure of 1D searches is adequate for time delays estimation. The resulting method is computationally efficient, does not require any specific pilot signal, and performs well for a small number of training symbols. Simulation results show that the proposed technique offers a better estimation accuracy compared to existing related methods, and is robust to multiple access interference.

  19. Bayesian estimation methods in metrology

    International Nuclear Information System (INIS)

    Cox, M.G.; Forbes, A.B.; Harris, P.M.

    2004-01-01

    In metrology -- the science of measurement -- a measurement result must be accompanied by a statement of its associated uncertainty. The degree of validity of a measurement result is determined by the validity of the uncertainty statement. In recognition of the importance of uncertainty evaluation, the International Standardization Organization in 1995 published the Guide to the Expression of Uncertainty in Measurement and the Guide has been widely adopted. The validity of uncertainty statements is tested in interlaboratory comparisons in which an artefact is measured by a number of laboratories and their measurement results compared. Since the introduction of the Mutual Recognition Arrangement, key comparisons are being undertaken to determine the degree of equivalence of laboratories for particular measurement tasks. In this paper, we discuss the possible development of the Guide to reflect Bayesian approaches and the evaluation of key comparison data using Bayesian estimation methods

  20. Robust Variance Estimation with Dependent Effect Sizes: Practical Considerations Including a Software Tutorial in Stata and SPSS

    Science.gov (United States)

    Tanner-Smith, Emily E.; Tipton, Elizabeth

    2014-01-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…

  1. mBEEF-vdW: Robust fitting of error estimation density functionals

    DEFF Research Database (Denmark)

    Lundgård, Keld Troen; Wellendorff, Jess; Voss, Johannes

    2016-01-01

    . The functional is fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012); J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)]. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function...... catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show...

  2. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson

    2012-01-01

    lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches...... parameters, which are strongly correlated with each other. State-of-the-art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver-Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely...

  3. Robust driver heartbeat estimation: A q-Hurst exponent based automatic sensor change with interactive multi-model EKF.

    Science.gov (United States)

    Vrazic, Sacha

    2015-08-01

    Preventing car accidents by monitoring the driver's physiological parameters is of high importance. However, existing measurement methods are not robust to driver's body movements. In this paper, a system that estimates the heartbeat from the seat embedded piezoelectric sensors, and that is robust to strong body movements is presented. Multifractal q-Hurst exponents are used within a classifier to predict the most probable best sensor signal to be used in an Interactive Multi-Model Extended Kalman Filter pulsation estimation procedure. The car vibration noise is reduced using an autoregressive exogenous model to predict the noise on sensors. The performance of the proposed system was evaluated on real driving data up to 100 km/h and with slaloms at high speed. It is shown that this method improves by 36.7% the pulsation estimation under strong body movement compared to static sensor pulsation estimation and appears to provide reliable pulsation variability information for top-level analysis of drowsiness or other conditions.

  4. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  5. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    Science.gov (United States)

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  6. Robustness of Modal Parameter Estimation Methods Applied to Lightweight Structures

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    On-going research is concerned with the losses that occur at junctions in lightweight building structures. Recently the authors have investigated the underlying uncertainties related to both measurement, material and craftsmanship of timber junctions by means of repeated modal testing on a number...

  7. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  8. Model Specifications for Estimating Labor Market Returns to Associate Degrees: How Robust Are Fixed Effects Estimates? A CAPSEE Working Paper

    Science.gov (United States)

    Belfield, Clive; Bailey, Thomas

    2017-01-01

    Recently, studies have adopted fixed effects modeling to identify the returns to college. This method has the advantage over ordinary least squares estimates in that unobservable, individual-level characteristics that may bias the estimated returns are differenced out. But the method requires extensive longitudinal data and involves complex…

  9. Comparative Study of Gas Reconstruction Robust Methods for Multicomponent Gas Mixtures

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available When using laser methods of gas analysis, one of the arising problems is instability in results of defining a quantitative composition of gases under control of multicomponent mixes in the conditions of real noise of measurements. It leads to demand for using the special algorithms to process results of laser measurements.For multicomponent gaseous mixes, when solving a problem of quantitative gas analysis based on the results of multispectral laser measurements, use of methods for solving incorrect mathematical tasks is efficient.If mix is stationary (i.e. there is a possibility for a series of measurements it is possible to use a much simpler method to determine concentration of gases, i.e. the least-squares method based on the minimization of residual function.However, the estimates obtained by the least-squares method are effective if distribution of measurement errors is according to the normal law. In practice, the law of errors distribution is often non-normal, and loss of estimate efficiency achieved by the least-squares method occurs even at a small share of bursts.With bursts available in the measuring signal, it is necessary to use the stationary estimation methods allowing the significantly reduced impact on the estimate of considerable bursts.To estimate an efficiency of the robust methods for defining a quantitative composition of the multicomponent stationary gas mixes from multispectral laser measurements a mathematical simulation was performed. A gas mixture was considered to be stationary, and n measurements (at each wavelength were taken ( n were specified from 2 to 6 to define a quantitative composition of gases in the mixture. Simulation was implemented for gas mixes with the number of components from 4 to 6.Results of mathematical simulation show that the robust estimate based on the residual function ( x  arctg x , allows us, in conditions of the bursts of a variable signal, to reduce significantly the error of

  10. BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition

    Directory of Open Access Journals (Sweden)

    Abdullah Makkeh

    2018-04-01

    Full Text Available Makkeh, Theis, and Vicente found that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decomposition (BROJA PID measure. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then, we describe in detail our software, explain how to use it, and perform some experiments comparing it to other estimators. Finally, we show that the software can be extended to compute some quantities of a trivaraite PID measure.

  11. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates

    Directory of Open Access Journals (Sweden)

    Berhane Yemane

    2008-03-01

    estimates and regression analyses to significant amounts of randomly introduced errors indicates a high level of robustness of the dataset. This apparent inertia of population parameter estimates to simulated errors is largely due to the size of the dataset. Tolerable margins of random error in DSS data may exceed 20%. While this is not an argument in favour of poor quality data, reducing the time and valuable resources spent on detecting and correcting random errors in routine DSS operations may be justifiable as the returns from such procedures diminish with increasing overall accuracy. The money and effort currently spent on endlessly correcting DSS datasets would perhaps be better spent on increasing the surveillance population size and geographic spread of DSSs and analysing and disseminating research findings.

  12. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  13. Robust Online State of Charge Estimation of Lithium-Ion Battery Pack Based on Error Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2015-01-01

    Full Text Available Accurate and reliable state of charge (SOC estimation is a key enabling technique for large format lithium-ion battery pack due to its vital role in battery safety and effective management. This paper tries to make three contributions to existing literatures through robust algorithms. (1 Observer based SOC estimation error model is established, where the crucial parameters on SOC estimation accuracy are determined by quantitative analysis, being a basis for parameters update. (2 The estimation method for a battery pack in which the inconsistency of cells is taken into consideration is proposed, ensuring all batteries’ SOC ranging from 0 to 1, effectively avoiding the battery overcharged/overdischarged. Online estimation of the parameters is also presented in this paper. (3 The SOC estimation accuracy of the battery pack is verified using the hardware-in-loop simulation platform. The experimental results at various dynamic test conditions, temperatures, and initial SOC difference between two cells demonstrate the efficacy of the proposed method.

  14. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  15. ROBUST: an interactive FORTRAN-77 package for exploratory data analysis using parametric, ROBUST and nonparametric location and scale estimates, data transformations, normality tests, and outlier assessment

    Science.gov (United States)

    Rock, N. M. S.

    ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures

  16. Robust Trajectory Design in Highly Perturbed Environments Leveraging Continuation Methods, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed to investigate continuation methods to improve the robustness of trajectory design algorithms for spacecraft in highly perturbed dynamical...

  17. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    Science.gov (United States)

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of

  18. On the robustness of EC-PC spike detection method for online neural recording.

    Science.gov (United States)

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss.

    Science.gov (United States)

    Tanner-Smith, Emily E; Tipton, Elizabeth

    2014-03-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.

  20. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Science.gov (United States)

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  1. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer

    Science.gov (United States)

    Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong

    2018-06-01

    For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.

  2. Five-equation and robust three-equation methods for solution verification of large eddy simulation

    Science.gov (United States)

    Dutta, Rabijit; Xing, Tao

    2018-02-01

    This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

  3. VIDEO DENOISING USING SWITCHING ADAPTIVE DECISION BASED ALGORITHM WITH ROBUST MOTION ESTIMATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V. Jayaraj

    2010-08-01

    Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.

  4. Estimation and robust control of microalgae culture for optimization of biological fixation of CO2

    International Nuclear Information System (INIS)

    Filali, R.

    2012-01-01

    This thesis deals with the optimization of carbon dioxide consumption by microalgae. Indeed, following several current environmental issues primarily related to large emissions of CO 2 , it is shown that microalgae represent a very promising solution for CO 2 mitigation. From this perspective, we are interested in the optimization strategy of CO 2 consumption through the development of a robust control law. The main aim is to ensure optimal operating conditions for a Chlorella vulgaris culture in an instrumented photo-bioreactor. The thesis is based on three major axes. The first one concerns growth modeling of the selected species based on a mathematical model reflecting the influence of light and total inorganic carbon concentration. For the control context, the second axis is related to biomass estimation from the real-time measurement of dissolved carbon dioxide. This step is necessary for the control part due to the lack of affordable real-time sensors for this kind of measurement. Three observers structures have been studied and compared: an extended Kalman filter, an asymptotic observer and an interval observer. The last axis deals with the implementation of a non-linear predictive control law coupled to the estimation strategy for the regulation of the cellular concentration around a value which maximizes the CO 2 consumption. Performance and robustness of this control law have been validated in simulation and experimentally on a laboratory-scale instrumented photo-bioreactor. This thesis represents a preliminary study for the optimization of CO 2 mitigation strategy by microalgae. (author)

  5. Robustness of serial clustering of extratropical cyclones to the choice of tracking method

    Directory of Open Access Journals (Sweden)

    Joaquim G. Pinto

    2016-07-01

    Full Text Available Cyclone clusters are a frequent synoptic feature in the Euro-Atlantic area. Recent studies have shown that serial clustering of cyclones generally occurs on both flanks and downstream regions of the North Atlantic storm track, while cyclones tend to occur more regulary on the western side of the North Atlantic basin near Newfoundland. This study explores the sensitivity of serial clustering to the choice of cyclone tracking method using cyclone track data from 15 methods derived from ERA-Interim data (1979–2010. Clustering is estimated by the dispersion (ratio of variance to mean of winter [December – February (DJF] cyclone passages near each grid point over the Euro-Atlantic area. The mean number of cyclone counts and their variance are compared between methods, revealing considerable differences, particularly for the latter. Results show that all different tracking methods qualitatively capture similar large-scale spatial patterns of underdispersion and overdispersion over the study region. The quantitative differences can primarily be attributed to the differences in the variance of cyclone counts between the methods. Nevertheless, overdispersion is statistically significant for almost all methods over parts of the eastern North Atlantic and Western Europe, and is therefore considered as a robust feature. The influence of the North Atlantic Oscillation (NAO on cyclone clustering displays a similar pattern for all tracking methods, with one maximum near Iceland and another between the Azores and Iberia. The differences in variance between methods are not related with different sensitivities to the NAO, which can account to over 50% of the clustering in some regions. We conclude that the general features of underdispersion and overdispersion of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO on cyclone dispersion.

  6. Comparison of Classical and Robust Estimates of Threshold Auto-regression Parameters

    Directory of Open Access Journals (Sweden)

    V. B. Goryainov

    2017-01-01

    Full Text Available The study object is the first-order threshold auto-regression model with a single zero-located threshold. The model describes a stochastic temporal series with discrete time by means of a piecewise linear equation consisting of two linear classical first-order autoregressive equations. One of these equations is used to calculate a running value of the temporal series. A control variable that determines the choice between these two equations is the sign of the previous value of the same series.The first-order threshold autoregressive model with a single threshold depends on two real parameters that coincide with the coefficients of the piecewise linear threshold equation. These parameters are assumed to be unknown. The paper studies an estimate of the least squares, an estimate the least modules, and the M-estimates of these parameters. The aim of the paper is a comparative study of the accuracy of these estimates for the main probabilistic distributions of the updating process of the threshold autoregressive equation. These probability distributions were normal, contaminated normal, logistic, double-exponential distributions, a Student's distribution with different number of degrees of freedom, and a Cauchy distribution.As a measure of the accuracy of each estimate, was chosen its variance to measure the scattering of the estimate around the estimated parameter. An estimate with smaller variance made from the two estimates was considered to be the best. The variance was estimated by computer simulation. To estimate the smallest modules an iterative weighted least-squares method was used and the M-estimates were done by the method of a deformable polyhedron (the Nelder-Mead method. To calculate the least squares estimate, an explicit analytic expression was used.It turned out that the estimation of least squares is best only with the normal distribution of the updating process. For the logistic distribution and the Student's distribution with the

  7. Robustness of a Neural Network Model for Power Peak Factor Estimation in Protection Systems

    International Nuclear Information System (INIS)

    Souza, Rose Mary G.P.; Moreira, Joao M.L.

    2006-01-01

    This work presents results of robustness verification of artificial neural network correlations that improve the real time prediction of the power peak factor for reactor protection systems. The input variables considered in the correlation are those available in the reactor protection systems, namely, the axial power differences obtained from measured ex-core detectors, and the position of control rods. The correlations, based on radial basis function (RBF) and multilayer perceptron (MLP) neural networks, estimate the power peak factor, without faulty signals, with average errors between 0.13%, 0.19% and 0.15%, and maximum relative error of 2.35%. The robustness verification was performed for three different neural network correlations. The results show that they are robust against signal degradation, producing results with faulty signals with a maximum error of 6.90%. The average error associated to faulty signals for the MLP network is about half of that of the RBF network, and the maximum error is about 1% smaller. These results demonstrate that MLP neural network correlation is more robust than the RBF neural network correlation. The results also show that the input variables present redundant information. The axial power difference signals compensate the faulty signal for the position of a given control rod, and improves the results by about 10%. The results show that the errors in the power peak factor estimation by these neural network correlations, even in faulty conditions, are smaller than the current PWR schemes which may have uncertainties as high as 8%. Considering the maximum relative error of 2.35%, these neural network correlations would allow decreasing the power peak factor safety margin by about 5%. Such a reduction could be used for operating the reactor with a higher power level or with more flexibility. The neural network correlation has to meet requirements of high integrity software that performs safety grade actions. It is shown that the

  8. Robust k-mer frequency estimation using gapped k-mers.

    Science.gov (United States)

    Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A

    2014-08-01

    Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome.

  9. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    Science.gov (United States)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  10. Dose estimation by biological methods

    International Nuclear Information System (INIS)

    Guerrero C, C.; David C, L.; Serment G, J.; Brena V, M.

    1997-01-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  11. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  12. Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    The question of estimating the upper limit of -parallel B -parallel 2 , which is a key step in some recently reported global robust stability criteria for delayed neural networks, is revisited ( B denotes the delayed connection weight matrix). Recently, Cao, Huang, and Qu have given an estimate of the upper limit of -parallel B -parallel 2 . In the present paper, an alternative estimate of the upper limit of -parallel B -parallel 2 is highlighted. It is shown that the alternative estimate may yield some new global robust stability results

  13. Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shangjie [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China); Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States); Hara, Wendy; Wang, Lei; Buyyounouski, Mark K.; Le, Quynh-Thu; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States); Li, Ruijiang, E-mail: rli2@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States)

    2017-03-15

    Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a reference anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.

  14. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Erdogan Fevzi

    2010-01-01

    Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

  15. Robust Estimation of HDR in fMRI using H-infinity Filters

    DEFF Research Database (Denmark)

    Puthusserypady, Sadasivan; Jue, R.; Ratnarajah, T.

    2010-01-01

    Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H-infinity adaptive filters (finite memory, exponentially weighted, and timevarying) for accurate estimation and detection of the HDR......-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections....

  16. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.

    Science.gov (United States)

    Ebrahimian, Hossein; Jalayer, Fatemeh

    2017-08-29

    In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.

  17. A kriging metamodel-assisted robust optimization method based on a reverse model

    Science.gov (United States)

    Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao

    2018-02-01

    The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.

  18. Development of robust flexible OLED encapsulations using simulated estimations and experimental validations

    International Nuclear Information System (INIS)

    Lee, Chang-Chun; Shih, Yan-Shin; Wu, Chih-Sheng; Tsai, Chia-Hao; Yeh, Shu-Tang; Peng, Yi-Hao; Chen, Kuang-Jung

    2012-01-01

    This work analyses the overall stress/strain characteristic of flexible encapsulations with organic light-emitting diode (OLED) devices. A robust methodology composed of a mechanical model of multi-thin film under bending loads and related stress simulations based on nonlinear finite element analysis (FEA) is proposed, and validated to be more reliable compared with related experimental data. With various geometrical combinations of cover plate, stacked thin films and plastic substrate, the position of the neutral axis (NA) plate, which is regarded as a key design parameter to minimize stress impact for the concerned OLED devices, is acquired using the present methodology. The results point out that both the thickness and mechanical properties of the cover plate help in determining the NA location. In addition, several concave and convex radii are applied to examine the reliable mechanical tolerance and to provide an insight into the estimated reliability of foldable OLED encapsulations. (paper)

  19. Optic disk localization by a robust fusion method

    Science.gov (United States)

    Zhang, Jielin; Yin, Fengshou; Wong, Damon W. K.; Liu, Jiang; Baskaran, Mani; Cheng, Ching-Yu; Wong, Tien Yin

    2013-02-01

    The optic disk localization plays an important role in developing computer-aided diagnosis (CAD) systems for ocular diseases such as glaucoma, diabetic retinopathy and age-related macula degeneration. In this paper, we propose an intelligent fusion of methods for the localization of the optic disk in retinal fundus images. Three different approaches are developed to detect the location of the optic disk separately. The first method is the maximum vessel crossing method, which finds the region with the most number of blood vessel crossing points. The second one is the multichannel thresholding method, targeting the area with the highest intensity. The final method searches the vertical and horizontal region-of-interest separately on the basis of blood vessel structure and neighborhood entropy profile. Finally, these three methods are combined using an intelligent fusion method to improve the overall accuracy. The proposed algorithm was tested on the STARE database and the ORIGAlight database, each consisting of images with various pathologies. The preliminary result on the STARE database can achieve 81.5%, while a higher result of 99% can be obtained for the ORIGAlight database. The proposed method outperforms each individual approach and state-of-the-art method which utilizes an intensity-based approach. The result demonstrates a high potential for this method to be used in retinal CAD systems.

  20. Adaptive ACMS: A robust localized Approximated Component Mode Synthesis Method

    OpenAIRE

    Madureira, Alexandre L.; Sarkis, Marcus

    2017-01-01

    We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\\infty$ coefficients. The methods are of Galerkin type and follows the Variational Multiscale and Localized Orthogonal Decomposition--LOD approaches in the sense that it decouples spaces into multiscale and fine subspaces. In a first method, the multiscale basis functions are obtained by mapping coarse basis functions, based...

  1. Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods.

    Science.gov (United States)

    Tarasova, Anna; Burden, Frank; Gasteiger, Johann; Winkler, David A

    2010-04-01

    Two sparse Bayesian methods were used to derive predictive models of solubility of organic dyes and polycyclic aromatic compounds in supercritical carbon dioxide (scCO(2)), over a wide range of temperatures (285.9-423.2K) and pressures (60-1400 bar): a multiple linear regression employing an expectation maximization algorithm and a sparse prior (MLREM) method and a non-linear Bayesian Regularized Artificial Neural Network with a Laplacian Prior (BRANNLP). A randomly selected test set was used to estimate the predictive ability of the models. The MLREM method resulted in a model of similar predictivity to the less sparse MLR method, while the non-linear BRANNLP method created models of substantially better predictivity than either the MLREM or MLR based models. The BRANNLP method simultaneously generated context-relevant subsets of descriptors and a robust, non-linear quantitative structure-property relationship (QSPR) model for the compound solubility in scCO(2). The differences between linear and non-linear descriptor selection methods are discussed. (c) 2009 Elsevier Inc. All rights reserved.

  2. Robust feature estimation by non-rigid hierarchical image registration and its application in disparity measurement

    Science.gov (United States)

    Badshah, Amir; Choudhry, Aadil Jaleel; Ullah, Shan

    2017-03-01

    Industries are moving towards automation in order to increase productivity and ensure quality. Variety of electronic and electromagnetic systems are being employed to assist human operator in fast and accurate quality inspection of products. Majority of these systems are equipped with cameras and rely on diverse image processing algorithms. Information is lost in 2D image, therefore acquiring accurate 3D data from 2D images is an open issue. FAST, SURF and SIFT are well-known spatial domain techniques for features extraction and henceforth image registration to find correspondence between images. The efficiency of these methods is measured in terms of the number of perfect matches found. A novel fast and robust technique for stereo-image processing is proposed. It is based on non-rigid registration using modified normalized phase correlation. The proposed method registers two images in hierarchical fashion using quad-tree structure. The registration process works through global to local level resulting in robust matches even in presence of blur and noise. The computed matches can further be utilized to determine disparity and depth for industrial product inspection. The same can be used in driver assistance systems. The preliminary tests on Middlebury dataset produced satisfactory results. The execution time for a 413 x 370 stereo-pair is 500ms approximately on a low cost DSP.

  3. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains

    Science.gov (United States)

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  4. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  5. Robust sleep quality quantification method for a personal handheld device.

    Science.gov (United States)

    Shin, Hangsik; Choi, Byunghun; Kim, Doyoon; Cho, Jaegeol

    2014-06-01

    The purpose of this study was to develop and validate a novel method for sleep quality quantification using personal handheld devices. The proposed method used 3- or 6-axes signals, including acceleration and angular velocity, obtained from built-in sensors in a smartphone and applied a real-time wavelet denoising technique to minimize the nonstationary noise. Sleep or wake status was decided on each axis, and the totals were finally summed to calculate sleep efficiency (SE), regarded as sleep quality in general. The sleep experiment was carried out for performance evaluation of the proposed method, and 14 subjects participated. An experimental protocol was designed for comparative analysis. The activity during sleep was recorded not only by the proposed method but also by well-known commercial applications simultaneously; moreover, activity was recorded on different mattresses and locations to verify the reliability in practical use. Every calculated SE was compared with the SE of a clinically certified medical device, the Philips (Amsterdam, The Netherlands) Actiwatch. In these experiments, the proposed method proved its reliability in quantifying sleep quality. Compared with the Actiwatch, accuracy and average bias error of SE calculated by the proposed method were 96.50% and -1.91%, respectively. The proposed method was vastly superior to other comparative applications with at least 11.41% in average accuracy and at least 6.10% in average bias; average accuracy and average absolute bias error of comparative applications were 76.33% and 17.52%, respectively.

  6. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form....... By regarding the nominal control system as the desired model, an augmented control system is constructed through the model-matching formulation, such that the current robust control techniques can be usedto synthesize these dynamical modules. One extension of this method with respect to the performance...... recovery besides the functionality recovery is also discussed under this framework. Comparing with the conventional control mixer method, the proposed method considers the recon gured system's stability, performance and robustness simultaneously. Finally, the proposed method is illustrated by a case study...

  7. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    OpenAIRE

    Anne E. C. M. Saris; Stein Fekkes; Maartje M. Nillesen; Hendrik H. G. Hansen; Chris L. de Korte

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle tracking (ST) algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow...

  8. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    International Nuclear Information System (INIS)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  9. Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer’s disease clinical trials

    Science.gov (United States)

    Hua, Xue; Hibar, Derrek P.; Ching, Christopher R.K.; Boyle, Christina P.; Rajagopalan, Priya; Gutman, Boris A.; Leow, Alex D.; Toga, Arthur W.; Jack, Clifford R.; Harvey, Danielle; Weiner, Michael W.; Thompson, Paul M.

    2013-01-01

    Various neuroimaging measures are being evaluated for tracking Alzheimer’s disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24 months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39 AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. PMID:23153970

  10. Robust steganographic method utilizing properties of MJPEG compression standard

    Directory of Open Access Journals (Sweden)

    Jakub Oravec

    2015-06-01

    Full Text Available This article presents design of steganographic method, which uses video container as cover data. Video track was recorded by webcam and was further encoded by compression standard MJPEG. Proposed method also takes in account effects of lossy compression. The embedding process is realized by switching places of transform coefficients, which are computed by Discrete Cosine Transform. The article contains possibilities, used techniques, advantages and drawbacks of chosen solution. The results are presented at the end of the article.

  11. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  12. Estimating the robustness of contingenet valuation estimates of WTP to survey mode and treatment of protest responses.

    Science.gov (United States)

    John Loomis; Armando Gonzalez-Caban; Joseph Champ

    2011-01-01

    Over the past four decades teh contingent valuation method (CVM) has become a technique frequently used by economists to estimate willingness-to-pay (WTP) for improvements in environmental quality and prot3tion of natural resources. The CVM was originall applied to estmate recreation use values (Davis, 1963; Hammack and Brown, 1974)and air quality (Brookshire et al....

  13. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  14. Data-Driven Robust RVFLNs Modeling of a Blast Furnace Iron-Making Process Using Cauchy Distribution Weighted M-Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Lv, Youbin; Wang, Hong; Chai, Tianyou

    2017-09-01

    Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation based robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.

  15. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  16. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-19

    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations of blood mass density. The method is described and its performance is assessed through some numerical simulations. The robustness of the method in presence of noise is also studied.

  17. Dynamic Output Feedback Robust MPC with Input Saturation Based on Zonotopic Set-Membership Estimation

    Directory of Open Access Journals (Sweden)

    Xubin Ping

    2016-01-01

    Full Text Available For quasi-linear parameter varying (quasi-LPV systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC with the consideration of input saturation is investigated. The saturated dynamic output feedback controller is represented by a convex hull involving the actual dynamic output controller and an introduced auxiliary controller. By taking both the actual output feedback controller and the auxiliary controller with a parameter-dependent form, the main optimization problem can be formulated as convex optimization. The consideration of input saturation in the main optimization problem reduces the conservatism of dynamic output feedback controller design. The estimation error set and bounded disturbance are represented by zonotopes and refreshed by zonotopic set-membership estimation. Compared with the previous results, the proposed algorithm can not only guarantee the recursive feasibility of the optimization problem, but also improve the control performance at the cost of higher computational burden. A nonlinear continuous stirred tank reactor (CSTR example is given to illustrate the effectiveness of the approach.

  18. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    Science.gov (United States)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  19. A Robust Approach for Clock Offset Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kim Jang-Sub

    2010-01-01

    Full Text Available The maximum likelihood estimators (MLEs for the clock phase offset assuming a two-way message exchange mechanism between the nodes of a wireless sensor network were recently derived assuming Gaussian and exponential network delays. However, the MLE performs poorly in the presence of non-Gaussian or nonexponential network delay distributions. Currently, there is a need to develop clock synchronization algorithms that are robust to the distribution of network delays. This paper proposes a clock offset estimator based on the composite particle filter (CPF to cope with the possible asymmetries and non-Gaussianity of the network delay distributions. Also, a variant of the CPF approach based on the bootstrap sampling (BS is shown to exhibit good performance in the presence of reduced number of observations. Computer simulations illustrate that the basic CPF and its BS-based variant present superior performance than MLE under general random network delay distributions such as asymmetric Gaussian, exponential, Gamma, Weibull as well as various mixtures.

  20. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    Science.gov (United States)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  1. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    Ibn-Elhaj E

    2009-01-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  2. A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain

    Directory of Open Access Journals (Sweden)

    E. M. Ismaili Aalaoui

    2009-02-01

    Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.

  3. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  4. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  5. A Robust Localization, Slip Estimation, and Compensation System for WMR in the Indoor Environments

    Directory of Open Access Journals (Sweden)

    Zakir Ullah

    2018-05-01

    Full Text Available A novel approach is proposed for the path tracking of a Wheeled Mobile Robot (WMR in the presence of an unknown lateral slip. Much of the existing work has assumed pure rolling conditions between the wheel and ground. Under the pure rolling conditions, the wheels of a WMR are supposed to roll without slipping. Complex wheel-ground interactions, acceleration and steering system noise are the factors which cause WMR wheel slip. A basic research problem in this context is localization and slip estimation of WMR from a stream of noisy sensors data when the robot is moving on a slippery surface, or moving at a high speed. DecaWave based ranging system and Particle Filter (PF are good candidates to estimate the location of WMR indoors and outdoors. Unfortunately, wheel-slip of WMR limits the ultimate performance that can be achieved by real-world implementation of the PF, because location estimation systems typically partially rely on the robot heading. A small error in the WMR heading leads to a large error in location estimation of the PF because of its cumulative nature. In order to enhance the tracking and localization performance of the PF in the environments where the main reason for an error in the PF location estimation is angular noise, two methods were used for heading estimation of the WMR (1: Reinforcement Learning (RL and (2: Location-based Heading Estimation (LHE. Trilateration is applied to DecaWave based ranging system for calculating the probable location of WMR, this noisy location along with PF current mean is used to estimate the WMR heading by using the above two methods. Beside the WMR location calculation, DecaWave based ranging system is also used to update the PF weights. The localization and tracking performance of the PF is significantly improved through incorporating heading error in localization by applying RL and LHE. Desired trajectory information is then used to develop an algorithm for extracting the lateral slip along

  6. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

    Directory of Open Access Journals (Sweden)

    Xingling Shao

    2014-01-01

    Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

  7. Robust Design of SAW Gas Sensors by Taguchi Dynamic Method

    Directory of Open Access Journals (Sweden)

    Hsun-Heng Tsai

    2009-02-01

    Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.

  8. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  9. Robust estimation of the proportion of treatment effect explained by surrogate marker information.

    Science.gov (United States)

    Parast, Layla; McDermott, Mary M; Tian, Lu

    2016-05-10

    In randomized treatment studies where the primary outcome requires long follow-up of patients and/or expensive or invasive obtainment procedures, the availability of a surrogate marker that could be used to estimate the treatment effect and could potentially be observed earlier than the primary outcome would allow researchers to make conclusions regarding the treatment effect with less required follow-up time and resources. The Prentice criterion for a valid surrogate marker requires that a test for treatment effect on the surrogate marker also be a valid test for treatment effect on the primary outcome of interest. Based on this criterion, methods have been developed to define and estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker. These methods aim to identify useful statistical surrogates that capture a large proportion of the treatment effect. However, current methods to estimate this proportion usually require restrictive model assumptions that may not hold in practice and thus may lead to biased estimates of this quantity. In this paper, we propose a nonparametric procedure to estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on a potential surrogate marker and extend this procedure to a setting with multiple surrogate markers. We compare our approach with previously proposed model-based approaches and propose a variance estimation procedure based on a perturbation-resampling method. Simulation studies demonstrate that the procedure performs well in finite samples and outperforms model-based procedures when the specified models are not correct. We illustrate our proposed procedure using a data set from a randomized study investigating a group-mediated cognitive behavioral intervention for peripheral artery disease participants. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Stochastic Order Redshift Technique (SORT): a simple, efficient and robust method to improve cosmological redshift measurements

    Science.gov (United States)

    Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.

    2018-01-01

    We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.

  11. A Method of Nuclear Software Reliability Estimation

    International Nuclear Information System (INIS)

    Park, Gee Yong; Eom, Heung Seop; Cheon, Se Woo; Jang, Seung Cheol

    2011-01-01

    A method on estimating software reliability for nuclear safety software is proposed. This method is based on the software reliability growth model (SRGM) where the behavior of software failure is assumed to follow the non-homogeneous Poisson process. Several modeling schemes are presented in order to estimate and predict more precisely the number of software defects based on a few of software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating the software test cases into the model. It is identified that this method is capable of accurately estimating the remaining number of software defects which are on-demand type directly affecting safety trip functions. The software reliability can be estimated from a model equation and one method of obtaining the software reliability is proposed

  12. Method-related estimates of sperm vitality.

    Science.gov (United States)

    Cooper, Trevor G; Hellenkemper, Barbara

    2009-01-01

    Comparison of methods that estimate viability of human spermatozoa by monitoring head membrane permeability revealed that wet preparations (whether using positive or negative phase-contrast microscopy) generated significantly higher percentages of nonviable cells than did air-dried eosin-nigrosin smears. Only with the latter method did the sum of motile (presumed live) and stained (presumed dead) preparations never exceed 100%, making this the method of choice for sperm viability estimates.

  13. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  14. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    Directory of Open Access Journals (Sweden)

    Annette Mossel

    2015-12-01

    Full Text Available In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1 user tracking for virtual and augmented reality applications, (2 handheld target tracking for tunneling and (3 machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m.

  15. Biological dosimetry intercomparison exercise: an evaluation of Triage and routine mode results by robust methods

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Taja, M.R.; Barquinero, J.F.; Seoane, A.; De Luca, J.; Guerrero Carvajal, Y.C.; Stuck Oliveira, M.S.; Valdivia, P.; García Lima, O.; Lamadrid, A.; González Mesa, J.; Romero Aguilera, I.; Mandina Cardoso, T.; Arceo Maldonado, C.; Espinoza, M.E.; Martínez López, W.; Lloyd, D.C.; Méndez Acuña, L.; Di Tomaso, M.V.; Roy, L.; Lindholm, C.; Romm, H.; Güçlü, I.

    2011-01-01

    Well-defined protocols and quality management standards are indispensable for biological dosimetry laboratories. Participation in periodic proficiency testing by interlaboratory comparisons is also required. This harmonization is essential if a cooperative network is used to respond to a mass casualty event. Here we present an international intercomparison based on dicentric chromosome analysis for dose assessment performed in the framework of the IAEA Regional Latin American RLA/9/054 Project. The exercise involved 14 laboratories, 8 from Latin America and 6 from Europe. The performance of each laboratory and the reproducibility of the exercise were evaluated using robust methods described in ISO standards. The study was based on the analysis of slides from samples irradiated with 0.75 (DI) and 2.5 Gy (DII). Laboratories were required to score the frequency of dicentrics and convert them to estimated doses, using their own dose-effect curves, after the analysis of 50 or 100 cells (triage mode) and after conventional scoring of 500 cells or 100 dicentrics. In the conventional scoring, at both doses, all reported frequencies were considered as satisfactory, and two reported doses were considered as questionable. The analysis of the data dispersion among the dicentric frequencies and among doses indicated a better reproducibility for estimated doses (15.6% for DI and 8.8% for DII) than for frequencies (24.4% for DI and 11.4% for DII), expressed by the coefficient of variation. In the two triage modes, although robust analysis classified some reported frequencies or doses as unsatisfactory or questionable, all estimated doses were in agreement with the accepted error of ±0.5 Gy. However, at the DI dose and for 50 scored cells, 5 out of the 14 reported confidence intervals that included zero dose and could be interpreted as false negatives. This improved with 100 cells, where only one confidence interval included zero dose. At the DII dose, all estimations fell within

  16. A method of estimating log weights.

    Science.gov (United States)

    Charles N. Mann; Hilton H. Lysons

    1972-01-01

    This paper presents a practical method of estimating the weights of logs before they are yarded. Knowledge of log weights is required to achieve optimum loading of modern yarding equipment. Truckloads of logs are weighed and measured to obtain a local density index (pounds per cubic foot) for a species of logs. The density index is then used to estimate the weights of...

  17. An effective method to improve the robustness of small-world networks under attack

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario. (interdisciplinary physics and related areas of science and technology)

  18. Nonparametric methods for volatility density estimation

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2009-01-01

    Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on

  19. A robust method of thin plate spline and its application to DEM construction

    Science.gov (United States)

    Chen, Chuanfa; Li, Yanyan

    2012-11-01

    In order to avoid the ill-conditioning problem of thin plate spline (TPS), the orthogonal least squares (OLS) method was introduced, and a modified OLS (MOLS) was developed. The MOLS of TPS (TPS-M) can not only select significant points, termed knots, from large and dense sampling data sets, but also easily compute the weights of the knots in terms of back-substitution. For interpolating large sampling points, we developed a local TPS-M, where some neighbor sampling points around the point being estimated are selected for computation. Numerical tests indicate that irrespective of sampling noise level, the average performance of TPS-M can advantage with smoothing TPS. Under the same simulation accuracy, the computational time of TPS-M decreases with the increase of the number of sampling points. The smooth fitting results on lidar-derived noise data indicate that TPS-M has an obvious smoothing effect, which is on par with smoothing TPS. The example of constructing a series of large scale DEMs, located in Shandong province, China, was employed to comparatively analyze the estimation accuracies of the two versions of TPS and the classical interpolation methods including inverse distance weighting (IDW), ordinary kriging (OK) and universal kriging with the second-order drift function (UK). Results show that regardless of sampling interval and spatial resolution, TPS-M is more accurate than the classical interpolation methods, except for the smoothing TPS at the finest sampling interval of 20 m, and the two versions of kriging at the spatial resolution of 15 m. In conclusion, TPS-M, which avoids the ill-conditioning problem, is considered as a robust method for DEM construction.

  20. Spectrum estimation method based on marginal spectrum

    International Nuclear Information System (INIS)

    Cai Jianhua; Hu Weiwen; Wang Xianchun

    2011-01-01

    FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)

  1. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  2. Confidence from uncertainty - A multi-target drug screening method from robust control theory

    Directory of Open Access Journals (Sweden)

    Petzold Linda R

    2010-11-01

    Full Text Available Abstract Background Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the subsystem of interest while preventing the diseased network from reconciling through available, redundant mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty. Results We present the application of a method from robust control theory, Structured Singular Value or μ- analysis, to identify highly effective multi-drug therapies by using robustness in the face of uncertainty as a new means of target discrimination. We illustrate the method by means of a case study of a negative feedback network motif subject to parametric uncertainty. Conclusions The paper contributes to the development of effective methods for drug screening in the context of network modelling affected by parametric uncertainty. The results have wide applicability for the analysis of different sources of uncertainty like noise experienced in the data, neglected dynamics, or intrinsic biological variability.

  3. Forecasting exchange rates: a robust regression approach

    OpenAIRE

    Preminger, Arie; Franck, Raphael

    2005-01-01

    The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...

  4. Deblending of simultaneous-source data using iterative seislet frame thresholding based on a robust slope estimation

    Science.gov (United States)

    Zhou, Yatong; Han, Chunying; Chi, Yue

    2018-06-01

    In a simultaneous source survey, no limitation is required for the shot scheduling of nearby sources and thus a huge acquisition efficiency can be obtained but at the same time making the recorded seismic data contaminated by strong blending interference. In this paper, we propose a multi-dip seislet frame based sparse inversion algorithm to iteratively separate simultaneous sources. We overcome two inherent drawbacks of traditional seislet transform. For the multi-dip problem, we propose to apply a multi-dip seislet frame thresholding strategy instead of the traditional seislet transform for deblending simultaneous-source data that contains multiple dips, e.g., containing multiple reflections. The multi-dip seislet frame strategy solves the conflicting dip problem that degrades the performance of the traditional seislet transform. For the noise issue, we propose to use a robust dip estimation algorithm that is based on velocity-slope transformation. Instead of calculating the local slope directly using the plane-wave destruction (PWD) based method, we first apply NMO-based velocity analysis and obtain NMO velocities for multi-dip components that correspond to multiples of different orders, then a fairly accurate slope estimation can be obtained using the velocity-slope conversion equation. An iterative deblending framework is given and validated through a comprehensive analysis over both numerical synthetic and field data examples.

  5. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  6. Methods for risk estimation in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Gauvenet, A [CEA, 75 - Paris (France)

    1979-01-01

    The author presents methods for estimating the different risks related to nuclear energy: immediate or delayed risks, individual or collective risks, risks of accidents and long-term risks. These methods have attained a highly valid level of elaboration and their application to other industrial or human problems is currently under way, especially in English-speaking countries.

  7. Modern nonparametric, robust and multivariate methods festschrift in honour of Hannu Oja

    CERN Document Server

    Taskinen, Sara

    2015-01-01

    Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

  8. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  9. Comparison of methods for estimating premorbid intelligence

    OpenAIRE

    Bright, Peter; van der Linde, Ian

    2018-01-01

    To evaluate impact of neurological injury on cognitive performance it is typically necessary to derive a baseline (or ‘premorbid’) estimate of a patient’s general cognitive ability prior to the onset of impairment. In this paper, we consider a range of common methods for producing this estimate, including those based on current best performance, embedded ‘hold/no hold’ tests, demographic information, and word reading ability. Ninety-two neurologically healthy adult participants were assessed ...

  10. Data-adaptive Robust Optimization Method for the Economic Dispatch of Active Distribution Networks

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Fang, Jiakun

    2018-01-01

    Due to the restricted mathematical description of the uncertainty set, the current two-stage robust optimization is usually over-conservative which has drawn concerns from the power system operators. This paper proposes a novel data-adaptive robust optimization method for the economic dispatch...... of active distribution network with renewables. The scenario-generation method and the two-stage robust optimization are combined in the proposed method. To reduce the conservativeness, a few extreme scenarios selected from the historical data are used to replace the conventional uncertainty set....... The proposed extreme-scenario selection algorithm takes advantage of considering the correlations and can be adaptive to different historical data sets. A theoretical proof is given that the constraints will be satisfied under all the possible scenarios if they hold in the selected extreme scenarios, which...

  11. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    Directory of Open Access Journals (Sweden)

    Anne E. C. M. Saris

    2018-03-01

    Full Text Available This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF. As a consequence, the cross-correlation functions (CCF used in the speckle tracking (ST algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow simulations together with rotating disk experiments using a Verasonics Vantage 256 are used for performance evaluation. Zero-degree plane wave data were acquired using an ATL L5-12 (fc = 9 MHz transducer for a range of pulse repetition frequencies (PRFs, resulting in 0–600 µm inter-frame displacements. The proposed methodology was compared to data beamformed on a conventionally spaced grid, combined with the commonly used 1D parabolic interpolation. The PSF-shape-based beamforming grid combined with 2D cubic interpolation showed the most accurate and stable performance with respect to the full range of inter-frame displacements, both for the assessment of blood flow and vessel wall dynamics. The proposed methodology can be used as a protocolled way to beamform ultrafast data and obtain accurate estimates of tissue motion.

  12. Use of the robust design to estimate seasonal abundance and demographic parameters of a coastal bottlenose dolphin (Tursiops aduncus population.

    Directory of Open Access Journals (Sweden)

    Holly C Smith

    Full Text Available As delphinid populations become increasingly exposed to human activities we rely on our capacity to produce accurate abundance estimates upon which to base management decisions. This study applied mark-recapture methods following the Robust Design to estimate abundance, demographic parameters, and temporary emigration rates of an Indo-Pacific bottlenose dolphin (Tursiops aduncus population off Bunbury, Western Australia. Boat-based photo-identification surveys were conducted year-round over three consecutive years along pre-determined transect lines to create a consistent sampling effort throughout the study period and area. The best fitting capture-recapture model showed a population with a seasonal Markovian temporary emigration with time varying survival and capture probabilities. Abundance estimates were seasonally dependent with consistently lower numbers obtained during winter and higher during summer and autumn across the three-year study period. Specifically, abundance estimates for all adults and juveniles (combined varied from a low of 63 (95% CI 59 to 73 in winter of 2007 to a high of 139 (95% CI 134 to148 in autumn of 2009. Temporary emigration rates (γ' for animals absent in the previous period ranged from 0.34 to 0.97 (mean  =  0.54; ±SE 0.11 with a peak during spring. Temporary emigration rates for animals present during the previous period (γ'' were lower, ranging from 0.00 to 0.29, with a mean of 0.16 (± SE 0.04. This model yielded a mean apparent survival estimate for juveniles and adults (combined of 0.95 (± SE 0.02 and a capture probability from 0.07 to 0.51 with a mean of 0.30 (± SE 0.04. This study demonstrates the importance of incorporating temporary emigration to accurately estimate abundance of coastal delphinids. Temporary emigration rates were high in this study, despite the large area surveyed, indicating the challenges of sampling highly mobile animals which range over large spatial areas.

  13. Robust Fault Estimation Design for Discrete-Time Nonlinear Systems via A Modified Fuzzy Fault Estimation Observer.

    Science.gov (United States)

    Xie, Xiang-Peng; Yue, Dong; Park, Ju H

    2018-02-01

    The paper provides relaxed designs of fault estimation observer for nonlinear dynamical plants in the Takagi-Sugeno form. Compared with previous theoretical achievements, a modified version of fuzzy fault estimation observer is implemented with the aid of the so-called maximum-priority-based switching law. Given each activated switching status, the appropriate group of designed matrices can be provided so as to explore certain key properties of the considered plants by means of introducing a set of matrix-valued variables. Owing to the reason that more abundant information of the considered plants can be updated in due course and effectively exploited for each time instant, the conservatism of the obtained result is less than previous theoretical achievements and thus the main defect of those existing methods can be overcome to some extent in practice. Finally, comparative simulation studies on the classical nonlinear truck-trailer model are given to certify the benefits of the theoretic achievement which is obtained in our study. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Robust estimation of space influence model. Part 2. ; Synthesis of urban lattice data analysis for practical use. Kukan eikyo model no antei suiteiho. 2. ; Jikkenteki mesh data kaiseki system kochiku no tameno kukan sokan bunsekiho no taikeika

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Y.; Osaragi, T. (Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering)

    1991-07-30

    In this study, a method for robust estimation of parameters of the space influence function model, which was possible to become unstable, was investigated by applying a principal component method. In order to carry out the robust estimation of parameters without the effect of multicollinearity, regression coefficients of principal components with small eigenvalue and with small single-correlation with dependent variables were required to forced to be zero in the estimation method by principal component. Through the case study using the real urban lattice data, the conventional method was compared with the principal component method. As a result, the latter method realized the excellent sabilization of spatial distribution patterns of estimation parameters and the simple interpretation of parameters. It also improved reliability since 95% confidence interval of the estimated value became smaller. This method was found to be effective as a basic measure to acheve the stability of parameters. 10 refs., 7 figs.

  15. A random sampling approach for robust estimation of tissue-to-plasma ratio from extremely sparse data.

    Science.gov (United States)

    Chu, Hui-May; Ette, Ene I

    2005-09-02

    his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.

  16. Robust node estimation and topology discovery for large-scale networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2017-02-23

    Various examples are provided for node estimation and topology discovery for networks. In one example, a method includes receiving a packet having an identifier from a first node; adding the identifier to another transmission packet based on a comparison between the first identifier and existing identifiers associated with the other packet; adjusting a transmit probability based on the comparison; and transmitting the other packet based on a comparison between the transmit probability and a probability distribution. In another example, a system includes a network device that can adds an identifier received in a packet to a list including existing identifiers and adjust a transmit probability based on a comparison between the identifiers; and transmit another packet based on a comparison between the transmit probability and a probability distribution. In another example, a method includes determining a quantity of sensor devices based on a plurality of identifiers received in a packet.

  17. Robust node estimation and topology discovery for large-scale networks

    KAUST Repository

    Alouini, Mohamed-Slim; Douik, Ahmed S.; Aly, Salah A.; Al-Naffouri, Tareq Y.

    2017-01-01

    Various examples are provided for node estimation and topology discovery for networks. In one example, a method includes receiving a packet having an identifier from a first node; adding the identifier to another transmission packet based on a comparison between the first identifier and existing identifiers associated with the other packet; adjusting a transmit probability based on the comparison; and transmitting the other packet based on a comparison between the transmit probability and a probability distribution. In another example, a system includes a network device that can adds an identifier received in a packet to a list including existing identifiers and adjust a transmit probability based on a comparison between the identifiers; and transmit another packet based on a comparison between the transmit probability and a probability distribution. In another example, a method includes determining a quantity of sensor devices based on a plurality of identifiers received in a packet.

  18. A Robust Transform Estimator Based on Residual Analysis and Its Application on UAV Aerial Images

    Directory of Open Access Journals (Sweden)

    Guorong Cai

    2018-02-01

    Full Text Available Estimating the transformation between two images from the same scene is a fundamental step for image registration, image stitching and 3D reconstruction. State-of-the-art methods are mainly based on sorted residual for generating hypotheses. This scheme has acquired encouraging results in many remote sensing applications. Unfortunately, mainstream residual based methods may fail in estimating the transform between Unmanned Aerial Vehicle (UAV low altitude remote sensing images, due to the fact that UAV images always have repetitive patterns and severe viewpoint changes, which produce lower inlier rate and higher pseudo outlier rate than other tasks. We performed extensive experiments and found the main reason is that these methods compute feature pair similarity within a fixed window, making them sensitive to the size of residual window. To solve this problem, three schemes that based on the distribution of residuals are proposed, which are called Relational Window (RW, Sliding Window (SW, Reverse Residual Order (RRO, respectively. Specially, RW employs a relaxation residual window size to evaluate the highest similarity within a relaxation model length. SW fixes the number of overlap models while varying the length of window size. RRO takes the permutation of residual values into consideration to measure similarity, not only including the number of overlap structures, but also giving penalty to reverse number within the overlap structures. Experimental results conducted on our own built UAV high resolution remote sensing images show that the proposed three strategies all outperform traditional methods in the presence of severe perspective distortion due to viewpoint change.

  19. A simple method to estimate interwell autocorrelation

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, J.O.S.; Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    The estimation of autocorrelation in the lateral or interwell direction is important when performing reservoir characterization studies using stochastic modeling. This paper presents a new method to estimate the interwell autocorrelation based on parameters, such as the vertical range and the variance, that can be estimated with commonly available data. We used synthetic fields that were generated from stochastic simulations to provide data to construct the estimation charts. These charts relate the ratio of areal to vertical variance and the autocorrelation range (expressed variously) in two directions. Three different semivariogram models were considered: spherical, exponential and truncated fractal. The overall procedure is demonstrated using field data. We find that the approach gives the most self-consistent results when it is applied to previously identified facies. Moreover, the autocorrelation trends follow the depositional pattern of the reservoir, which gives confidence in the validity of the approach.

  20. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    Science.gov (United States)

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  1. Gear hot forging process robust design based on finite element method

    International Nuclear Information System (INIS)

    Xuewen, Chen; Won, Jung Dong

    2008-01-01

    During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled

  2. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    Science.gov (United States)

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  3. Efficient Methods of Estimating Switchgrass Biomass Supplies

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of in...

  4. Coalescent methods for estimating phylogenetic trees.

    Science.gov (United States)

    Liu, Liang; Yu, Lili; Kubatko, Laura; Pearl, Dennis K; Edwards, Scott V

    2009-10-01

    We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.

  5. Parametric synthesis of a robust controller on a base of mathematical programming method

    Science.gov (United States)

    Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A.

    2018-05-01

    Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle.

  6. Fast, accurate, and robust frequency offset estimation based on modified adaptive Kalman filter in coherent optical communication system

    Science.gov (United States)

    Yang, Yanfu; Xiang, Qian; Zhang, Qun; Zhou, Zhongqing; Jiang, Wen; He, Qianwen; Yao, Yong

    2017-09-01

    We propose a joint estimation scheme for fast, accurate, and robust frequency offset (FO) estimation along with phase estimation based on modified adaptive Kalman filter (MAKF). The scheme consists of three key modules: extend Kalman filter (EKF), lock detector, and FO cycle slip recovery. The EKF module estimates time-varying phase induced by both FO and laser phase noise. The lock detector module makes decision between acquisition mode and tracking mode and consequently sets the EKF tuning parameter in an adaptive manner. The third module can detect possible cycle slip in the case of large FO and make proper correction. Based on the simulation and experimental results, the proposed MAKF has shown excellent estimation performance featuring high accuracy, fast convergence, as well as the capability of cycle slip recovery.

  7. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

    NARCIS (Netherlands)

    Silly, F.

    2009-01-01

    P>Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to

  8. Fusion rule estimation using vector space methods

    International Nuclear Information System (INIS)

    Rao, N.S.V.

    1997-01-01

    In a system of N sensors, the sensor S j , j = 1, 2 .... N, outputs Y (j) element-of Re, according to an unknown probability distribution P (Y(j) /X) , corresponding to input X element-of [0, 1]. A training n-sample (X 1 , Y 1 ), (X 2 , Y 2 ), ..., (X n , Y n ) is given where Y i = (Y i (1) , Y i (2) , . . . , Y i N ) such that Y i (j) is the output of S j in response to input X i . The problem is to estimate a fusion rule f : Re N → [0, 1], based on the sample, such that the expected square error is minimized over a family of functions Y that constitute a vector space. The function f* that minimizes the expected error cannot be computed since the underlying densities are unknown, and only an approximation f to f* is feasible. We estimate the sample size sufficient to ensure that f provides a close approximation to f* with a high probability. The advantages of vector space methods are two-fold: (a) the sample size estimate is a simple function of the dimensionality of F, and (b) the estimate f can be easily computed by well-known least square methods in polynomial time. The results are applicable to the classical potential function methods and also (to a recently proposed) special class of sigmoidal feedforward neural networks

  9. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  10. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  11. Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A robust topology optimization (RTO approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.

  12. Control and estimation methods over communication networks

    CERN Document Server

    Mahmoud, Magdi S

    2014-01-01

    This book provides a rigorous framework in which to study problems in the analysis, stability and design of networked control systems. Four dominant sources of difficulty are considered: packet dropouts, communication bandwidth constraints, parametric uncertainty, and time delays. Past methods and results are reviewed from a contemporary perspective, present trends are examined, and future possibilities proposed. Emphasis is placed on robust and reliable design methods. New control strategies for improving the efficiency of sensor data processing and reducing associated time delay are presented. The coverage provided features: ·        an overall assessment of recent and current fault-tolerant control algorithms; ·        treatment of several issues arising at the junction of control and communications; ·        key concepts followed by their proofs and efficient computational methods for their implementation; and ·        simulation examples (including TrueTime simulations) to...

  13. Model reduction and frequency residuals for a robust estimation of nonlinearities in subspace identification

    Science.gov (United States)

    De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.

    2017-09-01

    The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.

  14. Robust design method and thermostatic experiment for multiple piezoelectric vibration absorber system

    International Nuclear Information System (INIS)

    Nambu, Yohsuke; Takashima, Toshihide; Inagaki, Akiya

    2015-01-01

    This paper examines the effects of connecting multiplexing shunt circuits composed of inductors and resistors to piezoelectric transducers so as to improve the robustness of a piezoelectric vibration absorber (PVA). PVAs are well known to be effective at suppressing the vibration of an adaptive structure; their weakness is low robustness to changes in the dynamic parameters of the system, including the main structure and the absorber. In the application to space structures, the temperature-dependency of capacitance of piezoelectric ceramics is the factor that causes performance reduction. To improve robustness to the temperature-dependency of the capacitance, this paper proposes a multiple-PVA system that is composed of distributed piezoelectric transducers and several shunt circuits. The optimization problems that determine both the frequencies and the damping ratios of the PVAs are multi-objective problems, which are solved using a real-coded genetic algorithm in this paper. A clamped aluminum beam with four groups of piezoelectric ceramics attached was considered in simulations and experiments. Numerical simulations revealed that the PVA systems designed using the proposed method had tolerance to changes in the capacitances. Furthermore, experiments using a thermostatic bath were conducted to reveal the effectiveness and robustness of the PVA systems. The maximum peaks of the transfer functions of the beam with the open circuit, the single-PVA system, the double-PVA system, and the quadruple-PVA system at 20 °C were 14.3 dB, −6.91 dB, −7.47 dB, and −8.51 dB, respectively. The experimental results also showed that the multiple-PVA system is more robust than a single PVA in a variable temperature environment from −10 °C to 50 °C. In conclusion, the use of multiple PVAs results in an effective, robust vibration control method for adaptive structures. (paper)

  15. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  16. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  17. Robust Improvement in Estimation of a Covariance Matrix in an Elliptically Contoured Distribution Respect to Quadratic Loss Function

    Directory of Open Access Journals (Sweden)

    Z. Khodadadi

    2008-03-01

    Full Text Available Let S be matrix of residual sum of square in linear model Y = Aβ + e where matrix e is distributed as elliptically contoured with unknown scale matrix Σ. In present work, we consider the problem of estimating Σ with respect to squared loss function, L(Σˆ , Σ = tr(ΣΣˆ −1 −I 2 . It is shown that improvement of the estimators were obtained by James, Stein [7], Dey and Srivasan [1] under the normality assumption remains robust under an elliptically contoured distribution respect to squared loss function

  18. A Framework for the Application of Robust Design Methods and Tools

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Howard, Thomas J.

    2014-01-01

    can deliver are not always clear. Expectations to the output are sometimes misleading and imply the incorrect utilization of tools. A categorization of tools, methods and techniques typically associated with robust design methodology in the literature is provided in this paper in terms of purpose...... and deliverables of the individual tool or method. The majority of tools aims for optimizing an existing design solution or give an indication of how robust a design is, which requires a somewhat settled design. Furthermore, the categorization presented in this paper shows a lack in the methodology for tools...... of the existing tools. When to apply, what tool or method, for which purpose can be concluded. The paper also contributes with a framework for researchers to derive a generic landscape or database for RDM build upon the main premises and deliverables of each method....

  19. A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT

    NARCIS (Netherlands)

    MIKOSCH, T; WANG, QA

    We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.

  20. Methods to estimate the genetic risk

    International Nuclear Information System (INIS)

    Ehling, U.H.

    1989-01-01

    The estimation of the radiation-induced genetic risk to human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage dose not. There are two main approaches in making genetic risk estimates. One of these, termed the direct method, expresses risk in terms of expected frequencies of genetic changes induced per unit dose. The other, referred to as the doubling dose method or the indirect method, expresses risk in relation to the observed incidence of genetic disorders now present in man. The advantage of the indirect method is that not only can Mendelian mutations be quantified, but also other types of genetic disorders. The disadvantages of the method are the uncertainties in determining the current incidence of genetic disorders in human and, in addition, the estimasion of the genetic component of congenital anomalies, anomalies expressed later and constitutional and degenerative diseases. Using the direct method we estimated that 20-50 dominant radiation-induced mutations would be expected in 19 000 offspring born to parents exposed in Hiroshima and Nagasaki, but only a small proportion of these mutants would have been detected with the techniques used for the population study. These methods were used to predict the genetic damage from the fallout of the reactor accident at Chernobyl in the vicinity of Southern Germany. The lack of knowledge for the interaction of chemicals with ionizing radiation and the discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized. (author)

  1. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  2. Variable-structure approaches analysis, simulation, robust control and estimation of uncertain dynamic processes

    CERN Document Server

    Senkel, Luise

    2016-01-01

    This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.

  3. A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Directory of Open Access Journals (Sweden)

    Gant Timothy W

    2008-06-01

    Full Text Available Abstract Background Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006, Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures. Results Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively. Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method. Conclusion The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.

  4. An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-ion Battery

    DEFF Research Database (Denmark)

    Meng, Jinhao; Ricco, Mattia; Luo, Guangzhao

    2018-01-01

    . Many SOC estimation methods have been proposed in the literature. However, only a few of them consider the real-time applicability. This paper reviews recently proposed online SOC estimation methods and classifies them into five categories. Their principal features are illustrated, and the main pros...... and cons are provided. The SOC estimation methods are compared and discussed in terms of accuracy, robustness, and computation burden. Afterward, as the most popular type of model based SOC estimation algorithms, seven nonlinear filters existing in literature are compared in terms of their accuracy...

  5. A Robust Photogrammetric Processing Method of Low-Altitude UAV Images

    Directory of Open Access Journals (Sweden)

    Mingyao Ai

    2015-02-01

    Full Text Available Low-altitude Unmanned Aerial Vehicles (UAV images which include distortion, illumination variance, and large rotation angles are facing multiple challenges of image orientation and image processing. In this paper, a robust and convenient photogrammetric approach is proposed for processing low-altitude UAV images, involving a strip management method to automatically build a standardized regional aerial triangle (AT network, a parallel inner orientation algorithm, a ground control points (GCPs predicting method, and an improved Scale Invariant Feature Transform (SIFT method to produce large number of evenly distributed reliable tie points for bundle adjustment (BA. A multi-view matching approach is improved to produce Digital Surface Models (DSM and Digital Orthophoto Maps (DOM for 3D visualization. Experimental results show that the proposed approach is robust and feasible for photogrammetric processing of low-altitude UAV images and 3D visualization of products.

  6. Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Hoyer, D; Armoundas, A A

    1999-01-01

    In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...

  7. A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back

    Directory of Open Access Journals (Sweden)

    Emre Sariyildiz

    2015-08-01

    Full Text Available Proportional-Integral-Derivative (PID control is the most widely used control method in industrial and academic applications due to its simplicity and efficiency. Several different control methods/algorithms have been proposed to tune the gains of PID controllers. However, the conventional tuning methods do not have sufficient performance and simplicity for practical applications, such as robotics and motion control. The performance of motion control systems may significantly deteriorate by the nonlinear plant uncertainties and unknown external disturbances, such as inertia variations, friction, external loads, etc., i.e., there may be a significant discrepancy between the simulation and experiment if the robustness is not considered in the design of PID controllers. This paper proposes a novel practical tuning method for the robust PID controller with velocity feed-back for motion control systems. The main advantages of the proposed method are the simplicity and efficiency in practical applications, i.e., a high performance robust motion control system can be easily designed by properly tuning conventional PID controllers. The validity of the proposal is verified by giving simulation and experimental results.

  8. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    International Nuclear Information System (INIS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-01-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  9. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    Science.gov (United States)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  10. Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly

    Science.gov (United States)

    Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.

    2013-01-01

    Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…

  11. A robust rotation-invariance displacement measurement method for a micro-/nano-positioning system

    Science.gov (United States)

    Zhang, Xiang; Zhang, Xianmin; Wu, Heng; Li, Hai; Gan, Jinqiang

    2018-05-01

    A robust and high-precision displacement measurement method for a compliant mechanism-based micro-/nano-positioning system is proposed. The method is composed of an integer-pixel and a sub-pixel matching procedure. In the proposed algorithm (Pro-A), an improved ring projection transform (IRPT) and gradient information are used as features for approximating the coarse candidates and fine locations, respectively. Simulations are conducted and the results show that the Pro-A has the ability of rotation-invariance and strong robustness, with a theoretical accuracy of 0.01 pixel. To validate the practical performance, a series of experiments are carried out using a computer micro-vision and laser interferometer system (LIMS). The results demonstrate that both the LIMS and Pro-A can achieve high precision, while the Pro-A has better stability and adaptability.

  12. Benchmarking electrical methods for rapid estimation of root biomass.

    Science.gov (United States)

    Postic, François; Doussan, Claude

    2016-01-01

    To face climate change and subsequent rainfall instabilities, crop breeding strategies now include root traits phenotyping. Rapid estimation of root traits in controlled conditions can be achieved by using parallel electrical capacitance and its linear correlation with root dry mass. The aim of the present study was to improve robustness and efficiency of methods based on capacitance and other electrical variables, such as serial/parallel resistance, conductance, impedance or reactance. Using different electrode configurations and stem contact electrodes, we have measured the electrical impedance spectra of wheat plants grown in pots filled with three types of soil. For each configuration, parallel capacitance and other linearly independent electrical variables were computed and their quality as root dry mass estimator was evaluated by a 'sensitivity score' that we derived from Pearson's correlation coefficient r and linear regression parameters. The highest sensitivity score was obtained by parallel capacitance at an alternating current frequency of 116 Hz in three-terminal configuration. Using a clamp, instead of a needle, as a stem electrode did not significantly affect the capacitance measurements. Finally, in handheld LCR meter equivalent conditions, capacitance had the highest sensitivity score and determination coefficient (r (2) = 0.52) at 10 kHz frequency. Our benchmarking of linear correlations between different electrical variables and root dry mass enables to determine more coherent practices for ensuring a sensitive and robust root dry mass estimation, including in handheld LCR meter conditions. This would enhance the value of electrical capacitance as a tool for screening crops in relation with root systems in breeding programs.

  13. A robust direct-integration method for rotorcraft maneuver and periodic response

    Science.gov (United States)

    Panda, Brahmananda

    1992-01-01

    The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.

  14. Robust canonical correlations: A comparative study

    OpenAIRE

    Branco, JA; Croux, Christophe; Filzmoser, P; Oliveira, MR

    2005-01-01

    Several approaches for robust canonical correlation analysis will be presented and discussed. A first method is based on the definition of canonical correlation analysis as looking for linear combinations of two sets of variables having maximal (robust) correlation. A second method is based on alternating robust regressions. These methods axe discussed in detail and compared with the more traditional approach to robust canonical correlation via covariance matrix estimates. A simulation study ...

  15. Swarm: robust and fast clustering method for amplicon-based studies

    Science.gov (United States)

    Rognes, Torbjørn; Quince, Christopher; de Vargas, Colomban; Dunthorn, Micah

    2014-01-01

    Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units. PMID:25276506

  16. A systematic design method for robust synthetic biology to satisfy design specifications.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chih-Hung

    2009-06-30

    Synthetic biology is foreseen to have important applications in biotechnology and medicine, and is expected to contribute significantly to a better understanding of the functioning of complex biological systems. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to intrinsic parameter uncertainties, external disturbances and functional variations of intra- and extra-cellular environments. The design method for a robust synthetic gene network that works properly in a host cell under these intrinsic parameter uncertainties and external disturbances is the most important topic in synthetic biology. In this study, we propose a stochastic model that includes parameter fluctuations and external disturbances to mimic the dynamic behaviors of a synthetic gene network in the host cell. Then, based on this stochastic model, four design specifications are introduced to guarantee that a synthetic gene network can achieve its desired steady state behavior in spite of parameter fluctuations, external disturbances and functional variations in the host cell. We propose a systematic method to select a set of appropriate design parameters for a synthetic gene network that will satisfy these design specifications so that the intrinsic parameter fluctuations can be tolerated, the external disturbances can be efficiently filtered, and most importantly, the desired steady states can be achieved. Thus the synthetic gene network can work properly in a host cell under intrinsic parameter uncertainties, external disturbances and functional variations. Finally, a design procedure for the robust synthetic gene network is developed and a design example is given in silico to confirm the performance of the proposed method. Based on four design specifications, a systematic design procedure is developed for designers to engineer a robust synthetic biology network that can achieve its desired steady state behavior

  17. Swarm: robust and fast clustering method for amplicon-based studies

    Directory of Open Access Journals (Sweden)

    Frédéric Mahé

    2014-09-01

    Full Text Available Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed to address these issues by first clustering nearly identical amplicons iteratively using a local threshold, and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast, scalable, and input-order independent approach reduces the influence of clustering parameters and produces robust operational taxonomic units.

  18. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    Science.gov (United States)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  19. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control...... system is constructed through a model-matching strategy. The stability, performance and robustness of the reconfigured system can be guaranteed when some conditions are satisfied. To illustrate the effectiveness of the proposed method, a robot system subjected to failures is used to demonstrate...

  20. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    Science.gov (United States)

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and

  1. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness

    Science.gov (United States)

    Lenton, T. M.; Livina, V. N.; Dakos, V.; Van Nes, E. H.; Scheffer, M.

    2012-01-01

    We address whether robust early warning signals can, in principle, be provided before a climate tipping point is reached, focusing on methods that seek to detect critical slowing down as a precursor of bifurcation. As a test bed, six previously analysed datasets are reconsidered, three palaeoclimate records approaching abrupt transitions at the end of the last ice age and three models of varying complexity forced through a collapse of the Atlantic thermohaline circulation. Approaches based on examining the lag-1 autocorrelation function or on detrended fluctuation analysis are applied together and compared. The effects of aggregating the data, detrending method, sliding window length and filtering bandwidth are examined. Robust indicators of critical slowing down are found prior to the abrupt warming event at the end of the Younger Dryas, but the indicators are less clear prior to the Bølling-Allerød warming, or glacial termination in Antarctica. Early warnings of thermohaline circulation collapse can be masked by inter-annual variability driven by atmospheric dynamics. However, rapidly decaying modes can be successfully filtered out by using a long bandwidth or by aggregating data. The two methods have complementary strengths and weaknesses and we recommend applying them together to improve the robustness of early warnings. PMID:22291229

  2. Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation

    Science.gov (United States)

    Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy

    2001-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  3. Structural Reliability Using Probability Density Estimation Methods Within NESSUS

    Science.gov (United States)

    Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric

    2003-01-01

    A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been

  4. Robust Trust in Expert Testimony

    Directory of Open Access Journals (Sweden)

    Christian Dahlman

    2015-05-01

    Full Text Available The standard of proof in criminal trials should require that the evidence presented by the prosecution is robust. This requirement of robustness says that it must be unlikely that additional information would change the probability that the defendant is guilty. Robustness is difficult for a judge to estimate, as it requires the judge to assess the possible effect of information that the he or she does not have. This article is concerned with expert witnesses and proposes a method for reviewing the robustness of expert testimony. According to the proposed method, the robustness of expert testimony is estimated with regard to competence, motivation, external strength, internal strength and relevance. The danger of trusting non-robust expert testimony is illustrated with an analysis of the Thomas Quick Case, a Swedish legal scandal where a patient at a mental institution was wrongfully convicted for eight murders.

  5. Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Karátson, J.; Kovács, B.

    2014-01-01

    Roč. 52, č. 6 (2014), s. 2957-2976 ISSN 0036-1429 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : streamline diffusion finite element method * solving convection-dominated elliptic problems * convergence is robust Subject RIV: BA - General Mathematics Impact factor: 1.788, year: 2014 http://epubs.siam.org/doi/abs/10.1137/130940268

  6. A Robust Service Selection Method Based on Uncertain QoS

    Directory of Open Access Journals (Sweden)

    Yanping Chen

    2016-01-01

    Full Text Available Nowadays, the number of Web services on the Internet is quickly increasing. Meanwhile, different service providers offer numerous services with the similar functions. Quality of Service (QoS has become an important factor used to select the most appropriate service for users. The most prominent QoS-based service selection models only take the certain attributes into account, which is an ideal assumption. In the real world, there are a large number of uncertain factors. In particular, at the runtime, QoS may become very poor or unacceptable. In order to solve the problem, a global service selection model based on uncertain QoS was proposed, including the corresponding normalization and aggregation functions, and then a robust optimization model adopted to transform the model. Experiment results show that the proposed method can effectively select services with high robustness and optimality.

  7. A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available Membrane proteins, particularly G-protein coupled receptors (GPCRs, are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.

  8. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    International Nuclear Information System (INIS)

    Brown, J.; Brune, P.

    2013-01-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  9. An improved principal component analysis based region matching method for fringe direction estimation

    Science.gov (United States)

    He, A.; Quan, C.

    2018-04-01

    The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.

  10. A robust estimate of the number and characteristics of persons released from prison in Australia.

    Science.gov (United States)

    Avery, Alex; Kinner, Stuart A

    2015-08-01

    To estimate the number and characteristics of adults released from prison in Australia. We calculated ratios, stratified by age, sex and Indigenous status, by comparing the number of persons released from prison in New South Wales (NSW), with the number in NSW prisons on 30 June of the corresponding year. These stratified ratios were applied to Australia-wide prison data to estimate the number and characteristics of persons released annually. We estimated that in 2013, 38,576 persons were released from prison in Australia - 25.3% more than the daily prison population. Young people, Indigenous people and women were over-represented among those released. We estimated that 3.69 Indigenous women aged 18-24 were released annually for each equivalent person in prison; and 2.75 non-Indigenous women aged 18-24 were released annually for each equivalent person in prison. The annual 'flow' through Australia's prisons is well in excess of the daily number, but information on those moving through prison systems is not yet publicly available. The characteristics of those released from prison differ meaningfully from those of people in prison. Routine, national reporting of prison separations is critical to informing upscaling and targeting of Throughcare services for this profoundly vulnerable population. © 2015 Public Health Association of Australia.

  11. The Robustness of Designs for Trials with Nested Data against Incorrect Initial Intracluster Correlation Coefficient Estimates

    Science.gov (United States)

    Korendijk, Elly J. H.; Moerbeek, Mirjam; Maas, Cora J. M.

    2010-01-01

    In the case of trials with nested data, the optimal allocation of units depends on the budget, the costs, and the intracluster correlation coefficient. In general, the intracluster correlation coefficient is unknown in advance and an initial guess has to be made based on published values or subject matter knowledge. This initial estimate is likely…

  12. A PSF-shape-based beamforming strategy for robust 2D motion estimation in ultrafast data

    NARCIS (Netherlands)

    Saris, Anne E.C.M.; Fekkes, Stein; Nillesen, Maartje; Hansen, Hendrik H.G.; de Korte, Chris L.

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system's point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle

  13. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    Science.gov (United States)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  14. Robustness of Input features from Noisy Silhouettes in Human Pose Estimation

    DEFF Research Database (Denmark)

    Gong, Wenjuan; Fihl, Preben; Gonzàlez, Jordi

    2014-01-01

    . In this paper, we explore this problem. First, We compare performances of several image features widely used for human pose estimation and explore their performances against each other and select one with best performance. Second, iterative closest point algorithm is introduced for a new quantitative...... of silhouette samples of different noise levels and compare with the selected feature on a public dataset: Human Eva dataset....

  15. TVR-DART: A More Robust Algorithm for Discrete Tomography From Limited Projection Data With Automated Gray Value Estimation.

    Science.gov (United States)

    Xiaodong Zhuge; Palenstijn, Willem Jan; Batenburg, Kees Joost

    2016-01-01

    In this paper, we present a novel iterative reconstruction algorithm for discrete tomography (DT) named total variation regularized discrete algebraic reconstruction technique (TVR-DART) with automated gray value estimation. This algorithm is more robust and automated than the original DART algorithm, and is aimed at imaging of objects consisting of only a few different material compositions, each corresponding to a different gray value in the reconstruction. By exploiting two types of prior knowledge of the scanned object simultaneously, TVR-DART solves the discrete reconstruction problem within an optimization framework inspired by compressive sensing to steer the current reconstruction toward a solution with the specified number of discrete gray values. The gray values and the thresholds are estimated as the reconstruction improves through iterations. Extensive experiments from simulated data, experimental μCT, and electron tomography data sets show that TVR-DART is capable of providing more accurate reconstruction than existing algorithms under noisy conditions from a small number of projection images and/or from a small angular range. Furthermore, the new algorithm requires less effort on parameter tuning compared with the original DART algorithm. With TVR-DART, we aim to provide the tomography society with an easy-to-use and robust algorithm for DT.

  16. Method of estimation of scanning system quality

    Science.gov (United States)

    Larkin, Eugene; Kotov, Vladislav; Kotova, Natalya; Privalov, Alexander

    2018-04-01

    Estimation of scanner parameters is an important part in developing electronic document management system. This paper suggests considering the scanner as a system that contains two main channels: a photoelectric conversion channel and a channel for measuring spatial coordinates of objects. Although both of channels consist of the same elements, the testing of their parameters should be executed separately. The special structure of the two-dimensional reference signal is offered for this purpose. In this structure, the fields for testing various parameters of the scanner are sp atially separated. Characteristics of the scanner are associated with the loss of information when a document is digitized. The methods to test grayscale transmitting ability, resolution and aberrations level are offered.

  17. Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties.

    Science.gov (United States)

    Zischg, Jonatan; Goncalves, Mariana L R; Bacchin, Taneha Kuzniecow; Leonhardt, Günther; Viklander, Maria; van Timmeren, Arjan; Rauch, Wolfgang; Sitzenfrei, Robert

    2017-09-01

    In the urban water cycle, there are different ways of handling stormwater runoff. Traditional systems mainly rely on underground piped, sometimes named 'gray' infrastructure. New and so-called 'green/blue' ambitions aim for treating and conveying the runoff at the surface. Such concepts are mainly based on ground infiltration and temporal storage. In this work a methodology to create and compare different planning alternatives for stormwater handling on their pathways to a desired system state is presented. Investigations are made to assess the system performance and robustness when facing the deeply uncertain spatial and temporal developments in the future urban fabric, including impacts caused by climate change, urbanization and other disruptive events, like shifts in the network layout and interactions of 'gray' and 'green/blue' structures. With the Info-Gap robustness pathway method, three planning alternatives are evaluated to identify critical performance levels at different stages over time. This novel methodology is applied to a real case study problem where a city relocation process takes place during the upcoming decades. In this case study it is shown that hybrid systems including green infrastructures are more robust with respect to future uncertainties, compared to traditional network design.

  18. M-Arctan estimator based on the trust-region method

    Energy Technology Data Exchange (ETDEWEB)

    Hassaine, Yacine; Delourme, Benoit; Panciatici, Patrick [Gestionnaire du Reseau de Transport d Electricite Departement Methodes et appui Immeuble Le Colbert 9, Versailles Cedex (France); Walter, Eric [Laboratoire des signaux et systemes (L2S) Supelec, Gif-sur-Yvette (France)

    2006-11-15

    In this paper a new approach is proposed to increase the robustness of the classical L{sub 2}-norm state estimation. To achieve this task a new formulation of the Levemberg-Marquardt algorithm based on the trust-region method is applied to a new M-estimator, which we called M-Arctan. Results obtained on IEEE networks up to 300 buses are presented. (author)

  19. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2014-01-01

    Purpose: To critically evaluate and compare three worst case optimization methods that have been previously employed to generate intensity-modulated proton therapy treatment plans that are robust against systematic errors. The goal of the evaluation is to identify circumstances when the methods behave differently and to describe the mechanism behind the differences when they occur. Methods: The worst case methods optimize plans to perform as well as possible under the worst case scenario that can physically occur (composite worst case), the combination of the worst case scenarios for each objective constituent considered independently (objectivewise worst case), and the combination of the worst case scenarios for each voxel considered independently (voxelwise worst case). These three methods were assessed with respect to treatment planning for prostate under systematic setup uncertainty. An equivalence with probabilistic optimization was used to identify the scenarios that determine the outcome of the optimization. Results: If the conflict between target coverage and normal tissue sparing is small and no dose-volume histogram (DVH) constraints are present, then all three methods yield robust plans. Otherwise, they all have their shortcomings: Composite worst case led to unnecessarily low plan quality in boundary scenarios that were less difficult than the worst case ones. Objectivewise worst case generally led to nonrobust plans. Voxelwise worst case led to overly conservative plans with respect to DVH constraints, which resulted in excessive dose to normal tissue, and less sharp dose fall-off than the other two methods. Conclusions: The three worst case methods have clearly different behaviors. These behaviors can be understood from which scenarios that are active in the optimization. No particular method is superior to the others under all circumstances: composite worst case is suitable if the conflicts are not very severe or there are DVH constraints whereas

  20. Robust estimates of the impact of broadcasting on match attendance in football

    OpenAIRE

    B Buraimo; D Forrest; R Simmons

    2006-01-01

    The paper employs data from 2,884 matches, of which 158 were televised, in the second tier of English football (currently known as The Football League Championship). It builds a model of the determinants of attendance that is designed to yield estimates of the proportionate changes in the size of crowds resulting from games being shown on either free-to-air or subscription based channels. The model has two innovatory features. First, it controls for the market size of home and away teams very...

  1. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Directory of Open Access Journals (Sweden)

    Vladimir Reinharz

    2017-10-01

    Full Text Available The multiscale model of hepatitis C virus (HCV dynamics, which includes intracellular viral RNA (vRNA replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

  2. Robust gene selection methods using weighting schemes for microarray data analysis.

    Science.gov (United States)

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  3. Geometric computations with interval and new robust methods applications in computer graphics, GIS and computational geometry

    CERN Document Server

    Ratschek, H

    2003-01-01

    This undergraduate and postgraduate text will familiarise readers with interval arithmetic and related tools to gain reliable and validated results and logically correct decisions for a variety of geometric computations plus the means for alleviating the effects of the errors. It also considers computations on geometric point-sets, which are neither robust nor reliable in processing with standard methods. The authors provide two effective tools for obtaining correct results: (a) interval arithmetic, and (b) ESSA the new powerful algorithm which improves many geometric computations and makes th

  4. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  5. Investigating Robustness of Item Response Theory Proficiency Estimators to Atypical Response Behaviors under Two-Stage Multistage Testing. ETS GRE® Board Research Report. ETS GRE®-16-03. ETS Research Report No. RR-16-22

    Science.gov (United States)

    Kim, Sooyeon; Moses, Tim

    2016-01-01

    The purpose of this study is to evaluate the extent to which item response theory (IRT) proficiency estimation methods are robust to the presence of aberrant responses under the "GRE"® General Test multistage adaptive testing (MST) design. To that end, a wide range of atypical response behaviors affecting as much as 10% of the test items…

  6. Robust estimation and forecasting of the long-term seasonal component of electricity spot prices

    International Nuclear Information System (INIS)

    Nowotarski, Jakub; Tomczyk, Jakub; Weron, Rafał

    2013-01-01

    We present the results of an extensive study on estimation and forecasting of the long-term seasonal component (LTSC) of electricity spot prices. We consider a battery of over 300 models, including monthly dummies and models based on Fourier or wavelet decomposition combined with linear or exponential decay. We find that the considered wavelet-based models are significantly better in terms of forecasting spot prices up to a year ahead than the commonly used monthly dummies and sine-based models. This result questions the validity and usefulness of stochastic models of spot electricity prices built on the latter two types of LTSC models. - Highlights: • First comprehensive study on the forecasting of the long-term seasonal components • Over 300 models examined, including commonly used and new approaches • Wavelet-based models outperform sine-based and monthly dummy models. • Validity of stochastic models built on sines or monthly dummies is questionable

  7. Using Length of Stay to Control for Unobserved Heterogeneity When Estimating Treatment Effect on Hospital Costs with Observational Data: Issues of Reliability, Robustness, and Usefulness.

    Science.gov (United States)

    May, Peter; Garrido, Melissa M; Cassel, J Brian; Morrison, R Sean; Normand, Charles

    2016-10-01

    To evaluate the sensitivity of treatment effect estimates when length of stay (LOS) is used to control for unobserved heterogeneity when estimating treatment effect on cost of hospital admission with observational data. We used data from a prospective cohort study on the impact of palliative care consultation teams (PCCTs) on direct cost of hospital care. Adult patients with an advanced cancer diagnosis admitted to five large medical and cancer centers in the United States between 2007 and 2011 were eligible for this study. Costs were modeled using generalized linear models with a gamma distribution and a log link. We compared variability in estimates of PCCT impact on hospitalization costs when LOS was used as a covariate, as a sample parameter, and as an outcome denominator. We used propensity scores to account for patient characteristics associated with both PCCT use and total direct hospitalization costs. We analyzed data from hospital cost databases, medical records, and questionnaires. Our propensity score weighted sample included 969 patients who were discharged alive. In analyses of hospitalization costs, treatment effect estimates are highly sensitive to methods that control for LOS, complicating interpretation. Both the magnitude and significance of results varied widely with the method of controlling for LOS. When we incorporated intervention timing into our analyses, results were robust to LOS-controls. Treatment effect estimates using LOS-controls are not only suboptimal in terms of reliability (given concerns over endogeneity and bias) and usefulness (given the need to validate the cost-effectiveness of an intervention using overall resource use for a sample defined at baseline) but also in terms of robustness (results depend on the approach taken, and there is little evidence to guide this choice). To derive results that minimize endogeneity concerns and maximize external validity, investigators should match and analyze treatment and comparison arms

  8. A robust new metric of phenotypic distance to estimate and compare multiple trait differences among populations

    Directory of Open Access Journals (Sweden)

    Rebecca SAFRAN, Samuel FLAXMAN, Michael KOPP, Darren E. IRWIN, Derek BRIGGS, Matthew R. EVANS, W. Chris FUNK, David A. GRAY, Eileen A. HEBE

    2012-06-01

    Full Text Available Whereas a rich literature exists for estimating population genetic divergence, metrics of phenotypic trait divergence are lacking, particularly for comparing multiple traits among three or more populations. Here, we review and analyze via simulation Hedges’ g, a widely used parametric estimate of effect size. Our analyses indicate that g is sensitive to a combination of unequal trait variances and unequal sample sizes among populations and to changes in the scale of measurement. We then go on to derive and explain a new, non-parametric distance measure, “Δp”, which is calculated based upon a joint cumulative distribution function (CDF from all populations under study. More precisely, distances are measured in terms of the percentiles in this CDF at which each population’s median lies. Δp combines many desirable features of other distance metrics into a single metric; namely, compared to other metrics, p is relatively insensitive to unequal variances and sample sizes among the populations sampled. Furthermore, a key feature of Δp—and our main motivation for developing it—is that it easily accommodates simultaneous comparisons of any number of traits across any number of populations. To exemplify its utility, we employ Δp to address a question related to the role of sexual selection in speciation: are sexual signals more divergent than ecological traits in closely related taxa? Using traits of known function in closely related populations, we show that traits predictive of reproductive performance are, indeed, more divergent and more sexually dimorphic than traits related to ecological adaptation [Current Zoology 58 (3: 423-436, 2012].

  9. A subagging regression method for estimating the qualitative and quantitative state of groundwater

    Science.gov (United States)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young

    2017-08-01

    A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.

  10. A Two-Step Method to Identify Positive Deviant Physician Organizations of Accountable Care Organizations with Robust Performance Management Systems.

    Science.gov (United States)

    Pimperl, Alexander F; Rodriguez, Hector P; Schmittdiel, Julie A; Shortell, Stephen M

    2018-06-01

    To identify positive deviant (PD) physician organizations of Accountable Care Organizations (ACOs) with robust performance management systems (PMSYS). Third National Survey of Physician Organizations (NSPO3, n = 1,398). Organizational and external factors from NSPO3 were analyzed. Linear regression estimated the association of internal and contextual factors on PMSYS. Two cutpoints (75th/90th percentiles) identified PDs with the largest residuals and highest PMSYS scores. A total of 65 and 41 PDs were identified using 75th and 90th percentiles cutpoints, respectively. The 90th percentile more strongly differentiated PDs from non-PDs. Having a high proportion of vulnerable patients appears to constrain PMSYS development. Our PD identification method increases the likelihood that PD organizations selected for in-depth inquiry are high-performing organizations that exceed expectations. © Health Research and Educational Trust.

  11. Advances in Time Estimation Methods for Molecular Data.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  12. Exploring super-gaussianity towards robust information-theoretical time delay estimation

    DEFF Research Database (Denmark)

    Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos

    2013-01-01

    the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced...

  13. Variance-Constrained Robust Estimation for Discrete-Time Systems with Communication Constraints

    Directory of Open Access Journals (Sweden)

    Baofeng Wang

    2014-01-01

    Full Text Available This paper is concerned with a new filtering problem in networked control systems (NCSs subject to limited communication capacity, which includes measurement quantization, random transmission delay, and packets loss. The measurements are first quantized via a logarithmic quantizer and then transmitted through a digital communication network with random delay and packet loss. The three communication constraints phenomena which can be seen as a class of uncertainties are formulated by a stochastic parameter uncertainty system. The purpose of the paper is to design a linear filter such that, for all the communication constraints, the error state of the filtering process is mean square bounded and the steady-state variance of the estimation error for each state is not more than the individual prescribed upper bound. It is shown that the desired filtering can effectively be solved if there are positive definite solutions to a couple of algebraic Riccati-like inequalities or linear matrix inequalities. Finally, an illustrative numerical example is presented to demonstrate the effectiveness and flexibility of the proposed design approach.

  14. A Method for Estimating Surveillance Video Georeferences

    Directory of Open Access Journals (Sweden)

    Aleksandar Milosavljević

    2017-07-01

    Full Text Available The integration of a surveillance camera video with a three-dimensional (3D geographic information system (GIS requires the georeferencing of that video. Since a video consists of separate frames, each frame must be georeferenced. To georeference a video frame, we rely on the information about the camera view at the moment that the frame was captured. A camera view in 3D space is completely determined by the camera position, orientation, and field-of-view. Since the accurate measuring of these parameters can be extremely difficult, in this paper we propose a method for their estimation based on matching video frame coordinates of certain point features with their 3D geographic locations. To obtain these coordinates, we rely on high-resolution orthophotos and digital elevation models (DEM of the area of interest. Once an adequate number of points are matched, Levenberg–Marquardt iterative optimization is applied to find the most suitable video frame georeference, i.e., position and orientation of the camera.

  15. Short assessment of the Big Five: robust across survey methods except telephone interviewing.

    Science.gov (United States)

    Lang, Frieder R; John, Dennis; Lüdtke, Oliver; Schupp, Jürgen; Wagner, Gert G

    2011-06-01

    We examined measurement invariance and age-related robustness of a short 15-item Big Five Inventory (BFI-S) of personality dimensions, which is well suited for applications in large-scale multidisciplinary surveys. The BFI-S was assessed in three different interviewing conditions: computer-assisted or paper-assisted face-to-face interviewing, computer-assisted telephone interviewing, and a self-administered questionnaire. Randomized probability samples from a large-scale German panel survey and a related probability telephone study were used in order to test method effects on self-report measures of personality characteristics across early, middle, and late adulthood. Exploratory structural equation modeling was used in order to test for measurement invariance of the five-factor model of personality trait domains across different assessment methods. For the short inventory, findings suggest strong robustness of self-report measures of personality dimensions among young and middle-aged adults. In old age, telephone interviewing was associated with greater distortions in reliable personality assessment. It is concluded that the greater mental workload of telephone interviewing limits the reliability of self-report personality assessment. Face-to-face surveys and self-administrated questionnaire completion are clearly better suited than phone surveys when personality traits in age-heterogeneous samples are assessed.

  16. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    Science.gov (United States)

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  17. A Data-driven Study of RR Lyrae Near-IR Light Curves: Principal Component Analysis, Robust Fits, and Metallicity Estimates

    Science.gov (United States)

    Hajdu, Gergely; Dékány, István; Catelan, Márcio; Grebel, Eva K.; Jurcsik, Johanna

    2018-04-01

    RR Lyrae variables are widely used tracers of Galactic halo structure and kinematics, but they can also serve to constrain the distribution of the old stellar population in the Galactic bulge. With the aim of improving their near-infrared photometric characterization, we investigate their near-infrared light curves, as well as the empirical relationships between their light curve and metallicities using machine learning methods. We introduce a new, robust method for the estimation of the light-curve shapes, hence the average magnitudes of RR Lyrae variables in the K S band, by utilizing the first few principal components (PCs) as basis vectors, obtained from the PC analysis of a training set of light curves. Furthermore, we use the amplitudes of these PCs to predict the light-curve shape of each star in the J-band, allowing us to precisely determine their average magnitudes (hence colors), even in cases where only one J measurement is available. Finally, we demonstrate that the K S-band light-curve parameters of RR Lyrae variables, together with the period, allow the estimation of the metallicity of individual stars with an accuracy of ∼0.2–0.25 dex, providing valuable chemical information about old stellar populations bearing RR Lyrae variables. The methods presented here can be straightforwardly adopted for other classes of variable stars, bands, or for the estimation of other physical quantities.

  18. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within subject fMRI data

    Energy Technology Data Exchange (ETDEWEB)

    Risser, L.; Vincent, T.; Ciuciu, Ph. [NeuroSpin CEA, F-91191 Gif sur Yvette (France); Risser, L.; Vincent, T. [Laboratoire de Neuroimagerie Assistee par Ordinateur (LNAO) CEA - DSV/I2BM/NEUROSPIN (France); Risser, L. [Institut de mecanique des fluides de Toulouse (IMFT), CNRS: UMR5502 - Universite Paul Sabatier - Toulouse III - Institut National Polytechnique de Toulouse - INPT (France); Idier, J. [Institut de Recherche en Communications et en Cybernetique de Nantes (IRCCyN) CNRS - UMR6597 - Universite de Nantes - ecole Centrale de Nantes - Ecole des Mines de Nantes - Ecole Polytechnique de l' Universite de Nantes (France)

    2009-07-01

    In this paper, we present a first numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent, hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon it, classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, file proposed extrapolation method allows its to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust; to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible. (authors)

  19. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    Science.gov (United States)

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator.

    Science.gov (United States)

    Lin, Y; Rajan, V; Moret, B M E

    2011-09-01

    The rapid accumulation of whole-genome data has renewed interest in the study of genomic rearrangements. Comparative genomics, evolutionary biology, and cancer research all require models and algorithms to elucidate the mechanisms, history, and consequences of these rearrangements. However, even simple models lead to NP-hard problems, particularly in the area of phylogenetic analysis. Current approaches are limited to small collections of genomes and low-resolution data (typically a few hundred syntenic blocks). Moreover, whereas phylogenetic analyses from sequence data are deemed incomplete unless bootstrapping scores (a measure of confidence) are given for each tree edge, no equivalent to bootstrapping exists for rearrangement-based phylogenetic analysis. We describe a fast and accurate algorithm for rearrangement analysis that scales up, in both time and accuracy, to modern high-resolution genomic data. We also describe a novel approach to estimate the robustness of results-an equivalent to the bootstrapping analysis used in sequence-based phylogenetic reconstruction. We present the results of extensive testing on both simulated and real data showing that our algorithm returns very accurate results, while scaling linearly with the size of the genomes and cubically with their number. We also present extensive experimental results showing that our approach to robustness testing provides excellent estimates of confidence, which, moreover, can be tuned to trade off thresholds between false positives and false negatives. Together, these two novel approaches enable us to attack heretofore intractable problems, such as phylogenetic inference for high-resolution vertebrate genomes, as we demonstrate on a set of six vertebrate genomes with 8,380 syntenic blocks. A copy of the software is available on demand.

  1. On evaluating the robustness of spatial-proximity-based regionalization methods

    Science.gov (United States)

    Lebecherel, Laure; Andréassian, Vazken; Perrin, Charles

    2016-08-01

    In absence of streamflow data to calibrate a hydrological model, its parameters are to be inferred by a regionalization method. In this technical note, we discuss a specific class of regionalization methods, those based on spatial proximity, which transfers hydrological information (typically calibrated parameter sets) from neighbor gauged stations to the target ungauged station. The efficiency of any spatial-proximity-based regionalization method will depend on the density of the available streamgauging network, and the purpose of this note is to discuss how to assess the robustness of the regionalization method (i.e., its resilience to an increasingly sparse hydrometric network). We compare two options: (i) the random hydrometrical reduction (HRand) method, which consists in sub-sampling the existing gauging network around the target ungauged station, and (ii) the hydrometrical desert method (HDes), which consists in ignoring the closest gauged stations. Our tests suggest that the HDes method should be preferred, because it provides a more realistic view on regionalization performance.

  2. A Robust Method for Detecting Parking Areas in Both Indoor and Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Wenhao Zong

    2018-06-01

    Full Text Available Although an automatic parking system has been installed in many vehicles recently, it is still hard for the system to confirm by itself whether a vacant parking area truly exists or not. In this paper, we introduced a robust vision-based vacancy parking area detecting method for both indoor and outdoor environments. The main contribution of this paper is given as follows. First, an automatic image stitching method is proposed. Secondly, the problem of environment illuminating change and line color difference is considered and solved. Thirdly, the proposed algorithm is insensitive to the shadow and scene diversity, which means the detecting result satisfies most of the environment. Finally, a vehicle model is considered for tracking and reconfirming the detecting results to eliminate most of the false positives.

  3. A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2018-03-01

    Full Text Available In this paper, we propose an efficient EnKF implementation for non-Gaussian data assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC methods. The proposed method works as follows: based on an ensemble of model realizations, prior errors are estimated via a Gaussian Mixture density whose parameters are approximated by means of an Expectation Maximization method. Then, by using an iterative method, observation operators are linearized about current solutions and posterior modes are estimated via a MCMC implementation. The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or dense observational networks.

  4. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    Directory of Open Access Journals (Sweden)

    Fasahat Ullah Siddiqui

    2016-07-01

    Full Text Available Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality. Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state

  5. An Application of Robust Method in Multiple Linear Regression Model toward Credit Card Debt

    Science.gov (United States)

    Amira Azmi, Nur; Saifullah Rusiman, Mohd; Khalid, Kamil; Roslan, Rozaini; Sufahani, Suliadi; Mohamad, Mahathir; Salleh, Rohayu Mohd; Hamzah, Nur Shamsidah Amir

    2018-04-01

    Credit card is a convenient alternative replaced cash or cheque, and it is essential component for electronic and internet commerce. In this study, the researchers attempt to determine the relationship and significance variables between credit card debt and demographic variables such as age, household income, education level, years with current employer, years at current address, debt to income ratio and other debt. The provided data covers 850 customers information. There are three methods that applied to the credit card debt data which are multiple linear regression (MLR) models, MLR models with least quartile difference (LQD) method and MLR models with mean absolute deviation method. After comparing among three methods, it is found that MLR model with LQD method became the best model with the lowest value of mean square error (MSE). According to the final model, it shows that the years with current employer, years at current address, household income in thousands and debt to income ratio are positively associated with the amount of credit debt. Meanwhile variables for age, level of education and other debt are negatively associated with amount of credit debt. This study may serve as a reference for the bank company by using robust methods, so that they could better understand their options and choice that is best aligned with their goals for inference regarding to the credit card debt.

  6. Robustly Fitting and Forecasting Dynamical Data With Electromagnetically Coupled Artificial Neural Network: A Data Compression Method.

    Science.gov (United States)

    Wang, Ziyin; Liu, Mandan; Cheng, Yicheng; Wang, Rubin

    2017-06-01

    In this paper, a dynamical recurrent artificial neural network (ANN) is proposed and studied. Inspired from a recent research in neuroscience, we introduced nonsynaptic coupling to form a dynamical component of the network. We mathematically proved that, with adequate neurons provided, this dynamical ANN model is capable of approximating any continuous dynamic system with an arbitrarily small error in a limited time interval. Its extreme concise Jacobian matrix makes the local stability easy to control. We designed this ANN for fitting and forecasting dynamic data and obtained satisfied results in simulation. The fitting performance is also compared with those of both the classic dynamic ANN and the state-of-the-art models. Sufficient trials and the statistical results indicated that our model is superior to those have been compared. Moreover, we proposed a robust approximation problem, which asking the ANN to approximate a cluster of input-output data pairs in large ranges and to forecast the output of the system under previously unseen input. Our model and learning scheme proposed in this paper have successfully solved this problem, and through this, the approximation becomes much more robust and adaptive to noise, perturbation, and low-order harmonic wave. This approach is actually an efficient method for compressing massive external data of a dynamic system into the weight of the ANN.

  7. A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects

    International Nuclear Information System (INIS)

    Rahimi, Rahim; Ochoa, Manuel; Yu, Wuyang; Ziaie, Babak

    2014-01-01

    Fabricating highly stretchable and robust electrical interconnects at low-cost remains an unmet challenge in stretchable electronics. Previously reported stretchable interconnects require complicated fabrication processes with resulting devices exhibiting limited stretchability, poor reliability, and large gauge factors. Here, we demonstrate a novel sew-and-transfer method for rapid fabrication of low-cost, highly stretchable interconnects. Using a commercial sewing machine and double-thread stitch with one of the threads being water soluble polyvinyl alcohol (PVA), thin zigzag-pattern metallic wires are sewn into a polymeric film and are subsequently transferred onto a stretchable elastomeric substrate by dissolving PVA in warm water. The resulting structures exhibit extreme stretchability (exceeding 500% strain for a zigzag angle of 18 °) and robustness (capable of withstanding repeated stretch-and-release cycles of 15000 at 110% strain, 50000 at 55% strain, and  > 120000 at 30% strain without any noticeable change in resistance even at maximum strain levels). Using this technique, we demonstrate a stretchable inductive strain sensor for monitoring balloon expansion in a Foley urinary catheter capable of detecting the balloon diameter change from 9 mm to 38 mm with an average sensitivity of 4 nH/mm. (paper)

  8. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  9. Psychological methods of subjective risk estimates

    International Nuclear Information System (INIS)

    Zimolong, B.

    1980-01-01

    Reactions to situations involving risks can be divided into the following parts/ perception of danger, subjective estimates of the risk and risk taking with respect to action. Several investigations have compared subjective estimates of the risk with an objective measure of that risk. In general there was a mis-match between subjective and objective measures of risk, especially, objective risk involved in routine activities is most commonly underestimated. This implies, for accident prevention, that attempts must be made to induce accurate subjective risk estimates by technical and behavioural measures. (orig.) [de

  10. The Use of Alternative Regression Methods in Social Sciences and the Comparison of Least Squares and M Estimation Methods in Terms of the Determination of Coefficient

    Science.gov (United States)

    Coskuntuncel, Orkun

    2013-01-01

    The purpose of this study is two-fold; the first aim being to show the effect of outliers on the widely used least squares regression estimator in social sciences. The second aim is to compare the classical method of least squares with the robust M-estimator using the "determination of coefficient" (R[superscript 2]). For this purpose,…

  11. A Generalized Autocovariance Least-Squares Method for Covariance Estimation

    DEFF Research Database (Denmark)

    Åkesson, Bernt Magnus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2007-01-01

    A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter.......A generalization of the autocovariance least- squares method for estimating noise covariances is presented. The method can estimate mutually correlated system and sensor noise and can be used with both the predicting and the filtering form of the Kalman filter....

  12. PERFORMANCE ANALYSIS OF METHODS FOR ESTIMATING ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... speed is the most significant parameter of the wind energy. ... wind-powered generators and applied to estimate potential power output at various ...... Wind and Solar Power Systems, U.S. Merchant Marine Academy Kings.

  13. Estimation methods for special nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1984-01-01

    The potential value of statistical models for the estimation of residual inventories of special nuclear materials was examined using holdup data from processing facilities and through controlled experiments. Although the measurement of hidden inventories of special nuclear materials in large facilities is a challenging task, reliable estimates of these inventories can be developed through a combination of good measurements and the use of statistical models. 7 references, 5 figures

  14. Statistical methods of estimating mining costs

    Science.gov (United States)

    Long, K.R.

    2011-01-01

    Until it was defunded in 1995, the U.S. Bureau of Mines maintained a Cost Estimating System (CES) for prefeasibility-type economic evaluations of mineral deposits and estimating costs at producing and non-producing mines. This system had a significant role in mineral resource assessments to estimate costs of developing and operating known mineral deposits and predicted undiscovered deposits. For legal reasons, the U.S. Geological Survey cannot update and maintain CES. Instead, statistical tools are under development to estimate mining costs from basic properties of mineral deposits such as tonnage, grade, mineralogy, depth, strip ratio, distance from infrastructure, rock strength, and work index. The first step was to reestimate "Taylor's Rule" which relates operating rate to available ore tonnage. The second step was to estimate statistical models of capital and operating costs for open pit porphyry copper mines with flotation concentrators. For a sample of 27 proposed porphyry copper projects, capital costs can be estimated from three variables: mineral processing rate, strip ratio, and distance from nearest railroad before mine construction began. Of all the variables tested, operating costs were found to be significantly correlated only with strip ratio.

  15. A robust and efficient stepwise regression method for building sparse polynomial chaos expansions

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Simon, E-mail: Simon.Abraham@ulb.ac.be [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium); Raisee, Mehrdad [School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran (Iran, Islamic Republic of); Ghorbaniasl, Ghader; Contino, Francesco; Lacor, Chris [Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels (Belgium)

    2017-03-01

    Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.

  16. Robust Scale Transformation Methods in IRT True Score Equating under Common-Item Nonequivalent Groups Design

    Science.gov (United States)

    He, Yong

    2013-01-01

    Common test items play an important role in equating multiple test forms under the common-item nonequivalent groups design. Inconsistent item parameter estimates among common items can lead to large bias in equated scores for IRT true score equating. Current methods extensively focus on detection and elimination of outlying common items, which…

  17. A robust anomaly based change detection method for time-series remote sensing images

    Science.gov (United States)

    Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao

    2014-03-01

    Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.

  18. A robust AHP-DEA method for measuring the relative efficiency: An application of airport industry

    Directory of Open Access Journals (Sweden)

    Amin Foroughi

    2012-01-01

    Full Text Available Measuring the relative efficiency of similar units has been an important topic of research among many researchers. Data envelopment analysis has been one of the most important techniques for measuring the efficiency of different units. However, there are some limitations on using such technique and some people prefer to use other methods such as analytical hierarchy process to measure the relative efficiencies. Besides, uncertainty in the input data is another issue, which makes some misleading results. In this paper, we present an integrated robust DEA-AHP to measure the relative efficiency of similar units. The proposed model of this is believed to capable of presenting better results in terms of efficiency compared with exclusive usage of DEA or AHP. The implementation of the proposed model is demonstrated for a real-world case study of Airport industry and the results are analyzed.

  19. Leak detection of complex pipelines based on the filter diagonalization method: robust technique for eigenvalue assessment

    International Nuclear Information System (INIS)

    Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo

    2010-01-01

    The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors

  20. A Novel SHLNN Based Robust Control and Tracking Method for Hypersonic Vehicle under Parameter Uncertainty

    Directory of Open Access Journals (Sweden)

    Chuanfeng Li

    2017-01-01

    Full Text Available Hypersonic vehicle is a typical parameter uncertain system with significant characteristics of strong coupling, nonlinearity, and external disturbance. In this paper, a combined system modeling approach is proposed to approximate the actual vehicle system. The state feedback control strategy is adopted based on the robust guaranteed cost control (RGCC theory, where the Lyapunov function is applied to get control law for nonlinear system and the problem is transformed into a feasible solution by linear matrix inequalities (LMI method. In addition, a nonfragile guaranteed cost controller solved by LMI optimization approach is employed to the linear error system, where a single hidden layer neural network (SHLNN is employed as an additive gain compensator to reduce excessive performance caused by perturbations and uncertainties. Simulation results show the stability and well tracking performance for the proposed strategy in controlling the vehicle system.

  1. A General Method to Estimate Earthquake Moment and Magnitude using Regional Phase Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2009-11-19

    This paper presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M{sub o} or regional M{sub w}. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading which accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones, and afterwards averaged to robustly determine this parameter. We first examine in detail several events to demonstrate the methodology. We then look at various ensembles of phases and frequencies, and compare results to existing regional methods. We find regional M{sub o} to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates to be more robust than typical magnitudes and existing regional methods and might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as M{sub w}. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration.

  2. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien; Claudel, Christian G.

    2015-01-01

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  3. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien

    2015-12-30

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  4. Validation of a Robust Neural Real-Time Voltage Estimator for Active Distribution Grids on Field Data

    DEFF Research Database (Denmark)

    Pertl, Michael; Douglass, Philip James; Heussen, Kai

    2018-01-01

    network approach for voltage estimation in active distribution grids by means of measured data from two feeders of a real low voltage distribution grid. The approach enables a real-time voltage estimation at locations in the distribution grid, where otherwise only non-real-time measurements are available......The installation of measurements in distribution grids enables the development of data driven methods for the power system. However, these methods have to be validated in order to understand the limitations and capabilities for their use. This paper presents a systematic validation of a neural...

  5. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  6. Generic and robust method for automatic segmentation of PET images using an active contour model

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Mingzan [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2016-08-15

    Purpose: Although positron emission tomography (PET) images have shown potential to improve the accuracy of targeting in radiation therapy planning and assessment of response to treatment, the boundaries of tumors are not easily distinguishable from surrounding normal tissue owing to the low spatial resolution and inherent noisy characteristics of PET images. The objective of this study is to develop a generic and robust method for automatic delineation of tumor volumes using an active contour model and to evaluate its performance using phantom and clinical studies. Methods: MASAC, a method for automatic segmentation using an active contour model, incorporates the histogram fuzzy C-means clustering, and localized and textural information to constrain the active contour to detect boundaries in an accurate and robust manner. Moreover, the lattice Boltzmann method is used as an alternative approach for solving the level set equation to make it faster and suitable for parallel programming. Twenty simulated phantom studies and 16 clinical studies, including six cases of pharyngolaryngeal squamous cell carcinoma and ten cases of nonsmall cell lung cancer, were included to evaluate its performance. Besides, the proposed method was also compared with the contourlet-based active contour algorithm (CAC) and Schaefer’s thresholding method (ST). The relative volume error (RE), Dice similarity coefficient (DSC), and classification error (CE) metrics were used to analyze the results quantitatively. Results: For the simulated phantom studies (PSs), MASAC and CAC provide similar segmentations of the different lesions, while ST fails to achieve reliable results. For the clinical datasets (2 cases with connected high-uptake regions excluded) (CSs), CAC provides for the lowest mean RE (−8.38% ± 27.49%), while MASAC achieves the best mean DSC (0.71 ± 0.09) and mean CE (53.92% ± 12.65%), respectively. MASAC could reliably quantify different types of lesions assessed in this work

  7. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  8. JACOP: A simple and robust method for the automated classification of protein sequences with modular architecture

    Directory of Open Access Journals (Sweden)

    Pagni Marco

    2005-08-01

    Full Text Available Abstract Background Whole-genome sequencing projects are rapidly producing an enormous number of new sequences. Consequently almost every family of proteins now contains hundreds of members. It has thus become necessary to develop tools, which classify protein sequences automatically and also quickly and reliably. The difficulty of this task is intimately linked to the mechanism by which protein sequences diverge, i.e. by simultaneous residue substitutions, insertions and/or deletions and whole domain reorganisations (duplications/swapping/fusion. Results Here we present a novel approach, which is based on random sampling of sub-sequences (probes out of a set of input sequences. The probes are compared to the input sequences, after a normalisation step; the results are used to partition the input sequences into homogeneous groups of proteins. In addition, this method provides information on diagnostic parts of the proteins. The performance of this method is challenged by two data sets. The first one contains the sequences of prokaryotic lyases that could be arranged as a multiple sequence alignment. The second one contains all proteins from Swiss-Prot Release 36 with at least one Src homology 2 (SH2 domain – a classical example for proteins with modular architecture. Conclusion The outcome of our method is robust, highly reproducible as shown using bootstrap and resampling validation procedures. The results are essentially coherent with the biology. This method depends solely on well-established publicly available software and algorithms.

  9. Traditional and robust vector selection methods for use with similarity based models

    International Nuclear Information System (INIS)

    Hines, J. W.; Garvey, D. R.

    2006-01-01

    Vector selection, or instance selection as it is often called in the data mining literature, performs a critical task in the development of nonparametric, similarity based models. Nonparametric, similarity based modeling (SBM) is a form of 'lazy learning' which constructs a local model 'on the fly' by comparing a query vector to historical, training vectors. For large training sets the creation of local models may become cumbersome, since each training vector must be compared to the query vector. To alleviate this computational burden, varying forms of training vector sampling may be employed with the goal of selecting a subset of the training data such that the samples are representative of the underlying process. This paper describes one such SBM, namely auto-associative kernel regression (AAKR), and presents five traditional vector selection methods and one robust vector selection method that may be used to select prototype vectors from a larger data set in model training. The five traditional vector selection methods considered are min-max, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, and Adeli-Hung clustering. Each method is described in detail and compared using artificially generated data and data collected from the steam system of an operating nuclear power plant. (authors)

  10. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  11. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    International Nuclear Information System (INIS)

    Gao, Hao

    2016-01-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)

  12. A robust, efficient and flexible method for staining myelinated axons in blocks of brain tissue.

    Science.gov (United States)

    Wahlsten, Douglas; Colbourne, Frederick; Pleus, Richard

    2003-03-15

    Previous studies have demonstrated the utility of the gold chloride method for en bloc staining of a bisected brain in mice and rats. The present study explores several variations in the method, assesses its reliability, and extends the limits of its application. We conclude that the method is very efficient, highly robust, sufficiently accurate for most purposes, and adaptable to many morphometric measures. We obtained acceptable staining of commissures in every brain, despite a wide variety of fixation methods. One-half could be stained 24 h after the brain was extracted and the other half could be stained months later. When staining failed because of an exhausted solution, the brain could be stained successfully in fresh solution. Relatively small changes were found in the sizes of commissures several weeks after initial fixation or staining. A half brain stained to reveal the mid-sagittal section could then be sectioned coronally and stained again in either gold chloride for myelin or cresyl violet for Nissl substance. Uncertainty, arising from pixelation of digitized images was far less than errors arising from human judgments about the histological limits of major commissures. Useful data for morphometric analysis were obtained by scanning the surface of a gold chloride stained block of brain with an inexpensive flatbed scanner.

  13. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  14. A Robust Blind Quantum Copyright Protection Method for Colored Images Based on Owner's Signature

    Science.gov (United States)

    Heidari, Shahrokh; Gheibi, Reza; Houshmand, Monireh; Nagata, Koji

    2017-08-01

    Watermarking is the imperceptible embedding of watermark bits into multimedia data in order to use for different applications. Among all its applications, copyright protection is the most prominent usage which conceals information about the owner in the carrier, so as to prohibit others from assertion copyright. This application requires high level of robustness. In this paper, a new blind quantum copyright protection method based on owners's signature in RGB images is proposed. The method utilizes one of the RGB channels as indicator and two remained channels are used for embedding information about the owner. In our contribution the owner's signature is considered as a text. Therefore, in order to embed in colored image as watermark, a new quantum representation of text based on ASCII character set is offered. Experimental results which are analyzed in MATLAB environment, exhibit that the presented scheme shows good performance against attacks and can be used to find out who the real owner is. Finally, the discussed quantum copyright protection method is compared with a related work that our analysis confirm that the presented scheme is more secure and applicable than the previous ones currently found in the literature.

  15. A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems

    Science.gov (United States)

    Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.

    2017-12-01

    Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.

  16. Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils.

    Science.gov (United States)

    McLellan, Iain; Hursthouse, Andrew; Morrison, Calum; Varela, Adélia; Pereira, Cristina Silva

    2014-02-01

    A major concern for the cork and wine industry is 'cork taint' which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75% against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.

  17. A robust automatic leukocyte recognition method based on island-clustering texture

    Directory of Open Access Journals (Sweden)

    Xiaoshun Li

    2016-01-01

    Full Text Available A leukocyte recognition method for human peripheral blood smear based on island-clustering texture (ICT is proposed. By analyzing the features of the five typical classes of leukocyte images, a new ICT model is established. Firstly, some feature points are extracted in a gray leukocyte image by mean-shift clustering to be the centers of islands. Secondly, the growing region is employed to create regions of the islands in which the seeds are just these feature points. These islands distribution can describe a new texture. Finally, a distinguished parameter vector of these islands is created as the ICT features by combining the ICT features with the geometric features of the leukocyte. Then the five typical classes of leukocytes can be recognized successfully at the correct recognition rate of more than 92.3% with a total sample of 1310 leukocytes. Experimental results show the feasibility of the proposed method. Further analysis reveals that the method is robust and results can provide important information for disease diagnosis.

  18. TU-G-303-02: Robust Radiomics Methods for PET and CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, H. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  19. Climate change on the Colorado River: a method to search for robust management strategies

    Science.gov (United States)

    Keefe, R.; Fischbach, J. R.

    2010-12-01

    The Colorado River is a principal source of water for the seven Basin States, providing approximately 16.5 maf per year to users in the southwestern United States and Mexico. Though the dynamics of the river ensure Upper Basin users a reliable supply of water, the three Lower Basin states (California, Nevada, and Arizona) are in danger of delivery interruptions as Upper Basin demand increases and climate change threatens to reduce future streamflows. In light of the recent drought and uncertain effects of climate change on Colorado River flows, we evaluate the performance of a suite of policies modeled after the shortage sharing agreement adopted in December 2007 by the Department of the Interior. We build on the current literature by using a simplified model of the Lower Colorado River to consider future streamflow scenarios given climate change uncertainty. We also generate different scenarios of parametric consumptive use growth in the Upper Basin and evaluate alternate management strategies in light of these uncertainties. Uncertainty associated with climate change is represented with a multi-model ensemble from the literature, using a nearest neighbor perturbation to increase the size of the ensemble. We use Robust Decision Making to compare near-term or long-term management strategies across an ensemble of plausible future scenarios with the goal of identifying one or more approaches that are robust to alternate assumptions about the future. This method entails using search algorithms to quantitatively identify vulnerabilities that may threaten a given strategy (including the current operating policy) and characterize key tradeoffs between strategies under different scenarios.

  20. Robust small area estimation of poverty indicators using M-quantile approach (Case study: Sub-district level in Bogor district)

    Science.gov (United States)

    Girinoto, Sadik, Kusman; Indahwati

    2017-03-01

    The National Socio-Economic Survey samples are designed to produce estimates of parameters of planned domains (provinces and districts). The estimation of unplanned domains (sub-districts and villages) has its limitation to obtain reliable direct estimates. One of the possible solutions to overcome this problem is employing small area estimation techniques. The popular choice of small area estimation is based on linear mixed models. However, such models need strong distributional assumptions and do not easy allow for outlier-robust estimation. As an alternative approach for this purpose, M-quantile regression approach to small area estimation based on modeling specific M-quantile coefficients of conditional distribution of study variable given auxiliary covariates. It obtained outlier-robust estimation from influence function of M-estimator type and also no need strong distributional assumptions. In this paper, the aim of study is to estimate the poverty indicator at sub-district level in Bogor District-West Java using M-quantile models for small area estimation. Using data taken from National Socioeconomic Survey and Villages Potential Statistics, the results provide a detailed description of pattern of incidence and intensity of poverty within Bogor district. We also compare the results with direct estimates. The results showed the framework may be preferable when direct estimate having no incidence of poverty at all in the small area.

  1. Software Estimation: Developing an Accurate, Reliable Method

    Science.gov (United States)

    2011-08-01

    based and size-based estimates is able to accurately plan, launch, and execute on schedule. Bob Sinclair, NAWCWD Chris Rickets , NAWCWD Brad Hodgins...Office by Carnegie Mellon University. SMPSP and SMTSP are service marks of Carnegie Mellon University. 1. Rickets , Chris A, “A TSP Software Maintenance...Life Cycle”, CrossTalk, March, 2005. 2. Koch, Alan S, “TSP Can Be the Building blocks for CMMI”, CrossTalk, March, 2005. 3. Hodgins, Brad, Rickets

  2. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2018-02-01

    Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes

  3. Decomposition and Projection Methods for Distributed Robustness Analysis of Interconnected Uncertain Systems

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2013-01-01

    We consider a class of convex feasibility problems where the constraints that describe the feasible set are loosely coupled. These problems arise in robust stability analysis of large, weakly interconnected uncertain systems. To facilitate distributed implementation of robust stability analysis o...

  4. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    Science.gov (United States)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  5. A fast and robust method for automated analysis of axonal transport.

    Science.gov (United States)

    Welzel, Oliver; Knörr, Jutta; Stroebel, Armin M; Kornhuber, Johannes; Groemer, Teja W

    2011-09-01

    Cargo movement along axons and dendrites is indispensable for the survival and maintenance of neuronal networks. Key parameters of this transport such as particle velocities and pausing times are often studied using kymograph construction, which converts the transport along a line of interest from a time-lapse movie into a position versus time image. Here we present a method for the automatic analysis of such kymographs based on the Hough transform, which is a robust and fast technique to extract lines from images. The applicability of the method was tested on simulated kymograph images and real data from axonal transport of synaptophysin and tetanus toxin as well as the velocity analysis of synaptic vesicle sharing between adjacent synapses in hippocampal neurons. Efficiency analysis revealed that the algorithm is able to detect a wide range of velocities and can be used at low signal-to-noise ratios. The present work enables the quantification of axonal transport parameters with high throughput with no a priori assumptions and minimal human intervention.

  6. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    Science.gov (United States)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  7. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  8. Bin mode estimation methods for Compton camera imaging

    International Nuclear Information System (INIS)

    Ikeda, S.; Odaka, H.; Uemura, M.; Takahashi, T.; Watanabe, S.; Takeda, S.

    2014-01-01

    We study the image reconstruction problem of a Compton camera which consists of semiconductor detectors. The image reconstruction is formulated as a statistical estimation problem. We employ a bin-mode estimation (BME) and extend an existing framework to a Compton camera with multiple scatterers and absorbers. Two estimation algorithms are proposed: an accelerated EM algorithm for the maximum likelihood estimation (MLE) and a modified EM algorithm for the maximum a posteriori (MAP) estimation. Numerical simulations demonstrate the potential of the proposed methods

  9. Empirical methods for estimating future climatic conditions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Applying the empirical approach permits the derivation of estimates of the future climate that are nearly independent of conclusions based on theoretical (model) estimates. This creates an opportunity to compare these results with those derived from the model simulations of the forthcoming changes in climate, thus increasing confidence in areas of agreement and focusing research attention on areas of disagreements. The premise underlying this approach for predicting anthropogenic climate change is based on associating the conditions of the climatic optimums of the Holocene, Eemian, and Pliocene with corresponding stages of the projected increase of mean global surface air temperature. Provided that certain assumptions are fulfilled in matching the value of the increased mean temperature for a certain epoch with the model-projected change in global mean temperature in the future, the empirical approach suggests that relationships leading to the regional variations in air temperature and other meteorological elements could be deduced and interpreted based on use of empirical data describing climatic conditions for past warm epochs. Considerable care must be taken, of course, in making use of these spatial relationships, especially in accounting for possible large-scale differences that might, in some cases, result from different factors contributing to past climate changes than future changes and, in other cases, might result from the possible influences of changes in orography and geography on regional climatic conditions over time

  10. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

    Directory of Open Access Journals (Sweden)

    Huanhuan Li

    2017-08-01

    Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

  11. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

    Science.gov (United States)

    Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

    2017-08-04

    The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

  12. Bioinformatics: Cheap and robust method to explore biomaterial from Indonesia biodiversity

    Science.gov (United States)

    Widodo

    2015-02-01

    Indonesia has a huge amount of biodiversity, which may contain many biomaterials for pharmaceutical application. These resources potency should be explored to discover new drugs for human wealth. However, the bioactive screening using conventional methods is very expensive and time-consuming. Therefore, we developed a methodology for screening the potential of natural resources based on bioinformatics. The method is developed based on the fact that organisms in the same taxon will have similar genes, metabolism and secondary metabolites product. Then we employ bioinformatics to explore the potency of biomaterial from Indonesia biodiversity by comparing species with the well-known taxon containing the active compound through published paper or chemical database. Then we analyze drug-likeness, bioactivity and the target proteins of the active compound based on their molecular structure. The target protein was examined their interaction with other proteins in the cell to determine action mechanism of the active compounds in the cellular level, as well as to predict its side effects and toxicity. By using this method, we succeeded to screen anti-cancer, immunomodulators and anti-inflammation from Indonesia biodiversity. For example, we found anticancer from marine invertebrate by employing the method. The anti-cancer was explore based on the isolated compounds of marine invertebrate from published article and database, and then identified the protein target, followed by molecular pathway analysis. The data suggested that the active compound of the invertebrate able to kill cancer cell. Further, we collect and extract the active compound from the invertebrate, and then examined the activity on cancer cell (MCF7). The MTT result showed that the methanol extract of marine invertebrate was highly potent in killing MCF7 cells. Therefore, we concluded that bioinformatics is cheap and robust way to explore bioactive from Indonesia biodiversity for source of drug and another

  13. Statistically Efficient Methods for Pitch and DOA Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    , it was recently considered to estimate the DOA and pitch jointly. In this paper, we propose two novel methods for DOA and pitch estimation. They both yield maximum-likelihood estimates in white Gaussian noise scenar- ios, where the SNR may be different across channels, as opposed to state-of-the-art methods......Traditionally, direction-of-arrival (DOA) and pitch estimation of multichannel, periodic sources have been considered as two separate problems. Separate estimation may render the task of resolving sources with similar DOA or pitch impossible, and it may decrease the estimation accuracy. Therefore...

  14. Towards a Robust Solution of the Non-Linear Kinematics for the General Stewart Platform with Estimation of Distribution Algorithms

    Directory of Open Access Journals (Sweden)

    Eusebio Eduardo Hernández Martinez

    2013-01-01

    Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non-linear system of equations. In addition, given that the system could be non-convex, Newton or Quasi-Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well-known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non-linear system of equations, and of course, to non-linear optimization problems.

  15. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  16. Estimation of subcriticality of TCA using 'indirect estimation method for calculation error'

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Arakawa, Takuya; Sakurai, Kiyoshi

    1996-01-01

    To estimate the subcriticality of neutron multiplication factor in a fissile system, 'Indirect Estimation Method for Calculation Error' is proposed. This method obtains the calculational error of neutron multiplication factor by correlating measured values with the corresponding calculated ones. This method was applied to the source multiplication and to the pulse neutron experiments conducted at TCA, and the calculation error of MCNP 4A was estimated. In the source multiplication method, the deviation of measured neutron count rate distributions from the calculated ones estimates the accuracy of calculated k eff . In the pulse neutron method, the calculation errors of prompt neutron decay constants give the accuracy of the calculated k eff . (author)

  17. New Vehicle Detection Method with Aspect Ratio Estimation for Hypothesized Windows

    Directory of Open Access Journals (Sweden)

    Jisu Kim

    2015-12-01

    Full Text Available All kinds of vehicles have different ratios of width to height, which are called the aspect ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD. The use of a fixed vehicle aspect ratio for VD degrades the performance. Thus, the estimation of a vehicle aspect ratio is an important part of robust VD. Taking this idea into account, a new on-road vehicle detection system is proposed in this paper. The proposed method estimates the aspect ratio of the hypothesized windows to improve the VD performance. Our proposed method uses an Aggregate Channel Feature (ACF and a support vector machine (SVM to verify the hypothesized windows with the estimated aspect ratio. The contribution of this paper is threefold. First, the estimation of vehicle aspect ratio is inserted between the HG (hypothesis generation and the HV (hypothesis verification. Second, a simple HG method named a signed horizontal edge map is proposed to speed up VD. Third, a new measure is proposed to represent the overlapping ratio between the ground truth and the detection results. This new measure is used to show that the proposed method is better than previous works in terms of robust VD. Finally, the Pittsburgh dataset is used to verify the performance of the proposed method.

  18. Evaluation and comparison of estimation methods for failure rates and probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, Jussi K. [Fortum Power and Heat Oy, P.O. Box 23, 07901 Loviisa (Finland)]. E-mail: jussi.vaurio@fortum.com; Jaenkaelae, Kalle E. [Fortum Nuclear Services, P.O. Box 10, 00048 Fortum (Finland)

    2006-02-01

    An updated parametric robust empirical Bayes (PREB) estimation methodology is presented as an alternative to several two-stage Bayesian methods used to assimilate failure data from multiple units or plants. PREB is based on prior-moment matching and avoids multi-dimensional numerical integrations. The PREB method is presented for failure-truncated and time-truncated data. Erlangian and Poisson likelihoods with gamma prior are used for failure rate estimation, and Binomial data with beta prior are used for failure probability per demand estimation. Combined models and assessment uncertainties are accounted for. One objective is to compare several methods with numerical examples and show that PREB works as well if not better than the alternative more complex methods, especially in demanding problems of small samples, identical data and zero failures. False claims and misconceptions are straightened out, and practical applications in risk studies are presented.

  19. A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes.

    Science.gov (United States)

    Fye, Haddy K S; Mrosso, Paul; Bruce, Lesley; Thézénas, Marie-Laëtitia; Davis, Simon; Fischer, Roman; Rwegasira, Gration L; Makani, Julie; Kessler, Benedikt M

    2018-01-01

    Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.

  20. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  1. A Fully Automated and Robust Method to Incorporate Stamping Data in Crash, NVH and Durability Analysis

    Science.gov (United States)

    Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan

    2011-08-01

    Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.

  2. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  3. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    Science.gov (United States)

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding

  4. System and method for correcting attitude estimation

    Science.gov (United States)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  5. Bayesian methods to estimate urban growth potential

    Science.gov (United States)

    Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.

    2017-01-01

    Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.

  6. Internal Dosimetry Intake Estimation using Bayesian Methods

    International Nuclear Information System (INIS)

    Miller, G.; Inkret, W.C.; Martz, H.F.

    1999-01-01

    New methods for the inverse problem of internal dosimetry are proposed based on evaluating expectations of the Bayesian posterior probability distribution of intake amounts, given bioassay measurements. These expectation integrals are normally of very high dimension and hence impractical to use. However, the expectations can be algebraically transformed into a sum of terms representing different numbers of intakes, with a Poisson distribution of the number of intakes. This sum often rapidly converges, when the average number of intakes for a population is small. A simplified algorithm using data unfolding is described (UF code). (author)

  7. Comparison of methods for estimating carbon in harvested wood products

    International Nuclear Information System (INIS)

    Claudia Dias, Ana; Louro, Margarida; Arroja, Luis; Capela, Isabel

    2009-01-01

    There is a great diversity of methods for estimating carbon storage in harvested wood products (HWP) and, therefore, it is extremely important to agree internationally on the methods to be used in national greenhouse gas inventories. This study compares three methods for estimating carbon accumulation in HWP: the method suggested by Winjum et al. (Winjum method), the tier 2 method proposed by the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG LULUCF) (GPG tier 2 method) and a method consistent with GPG LULUCF tier 3 methods (GPG tier 3 method). Carbon accumulation in HWP was estimated for Portugal under three accounting approaches: stock-change, production and atmospheric-flow. The uncertainty in the estimates was also evaluated using Monte Carlo simulation. The estimates of carbon accumulation in HWP obtained with the Winjum method differed substantially from the estimates obtained with the other methods, because this method tends to overestimate carbon accumulation with the stock-change and the production approaches and tends to underestimate carbon accumulation with the atmospheric-flow approach. The estimates of carbon accumulation provided by the GPG methods were similar, but the GPG tier 3 method reported the lowest uncertainties. For the GPG methods, the atmospheric-flow approach produced the largest estimates of carbon accumulation, followed by the production approach and the stock-change approach, by this order. A sensitivity analysis showed that using the ''best'' available data on production and trade of HWP produces larger estimates of carbon accumulation than using data from the Food and Agriculture Organization. (author)

  8. Modulating functions method for parameters estimation in the fifth order KdV equation

    KAUST Repository

    Asiri, Sharefa M.

    2017-07-25

    In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a system of linear algebraic equations of the unknowns. The statistical properties of the modulating functions solution are described in this paper. In addition, guidelines for choosing the number of modulating functions, which is an important design parameter, are provided. The effectiveness and robustness of the proposed method are shown through numerical simulations in both noise-free and noisy cases.

  9. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  10. Novel method for quantitative estimation of biofilms

    DEFF Research Database (Denmark)

    Syal, Kirtimaan

    2017-01-01

    Biofilm protects bacteria from stress and hostile environment. Crystal violet (CV) assay is the most popular method for biofilm determination adopted by different laboratories so far. However, biofilm layer formed at the liquid-air interphase known as pellicle is extremely sensitive to its washing...... and staining steps. Early phase biofilms are also prone to damage by the latter steps. In bacteria like mycobacteria, biofilm formation occurs largely at the liquid-air interphase which is susceptible to loss. In the proposed protocol, loss of such biofilm layer was prevented. In place of inverting...... and discarding the media which can lead to the loss of the aerobic biofilm layer in CV assay, media was removed from the formed biofilm with the help of a syringe and biofilm layer was allowed to dry. The staining and washing steps were avoided, and an organic solvent-tetrahydrofuran (THF) was deployed...

  11. Novel Method for 5G Systems NLOS Channels Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Vladeta Milenkovic

    2017-01-01

    Full Text Available For the development of new 5G systems to operate in mm bands, there is a need for accurate radio propagation modelling at these bands. In this paper novel approach for NLOS channels parameter estimation will be presented. Estimation will be performed based on LCR performance measure, which will enable us to estimate propagation parameters in real time and to avoid weaknesses of ML and moment method estimation approaches.

  12. VHTRC experiment for verification test of H∞ reactivity estimation method

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo; Akino, Fujiyoshi; Yamane, Tsuyoshi; Fujisaki, Shingo; Takeuchi, Motoyoshi; Ono, Toshihiko

    1996-02-01

    This experiment was performed at VHTRC to acquire the data for verifying the H∞ reactivity estimation method. In this report, the experimental method, the measuring circuits and data processing softwares are described in details. (author)

  13. Carbon footprint: current methods of estimation.

    Science.gov (United States)

    Pandey, Divya; Agrawal, Madhoolika; Pandey, Jai Shanker

    2011-07-01

    Increasing greenhouse gaseous concentration in the atmosphere is perturbing the environment to cause grievous global warming and associated consequences. Following the rule that only measurable is manageable, mensuration of greenhouse gas intensiveness of different products, bodies, and processes is going on worldwide, expressed as their carbon footprints. The methodologies for carbon footprint calculations are still evolving and it is emerging as an important tool for greenhouse gas management. The concept of carbon footprinting has permeated and is being commercialized in all the areas of life and economy, but there is little coherence in definitions and calculations of carbon footprints among the studies. There are disagreements in the selection of gases, and the order of emissions to be covered in footprint calculations. Standards of greenhouse gas accounting are the common resources used in footprint calculations, although there is no mandatory provision of footprint verification. Carbon footprinting is intended to be a tool to guide the relevant emission cuts and verifications, its standardization at international level are therefore necessary. Present review describes the prevailing carbon footprinting methods and raises the related issues.

  14. THE METHODS FOR ESTIMATING REGIONAL PROFESSIONAL MOBILE RADIO MARKET POTENTIAL

    Directory of Open Access Journals (Sweden)

    Y.À. Korobeynikov

    2008-12-01

    Full Text Available The paper represents the author’s methods of estimating regional professional mobile radio market potential, that belongs to high-tech b2b markets. These methods take into consideration such market peculiarities as great range and complexity of products, technological constraints and infrastructure development for the technological systems operation. The paper gives an estimation of professional mobile radio potential in Perm region. This estimation is already used by one of the systems integrator for its strategy development.

  15. Evaluation and reliability of bone histological age estimation methods

    African Journals Online (AJOL)

    Human age estimation at death plays a vital role in forensic anthropology and bioarchaeology. Researchers used morphological and histological methods to estimate human age from their skeletal remains. This paper discussed different histological methods that used human long bones and ribs to determine age ...

  16. METRIC CHARACTERISTICS OF VARIOUS METHODS FOR NUMERICAL DENSITY ESTIMATION IN TRANSMISSION LIGHT MICROSCOPY – A COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    Miroslav Kališnik

    2011-05-01

    Full Text Available In the introduction the evolution of methods for numerical density estimation of particles is presented shortly. Three pairs of methods have been analysed and compared: (1 classical methods for particles counting in thin and thick sections, (2 original and modified differential counting methods and (3 physical and optical disector methods. Metric characteristics such as accuracy, efficiency, robustness, and feasibility of methods have been estimated and compared. Logical, geometrical and mathematical analysis as well as computer simulations have been applied. In computer simulations a model of randomly distributed equal spheres with maximal contrast against surroundings has been used. According to our computer simulation all methods give accurate results provided that the sample is representative and sufficiently large. However, there are differences in their efficiency, robustness and feasibility. Efficiency and robustness increase with increasing slice thickness in all three pairs of methods. Robustness is superior in both differential and both disector methods compared to both classical methods. Feasibility can be judged according to the additional equipment as well as to the histotechnical and counting procedures necessary for performing individual counting methods. However, it is evident that not all practical problems can efficiently be solved with models.

  17. A Fast LMMSE Channel Estimation Method for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Zhou Wen

    2009-01-01

    Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.

  18. A method for scenario-based risk assessment for robust aerospace systems

    Science.gov (United States)

    Thomas, Victoria Katherine

    involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.

  19. Investigation of MLE in nonparametric estimation methods of reliability function

    International Nuclear Information System (INIS)

    Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo

    2001-01-01

    There have been lots of trials to estimate a reliability function. In the ESReDA 20 th seminar, a new method in nonparametric way was proposed. The major point of that paper is how to use censored data efficiently. Generally there are three kinds of approach to estimate a reliability function in nonparametric way, i.e., Reduced Sample Method, Actuarial Method and Product-Limit (PL) Method. The above three methods have some limits. So we suggest an advanced method that reflects censored information more efficiently. In many instances there will be a unique maximum likelihood estimator (MLE) of an unknown parameter, and often it may be obtained by the process of differentiation. It is well known that the three methods generally used to estimate a reliability function in nonparametric way have maximum likelihood estimators that are uniquely exist. So, MLE of the new method is derived in this study. The procedure to calculate a MLE is similar just like that of PL-estimator. The difference of the two is that in the new method, the mass (or weight) of each has an influence of the others but the mass in PL-estimator not

  20. Some robust numerical methods for flow and transport in porous media; Quelques methodes numeriques robustes pour l'ecoulement et le transport en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Sboui, A

    2007-01-15

    The aim of this thesis is to model and develop numerical tools adapted to study underground water flow and the propagation of pollutants in a porous medium. The main motivation of this work is a benchmark from GDR Momas and ANDRA to simulate the 3-D propagation of radionuclides around a deep disposal of nuclear waste. Firstly, we construct a new mixed finite elements method suitable for general hexahedral meshes. Convergence of the method is proved and shown in numerical experiments. Secondly, we present a method of time discretization for the advection equation which allows for the use of different time steps in different sub-domains in order to take into account of strong heterogeneities. Finally a numerical method for the calculation of the transport of contaminants is proposed. The techniques above were implemented in a 3-D code and simulation results are shown on the 3-D far field benchmark from GDR Momas and ANDRA. (author)

  1. Some robust numerical methods for flow and transport in porous media; Quelques methodes numeriques robustes pour l'ecoulement et le transport en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Sboui, A

    2007-01-15

    The aim of this thesis is to model and develop numerical tools adapted to study underground water flow and the propagation of pollutants in a porous medium. The main motivation of this work is a benchmark from GDR Momas and ANDRA to simulate the 3-D propagation of radionuclides around a deep disposal of nuclear waste. Firstly, we construct a new mixed finite elements method suitable for general hexahedral meshes. Convergence of the method is proved and shown in numerical experiments. Secondly, we present a method of time discretization for the advection equation which allows for the use of different time steps in different sub-domains in order to take into account of strong heterogeneities. Finally a numerical method for the calculation of the transport of contaminants is proposed. The techniques above were implemented in a 3-D code and simulation results are shown on the 3-D far field benchmark from GDR Momas and ANDRA. (author)

  2. Alternative global goodness metrics and sensitivity analysis: heuristics to check the robustness of conclusions from studies comparing virtual screening methods.

    Science.gov (United States)

    Sheridan, Robert P

    2008-02-01

    We introduce two ways of testing the robustness of conclusions from studies comparing virtual screening methods: alternative "global goodness" metrics and sensitivity analysis. While the robustness tests cannot eliminate all biases in virtual screening comparisons, they are useful as a "reality check" for any given study. To illustrate this, we apply them to a set of enrichments published in McGaughey et al. (J. Chem. Inf. Model. 2007, 47, 1504-1519) where 11 target protein/ligand combinations are tested on 2D and 3D similarity methods, plus docking. The major conclusions in that paper, for instance, that ligand-based methods are better than docking methods, hold up. However, some minor conclusions, such as Glide being the best docking method, do not.

  3. Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    In this paper, a robust grid-current-feedback reso-nance suppression (GCFRS) method for LCL-type grid-connected inverter is proposed to enhance the system damping without introducing the switching noise and eliminate the impact of control delay on system robustness against grid-impedance variation....... It is composed of GCFRS method, the full duty-ratio and zero-beat-lag PWM method, and the lead-grid-current-feedback-resonance-suppression (LGCFRS) method. Firstly, the GCFRS is used to suppress the LCL-resonant peak well and avoid introducing the switching noise. Secondly, the proposed full duty-ratio and zero......-beat-lag PWM method is used to elimi-nate the one-beat-lag computation delay without introducing duty cycle limitations. Moreover, it can also realize the smooth switching from positive to negative half-wave of the grid current and improve the waveform quality. Thirdly, the proposed LGCFRS is used to further...

  4. A computationally simple and robust method to detect determinism in a time series

    DEFF Research Database (Denmark)

    Lu, Sheng; Ju, Ki Hwan; Kanters, Jørgen K.

    2006-01-01

    We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals. The IS ......We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals...

  5. Automatic Offline Formulation of Robust Model Predictive Control Based on Linear Matrix Inequalities Method

    Directory of Open Access Journals (Sweden)

    Longge Zhang

    2013-01-01

    Full Text Available Two automatic robust model predictive control strategies are presented for uncertain polytopic linear plants with input and output constraints. A sequence of nested geometric proportion asymptotically stable ellipsoids and controllers is constructed offline first. Then the feedback controllers are automatically selected with the receding horizon online in the first strategy. Finally, a modified automatic offline robust MPC approach is constructed to improve the closed system's performance. The new proposed strategies not only reduce the conservatism but also decrease the online computation. Numerical examples are given to illustrate their effectiveness.

  6. Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation

    Science.gov (United States)

    Rebillat, Marc; Schoukens, Maarten

    2018-05-01

    Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.

  7. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...... the invariance property in the time domain is first used to estimate the multi pitch frequencies of multiple harmonic signals. Followed by the estimated pitch frequencies, the DOA estimations based on the ESPRIT method are also presented by using the shift invariance structure in the spatial domain. Compared...... to the existing stateof-the-art algorithms, the proposed method based on ESPRIT without 2-D searching is computationally more efficient but performs similarly. An asymptotic performance analysis of the DOA and pitch estimation of the proposed method are also presented. Finally, the effectiveness of the proposed...

  8. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  9. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  10. Robust Control Charts for Time Series Data

    NARCIS (Netherlands)

    Croux, C.; Gelper, S.; Mahieu, K.

    2010-01-01

    This article presents a control chart for time series data, based on the one-step- ahead forecast errors of the Holt-Winters forecasting method. We use robust techniques to prevent that outliers affect the estimation of the control limits of the chart. Moreover, robustness is important to maintain

  11. Reverse survival method of fertility estimation: An evaluation

    Directory of Open Access Journals (Sweden)

    Thomas Spoorenberg

    2014-07-01

    Full Text Available Background: For the most part, demographers have relied on the ever-growing body of sample surveys collecting full birth history to derive total fertility estimates in less statistically developed countries. Yet alternative methods of fertility estimation can return very consistent total fertility estimates by using only basic demographic information. Objective: This paper evaluates the consistency and sensitivity of the reverse survival method -- a fertility estimation method based on population data by age and sex collected in one census or a single-round survey. Methods: A simulated population was first projected over 15 years using a set of fertility and mortality age and sex patterns. The projected population was then reverse survived using the Excel template FE_reverse_4.xlsx, provided with Timæus and Moultrie (2012. Reverse survival fertility estimates were then compared for consistency to the total fertility rates used to project the population. The sensitivity was assessed by introducing a series of distortions in the projection of the population and comparing the difference implied in the resulting fertility estimates. Results: The reverse survival method produces total fertility estimates that are very consistent and hardly affected by erroneous assumptions on the age distribution of fertility or by the use of incorrect mortality levels, trends, and age patterns. The quality of the age and sex population data that is 'reverse survived' determines the consistency of the estimates. The contribution of the method for the estimation of past and present trends in total fertility is illustrated through its application to the population data of five countries characterized by distinct fertility levels and data quality issues. Conclusions: Notwithstanding its simplicity, the reverse survival method of fertility estimation has seldom been applied. The method can be applied to a large body of existing and easily available population data

  12. Robust optimization methods for chance constrained, simulation-based, and bilevel problems

    NARCIS (Netherlands)

    Yanikoglu, I.

    2014-01-01

    The objective of robust optimization is to find solutions that are immune to the uncertainty of the parameters in a mathematical optimization problem. It requires that the constraints of a given problem should be satisfied for all realizations of the uncertain parameters in a so-called uncertainty

  13. A New Method for the 2D DOA Estimation of Coherently Distributed Sources

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2014-03-01

    Full Text Available The purpose of this paper is to develop a new technique for estimating the two- dimensional (2D direction-of-arrivals (DOAs of coherently distributed (CD sources, which can estimate effectively the central azimuth and central elevation of CD sources at the cost of less computational cost. Using the special L-shape array, a new approach for parametric estimation of CD sources is proposed. The proposed method is based on two rotational invariance relations under small angular approximation, and estimates two rotational matrices which depict the relations, using propagator technique. And then the central DOA estimations are obtained by utilizing the primary diagonal elements of two rotational matrices. Simulation results indicate that the proposed method can exhibit a good performance under small angular spread and be applied to the multisource scenario where different sources may have different angular distribution shapes. Without any peak-finding search and the eigendecomposition of the high-dimensional sample covariance matrix, the proposed method has significantly reduced the computational cost compared with the existing methods, and thus is beneficial to real-time processing and engineering realization. In addition, our approach is also a robust estimator which does not depend on the angular distribution shape of CD sources.

  14. Consumptive use of upland rice as estimated by different methods

    International Nuclear Information System (INIS)

    Chhabda, P.R.; Varade, S.B.

    1985-01-01

    The consumptive use of upland rice (Oryza sativa Linn.) grown during the wet season (kharif) as estimated by modified Penman, radiation, pan-evaporation and Hargreaves methods showed a variation from computed consumptive use estimated by the gravimetric method. The variability increased with an increase in the irrigation interval, and decreased with an increase in the level of N applied. The average variability was less in pan-evaporation method, which could reliably be used for estimating water requirement of upland rice if percolation losses are considered

  15. Unemployment estimation: Spatial point referenced methods and models

    KAUST Repository

    Pereira, Soraia

    2017-06-26

    Portuguese Labor force survey, from 4th quarter of 2014 onwards, started geo-referencing the sampling units, namely the dwellings in which the surveys are carried. This opens new possibilities in analysing and estimating unemployment and its spatial distribution across any region. The labor force survey choose, according to an preestablished sampling criteria, a certain number of dwellings across the nation and survey the number of unemployed in these dwellings. Based on this survey, the National Statistical Institute of Portugal presently uses direct estimation methods to estimate the national unemployment figures. Recently, there has been increased interest in estimating these figures in smaller areas. Direct estimation methods, due to reduced sampling sizes in small areas, tend to produce fairly large sampling variations therefore model based methods, which tend to

  16. A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

    Directory of Open Access Journals (Sweden)

    GEE-YONG PARK

    2014-02-01

    Full Text Available A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM, where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.

  17. Population Estimation with Mark and Recapture Method Program

    International Nuclear Information System (INIS)

    Limohpasmanee, W.; Kaewchoung, W.

    1998-01-01

    Population estimation is the important information which required for the insect control planning especially the controlling with SIT. Moreover, It can be used to evaluate the efficiency of controlling method. Due to the complexity of calculation, the population estimation with mark and recapture methods were not used widely. So that, this program is developed with Qbasic on the purpose to make it accuracy and easier. The program evaluation consists with 6 methods; follow Seber's, Jolly-seber's, Jackson's Ito's, Hamada's and Yamamura's methods. The results are compared with the original methods, found that they are accuracy and more easier to applied

  18. Ore reserve estimation: a summary of principles and methods

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1985-01-01

    The mining industry has experienced substantial improvements with the increasing utilization of computerized and electronic devices throughout the last few years. In the ore reserve estimation field the main methods have undergone recent advances in order to improve their overall efficiency. This paper presents the three main groups of ore reserve estimation methods presently used worldwide: Conventional, Statistical and Geostatistical, and elaborates a detaited description and comparative analysis of each. The Conventional Methods are the oldest, less complex and most employed ones. The Geostatistical Methods are the most recent precise and more complex ones. The Statistical Methods are intermediate to the others in complexity, diffusion and chronological order. (D.J.M.) [pt

  19. Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

    Directory of Open Access Journals (Sweden)

    Xiaozhang Qu

    2016-07-01

    Full Text Available A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction,the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

  20. An anti-disturbing real time pose estimation method and system

    Science.gov (United States)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new