WorldWideScience

Sample records for robust distributed systems

  1. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  2. Distributed Robust Optimization in Networked System.

    Science.gov (United States)

    Wang, Shengnan; Li, Chunguang

    2016-10-11

    In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.

  3. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin; Lamb, David J.; Odat, Enas M.; Taleb-Bendiab, Azzelarabe

    2011-01-01

    that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an 'open-ended' manner where not all states of the system are prescribed

  4. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we util...

  5. Robust control of distributed parameter mechanical systems using a multidimensional systems approach

    Czech Academy of Sciences Publication Activity Database

    Cichy, B.; Augusta, Petr; Rogers, E.; Galkowski, K.; Hurák, Z.

    2010-01-01

    Roč. 58, č. 1 (2010), s. 67-75 ISSN 0239-7269 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : robust control * distributed parameter mechanical systems * multidimensional systems Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2010/TR/augusta-0347866.pdf

  6. Robust receding horizon control for networked and distributed nonlinear systems

    CERN Document Server

    Li, Huiping

    2017-01-01

    This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...

  7. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    Science.gov (United States)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  8. Robust uncertainty evaluation for system identification on distributed wireless platforms

    Science.gov (United States)

    Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent

    2016-04-01

    Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on

  9. Decomposition and Projection Methods for Distributed Robustness Analysis of Interconnected Uncertain Systems

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2013-01-01

    We consider a class of convex feasibility problems where the constraints that describe the feasible set are loosely coupled. These problems arise in robust stability analysis of large, weakly interconnected uncertain systems. To facilitate distributed implementation of robust stability analysis o...

  10. Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2013-01-01

    Full Text Available Considering the load frequency control (LFC of large-scale power system, a robust distributed model predictive control (RDMPC is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.

  11. Plug and Play Robust Distributed Control with Ellipsoidal Parametric Uncertainty System

    Directory of Open Access Journals (Sweden)

    Hong Wang-jian

    2016-01-01

    Full Text Available We consider a continuous linear time invariant system with ellipsoidal parametric uncertainty structured into subsystems. Since the design of a local controller uses only information on a subsystem and its neighbours, we combine the plug and play idea and robust distributed control to propose one distributed control strategy for linear system with ellipsoidal parametric uncertainty. Firstly for linear system with ellipsoidal parametric uncertainty, a necessary and sufficient condition for robust state feedback control is proposed by means of linear matrix inequality. If this necessary and sufficient condition is satisfied, this robust state feedback gain matrix can be easily derived to guarantee robust stability and prescribed closed loop performance. Secondly the plug and play idea is introduced in the design process. Finally by one example of aircraft flutter model parameter identification, the efficiency of the proposed control strategy can be easily realized.

  12. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.

    Science.gov (United States)

    Karra, Udayarka; Huang, Guoxian; Umaz, Ridvan; Tenaglier, Christopher; Wang, Lei; Li, Baikun

    2013-09-01

    A novel and robust distributed benthic microbial fuel cell (DBMFC) was developed to address the energy supply issues for oceanographic sensor network applications, especially under scouring and bioturbation by aquatic life. Multi-anode/cathode configuration was employed in the DBMFC system for enhanced robustness and stability in the harsh ocean environment. The results showed that the DBMFC system achieved peak power and current densities of 190mW/m(2) and 125mA/m(2) respectively. Stability characterization tests indicated the DBMFC with multiple anodes achieved higher power generation over the systems with single anode. A computational model that integrated physical, electrochemical and biological factors of MFCs was developed to validate the overall performance of the DBMFC system. The model simulation well corresponded with the experimental results, and confirmed the hypothesis that using a multi anode/cathode MFC configuration results in reliable and robust power generation. Published by Elsevier Ltd.

  13. Distributed robust adaptive control of high order nonlinear multi agent systems.

    Science.gov (United States)

    Hashemi, Mahnaz; Shahgholian, Ghazanfar

    2018-03-01

    In this paper, a robust adaptive neural network based controller is presented for multi agent high order nonlinear systems with unknown nonlinear functions, unknown control gains and unknown actuator failures. At first, Neural Network (NN) is used to approximate the nonlinear uncertainty terms derived from the controller design procedure for the followers. Then, a novel distributed robust adaptive controller is developed by combining the backstepping method and the Dynamic Surface Control (DSC) approach. The proposed controllers are distributed in the sense that the designed controller for each follower agent only requires relative state information between itself and its neighbors. By using the Young's inequality, only few parameters need to be tuned regardless of NN nodes number. Accordingly, the problems of dimensionality curse and explosion of complexity are counteracted, simultaneously. New adaptive laws are designed by choosing the appropriate Lyapunov-Krasovskii functionals. The proposed approach proves the boundedness of all the closed-loop signals in addition to the convergence of the distributed tracking errors to a small neighborhood of the origin. Simulation results indicate that the proposed controller is effective and robust. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration

    Directory of Open Access Journals (Sweden)

    Jianwen Ren

    2018-04-01

    Full Text Available This paper proposes a distributed robust dispatch approach to solve the economic dispatch problem of the interconnected systems with a high proportion of wind power penetration. First of all, the basic principle of synchronous alternating direction method of multipliers (SADMM is introduced to solve the economic dispatch problem of the two interconnected regions. Next, the polyhedron set of the robust optimization method is utilized to describe the wind power output. To adjust the conservativeness of the polyhedron set, an adjustment factor of robust conservativeness is introduced. Subsequently, considering the operation characteristics of the DC tie line between the interconnected regions, an economic dispatch model with a high proportion of wind power penetration is established and parallel iteration based on SADMM is used to solve the model. In each iteration, the optimized power of DC tie lines is exchanged between the regions without requiring the participation of the superior dispatch center. Finally, the validity of the proposed model is verified by the examples of the 2-area 6-node interconnected system and the interconnection of several modified New England 39-node systems. The results show that the proposed model can meet the needs of the independent dispatch of regional power grids, effectively deal with the uncertainty of wind power output, and maximize the wind power consumption under the condition of ensuring the safe operation of the interconnected systems.

  15. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  16. Affordable non-traditional source data mining for context assessment to improve distributed fusion system robustness

    Science.gov (United States)

    Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael

    2013-05-01

    This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.

  17. Building a robust distributed system: some lessons from R-GMA

    International Nuclear Information System (INIS)

    Bhatti, P; Duncan, A; Fisher, S M; Jiang, M; Kuseju, A O; Paventhan, A; Wilson, A J

    2008-01-01

    R-GMA, as deployed by LCG, is a large distributed system. We are currently addressing some design issues to make it highly reliable, and fault tolerant. In validating the new design, there were two classes of problems to consider: one related to the flow of data and the other to the loss of control messages. R-GMA streams data from one place to another; there is a need to consider the behaviour when data is being inserted more rapidly into the system than taken out and more generally how to deal with bottlenecks. In the original R-GMA design the system tried hard to deliver all control messages; those messages that were not delivered quickly were queued for retry later. Badly configured firewalls, network problems or very slow machines could all lead to long queues of messages; many of the messages on the queue should have been replaced by later ones. In the new design no individual control message is critical; the system just needs to know if each message was received successfully. The system should also avoid single points of failure. However this can require complex code resulting in a system that is actually less reliable. We describe how we have dealt with bottlenecks in the flow of data, loss of control messages and the elimination of single points of failure to produce a robust R-GMA design. The work presented, though in the context of R-GMA, is applicable to any large distributed system

  18. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Xiaofei [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-12-12

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochastic systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.

  19. Robust and distributed hypothesis testing

    CERN Document Server

    Gül, Gökhan

    2017-01-01

    This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the boo...

  20. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  1. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  2. Robust Exponential Synchronization for a Class of Master-Slave Distributed Parameter Systems with Spatially Variable Coefficients and Nonlinear Perturbation

    Directory of Open Access Journals (Sweden)

    Chengdong Yang

    2015-01-01

    Full Text Available This paper addresses the exponential synchronization problem of a class of master-slave distributed parameter systems (DPSs with spatially variable coefficients and spatiotemporally variable nonlinear perturbation, modeled by a couple of semilinear parabolic partial differential equations (PDEs. With a locally Lipschitz constraint, the perturbation is a continuous function of time, space, and system state. Firstly, a sufficient condition for the robust exponential synchronization of the unforced semilinear master-slave PDE systems is investigated for all admissible nonlinear perturbations. Secondly, a robust distributed proportional-spatial derivative (P-sD state feedback controller is desired such that the closed-loop master-slave PDE systems achieve exponential synchronization. Using Lyapunov’s direct method and the technique of integration by parts, the main results of this paper are presented in terms of spatial differential linear matrix inequalities (SDLMIs. Finally, two numerical examples are provided to show the effectiveness of the proposed methods applied to the robust exponential synchronization problem of master-slave PDE systems with nonlinear perturbation.

  3. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    Science.gov (United States)

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  4. Robustness of parameter-less remote real-time pressure control in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-06-01

    Full Text Available One way of reducing water leakage, pipe bursts and water consumption in a water distribution system (WDS) is to manage the pressure to be as low as possible. This can be done by adjusting a pressure control valve (PCV) in real-time in order to keep...

  5. Robust distributed cognitive relay beamforming

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2012-05-01

    In this paper, we present a distributed relay beamformer design for a cognitive radio network in which a cognitive (or secondary) transmit node communicates with a secondary receive node assisted by a set of cognitive non-regenerative relays. The secondary nodes share the spectrum with a licensed primary user (PU) node, and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. The proposed robust cognitive relay beamformer design seeks to minimize the total relay transmit power while ensuring that the transceiver signal-to-interference- plus-noise ratio and PU interference constraints are satisfied. The proposed design takes into account a parameter of the error in the channel state information (CSI) to render the performance of the beamformer robust in the presence of imperfect CSI. Though the original problem is non-convex, we show that the proposed design can be reformulated as a tractable convex optimization problem that can be solved efficiently. Numerical results are provided and illustrate the performance of the proposed designs for different network operating conditions and parameters. © 2012 IEEE.

  6. Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach

    International Nuclear Information System (INIS)

    Chen, J.-D.

    2007-01-01

    In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method

  7. Robust distributed cognitive relay beamforming

    KAUST Repository

    Pandarakkottilil, Ubaidulla; Aissa, Sonia

    2012-01-01

    design takes into account a parameter of the error in the channel state information (CSI) to render the performance of the beamformer robust in the presence of imperfect CSI. Though the original problem is non-convex, we show that the proposed design can

  8. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  9. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  10. Robust automatic control system of vessel descent-rise device for plant with distributed parameters “cable – towed underwater vehicle”

    Science.gov (United States)

    Chupina, K. V.; Kataev, E. V.; Khannanov, A. M.; Korshunov, V. N.; Sennikov, I. A.

    2018-05-01

    The paper is devoted to a problem of synthesis of the robust control system for a distributed parameters plant. The vessel descent-rise device has a heave compensation function for stabilization of the towed underwater vehicle on a set depth. A sea state code, parameters of the underwater vehicle and cable vary during underwater operations, the vessel heave is a stochastic process. It means that the plant and external disturbances have uncertainty. That is why it is necessary to use the robust theory for synthesis of an automatic control system, but without use of traditional methods of optimization, because this cable has distributed parameters. The offered technique has allowed one to design an effective control system for stabilization of immersion depth of the towed underwater vehicle for various degrees of sea roughness and to provide its robustness to deviations of parameters of the vehicle and cable’s length.

  11. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  12. Robust bayesian inference of generalized Pareto distribution ...

    African Journals Online (AJOL)

    En utilisant une etude exhaustive de Monte Carlo, nous prouvons que, moyennant une fonction perte generalisee adequate, on peut construire un estimateur Bayesien robuste du modele. Key words: Bayesian estimation; Extreme value; Generalized Fisher information; Gener- alized Pareto distribution; Monte Carlo; ...

  13. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  14. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  15. Salmon: Robust Proxy Distribution for Censorship Circumvention

    Directory of Open Access Journals (Sweden)

    Douglas Frederick

    2016-10-01

    Full Text Available Many governments block their citizens’ access to much of the Internet. Simple workarounds are unreliable; censors quickly discover and patch them. Previously proposed robust approaches either have non-trivial obstacles to deployment, or rely on low-performance covert channels that cannot support typical Internet usage such as streaming video. We present Salmon, an incrementally deployable system designed to resist a censor with the resources of the “Great Firewall” of China. Salmon relies on a network of volunteers in uncensored countries to run proxy servers. Although any member of the public can become a user, Salmon protects the bulk of its servers from being discovered and blocked by the censor via an algorithm for quickly identifying malicious users. The algorithm entails identifying some users as especially trustworthy or suspicious, based on their actions. We impede Sybil attacks by requiring either an unobtrusive check of a social network account, or a referral from a trustworthy user.

  16. Improved Delay-Dependent Robust Stability Criteria for a Class of Uncertain Neutral Type Lur’e Systems with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Kaibo Shi

    2014-01-01

    Full Text Available This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.

  17. Robust lyapunov controller for uncertain systems

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Elmetennani, Shahrazed

    2017-01-01

    Various examples of systems and methods are provided for Lyapunov control for uncertain systems. In one example, a system includes a process plant and a robust Lyapunov controller configured to control an input of the process plant. The robust

  18. Distributionally robust hydro-thermal-wind economic dispatch

    International Nuclear Information System (INIS)

    Chen, Yue; Wei, Wei; Liu, Feng; Mei, Shengwei

    2016-01-01

    Highlights: • A two-stage distributionally robust hydro-thermal-wind model is proposed. • A semi-definite programing equivalent and its algorithm are developed. • Cases that demonstrate the effectiveness of the proposed model are included. - Abstract: With the penetration of wind energy increasing, uncertainty has become a major challenge in power system dispatch. Hydro power can change rapidly and is regarded as one promising complementary energy resource to mitigate wind power fluctuation. Joint scheduling of hydro, thermal, and wind energy is attracting more and more attention nowadays. This paper proposes a distributionally robust hydro-thermal-wind economic dispatch (DR-HTW-ED) method to enhance the flexibility and reliability of power system operation. In contrast to the traditional stochastic optimization (SO) and adjustable robust optimization (ARO) method, distributionally robust optimization (DRO) method describes the uncertain wind power output by all possible probability distribution functions (PDFs) with the same mean and variance recovered from the forecast data, and optimizes the expected operation cost in the worst distribution. Traditional DRO optimized the random parameter in entire space, which is sometimes contradict to the actual situation. In this paper, we restrict the wind power uncertainty in a bounded set, and derive an equivalent semi-definite programming (SDP) for the DR-HTW-ED using S-lemma. A delayed constraint generation algorithm is suggested to solve it in a tractable manner. The proposed DR-HTW-ED is compared with the existing ARO based hydro-thermal-wind economic dispatch (AR-HTW-ED). Their respective features are shown from the perspective of computational efficiency and conservativeness of dispatch strategies.

  19. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  20. A Robust Alternative to the Normal Distribution.

    Science.gov (United States)

    1982-07-07

    for any Purpose of the United States Governuent DEPARTMENT OF STATISTICS t -, STANFORD UIVERSITY I STANFORD, CALIFORNIA A Robust Alternative to the...Stanford University Technical Report No. 3. [5] Bhattacharya, S. K. (1966). A Modified Bessel Function lodel in Life Testing. Metrika 10, 133-144

  1. A robust fusion method for multiview distributed video coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Ascenso, Joao; Brites, Catarina

    2014-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the redundancy of the source (video) at the decoder side, as opposed to predictive coding, where the encoder leverages the redundancy. To exploit the correlation between views, multiview predictive video codecs require the encoder...... with a robust fusion system able to improve the quality of the fused SI along the decoding process through a learning process using already decoded data. We shall here take the approach to fuse the estimated distributions of the SIs as opposed to a conventional fusion algorithm based on the fusion of pixel...... values. The proposed solution is able to achieve gains up to 0.9 dB in Bjøntegaard difference when compared with the best-performing (in a RD sense) single SI DVC decoder, chosen as the best of an inter-view and a temporal SI-based decoder one....

  2. Robustness of a Distributed Knowledge Management Model

    DEFF Research Database (Denmark)

    Pedersen, Mogens Kühn; Larsen, Michael Holm

    1999-01-01

    Knowledge management based on symmetric incentives is rarely found in literature. A knowledge exchange model relies upon a double loop knowledge conversion with symmetric incentives in a network. The model merges specific knowledge with knowledge from other actors into a decision support system...

  3. Distributed systems

    CERN Document Server

    Van Steen, Maarten

    2017-01-01

    For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.

  4. How Robust is Your System Resilience?

    Science.gov (United States)

    Homayounfar, M.; Muneepeerakul, R.

    2017-12-01

    Robustness and resilience are concepts in system thinking that have grown in importance and popularity. For many complex social-ecological systems, however, robustness and resilience are difficult to quantify and the connections and trade-offs between them difficult to study. Most studies have either focused on qualitative approaches to discuss their connections or considered only one of them under particular classes of disturbances. In this study, we present an analytical framework to address the linkage between robustness and resilience more systematically. Our analysis is based on a stylized dynamical model that operationalizes a widely used concept framework for social-ecological systems. The model enables us to rigorously define robustness and resilience and consequently investigate their connections. The results reveal the tradeoffs among performance, robustness, and resilience. They also show how the nature of the such tradeoffs varies with the choices of certain policies (e.g., taxation and investment in public infrastructure), internal stresses and external disturbances.

  5. Heavy-tailed distributions and robustness in economics and finance

    CERN Document Server

    Ibragimov, Marat; Walden, Johan

    2015-01-01

    This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailedness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications.

  6. Robust Medical Isotope Production System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    The success of this theoretical undertaking provided confidence that the behavior of new and evolving designs of fissile solution systems may be accurately estimated. Scaled up versions of SUPO, subcritical acceleratordriven systems, and other evolutionary designs have been examined.

  7. The structural robustness of multiprocessor computing system

    Directory of Open Access Journals (Sweden)

    N. Andronaty

    1996-03-01

    Full Text Available The model of the multiprocessor computing system on the base of transputers which permits to resolve the question of valuation of a structural robustness (viability, survivability is described.

  8. Real-time control systems: feedback, scheduling and robustness

    Science.gov (United States)

    Simon, Daniel; Seuret, Alexandre; Sename, Olivier

    2017-08-01

    The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.

  9. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  10. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Luois-Marie

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...... of introducing small perturbations into formal models. We address this problem of robust implementations in timed specification theories. We first consider a fixed perturbation and study the robustness of timed specifications with respect to the operators of the theory. To this end we synthesize robust...... specification to an implementation, we need to reason about the possibility to effectively implement the theoretical specifications on physical systems, despite their limited precision. In the literature, this implementation problem has been linked to the robustness problem that analyzes the consequences...

  11. Robust lyapunov controller for uncertain systems

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-02-23

    Various examples of systems and methods are provided for Lyapunov control for uncertain systems. In one example, a system includes a process plant and a robust Lyapunov controller configured to control an input of the process plant. The robust Lyapunov controller includes an inner closed loop Lyapunov controller and an outer closed loop error stabilizer. In another example, a method includes monitoring a system output of a process plant; generating an estimated system control input based upon a defined output reference; generating a system control input using the estimated system control input and a compensation term; and adjusting the process plant based upon the system control input to force the system output to track the defined output reference. An inner closed loop Lyapunov controller can generate the estimated system control input and an outer closed loop error stabilizer can generate the system control input.

  12. UNIX-based operating systems robustness evaluation

    Science.gov (United States)

    Chang, Yu-Ming

    1996-01-01

    Robust operating systems are required for reliable computing. Techniques for robustness evaluation of operating systems not only enhance the understanding of the reliability of computer systems, but also provide valuable feed- back to system designers. This thesis presents results from robustness evaluation experiments on five UNIX-based operating systems, which include Digital Equipment's OSF/l, Hewlett Packard's HP-UX, Sun Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments were performed. The methodology for evaluation tested (1) the exception handling mechanism, (2) system resource management, and (3) system capacity under high workload stress. An exception generator was used to evaluate the exception handling mechanism of the operating systems. Results included exit status of the exception generator and the system state. Resource management techniques used by individual operating systems were tested using programs designed to usurp system resources such as physical memory and process slots. Finally, the workload stress testing evaluated the effect of the workload on system performance by running a synthetic workload and recording the response time of local and remote user requests. Moderate to severe performance degradations were observed on the systems under stress.

  13. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  14. Distributionally Robust Return-Risk Optimization Models and Their Applications

    Directory of Open Access Journals (Sweden)

    Li Yang

    2014-01-01

    Full Text Available Based on the risk control of conditional value-at-risk, distributionally robust return-risk optimization models with box constraints of random vector are proposed. They describe uncertainty in both the distribution form and moments (mean and covariance matrix of random vector. It is difficult to solve them directly. Using the conic duality theory and the minimax theorem, the models are reformulated as semidefinite programming problems, which can be solved by interior point algorithms in polynomial time. An important theoretical basis is therefore provided for applications of the models. Moreover, an application of the models to a practical example of portfolio selection is considered, and the example is evaluated using a historical data set of four stocks. Numerical results show that proposed methods are robust and the investment strategy is safe.

  15. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Maidi Madjid

    2010-01-01

    Full Text Available Abstract In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  16. Robustness of dynamic systems with parameter uncertainties

    CERN Document Server

    Balemi, S; Truöl, W

    1992-01-01

    Robust Control is one of the fastest growing and promising areas of research today. In many practical systems there exist uncertainties which have to be considered in the analysis and design of control systems. In the last decade methods were developed for dealing with dynamic systems with unstructured uncertainties such as HOO_ and £I-optimal control. For systems with parameter uncertainties, the seminal paper of V. L. Kharitonov has triggered a large amount of very promising research. An international workshop dealing with all aspects of robust control was successfully organized by S. P. Bhattacharyya and L. H. Keel in San Antonio, Texas, USA in March 1991. We organized the second international workshop in this area in Ascona, Switzer­ land in April 1992. However, this second workshop was restricted to robust control of dynamic systems with parameter uncertainties with the objective to concentrate on some aspects of robust control. This book contains a collection of papers presented at the International W...

  17. Optimal interdependence enhances robustness of complex systems

    OpenAIRE

    Singh, R. K.; Sinha, Sitabhra

    2017-01-01

    While interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more robust. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the g...

  18. Measuring Robustness of Timetables at Stations using a Probability Distribution

    DEFF Research Database (Denmark)

    Jensen, Lars Wittrup; Landex, Alex

    Stations are often the limiting capacity factor in a railway network. This induces interdependencies, especially at at-grade junctions, causing network effects. This paper presents three traditional methods that can be used to measure the complexity of a station, indicating the robustness...... of the station’s infrastructure layout and plan of operation. However, these three methods do not take the timetable at the station into consideration. Therefore, two methods are introduced in this paper, making it possible to estimate the robustness of different timetables at a station or different...... infrastructure layouts given a timetable. These two methods provide different precision at the expense of a more complex calculation process. The advanced and more precise method is based on a probability distribution that can describe the expected delay between two trains as a function of the buffer time...

  19. Robustness of spin-coupling distributions for perfect quantum state transfer

    International Nuclear Information System (INIS)

    Zwick, Analia; Alvarez, Gonzalo A.; Stolze, Joachim; Osenda, Omar

    2011-01-01

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

  20. A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior

    Directory of Open Access Journals (Sweden)

    Carrillo RafaelE

    2010-01-01

    Full Text Available Statistical modeling is at the heart of many engineering problems. The importance of statistical modeling emanates not only from the desire to accurately characterize stochastic events, but also from the fact that distributions are the central models utilized to derive sample processing theories and methods. The generalized Cauchy distribution (GCD family has a closed-form pdf expression across the whole family as well as algebraic tails, which makes it suitable for modeling many real-life impulsive processes. This paper develops a GCD theory-based approach that allows challenging problems to be formulated in a robust fashion. Notably, the proposed framework subsumes generalized Gaussian distribution (GGD family-based developments, thereby guaranteeing performance improvements over traditional GCD-based problem formulation techniques. This robust framework can be adapted to a variety of applications in signal processing. As examples, we formulate four practical applications under this framework: (1 filtering for power line communications, (2 estimation in sensor networks with noisy channels, (3 reconstruction methods for compressed sensing, and (4 fuzzy clustering.

  1. Robust Fully Distributed Minibatch Gradient Descent with Privacy Preservation

    Directory of Open Access Journals (Sweden)

    Gábor Danner

    2018-01-01

    Full Text Available Privacy and security are among the highest priorities in data mining approaches over data collected from mobile devices. Fully distributed machine learning is a promising direction in this context. However, it is a hard problem to design protocols that are efficient yet provide sufficient levels of privacy and security. In fully distributed environments, secure multiparty computation (MPC is often applied to solve these problems. However, in our dynamic and unreliable application domain, known MPC algorithms are not scalable or not robust enough. We propose a light-weight protocol to quickly and securely compute the sum query over a subset of participants assuming a semihonest adversary. During the computation the participants learn no individual values. We apply this protocol to efficiently calculate the sum of gradients as part of a fully distributed minibatch stochastic gradient descent algorithm. The protocol achieves scalability and robustness by exploiting the fact that in this application domain a “quick and dirty” sum computation is acceptable. We utilize the Paillier homomorphic cryptosystem as part of our solution combined with extreme lossy gradient compression to make the cost of the cryptographic algorithms affordable. We demonstrate both theoretically and experimentally, based on churn statistics from a real smartphone trace, that the protocol is indeed practically viable.

  2. Robustness bounds and practical limitations of quantum key distribution

    International Nuclear Information System (INIS)

    Khalique, Aeysha

    2008-01-01

    Quantum information theory is a modern branch of theoretical physics. One of its main goals is to interpret concepts of quantum physics. This leads to a deeper understanding of quantum theory. The most common examples of practical applications of basic quantum theory are quantum computation and quantum cryptography. Quantum cryptography provides secure communication between legitimate users even in the presence of an adversary by making possible the distribution of a secret key. It then allows error correction and privacy amplification, which is elimination of adversary information, through classical communication. In this thesis two important aspects of quantum key distribution are covered, namely robustness bounds with respect to provable entanglement for ideal protocols and practical quantum key distribution using two-way classical communication. In part one of the thesis, ideal quantum key distribution protocols and their robustness in terms of provable entanglement are discussed. The robustness bounds are proved for most general coherent attacks. These bounds for provable entanglement are already known to be 25% for the four-state protocol and 33% for the six-state protocol. We anticipate to provide a region in which the legitimate users share entanglement. This region is large for the four-state protocol and is reduced to a smaller region for the six-state protocol because of additional constraint on it. We also investigate the information cost which the adversary has to pay in order to reach these bounds. In part two we adopt a more practical approach. We investigate the limitation on distance of secure communication because of practical restrictions. In particular we investigate the restrictions due to the lack of single photon sources, the lossy channel and faulty detectors. These practical limitations have already been observed using one-way classical communication between legitimate users. It has been observed that it is actually the dark count rate that

  3. Robustness of the Drinking Water Distribution Network under Changing Future Demand

    NARCIS (Netherlands)

    Agudelo-Vera, C.; Blokker, M.; Vreeburg, J.; Bongard, T.; Hillegers, S.; Van der Hoek, J.P.

    2014-01-01

    A methodology to determine the robustness of the drinking water distribution system is proposed. The performance of three networks under ten future demand scenarios was tested, using head loss and residence time as indicators. The scenarios consider technological and demographic changes. Daily

  4. Optimizing the robustness of electrical power systems against cascading failures.

    Science.gov (United States)

    Zhang, Yingrui; Yağan, Osman

    2016-06-21

    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.

  5. Robustness evaluation of transactional audio watermarking systems

    Science.gov (United States)

    Neubauer, Christian; Steinebach, Martin; Siebenhaar, Frank; Pickel, Joerg

    2003-06-01

    Distribution via Internet is of increasing importance. Easy access, transmission and consumption of digitally represented music is very attractive to the consumer but led also directly to an increasing problem of illegal copying. To cope with this problem watermarking is a promising concept since it provides a useful mechanism to track illicit copies by persistently attaching property rights information to the material. Especially for online music distribution the use of so-called transaction watermarking, also denoted with the term bitstream watermarking, is beneficial since it offers the opportunity to embed watermarks directly into perceptually encoded material without the need of full decompression/compression. Besides the concept of bitstream watermarking, former publications presented the complexity, the audio quality and the detection performance. These results are now extended by an assessment of the robustness of such schemes. The detection performance before and after applying selected attacks is presented for MPEG-1/2 Layer 3 (MP3) and MPEG-2/4 AAC bitstream watermarking, contrasted to the performance of PCM spread spectrum watermarking.

  6. Production monitoring system for understanding product robustness

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    study is used to demonstrate how the monitoring system can be used to efficiently guide corrective action to improve product performance. It is claimed that the monitoring system can be used to dramatically cut the time taken to identify, planand execute corrective action related to typical quality......In the current quality paradigm, the performance of a product is kept within specification by ensuring that its parts are within specification. Product performance is then validated after final assembly. However, this does not control how robust the product performance is, i.e. how much...... it will vary between the specification limits. In this paper, a model for predicting product performance is proposed, taking into account design, assembly and process parameters live from production. This empowers production to maintain final product performance, instead of part quality. The PRECI‐IN case...

  7. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  8. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  9. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  10. Robust record preservation system on geological repository

    International Nuclear Information System (INIS)

    Ohuchi, J.; Torata, S.; Tsuboya, T.

    2004-01-01

    Long-term record preservation system on geological disposal of High Level Radioactive Wastes (HLW) has been investigated as the institutional control by RWMC, Japan. Geological disposal of HLW, being based on the passive safe concept, has been considered not to necessitate the human controls to maintain its long-term safety. However how to complement the safety case on geological disposal is an important issue in each countries to progress the repository program with the step-wise decisions process during the long-term period up to several hundreds years. Although we cannot predict the future society, we need to realize the robust and redundant system for preserving records, which should be accessible, retrievable and understandable for the unpredicted future generations. First of all, we held a Rome workshop in January 2003 to exchange views on the matter, resulted in the suggestion directing the discussion on the record management and long-term preservation and retrieval of information regarding radioactive waste. Second, we considered the balance of active and passive system to strengthen the robustness. Another significance of long-term record preservation is to send current generation an implicit message, 'doing our best for future generations', in addition to aiming at both warning and their own decision-making. We call it 'meta-signal' to current generation. Thirdly, we demonstrated the laser-engraving technology to have converted five hundreds pages of an A4 sized report with human readable font sizes to 42 square silicon carbide plates, 10cm x10cm and 1mm in thickness. Silicon carbide would be an alternative to paper and might be possible to be an alternative to microfilm utilized as digital recording media. Another case study is the future generations' accessibility to the preserved records. (author)

  11. Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty

    Directory of Open Access Journals (Sweden)

    Ke-wei Ding

    2014-01-01

    Full Text Available We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.

  12. Robust Performance of Systems with Structured Uncertainties in State Space

    OpenAIRE

    Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...

  13. Data-adaptive Robust Optimization Method for the Economic Dispatch of Active Distribution Networks

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Fang, Jiakun

    2018-01-01

    Due to the restricted mathematical description of the uncertainty set, the current two-stage robust optimization is usually over-conservative which has drawn concerns from the power system operators. This paper proposes a novel data-adaptive robust optimization method for the economic dispatch...... of active distribution network with renewables. The scenario-generation method and the two-stage robust optimization are combined in the proposed method. To reduce the conservativeness, a few extreme scenarios selected from the historical data are used to replace the conventional uncertainty set....... The proposed extreme-scenario selection algorithm takes advantage of considering the correlations and can be adaptive to different historical data sets. A theoretical proof is given that the constraints will be satisfied under all the possible scenarios if they hold in the selected extreme scenarios, which...

  14. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  15. Robust Analysis and Design of Multivariable Systems

    National Research Council Canada - National Science Library

    Tannenbaum, Allen

    1998-01-01

    In this Final Report, we will describe the work we have performed in robust control theory and nonlinear control, and the utilization of techniques in image processing and computer vision for problems in visual tracking...

  16. Robust Performance of Systems with Structured Uncertainties in State Space

    DEFF Research Database (Denmark)

    Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...

  17. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  18. Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-11-09

    This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.

  19. A robust control strategy for a class of distributed network with transmission delays

    DEFF Research Database (Denmark)

    Vahid Naghavi, S.; A. Safavi, A.; Khooban, Mohammad Hassan

    2016-01-01

    Purpose The purpose of this paper is to concern the design of a robust model predictive controller for distributed networked systems with transmission delays. Design/methodology/approach The overall system is composed of a number of interconnected nonlinear subsystems with time-varying transmission...... as an optimization problem of a “worst-case” objective function over an infinite moving horizon. Findings The aim is to propose control synthesis approach that depends on nonlinearity and time varying delay characteristics. The MPC problem is represented in a time varying delayed state feedback structure....... Then the synthesis sufficient condition is provided in the form of a linear matrix inequality (LMI) optimization and is solved online at each time instant. In the rest, an LMI-based decentralized observer-based robust model predictive control strategy is proposed. Originality/value The authors develop RMPC...

  20. Robust Satisfiability of Systems of Equations

    Czech Academy of Sciences Publication Activity Database

    Franek, Peter; Krčál, M.

    2015-01-01

    Roč. 62, č. 4 (2015), Article 26 ISSN 0004-5411 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LL1201 Institutional support: RVO:67985807 Keywords : nonlinear equations * satisfability * undecibility * topological extensions * uncertainty * robustness Subject RIV: IN - Informatics, Computer Science Impact factor: 1.803, year: 2015

  1. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction

    NARCIS (Netherlands)

    Kefi, S.; Rietkerk, M.; Roy, M.; Franc, A.; Ruiter, de P.C.; Pascual, M.

    2011-01-01

    Robust critical systems are characterized by power laws which occur over a broad range of conditions. Their robust behaviour has been explained by local interactions. While such systems could be widespread in nature, their properties are not well understood. Here, we study three robust critical

  2. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  3. Short-Term Robustness of Production Management Systems : New Methodology

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; Gaury, E.G.A.

    2000-01-01

    This paper investigates the short-term robustness of production planning and control systems. This robustness is defined here as the systems ability to maintain short-term service probabilities (i.e., the probability that the fill rate remains within a prespecified range), in a variety of

  4. Robust performance results for discrete-time systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    1997-01-01

    Full Text Available The problems of robust performance and feedback control synthesis for a class of linear discrete-time systems with time-varying parametric uncertainties are addressed in this paper. The uncertainties are bound and have a linear matrix fractional form. Based on the concept of strongly robust H ∞ -performance criterion, results of robust stability and performance are developed and expressed in easily computable linear matrix inequalities. Synthesis of robust feedback controllers is carried out for several system models of interest.

  5. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  6. Making Peer-Assisted Content Distribution Robust to Collusion Using Bandwidth Puzzles

    Science.gov (United States)

    Reiter, Michael K.; Sekar, Vyas; Spensky, Chad; Zhang, Zhenghao

    Many peer-assisted content-distribution systems reward a peer based on the amount of data that this peer serves to others. However, validating that a peer did so is, to our knowledge, an open problem; e.g., a group of colluding attackers can earn rewards by claiming to have served content to one another, when they have not. We propose a puzzle mechanism to make contribution-aware peer-assisted content distribution robust to such collusion. Our construction ties solving the puzzle to possession of specific content and, by issuing puzzle challenges simultaneously to all parties claiming to have that content, our mechanism prevents one content-holder from solving many others' puzzles. We prove (in the random oracle model) the security of our scheme, describe our integration of bandwidth puzzles into a media streaming system, and demonstrate the resulting attack resilience via simulations.

  7. Robust filtering for uncertain systems a parameter-dependent approach

    CERN Document Server

    Gao, Huijun

    2014-01-01

    This monograph provides the reader with a systematic treatment of robust filter design, a key issue in systems, control and signal processing, because of the fact that the inevitable presence of uncertainty in system and signal models often degrades the filtering performance and may even cause instability. The methods described are therefore not subject to the rigorous assumptions of traditional Kalman filtering. The monograph is concerned with robust filtering for various dynamical systems with parametric uncertainties, and focuses on parameter-dependent approaches to filter design. Classical filtering schemes, like H2 filtering and H¥ filtering, are addressed, and emerging issues such as robust filtering with constraints on communication channels and signal frequency characteristics are discussed. The text features: ·        design approaches to robust filters arranged according to varying complexity level, and emphasizing robust filtering in the parameter-dependent framework for the first time; ·...

  8. Robust H2 performance for sampled-data systems

    DEFF Research Database (Denmark)

    Rank, Mike Lind

    1997-01-01

    Robust H2 performance conditions under structured uncertainty, analogous to well known methods for H∞ performance, have recently emerged in both discrete and continuous-time. This paper considers the extension into uncertain sampled-data systems, taking into account inter-sample behavior. Convex...... conditions for robust H2 performance are derived for different uncertainty sets...

  9. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    Directory of Open Access Journals (Sweden)

    Saket Navlakha

    2015-07-01

    Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  10. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  11. A robust anti-windup design procedure for SISO systems

    Science.gov (United States)

    Kerr, Murray; Turner, Matthew C.; Villota, Elizabeth; Jayasuriya, Suhada; Postlethwaite, Ian

    2011-02-01

    A model-based anti-windup (AW) controller design approach for constrained uncertain linear single-input-single-output (SISO) systems is proposed based on quantitative feedback theory (QFT) loopshaping. The design approach explicitly incorporates uncertainty, is suitable for the solution of both the magnitude and rate saturation problems, and provides for the design of low-order AW controllers satisfying robust stability and robust performance objectives. Robust stability is enforced using absolute stability theory and generic multipliers (i.e. circle, Popov, Zames-Falb), and robust performance is enforced using linear lower-bounds on the input-output maps capturing the effects of saturation as a metric. Two detailed design examples are presented. These show that even for simple systems, certain popular AW techniques lead to compensators that may fail to ensure robust stability and performance when saturation is encountered, but that the proposed QFT design approach is able to handle both saturation and uncertainty effectively.

  12. Efficient, Robust and Constant-Round Distributed RSA Key Generation

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Mikkelsen, Gert Læssøe

    2010-01-01

    We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number.......We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number....

  13. Linear systems optimal and robust control

    CERN Document Server

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  14. Manipulation Robustness of Collaborative Filtering Systems

    OpenAIRE

    Benjamin Van Roy; Xiang Yan

    2009-01-01

    A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions, and hence have become targets of manipulation by unscrupulous vendors. We provide theoretical and empirical results demonstrating that while common nearest neighbor algorithms, which are widely used in commercial systems, can be highly susceptible to manipulation, two classes of collaborative filtering algorithms which we refer to as linear and a...

  15. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  16. Smart Distribution Systems

    Directory of Open Access Journals (Sweden)

    Yazhou Jiang

    2016-04-01

    Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.

  17. Robust adaptive optics systems for vision science

    Science.gov (United States)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  18. Robust control of time-delay chaotic systems

    International Nuclear Information System (INIS)

    Hua Changchun; Guan Xinping

    2003-01-01

    Robust control problem of nonlinear time-delay chaotic systems is investigated. For such uncertain systems, we propose adaptive feedback controller and novel nonlinear feedback controller. They are both independent of the time delay and can render the corresponding closed-loop systems globally uniformly ultimately bounded stable. The simulations on controlling logistic system are made and the results show the controllers are feasible

  19. Electric distribution systems

    CERN Document Server

    Sallam, A A

    2010-01-01

    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  20. Influence of different initial distributions on robust cooperation in scale-free networks: A comparative study

    International Nuclear Information System (INIS)

    Chen Xiaojie; Fu Feng; Wang Long

    2008-01-01

    We study the evolutionary Prisoner's dilemma game on scale-free networks, focusing on the influence of different initial distributions for cooperators and defectors on the evolution of cooperation. To address this issue, we consider three types of initial distributions for defectors: uniform distribution at random, occupying the most connected nodes, and occupying the lowest-degree nodes, respectively. It is shown that initial configurations for defectors can crucially influence the cooperation level and the evolution speed of cooperation. Interestingly, the situation where defectors initially occupy the lowest-degree vertices can exhibit the most robust cooperation, compared with two other distributions. That is, the cooperation level is least affected by the initial percentage of defectors. Moreover, in this situation, the whole system evolves fastest to the prevalent cooperation. Besides, we obtain the critical values of initial frequency of defectors above which the extinction of cooperators occurs for the respective initial distributions. Our results might be helpful in explaining the maintenance of high cooperation in scale-free networks

  1. Robustness Area Technique Developing Guidelines for Power System Restoration

    Directory of Open Access Journals (Sweden)

    Paulo Murinelli Pesoti

    2017-01-01

    Full Text Available This paper proposes a novel energy based technique called the Robustness Area (RA technique that measures power system robustness levels, as a helper for planning Power System Restorations (PSRs. The motivation is on account of the latest blackouts in Brazil, where the local Independent System Operator (ISO encountered difficulties related to circuit disconnections during the restoration. The technique identifies vulnerable and robust buses, pointing out system areas that should be firstly reinforced during PSR, in order to enhance system stability. A Brazilian power system restoration area is used to compare the guidelines adopted by the ISO with a more suitable new plan indicated by the RA tool. Active power and reactive power load margin and standing phase angle show the method efficiency as a result of a well balanced system configuration, enhancing the restoration performance. Time domain simulations for loop closures and severe events also show the positive impact that the proposed tool brings to PSRs.

  2. Distributed Operating Systems

    NARCIS (Netherlands)

    Mullender, Sape J.

    1987-01-01

    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups. In this paper, an overview of recent research in distributed systems is given. In turn, the

  3. Pervasive Electricity Distribution System

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Tahir

    2017-06-01

    Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.

  4. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  5. Active Distribution Grid Management based on Robust AC Optimal Power Flow

    DEFF Research Database (Denmark)

    Soares, Tiago; Bessa, Richard J.; Pinson, Pierre

    2017-01-01

    Further integration of distributed renewable energy sources in distribution systems requires a paradigm change in grid management by the distribution system operators (DSO). DSOs are currently moving to an operational planning approach based on activating flexibility from distributed energy resou...

  6. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  7. Robust Performance And Dissipation of Stochastic Control Systems

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro

    and topology on the space of supply rates. For instance, we give conditions under which the available storage is a continuous convex function of the supply rate. Dissipation theory in the existing literature applies only to deterministic systems. This is unfortunate since robust control applications typically...... is a prototype of robust adaptive control problems. We show that the optimal (minimax) controller for this problem is finite dimensional but not based on certainty equivalence, and we discuss the heuristic certainty equivalence controller....

  8. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  9. Robust D-optimal designs under correlated error, applicable invariantly for some lifetime distributions

    International Nuclear Information System (INIS)

    Das, Rabindra Nath; Kim, Jinseog; Park, Jeong-Soo

    2015-01-01

    In quality engineering, the most commonly used lifetime distributions are log-normal, exponential, gamma and Weibull. Experimental designs are useful for predicting the optimal operating conditions of the process in lifetime improvement experiments. In the present article, invariant robust first-order D-optimal designs are derived for correlated lifetime responses having the above four distributions. Robust designs are developed for some correlated error structures. It is shown that robust first-order D-optimal designs for these lifetime distributions are always robust rotatable but the converse is not true. Moreover, it is observed that these designs depend on the respective error covariance structure but are invariant to the above four lifetime distributions. This article generalizes the results of Das and Lin [7] for the above four lifetime distributions with general (intra-class, inter-class, compound symmetry, and tri-diagonal) correlated error structures. - Highlights: • This paper presents invariant robust first-order D-optimal designs under correlated lifetime responses. • The results of Das and Lin [7] are extended for the four lifetime (log-normal, exponential, gamma and Weibull) distributions. • This paper also generalizes the results of Das and Lin [7] to more general correlated error structures

  10. Robust Nonlinear Control with Compensation Operator for a Peltier System

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wen

    2014-01-01

    Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.

  11. Computation of robustly stabilizing PID controllers for interval systems.

    Science.gov (United States)

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.

  12. Advanced Distribution Management System

    OpenAIRE

    Avazov, Artur; Sobinova, Lubov Anatolievna

    2016-01-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  13. Advanced Distribution Management System

    Science.gov (United States)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  14. Advanced Distribution Management System

    Directory of Open Access Journals (Sweden)

    Avazov Artur R.

    2016-01-01

    Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  15. Robust levitation control for maglev systems with guaranteed bounded airgap.

    Science.gov (United States)

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. New robust chaotic system with exponential quadratic term

    International Nuclear Information System (INIS)

    Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping

    2008-01-01

    This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)

  17. ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Abderrahmene Sellami

    2018-03-01

    Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.

  18. An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    This paper considers the robust stability analysis of cellular neural networks with discrete and distributed delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, a novel stability criterion guaranteeing the global robust convergence of the equilibrium point is derived. The criterion can be solved easily by various convex optimization algorithms. An example is given to illustrate the usefulness of our results

  19. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P.; Jaerventausta, P.; Kaerenlampi, M.; Paulasaari, H. [Tampere Univ. of Technology (Finland); Partanen, J. [Lappeenranta Univ. of Technology (Finland)

    1996-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  20. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P; Jaerventausta, P; Kaerenlampi, M; Paulasaari, H [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  1. On Robust Stability of Systems of Differential-Algebraic Equations

    Directory of Open Access Journals (Sweden)

    A. Shcheglova

    2016-06-01

    The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.

  2. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Jaerventausta, P; Verho, P; Kaerenlampi, M; Pitkaenen, M [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1998-08-01

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion to the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. Nowadays the SCADA is the main computer system (and often the only) in the control center. However, the information displayed by the SCADA is often inadequate, and several tasks cannot be solved by a conventional SCADA system. A need for new computer applications in control center arises from the insufficiency of the SCADA and some other trends. The latter means that the overall importance of the distribution networks is increasing. The slowing down of load-growth has often made network reinforcements unprofitable. Thus the existing network must be operated more efficiently. At the same time larger distribution areas are for economical reasons being monitored at one control center and the size of the operation staff is decreasing. The quality of supply requirements are also becoming stricter. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the

  3. Adaptive integral robust control and application to electromechanical servo systems.

    Science.gov (United States)

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  5. Distributed processor systems

    International Nuclear Information System (INIS)

    Zacharov, B.

    1976-01-01

    In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)

  6. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Possibility of spoof attack against robustness of multibiometric authentication systems

    Science.gov (United States)

    Hariri, Mahdi; Shokouhi, Shahriar Baradaran

    2011-07-01

    Multibiometric systems have been recently developed in order to overcome some weaknesses of single biometric authentication systems, but security of these systems against spoofing has not received enough attention. In this paper, we propose a novel practical method for simulation of possibilities of spoof attacks against a biometric authentication system. Using this method, we model matching scores from standard to completely spoofed genuine samples. Sum, product, and Bayes fusion rules are applied for score level combination. The security of multimodal authentication systems are examined and compared with the single systems against various spoof possibilities. However, vulnerability of fused systems is considerably increased against spoofing, but their robustness is generally higher than single matcher systems. In this paper we show that robustness of a combined system is not always higher than a single system against spoof attack. We propose empirical methods for upgrading the security of multibiometric systems, which contain how to organize and select biometric traits and matchers against various possibilities of spoof attack. These methods provide considerable robustness and present an appropriate reason for using combined systems against spoof attacks.

  8. Distributed Consensus-Based Robust Adaptive Formation Control for Nonholonomic Mobile Robots with Partial Known Dynamics

    Directory of Open Access Journals (Sweden)

    Zhaoxia Peng

    2014-01-01

    Full Text Available This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.

  9. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  10. Distributed Treatment Systems.

    Science.gov (United States)

    Zgonc, David; Plante, Luke

    2017-10-01

    This section presents a review of the literature published in 2016 on topics relating to distributed treatment systems. This review is divided into the following sections with multiple subsections under each: constituent removal; treatment technologies; and planning and treatment system management.

  11. Distributed Computerized Catalog System

    Science.gov (United States)

    Borgen, Richard L.; Wagner, David A.

    1995-01-01

    DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.

  12. Closed-Loop and Robust Control of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2013-01-01

    Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  13. Robust collaborative process interactions under system crash and network failures

    NARCIS (Netherlands)

    Wang, Lei; Wombacher, Andreas; Ferreira Pires, Luis; van Sinderen, Marten J.; Chi, Chihung

    2013-01-01

    With the possibility of system crashes and network failures, the design of robust client/server interactions for collaborative process execution is a challenge. If a business process changes its state, it sends messages to the relevant processes to inform about this change. However, server crashes

  14. Closed-loop and robust control of quantum systems.

    Science.gov (United States)

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  15. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis me...

  16. Robust self-triggered MPC for constrained linear systems

    NARCIS (Netherlands)

    Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.

    2014-01-01

    In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online

  17. Robust stabilization of nonlinear systems by quantized and ternary control

    NARCIS (Netherlands)

    Persis, Claudio De

    2009-01-01

    Results on the problem of stabilizing a nonlinear continuous-time minimum-phase system by a finite number of control or measurement values are presented. The basic tool is a discontinuous version of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results by

  18. Stochastic Robust Mathematical Programming Model for Power System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  19. Achieving robust interchangeability of test assets in ATE systems

    CERN Document Server

    Oblad, R P

    1999-01-01

    This paper identities the key issues that have made if so difficult to achieve asset interchangeability. Several of the historical attempts to solve the problem of asset interchangeability are described, along with an analysis of the reasons that they did not achieve the expected results. Specific topics that are covered are SCPI, VXIplug&play, IVI, ATLAS, and Measurement Subsystems. Principles associated with the ownership of interfaces will be outlined. Finally, a set of rules and principles will be discussed that must be applied to achieve robust asset interchangeability. Robust is defined as interchangeability that can be "guaranteed" without testing all TPSs against the modified test system. (9 refs).

  20. Robust Distributed Kalman Filter for Wireless Sensor Networks with Uncertain Communication Channels

    Directory of Open Access Journals (Sweden)

    Du Yong Kim

    2012-01-01

    Full Text Available We address a state estimation problem over a large-scale sensor network with uncertain communication channel. Consensus protocol is usually used to adapt a large-scale sensor network. However, when certain parts of communication channels are broken down, the accuracy performance is seriously degraded. Specifically, outliers in the channel or temporal disconnection are avoided via proposed method for the practical implementation of the distributed estimation over large-scale sensor networks. We handle this practical challenge by using adaptive channel status estimator and robust L1-norm Kalman filter in design of the processor of the individual sensor node. Then, they are incorporated into the consensus algorithm in order to achieve the robust distributed state estimation. The robust property of the proposed algorithm enables the sensor network to selectively weight sensors of normal conditions so that the filter can be practically useful.

  1. Robust control design verification using the modular modeling system

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ben-Abdennour, A.; Lee, K.Y.

    1991-01-01

    The Modular Modeling System (B ampersand W MMS) is being used as a design tool to verify robust controller designs for improving power plant performance while also providing fault-accommodating capabilities. These controllers are designed based on optimal control theory and are thus model based controllers which are targeted for implementation in a computer based digital control environment. The MMS is being successfully used to verify that the controllers are tolerant of uncertainties between the plant model employed in the controller and the actual plant; i.e., that they are robust. The two areas in which the MMS is being used for this purpose is in the design of (1) a reactor power controller with improved reactor temperature response, and (2) the design of a multiple input multiple output (MIMO) robust fault-accommodating controller for a deaerator level and pressure control problem

  2. A Robust H∞ Controller for an UAV Flight Control System

    Directory of Open Access Journals (Sweden)

    J. López

    2015-01-01

    Full Text Available The objective of this paper is the implementation and validation of a robust H∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H∞ robust controller in the inner loop, H∞ control methodology is used. The two controllers that conform the outer loop are designed using the H∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  3. Towards robust optimal design of storm water systems

    Science.gov (United States)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014

  4. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    Science.gov (United States)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  5. Robust stabilization of nonlinear systems: The LMI approach

    Directory of Open Access Journals (Sweden)

    Šiljak D. D.

    2000-01-01

    Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.

  6. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  7. Robust stability bounds for multi-delay networked control systems

    Science.gov (United States)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  8. QFT Framework for Robust Tuning of Power System Stabilizers

    DEFF Research Database (Denmark)

    Alavi, Seyyed Mohammad Mahdi; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper discusses the use of conventional quantitative feedback design for Power System Stabilizer (PSS). An appropriate control structure of the PSS that is directly applicable to PSS, is described. Two desired performances are also proposed in order to achieve an overall improvement in damping...... and robustness. The efficiency of the proposed method is demonstrated on Single Machine Infinite Bus (SMIB) power system with level of uncertainty....

  9. Optimizing electrical distribution systems

    International Nuclear Information System (INIS)

    Scott, W.G.

    1990-01-01

    Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs

  10. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  11. Robustness of power systems under a democratic-fiber-bundle-like model.

    Science.gov (United States)

    Yağan, Osman

    2015-06-01

    We consider a power system with N transmission lines whose initial loads (i.e., power flows) L(1),...,L(N) are independent and identically distributed with P(L)(x)=P[L≤x]. The capacity C(i) defines the maximum flow allowed on line i and is assumed to be given by C(i)=(1+α)L(i), with α>0. We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p(☆)=1-(E[L]/max(x)(P[L>x](αx+E[L|L>x])), where E[·] is the expectation operator; (ii) we derive conditions on the distribution P(L)(x) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions-uniform, Pareto, and Weibull-showing that with the minimum load L(min) and mean load E[L] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p(☆) is maximized when the load distribution is a Dirac delta function centered at E[L], i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.

  12. Distributed Systems 3/e

    NARCIS (Netherlands)

    Tanenbaum, A.S.; van Steen, M.R.

    2016-01-01

    For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A

  13. Robust Multi-Objective PQ Scheduling for Electric Vehicles in Flexible Unbalanced Distribution Grids

    DEFF Research Database (Denmark)

    Knezovic, Katarina; Soroudi, Alireza; Marinelli, Mattia

    2017-01-01

    With increased penetration of distributed energy resources and electric vehicles (EVs), different EV management strategies can be used for mitigating adverse effects and supporting the distribution grid. This paper proposes a robust multi-objective methodology for determining the optimal day...... demand response programs. The method is tested on a real Danish unbalanced distribution grid with 35% EV penetration to demonstrate the effectiveness of the proposed approach. It is shown that the proposed formulation guarantees an optimal EV cost as long as the price uncertainties are lower than....... The robust formulation effectively considers the errors in the electricity price forecast and its influence on the EV schedule. Moreover, the impact of EV reactive power support on objective values and technical parameters is analysed both when EVs are the only flexible resources and when linked with other...

  14. Distributed Optimization System

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  15. Using large hydrological datasets to create a robust, physically based, spatially distributed model for Great Britain

    Science.gov (United States)

    Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley

    2014-05-01

    The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall

  16. Towards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations

    International Nuclear Information System (INIS)

    Liu Jiming; Shi Benyun

    2012-01-01

    Supply disruptions on one node of a distribution network may spread to other nodes, and potentially bring various social and economic impacts. To understand the performance of a distribution network in the face of supply disruptions, it would be helpful for policy makers to quantitatively evaluate the robustness of the network, i.e., its ability of maintaining a supply–demand balance on individual nodes. In this paper, we first define a notion of network entropy to macroscopically characterize distribution robustness with respect to the dynamics of energy flows. Further, we look into how microscopic evaluation based on a failure spreading model helps us determine the extent to which disruptions on one node may affect the others. We take the natural gas distribution network in the USA as an example to demonstrate the introduced concepts and methods. Specifically, the proposed macroscopic and microscopic evaluations provide us a means of precisely identifying transmission bottlenecks in the U.S. interstate pipeline network, ranking the effects of supply disruptions on individual nodes, and planning geographically advantageous locations for natural gas storage. These findings can offer policy makers, planners, and network managers with further insights into emergency planning as well as possible design improvement. - Highlights: ► This paper evaluates distribution robustness by defining a notion of network entropy. ► The disruption impacts on individual node are evaluated by a failure spreading model. ► The robustness of the U.S. natural gas distribution network is studied. ► Results reveal pipeline bottlenecks, the node rank, and potential storage locations. ► Possible strategies for mitigating the impacts of supply disruptions are discussed.

  17. Enhancing the Robustness of the Microcavity Coupling System

    International Nuclear Information System (INIS)

    Yan Ying-Zhan; Zhang Wen-Dong; Xiong Ji-Jun; Ji Zhe; Yan Shu-Bin; Liu Jun; Xue Chen-Yang

    2011-01-01

    A novel method to enhance the robustness of the microcavity coupling system (MCS) is presented by encapsulating and solidifying the MCS with a low refractive index (RI) curable UV polymer. The encapsulating process is illustrated in detail for a typical microsphere with a radius of R about 240μm. Three differences of the resonant characteristics before and after the package are observed and analyzed. The first two differences refer to the enhancement of the coupling strength and the shift of the resonant spectrum to the longer wavelength, which are both mainly because of the microsphere surrounding RI variation. Another difference is the quality factor (Q-factor) which decreases from 7.8×10 7 to 8.7×10 6 after the package due to the polymer absorption. Moreover, rotation testing experiments have been carried out to verify the robustness of the package MCS. Experimental results demonstrate that the packaged MCR has much better robust performance than the un-package sample. The enhancement of the robustness greatly promotes the microcavity research from fundamental investigations to application fields. (fundamental areas of phenomenology(including applications))

  18. Robust chaotic control of Lorenz system by backstepping design

    International Nuclear Information System (INIS)

    Peng, C.-C.; Chen, C.-L.

    2008-01-01

    This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos

  19. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  20. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  1. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1998-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  2. Distributed Data Management and Distributed File Systems

    CERN Document Server

    Girone, Maria

    2015-01-01

    The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.

  3. Global robust stability of neural networks with multiple discrete delays and distributed delays

    International Nuclear Information System (INIS)

    Gao Ming; Cui Baotong

    2009-01-01

    The problem of global robust stability is investigated for a class of uncertain neural networks with both multiple discrete time-varying delays and distributed time-varying delays. The uncertainties are assumed to be of norm-bounded form and the activation functions are supposed to be bounded and globally Lipschitz continuous. Based on the Lyapunov stability theory and linear matrix inequality technique, some robust stability conditions guaranteeing the global robust convergence of the equilibrium point are derived. The proposed LMI-based criteria are computationally efficient as they can be easily checked by using recently developed algorithms in solving LMIs. Two examples are given to show the effectiveness of the proposed results.

  4. An adaptive robust controller for time delay maglev transportation systems

    Science.gov (United States)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  5. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability

  6. Robust Preamble-Based Timing Synchronization for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2017-01-01

    Full Text Available This study presents a novel preamble-based timing offset estimation method for orthogonal frequency division multiplexing (OFDM systems. The proposed method is robust, immune to the carrier frequency offset (CFO, and independent of the structure of the preamble. The performance of the new method is demonstrated in terms of mean square error (MSE obtained by simulation in multipath fading channels. The results indicate that the new method significantly improves timing performance in comparison with existing methods.

  7. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  8. A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.

    Science.gov (United States)

    Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C

    2018-05-03

    The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.

  9. Distributed System Design Checklist

    Science.gov (United States)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  10. Robust design method and thermostatic experiment for multiple piezoelectric vibration absorber system

    International Nuclear Information System (INIS)

    Nambu, Yohsuke; Takashima, Toshihide; Inagaki, Akiya

    2015-01-01

    This paper examines the effects of connecting multiplexing shunt circuits composed of inductors and resistors to piezoelectric transducers so as to improve the robustness of a piezoelectric vibration absorber (PVA). PVAs are well known to be effective at suppressing the vibration of an adaptive structure; their weakness is low robustness to changes in the dynamic parameters of the system, including the main structure and the absorber. In the application to space structures, the temperature-dependency of capacitance of piezoelectric ceramics is the factor that causes performance reduction. To improve robustness to the temperature-dependency of the capacitance, this paper proposes a multiple-PVA system that is composed of distributed piezoelectric transducers and several shunt circuits. The optimization problems that determine both the frequencies and the damping ratios of the PVAs are multi-objective problems, which are solved using a real-coded genetic algorithm in this paper. A clamped aluminum beam with four groups of piezoelectric ceramics attached was considered in simulations and experiments. Numerical simulations revealed that the PVA systems designed using the proposed method had tolerance to changes in the capacitances. Furthermore, experiments using a thermostatic bath were conducted to reveal the effectiveness and robustness of the PVA systems. The maximum peaks of the transfer functions of the beam with the open circuit, the single-PVA system, the double-PVA system, and the quadruple-PVA system at 20 °C were 14.3 dB, −6.91 dB, −7.47 dB, and −8.51 dB, respectively. The experimental results also showed that the multiple-PVA system is more robust than a single PVA in a variable temperature environment from −10 °C to 50 °C. In conclusion, the use of multiple PVAs results in an effective, robust vibration control method for adaptive structures. (paper)

  11. Electrical distribution system management

    International Nuclear Information System (INIS)

    Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.

    1990-01-01

    This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers

  12. Planning Systems for Distributed Operations

    Science.gov (United States)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  13. Probabilistic Modelling of Robustness and Resilience of Power Grid Systems

    DEFF Research Database (Denmark)

    Qin, Jianjun; Sansavini, Giovanni; Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper proposes a framework for the modeling and analysis of resilience of networked power grid systems. A probabilistic systems model is proposed based on the JCSS Probabilistic Model Code (JCSS, 2001) and deterministic engineering systems modeling techniques such as the DC flow model...... cascading failure event scenarios (Nan and Sansavini, 2017). The concept of direct and indirect consequences proposed by the Joint Committee on Structural Safety (JCSS, 2008) is utilized to model the associated consequences. To facilitate a holistic modeling of robustness and resilience, and to identify how...... these characteristics may be optimized these characteristics, the power grid system is finally interlinked with its fundamental interdependent systems, i.e. a societal model, a regulatory system and control feedback loops. The proposed framework is exemplified with reference to optimal decision support for resilience...

  14. Managing Distributed Knowledge Systems

    DEFF Research Database (Denmark)

    Sørensen, Brian Vejrum; Gelbuda, Modestas

    2005-01-01

    . This paper contributes to the research on organizations as distributed knowledge systems by addressing two weaknesses of the social practice literature. Firstly, it downplays the importance of formal structure and organizational design and intervention efforts by key organizational members. Secondly, it does......The article argues that the growth of de novo knowledge-based organization depends on managing and coordinating increasingly growing and, therefore, distributed knowledge. Moreover, the growth in knowledge is often accompanied by an increasing organizational complexity, which is a result...... of integrating new people, building new units and adding activities to the existing organization. It is argued that knowledge is not a stable capacity that belongs to any actor alone, but that it is rather an ongoing social accomplishment, which is created and recreated as actors engage in mutual activities...

  15. Robust media processing on programmable power-constrained systems

    Science.gov (United States)

    McVeigh, Jeff

    2005-03-01

    To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.

  16. Robust synchronization of unified chaotic systems via sliding mode control

    International Nuclear Information System (INIS)

    Yan Junjuh; Yang Yisung; Chiang Tsungying; Chen Chingyuan

    2007-01-01

    This paper investigates the chaos synchronization problem for a class of uncertain master-slave unified chaotic systems. Based on the sliding mode control technique, a robust control scheme is established which guarantees the occurrence of a sliding motion of error states even when the parameter uncertainty and external perturbation are present. Furthermore, a novel proportional-integral (PI) switching surface is introduced for determining the synchronization performance of systems in the sliding mode motion. Simulation results are proposed to demonstrate the effectiveness of the method

  17. Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient

    Directory of Open Access Journals (Sweden)

    Zaiyue Yang

    2014-01-01

    Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.

  18. Distributed road assessment system

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  19. Simulation and Robust Contol of Antilock Braking System ABS

    Directory of Open Access Journals (Sweden)

    David Jordan DELICHRISTOV

    2009-06-01

    Full Text Available This paper deals with simulation and robust control of Antilock Braking System ABS. The briefly are described the main parts of ABS hydraulic system and control algorithm of ABS. Hydraulic system described here is BOSCH ABS 5.x series. The goal of ABS system is vehicle stability and vehicle steering response when braking. If during the braking occurred slip at one or more wheels from any reason, ABS evaluates this by “brake slip” controller. At this moment ABS is trying to use maximal limits of adhesion between tire and road. It means that is necessary control the differences between braking torque and friction torque , which reacts to the wheel via friction reaction tire-road surface. This is realized through the solenoid valves, which are controls (triggered by on the base of PID controller described further in chapter 4. Presented concept is more or less standard for most of the existing ABS systems. The issue should be applied concept of robust ABS control algorithm, which is specific for every type of ABS.

  20. A robust optimization model for distribution and evacuation in the disaster response phase

    Science.gov (United States)

    Fereiduni, Meysam; Shahanaghi, Kamran

    2017-03-01

    Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.

  1. Communication Facilities for Distributed Systems

    Directory of Open Access Journals (Sweden)

    V. Barladeanu

    1997-01-01

    Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.

  2. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    Science.gov (United States)

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD

  3. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  4. Robust algebraic image enhancement for intelligent control systems

    Science.gov (United States)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  5. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  6. Robust distributed two-way relay beamforming in cognitive radio networks

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2012-04-01

    In this paper, we present distributed beamformer designs for a cognitive radio network (CRN) consisting of a pair of cognitive (or secondary) transceiver nodes communicating with each other through a set of secondary non-regenerative two-way relays. The secondary network shares the spectrum with a licensed primary user (PU), and operates under a constraint on the maximum interference to the PU, in addition to its own resource and quality of service (QoS) constraints. We propose beamformer designs assuming that the available channel state information (CSI) is imperfect, which reflects realistic scenarios. The performance of proposed designs is robust to the CSI errors. Such robustness is critical in CRNs given the difficulty in acquiring perfect CSI due to loose cooperation between the PUs and the secondary users (SUs), and the need for strict enforcement of PU interference limit. We consider a mean-square error (MSE)-constrained beamformer that minimizes the total relay transmit power and an MSE-balancing beamformer with a constraint on the total relay transmit power. We show that the proposed designs can be reformulated as convex optimization problems that can be solved efficiently. Through numerical simulations, we illustrate the improved performance of the proposed robust designs compared to non-robust designs. © 2012 IEEE.

  7. Quality monitored distributed voting system

    Science.gov (United States)

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  8. A Secure and Robust Object-Based Video Authentication System

    Directory of Open Access Journals (Sweden)

    He Dajun

    2004-01-01

    Full Text Available An object-based video authentication system, which combines watermarking, error correction coding (ECC, and digital signature techniques, is presented for protecting the authenticity between video objects and their associated backgrounds. In this system, a set of angular radial transformation (ART coefficients is selected as the feature to represent the video object and the background, respectively. ECC and cryptographic hashing are applied to those selected coefficients to generate the robust authentication watermark. This content-based, semifragile watermark is then embedded into the objects frame by frame before MPEG4 coding. In watermark embedding and extraction, groups of discrete Fourier transform (DFT coefficients are randomly selected, and their energy relationships are employed to hide and extract the watermark. The experimental results demonstrate that our system is robust to MPEG4 compression, object segmentation errors, and some common object-based video processing such as object translation, rotation, and scaling while securely preventing malicious object modifications. The proposed solution can be further incorporated into public key infrastructure (PKI.

  9. A Robust Feedforward Model of the Olfactory System.

    Directory of Open Access Journals (Sweden)

    Yilun Zhang

    2016-04-01

    Full Text Available Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects, which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.

  10. A robust embedded vision system feasible white balance algorithm

    Science.gov (United States)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  11. Sparse Distributed Memory: understanding the speed and robustness of expert memory

    Directory of Open Access Journals (Sweden)

    Marcelo Salhab Brogliato

    2014-04-01

    Full Text Available How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the `tip-of-tongue' memory event--which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve to this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory.

  12. Robust and flexible mapping for real-time distributed applications during the early design phases

    DEFF Research Database (Denmark)

    Gan, Junhe; Pop, Paul; Gruian, Flavius

    2012-01-01

    has a high chance of being schedulable, considering the wcet uncertainties, whereas a flexible mapping has a high chance to successfully accommodate the future scenarios. We propose a Genetic Algorithm-based approach to solve this optimization problem. Extensive experiments show the importance......We are interested in mapping hard real-time applications on distributed heterogeneous architectures. An application is modeled as a set of tasks, and we consider a fixed-priority preemptive scheduling policy. We target the early design phases, when decisions have a high impact on the subsequent...... in the functionality requirements are captured using “future scenarios”, which are task sets that model functionality likely to be added in the future. In this context, we derive a mapping of tasks in the application, such that the resulted implementation is both robust and flexible. Robust means that the application...

  13. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  14. Distributed security in closed distributed systems

    DEFF Research Database (Denmark)

    Hernandez, Alejandro Mario

    properties. This is also restricted to distributed systems in which the set of locations is known a priori. All this follows techniques borrowed from both the model checking and the static analysis communities. In the end, we reach a step towards solving the problem of enforcing security in distributed...... systems. We achieve the goal of showing how this can be done, though we restrict ourselves to closed systems and with a limited set of enforceable security policies. In this setting, our approach proves to be efficient. Finally, we achieve all this by bringing together several fields of Computer Science......The goal of the present thesis is to discuss, argue and conclude about ways to provide security to the information travelling around computer systems consisting of several known locations. When developing software systems, security of the information managed by these plays an important role...

  15. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach

    Science.gov (United States)

    Hernandez, F.; Liang, X.

    2017-12-01

    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational

  16. Robust low-frequency spread-spectrum navigation system

    Science.gov (United States)

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2009-12-01

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  17. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto

  18. Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies

    Science.gov (United States)

    Hafezalkotob, Ashkan; Haji-Sami, Elham; Omrani, Hashem

    2015-06-01

    Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.

  19. Robust MPC with Output Feedback of Integrating Systems

    Directory of Open Access Journals (Sweden)

    J. M. Perez

    2012-01-01

    Full Text Available In this work, it is presented a new contribution to the design of a robust MPC with output feedback, input constraints, and uncertain model. Multivariable predictive controllers have been used in industry to reduce the variability of the process output and to allow the operation of the system near to the constraints, where it is usually located the optimum operating point. For this reason, new controllers have been developed with the objective of achieving better performance, simpler control structure, and robustness with respect to model uncertainty. In this work, it is proposed a model predictive controller based on a nonminimal state space model where the state is perfectly known. It is an infinite prediction horizon controller, and it is assumed that there is uncertainty in the stable part of the model, which may also include integrating modes that are frequently present in the process plants. The method is illustrated with a simulation example of the process industry using linear models based on a real process.

  20. Distribution System Pricing with Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-16

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.

  1. Robustness analysis of pull strategies in multi-product systems

    Directory of Open Access Journals (Sweden)

    Chukwunonyelum Emmanuel Onyeocha

    2015-09-01

    Full Text Available Purpose: This paper examines the behaviour of shared and dedicated Kanban allocation policies of Hybrid Kanban-CONWIP and Basestock-Kanban-CONWIP control strategies in multi-product systems; with considerations to robustness of optimal solutions to environmental and system variabilities. Design/methodology/approach: Discrete event simulation and evolutionary multi-objective optimisation approach were utilised to develop Pareto-frontier or sets of non-dominated optimal solutions and for selection of an appropriate decision set for the control parameters in the shared Kanban allocation policy (S-KAP and dedicated Kanban allocation policy (D-KAP. Simulation experiments were carried out via ExtendSim simulation application software. The outcomes of PCS+KAP performances were compared via all pairwise comparison and Nelson’s screening and selection procedure for superior PCS+KAP under negligible environmental and system stability. To determine superior PCS+KAP under systems’ and environmental variability, the optimal solutions were tested for robustness using Latin hypercube sampling technique and stochastic dominance test. Findings: The outcome of this study shows that under uncontrollable environmental variability, dedicated Kanban allocation policy outperformed shared Kanban allocation policy in serial manufacturing system with negligible and in complex assembly line with setup times. Moreover, the BK-CONWIP is shown as superior strategy to HK-CONWIP. Research limitations/implications: Future research should be conducted to verify the level of flexibility of BK-CONWIP with respect to product mix and product demand volume variations in a complex multi-product system Practical implications: The outcomes of this work are applicable to multi-product manufacturing industries with significant setup times and systems with negligible setup times. The multi-objective optimisation provides decision support for selection of control-parameters such that

  2. A robust approach based on Weibull distribution for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Gong Binsheng

    2011-05-01

    Full Text Available Abstract Background Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest. Results In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method, a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM using functional annotation information given by the Gene Ontology (GO. The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets. Conclusions The results demonstrate that our WDCM produces clusters

  3. Robust Networked Control Scheme for Distributed Secondary Control of Islanded MicroGrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Stefanovic, Cedomir; Dragicevic, Tomislav

    2014-01-01

    Distributed secondary control (DSC) is a new approach for microgrids (MGs) by which the frequency, voltage and power can be regulated by using only local unit controllers. Such a solution is necessary for anticipated scenarios that have an increased number of distributed generators (DGs) within...... the MG. Due to the constrained traffic pattern required by the secondary control, it is viable to implement a dedicated local area communication functionality among the local controllers. This paper presents a new, wireless-based robust communication algorithm for the DSC of MGs. The algorithm tightly...... couples the communication and the control functionality, such that the transmission errors are absorbed through an averaging operation performed in each local controller, resulting in a very high reliability. Furthermore, transmissions from each DG are periodic and prescheduled broadcasts, and in this way...

  4. RBAC Administration in Distributed Systems

    NARCIS (Netherlands)

    Dekker, M.A.C.; Crampton, J.; Etalle, Sandro

    2007-01-01

    Despite a large body of literature on the administration of RBAC policies in centralized systems, the problem of the administration of a distributed system has hardly been addressed. We present a formal system for modelling a distributed RBAC system and its administration. We define two basic

  5. Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems

    Science.gov (United States)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The evolving pressures from a changing climate and society are increasingly motivating decision support frameworks that consider the robustness of management actions across many possible futures. Focusing on robustness is helpful for investigating key vulnerabilities within current water systems and for identifying potential tradeoffs across candidate adaptation responses. To date, most robustness studies assume a social planner perspective by evaluating highly aggregated measures of system performance. This aggregate treatment of stakeholders does not explore the equity or intrinsic multi-stakeholder conflicts implicit to the system-wide measures of performance benefits and costs. The commonly present heterogeneity across complex management interests, however, may produce strong asymmetries for alternative adaptation options, designed to satisfy system-level targets. In this work, we advance traditional robustness decision frameworks by replacing the centralized social planner with a bottom-up, agent-based approach, where stakeholders are modeled as individuals, and represented as potentially self-interested agents. This agent-based model enables a more explicit exploration of the potential inequities and asymmetries in the distribution of the system-wide benefit. The approach is demonstrated by exploring the potential conflicts between urban flooding and agricultural production in the Lake Como system (Italy). Lake Como is a regulated lake that is operated to supply water to the downstream agricultural district (Muzza as the pilot study area in this work) composed of a set of farmers with heterogeneous characteristics in terms of water allocation, cropping patterns, and land properties. Supplying water to farmers increases the risk of floods along the lakeshore and therefore the system is operated based on the tradeoff between these two objectives. We generated an ensemble of co-varying climate and socio-economic conditions and evaluated the robustness of the

  6. Application of robust face recognition in video surveillance systems

    Science.gov (United States)

    Zhang, De-xin; An, Peng; Zhang, Hao-xiang

    2018-03-01

    In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis (FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.

  7. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  8. Development of a robust model-based reactivity control system

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.

    1990-01-01

    This paper describes the development and implementation of a digital model-based reactivity control system that incorporates a knowledge of the plant physics into the control algorithm to improve system performance. This controller is composed of a model-based module and modified proportional-integral-derivative (PID) module. The model-based module has an estimation component to synthesize unmeasurable process variables that are necessary for the control action computation. These estimated variables, besides being used within the control algorithm, will be used for diagnostic purposes by a supervisory control system under development. The PID module compensates for inaccuracies in model coefficients by supplementing the model-based output with a correction term that eliminates any demand tracking or steady state errors. This control algorithm has been applied to develop controllers for a simulation of liquid metal reactors in a multimodular plant. It has shown its capability to track demands in neutron power much more accurately than conventional controllers, reducing overshoots to almost negligible value while providing a good degree of robustness to unmodeled dynamics. 10 refs., 4 figs

  9. Deceit: A flexible distributed file system

    Science.gov (United States)

    Siegel, Alex; Birman, Kenneth; Marzullo, Keith

    1989-01-01

    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness.

  10. Distribution system modeling and analysis

    CERN Document Server

    Kersting, William H

    2001-01-01

    For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...

  11. On Robust Methodologies for Managing Public Health Care Systems

    Directory of Open Access Journals (Sweden)

    Shastri L. Nimmagadda

    2014-01-01

    Full Text Available Authors focus on ontology-based multidimensional data warehousing and mining methodologies, addressing various issues on organizing, reporting and documenting diabetic cases and their associated ailments, including causalities. Map and other diagnostic data views, depicting similarity and comparison of attributes, extracted from warehouses, are used for understanding the ailments, based on gender, age, geography, food-habits and other hereditary event attributes. In addition to rigor on data mining and visualization, an added focus is on values of interpretation of data views, from processed full-bodied diagnosis, subsequent prescription and appropriate medications. The proposed methodology, is a robust back-end application, for web-based patient-doctor consultations and e-Health care management systems through which, billions of dollars spent on medical services, can be saved, in addition to improving quality of life and average life span of a person. Government health departments and agencies, private and government medical practitioners including social welfare organizations are typical users of these systems.

  12. On the robustness of entanglement in analogue gravity systems

    International Nuclear Information System (INIS)

    Bruschi, D E; Friis, N; Fuentes, I; Weinfurtner, S

    2013-01-01

    We investigate the possibility of generating quantum-correlated quasi-particles utilizing analogue gravity systems. The quantumness of these correlations is a key aspect of analogue gravity effects and their presence allows for a clear separation between classical and quantum analogue gravity effects. However, experiments in analogue systems, such as Bose–Einstein condensates (BECs) and shallow water waves, are always conducted at non-ideal conditions, in particular, one is dealing with dispersive media at non-zero temperatures. We analyse the influence of the initial temperature on the entanglement generation in analogue gravity phenomena. We lay out all the necessary steps to calculate the entanglement generated between quasi-particle modes and we analytically derive an upper bound on the maximal temperature at which given modes can still be entangled. We further investigate a mechanism to enhance the quantum correlations. As a particular example, we analyse the robustness of the entanglement creation against thermal noise in a sudden quench of an ideally homogeneous BEC, taking into account the super-sonic dispersion relations. (paper)

  13. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  14. Leak Signature Space: An Original Representation for Robust Leak Location in Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Myrna V. Casillas

    2015-03-01

    Full Text Available In this paper, an original model-based scheme for leak location using pressure sensors in water distribution networks is introduced. The proposed approach is based on a new representation called the Leak Signature Space (LSS that associates a specific signature to each leak location being minimally affected by leak magnitude. The LSS considers a linear model approximation of the relation between pressure residuals and leaks that is projected onto a selected hyperplane. This new approach allows to infer the location of a given leak by comparing the position of its signature with other leak signatures. Moreover, two ways of improving the method’s robustness are proposed. First, by associating a domain of influence to each signature and second, through a time horizon analysis. The efficiency of the method is highlighted by means of a real network using several scenarios involving different number of sensors and considering the presence of noise in the measurements.

  15. Robustness of S1 statistic with Hodges-Lehmann for skewed distributions

    Science.gov (United States)

    Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping

    2016-10-01

    Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.

  16. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    Science.gov (United States)

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  17. Distributed systems status and control

    Science.gov (United States)

    Kreidler, David; Vickers, David

    1990-01-01

    Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.

  18. Robust optimization for load scheduling of a smart home with photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Chengshan; Zhou, Yue; Jiao, Bingqi; Wang, Yamin; Liu, Wenjian; Wang, Dan

    2015-01-01

    Highlights: • Robust household load scheduling is presented for smart homes with PV system. • A robust counterpart is formulated to deal with PV output uncertainty. • The robust counterpart is finally transformed to a quadratic programming problem. • Load schedules with different robustness can be made by the proposed method. • Feed-in tariff and PV output would affect the significance of the proposed method. - Abstract: In this paper, a robust approach is developed to tackle the uncertainty of PV power output for load scheduling of smart homes integrated with household PV system. Specifically, a robust formulation is proposed and further transformed to an equivalent quadratic programming problem. Day-ahead load schedules with different robustness can be generated by solving the proposed robust formulation with different predefined parameters. The validity and advantage of the proposed approach has been verified by simulation results. Also, the effects of feed-in tariff and PV output have been evaluated

  19. Robust control system for belt continuously variable transmission; Robust seigyo wo tekiyoshita mudan hensokuki no hensokuhi servo kei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, K; Wakahara, T; Shimanaka, S; Yamamoto, M; Oshidari, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The continuously variable transmission control system consists of generation of a desired gear ratio and a servo gear ratio system. The servo gear ratio system must provide the desired response at all times without being influenced by external disturbances. These include oil pressure as well as variation in performance due to operating conditions or changes occurring with us. We have developed the servo gear ratio system incorporating a robust model matching method, which enables the belt continuously variable transmission to satisfy this performance requirement. 2 refs., 9 figs.

  20. Voice Activity Detection. Fundamentals and Speech Recognition System Robustness

    OpenAIRE

    Ramirez, J.; Gorriz, J. M.; Segura, J. C.

    2007-01-01

    This chapter has shown an overview of the main challenges in robust speech detection and a review of the state of the art and applications. VADs are frequently used in a number of applications including speech coding, speech enhancement and speech recognition. A precise VAD extracts a set of discriminative speech features from the noisy speech and formulates the decision in terms of well defined rule. The chapter has summarized three robust VAD methods that yield high speech/non-speech discri...

  1. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  2. A High-Availability, Distributed Hardware Control System Using Java

    Science.gov (United States)

    Niessner, Albert F.

    2011-01-01

    Two independent coronagraph experiments that require 24/7 availability with different optical layouts and different motion control requirements are commanded and controlled with the same Java software system executing on many geographically scattered computer systems interconnected via TCP/IP. High availability of a distributed system requires that the computers have a robust communication messaging system making the mix of TCP/IP (a robust transport), and XML (a robust message) a natural choice. XML also adds the configuration flexibility. Java then adds object-oriented paradigms, exception handling, heavily tested libraries, and many third party tools for implementation robustness. The result is a software system that provides users 24/7 access to two diverse experiments with XML files defining the differences

  3. Robust Speed Tracking Control for a Micro Turbine as a Distributed Energy Resource via Feedback Domination and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Ancheng Xu

    2017-01-01

    Full Text Available Micro turbine (MT is characterized with complex dynamics, parameter uncertainties, and variable working conditions. In this paper, a novel robust controller is investigated for a single-shaft micro turbine as a distributed energy resource by integrating a feedback domination control technique and a feedforward disturbance compensation. An active estimation process of the mismatched disturbances is firstly enabled by constructing a disturbance observer. Secondly, we adopt a feedback domination technique, rather than popularly used feedback linearization methods, to handle the system nonlinearities. In an explicit way, the composite controllers are then derived by recursive design based on Lyapunov theory while a global input-to-state stability can be guaranteed. Abundant comparison simulation results are provided to demonstrate the effectiveness of the proposed scheme, which not only perform an improved closed-loop control performance comparing to all existing results, but also render a simple control law which will ease its practical implementation.

  4. Integrating robust timetabling in line plan optimization for railway systems

    DEFF Research Database (Denmark)

    Burggraeve, Sofie; Bull, Simon Henry; Vansteenwegen, Pieter

    2017-01-01

    We propose a heuristic algorithm to build a railway line plan from scratch that minimizes passenger travel time and operator cost and for which a feasible and robust timetable exists. A line planning module and a timetabling module work iteratively and interactively. The line planning module......, but is constrained by limited shunt capacity. While the operator and passenger cost remain close to those of the initially and (for these costs) optimally built line plan, the timetable corresponding to the finally developed robust line plan significantly improves the minimum buffer time, and thus the robustness...... creates an initial line plan. The timetabling module evaluates the line plan and identifies a critical line based on minimum buffer times between train pairs. The line planning module proposes a new line plan in which the time length of the critical line is modified in order to provide more flexibility...

  5. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  6. Control of xenon spatial oscillations during load follow of nuclear reactor via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Yada, Yukihiro; Iwazumi, Tetsuo; Morita, Yoshifumi.

    1990-01-01

    This paper investigates the control problem of xenon spatial oscillations in the axial direction during load following operations of a nuclear reactor. The system model is described by a one-group diffusion equation with xenon and power feedbacks and iodine-xenon dynamic equations and controlled by full-length and part-length control rods. In order to achieve the control purpose we formulate the control model as the design problem of robust servo systems for distributed parameter reactor systems. Hence the total thermal power and the axial offset are chosen as outputs to be controlled. The control law is designed based upon finite-dimensional systems which are constructed by linearizing around steady states, approximating by the Galerkin approximate method and reducing dimensions via the singular perturbation method. From a computational point of view a simple computational algorithm to obtain an approximate solution of the steady state neutron balance is developed via the perturbation method. Some results of numerical simulations are represented to show effectiveness of the theory developed in this paper. Particularly it is shown that the designed servo systems are robust against model errors with the linearization and the model truncation. (author)

  7. Robust stabilization of nonlinear systems via stable kernel representations with L2-gain bounded uncertainty

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1995-01-01

    The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust

  8. Hardening digital systems with distributed functionality: robust networks

    Science.gov (United States)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  9. Distributed Systems for Problems in Robust Control and Visual Tracking

    National Research Council Canada - National Science Library

    Tannenbaum, Allen

    2000-01-01

    .... A key application is in controlled active vision, including visual tracking, the control of autonomous vehicles, motion planning, and the utilization of visual information in guidance and control...

  10. A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2015-04-01

    Full Text Available With the development of modern society, the scale of the power system is rapidly increased accordingly, and the framework and mode of running of power systems are trending towards more complexity. It is nowadays much more important for the dispatchers to know exactly the state parameters of the power network through state estimation. This paper proposes a robust power system WLS state estimation method integrating a wide-area measurement system (WAMS and SCADA technology, incorporating phasor measurements and the results of the traditional state estimator in a post-processing estimator, which greatly reduces the scale of the non-linear estimation problem as well as the number of iterations and the processing time per iteration. This paper firstly analyzes the wide-area state estimation model in detail, then according to the issue that least squares does not account for bad data and outliers, the paper proposes a robust weighted least squares (WLS method that combines a robust estimation principle with least squares by equivalent weight. The performance assessment is discussed through setting up mathematical models of the distribution network. The effectiveness of the proposed method was proved to be accurate and reliable by simulations and experiments.

  11. Data-Driven Robust RVFLNs Modeling of a Blast Furnace Iron-Making Process Using Cauchy Distribution Weighted M-Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Lv, Youbin; Wang, Hong; Chai, Tianyou

    2017-09-01

    Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation based robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.

  12. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  13. Robust Model Predictive Control of Networked Control Systems under Input Constraints and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Deyin Yao

    2014-01-01

    Full Text Available This paper deals with the problem of robust model predictive control (RMPC for a class of linear time-varying systems with constraints and data losses. We take the polytopic uncertainties into account to describe the uncertain systems. First, we design a robust state observer by using the linear matrix inequality (LMI constraints so that the original system state can be tracked. Second, the MPC gain is calculated by minimizing the upper bound of infinite horizon robust performance objective in terms of linear matrix inequality conditions. The method of robust MPC and state observer design is illustrated by a numerical example.

  14. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    Science.gov (United States)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing

  15. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    Science.gov (United States)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  16. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    International Nuclear Information System (INIS)

    Molotkov, S. N.

    2008-01-01

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ∼ 20%) and dark count probability (p dark ∼ 10 -7 )

  17. The THUDSOS Distributed Operating System

    Institute of Scientific and Technical Information of China (English)

    廖先Zhi; 刘旭峰; 等

    1991-01-01

    The THUDSOS is a distributed operating system modeled as an abstract machine which provides decentralized control,transparency,availability,and reliability,as welol as a good degree of autonomy at each node,that makes our distributed system usable.Our operating system supports transparent access to data through network wide filesystem.The simultaneous access to any device is discussed for the case when the peripherals are treated as files.This operating system allows spawning of parallel application programs to solve problems in the fields,such as numerical analysis and artificial intelligence.

  18. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  19. Parallel and Distributed System Simulation

    Science.gov (United States)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our research into the software infrastructure necessary to support the modeling and simulation techniques that are most appropriate for the Information Power Grid. Such computational power grids will use high-performance networking to connect hardware, software, instruments, databases, and people into a seamless web that supports a new generation of computation-rich problem solving environments for scientists and engineers. In this context we looked at evaluating the NetSolve software environment for network computing that leverages the potential of such systems while addressing their complexities. NetSolve's main purpose is to enable the creation of complex applications that harness the immense power of the grid, yet are simple to use and easy to deploy. NetSolve uses a modular, client-agent-server architecture to create a system that is very easy to use. Moreover, it is designed to be highly composable in that it readily permits new resources to be added by anyone willing to do so. In these respects NetSolve is to the Grid what the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can also impose significant limitations on the performance and robustness of a NetSolve system. This project explored the design innovations that push the performance and robustness of the NetSolve paradigm as far as possible without sacrificing the Web-like ease of use and composability that make it so powerful.

  20. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized control,  control with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  1. Robust digital controllers for uncertain chaotic systems: A digital redesign approach

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)

    2007-03-15

    In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.

  2. Robust Takagi-Sugeno Fuzzy Dynamic Regulator for Trajectory Tracking of a Pendulum-Cart System

    Directory of Open Access Journals (Sweden)

    Miguel A. Llama

    2015-01-01

    Full Text Available Starting from a nonlinear model for a pendulum-cart system, on which viscous friction is considered, a Takagi-Sugeno (T-S fuzzy augmented model (TSFAM as well as a TSFAM with uncertainty (TSFAMwU is proposed. Since the design of a T-S fuzzy controller is based on the T-S fuzzy model of the nonlinear system, then, to address the trajectory tracking problem of the pendulum-cart system, three T-S fuzzy controllers are proposed via parallel distributed compensation: (1 a T-S fuzzy servo controller (TSFSC designed from the TSFAM; (2 a robust TSFSC (RTSFSC designed from the TSFAMwU; and (3 a robust T-S fuzzy dynamic regulator (RTSFDR designed from the RTSFSC with the addition of a T-S fuzzy observer, which estimates cart and pendulum velocities. Both TSFAM and TSFAMwU are comprised of two fuzzy rules and designed via local approximation in fuzzy partition spaces technique. Feedback gains for the three fuzzy controllers are obtained via linear matrix inequalities approach. A swing-up controller is developed to swing the pendulum up from its pendant position to its upright position. Real-time experiments validate the effectiveness of the proposed schemes, keeping the pendulum in its upright position while the cart follows a reference signal, standing out the RTSFDR.

  3. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    Science.gov (United States)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  4. Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach

    Directory of Open Access Journals (Sweden)

    Valter J. S. Leite

    2008-01-01

    Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.

  5. RBAC administration in distributed systems

    NARCIS (Netherlands)

    Dekker, M.A.C.; Crampton, J.; Etalle, Sandro; Li, N.

    Large and distributed access control systems are increasingly common, for example in health care. In such settings, access control policies may become very complex, thus complicating correct and efficient adminstration of the access control system. Despite being one of the most widely used access

  6. Integrating security in a group oriented distributed system

    Science.gov (United States)

    Reiter, Michael; Birman, Kenneth; Gong, LI

    1992-01-01

    A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized.

  7. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  8. THE FRANCHISE SYSTEM OF DISTRIBUTION.

    Science.gov (United States)

    The working relationships between franchise companies and their franchised dealers are analyzed. The benefits derived from the use of a franchisesise...system of distribution for both the franchisor and franchisee are determined. The principal problems encountered by the parties to the franchise ...agreement are isolated, and this method of distribution is evaluated from the standpoint of both the franchise company and franchised dealers and to assess its impact on the marketing economy of the nation.

  9. Meanings and robustness: Propositions for enhancing benefit sharing in social-ecological systems

    Directory of Open Access Journals (Sweden)

    Ernita van Wyk

    2014-08-01

    Full Text Available Given increased pressure on natural resources to deliver benefits, complex trade-offs and the regulation of behaviours in relation to benefits is of key concern. Behaviours that signify resistance to the rules according to which benefits are allocated prompt us to consider causal links and feedbacks between benefits, perceptions of benefits, meanings attached to the benefits, and the regulatory instruments that mediate the distribution of benefits. An understanding of how meanings influence the perception of benefits exposes the complexity inherent in how people perceive and allocate value to natural resource benefits. Meanings are personal, sometimes overlapping, context dependent and variable across space and time. A challenge in directing resource user behaviour in common pool resources is that the relationship between the resource and resource use is typically not interpreted to include the manner in which users associate resource benefits with meanings. We propose that collective ordering of meanings and associated rules help to direct behaviours and in doing so they contribute to the purposeful maintenance of desirable elements of a social-ecological system (i.e. robustness. Using an example, we illustrate how tensions around benefit sharing are rooted in the emergence and changing prioritisation of contexts and meanings over time. The importance of eliciting, ordering and sanctioning of meanings is emphasised. We conclude by discussing the implications for robustness and benefit sharing in social-ecological systems and we comment on the usefulness and limitations of the framework.

  10. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  11. Distribution network strengthens sales systems

    International Nuclear Information System (INIS)

    Janoska, J.

    2003-01-01

    Liberalisation of the electricity market pushes Slovak distribution companies to upgrade their sale technologies. The first one to invest into a complex electronic sales system will be Stredoslovenska energetika, a.s., Zilina. The system worth 200 million Sk (4,83 million Euro) will be supplied by Polish software company Winuel. The company should also supply a software that would allow forecasting and planning of sales. The system should be fully operational by 2006. TREND has not managed to obtain information regarding plans Zapadoslovenska energetika - the largest and most active distribution company - might have in this area. In eastern Slovakia distribution company Vychodoslovenska energetika, a.s., Kosice has also started addressing this issue. (Author)

  12. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  13. Efficient and Robust Data Collection Using Compact Micro Hardware, Distributed Bus Architectures and Optimizing Software

    Science.gov (United States)

    Chau, Savio; Vatan, Farrokh; Randolph, Vincent; Baroth, Edmund C.

    2006-01-01

    Future In-Space propulsion systems for exploration programs will invariably require data collection from a large number of sensors. Consider the sensors needed for monitoring several vehicle systems states of health, including the collection of structural health data, over a large area. This would include the fuel tanks, habitat structure, and science containment of systems required for Lunar, Mars, or deep space exploration. Such a system would consist of several hundred or even thousands of sensors. Conventional avionics system design will require these sensors to be connected to a few Remote Health Units (RHU), which are connected to robust, micro flight computers through a serial bus. This results in a large mass of cabling and unacceptable weight. This paper first gives a survey of several techniques that may reduce the cabling mass for sensors. These techniques can be categorized into four classes: power line communication, serial sensor buses, compound serial buses, and wireless network. The power line communication approach uses the power line to carry both power and data, so that the conventional data lines can be eliminated. The serial sensor bus approach reduces most of the cabling by connecting all the sensors with a single (or redundant) serial bus. Many standard buses for industrial control and sensor buses can support several hundreds of nodes, however, have not been space qualified. Conventional avionics serial buses such as the Mil-Std-1553B bus and IEEE 1394a are space qualified but can support only a limited number of nodes. The third approach is to combine avionics buses to increase their addressability. The reliability, EMI/EMC, and flight qualification issues of wireless networks have to be addressed. Several wireless networks such as the IEEE 802.11 and Ultra Wide Band are surveyed in this paper. The placement of sensors can also affect cable mass. Excessive sensors increase the number of cables unnecessarily. Insufficient number of sensors

  14. Wide-Area Robust Decentralized Coordinated Control of HVDC Power System Based on Polytopic System Theory

    Directory of Open Access Journals (Sweden)

    Shiyun Xu

    2015-01-01

    Full Text Available The present study proposes a hierarchical wide-area decentralized coordinated control framework for HVDC power system that is robust to multiple operating conditions. The upper level wide-area coordinated controller is designed in the form of dynamic output feedback control that coordinates the lower level HVDC supplementary controller, PSS, and SVC. In order to enhance the robustness of the designed controller under various operating conditions, the polytopic model is introduced such that the closed-loop control system can be operated under strong damping mode in virtue of the stability criterion based on damping ratio. Simulation results demonstrate that the proposed controller design algorithm is capable of enhancing the system damping over four different conditions.

  15. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    Science.gov (United States)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.

  16. Reducing Inventory System Costs by Using Robust Demand Estimators

    OpenAIRE

    Raymond A. Jacobs; Harvey M. Wagner

    1989-01-01

    Applications of inventory theory typically use historical data to estimate demand distribution parameters. Imprecise knowledge of the demand distribution adds to the usual replenishment costs associated with stochastic demands. Only limited research has been directed at the problem of choosing cost effective statistical procedures for estimating these parameters. Available theoretical findings on estimating the demand parameters for (s, S) inventory replenishment policies are limited by their...

  17. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  18. DESIGN OF ROBUST NAVIGATION AND STABILIZATION LOOPS OF PRECISION ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-11-01

    Full Text Available Purpose: The paper focuses on problems of design of robust precision attitude and heading reference systems, which can be applied in navigation of marine vehicles. The main goal is to create the optimization procedures for design of navigation and stabilization loops of the multimode gimballed system. The optimization procedure of the navigation loop design is based on the parametric robust H2/H∞-optimization. The optimization procedure of the stabilization loop design is based on the robust structural H∞-synthesis. Methods: To solve the given problem the methods of the robust control system theory and optimization methods are used. Results: The kinematical scheme of the precision gimballed attitude and heading reference system is represented. The parametrical optimization algorithm taking into consideration features of the researched system is given. Method of the mixed sensitivity relative to the researched system design is analyzed. Coefficients of the control laws of navigation loops are obtained based on optimization procedure providing compromise between accuracy and robustness. The robust controller of the stabilization loop was developed based on robust structural synthesis using method of the mixed sensitivity. Simulation of navigation and stabilization processes is carried out. Conclusions: The represented results prove efficiency of the proposed procedures, which can be useful for design of precision navigation systems of the moving vehicles.

  19. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  20. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  1. Distributed Supervisory Protection Interlock System

    International Nuclear Information System (INIS)

    Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.

    1989-03-01

    The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs

  2. Building Robust Planning and Execution Systems for Virtual Worlds

    National Research Council Canada - National Science Library

    Dini, Don M; van Lent, Michael; Carpenter, Paul; Iyer, Kumar

    2006-01-01

    .... To enable future researchers to build more complete systems, and avoid possible serious system failure, we identify the major technical problems any implementer of such a system would have to face...

  3. A Two-Stage Robust Optimization for Centralized-Optimal Dispatch of Photovoltaic Inverters in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Yang, Yongheng

    2017-01-01

    Optimally dispatching Photovoltaic (PV) inverters is an efficient way to avoid overvoltage in active distribution networks, which may occur in the case of PV generation surplus load demand. Typically, the dispatching optimization objective is to identify critical PV inverters that have the most...... nature of solar PV energy may affect the selection of the critical PV inverters and also the final optimal objective value. In order to address this issue, a two-stage robust optimization model is proposed in this paper to achieve a robust optimal solution to the PV inverter dispatch, which can hedge...... against any possible realization within the uncertain PV outputs. In addition, the conic relaxation-based branch flow formulation and second-order cone programming based column-and-constraint generation algorithm are employed to deal with the proposed robust optimization model. Case studies on a 33-bus...

  4. Distributed Systems: The Hard Problems

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Nicholas Bellerophon** works as a client services engineer at Basho Technologies, helping customers setup and run distributed systems at scale in the wild. He has also worked in massively multiplayer games, and recently completed a live scalable simulation engine. He is an avid TED-watcher with interests in many areas of the arts, science, and engineering, including of course high-energy physics.

  5. Distribution system analysis and automation

    CERN Document Server

    Gers, Juan

    2013-01-01

    A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.

  6. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  7. A Distributed User Information System

    Science.gov (United States)

    1990-03-01

    NOE08 Department of Computer Science NOVO 8 1990 University of Maryland S College Park, MD 20742 D Abstract Current user information database technology ...Transactions on Computer Systems, May 1988. [So189] K. Sollins. A plan for internet directory services. Technical report, DDN Network Information Center...2424 A Distributed User Information System DTiC Steven D. Miller, Scott Carson, and Leo Mark DELECTE Institute for Advanced Computer Studies and

  8. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  9. Robust output feedback H-infinity control and filtering for uncertain linear systems

    CERN Document Server

    Chang, Xiao-Heng

    2014-01-01

    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  10. Study of Robust H∞ Filtering Application in Loosely Coupled INS/GPS System

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2014-01-01

    model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H∞ filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H∞ filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.

  11. Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydroturbine Governing System

    OpenAIRE

    Fengjiao Wu; Junling Ding; Zhengzhong Wang

    2016-01-01

    The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the d...

  12. The ATLAS distributed analysis system

    International Nuclear Information System (INIS)

    Legger, F

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  13. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  14. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    Science.gov (United States)

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A generic flexible and robust approach for intelligent real-time video-surveillance systems

    Science.gov (United States)

    Desurmont, Xavier; Delaigle, Jean-Francois; Bastide, Arnaud; Macq, Benoit

    2004-05-01

    In this article we present a generic, flexible and robust approach for an intelligent real-time video-surveillance system. A previous version of the system was presented in [1]. The goal of these advanced tools is to provide help to operators by detecting events of interest in visual scenes and highlighting alarms and compute statistics. The proposed system is a multi-camera platform able to handle different standards of video inputs (composite, IP, IEEE1394 ) and which can basically compress (MPEG4), store and display them. This platform also integrates advanced video analysis tools, such as motion detection, segmentation, tracking and interpretation. The design of the architecture is optimised to playback, display, and process video flows in an efficient way for video-surveillance application. The implementation is distributed on a scalable computer cluster based on Linux and IP network. It relies on POSIX threads for multitasking scheduling. Data flows are transmitted between the different modules using multicast technology and under control of a TCP-based command network (e.g. for bandwidth occupation control). We report here some results and we show the potential use of such a flexible system in third generation video surveillance system. We illustrate the interest of the system in a real case study, which is the indoor surveillance.

  16. Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Directory of Open Access Journals (Sweden)

    Whitacre James M

    2010-02-01

    Full Text Available Abstract A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability.

  17. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  18. Distributed optimization system and method

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  19. World-wide distribution automation systems

    International Nuclear Information System (INIS)

    Devaney, T.M.

    1994-01-01

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems

  20. Robust function projective synchronization of a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Shen Liqun; Liu Wanyu; Ma Jianwei

    2009-01-01

    In this paper, the function projective synchronization problem of chaotic systems is investigated, where parameter mismatch exists between the drive system and the response system. Based on Lyapunov stability theory, a novel robust function projective synchronization scheme is proposed. And the parameter mismatch problem is also solved. Simulation results of Lorenz system and Chen system verify the effectiveness of the proposed control scheme.

  1. Robust synchronization of chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Hung, M.-L.; Chiang, T.-Y.; Yang, Y.-S.

    2006-01-01

    This Letter investigates the synchronization problem for a general class of chaotic systems. Using the sliding mode control technique, an adaptive control law is established to guarantee synchronization of the master and slave systems even when unknown parameters and external disturbances are present. In contrast to the previous works, the structure of slave system is simple and need not be identical to the master system. Furthermore, a novel proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. An illustrative example of Chua's circuit is given to demonstrate the effectiveness of the proposed synchronization scheme

  2. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  3. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  4. Distributed Robust Power Minimization for the Downlink of Multi-Cloud Radio Access Networks

    KAUST Repository

    Dhifallah, Oussama Najeeb

    2017-02-07

    Conventional cloud radio access networks assume single cloud processing and treat inter-cloud interference as background noise. This paper considers the downlink of a multi-cloud radio access network (CRAN) where each cloud is connected to several base-stations (BS) through limited-capacity wireline backhaul links. The set of BSs connected to each cloud, called cluster, serves a set of pre-known mobile users (MUs). The performance of the system becomes therefore a function of both inter-cloud and intra-cloud interference, as well as the compression schemes of the limited capacity backhaul links. The paper assumes independent compression scheme and imperfect channel state information (CSI) where the CSI errors belong to an ellipsoidal bounded region. The problem of interest becomes the one of minimizing the network total transmit power subject to BS power and quality of service constraints, as well as backhaul capacity and CSI error constraints. The paper suggests solving the problem using the alternating direction method of multipliers (ADMM). One of the highlight of the paper is that the proposed ADMM-based algorithm can be implemented in a distributed fashion across the multi-cloud network by allowing a limited amount of information exchange between the coupled clouds. Simulation results show that the proposed distributed algorithm provides a similar performance to the centralized algorithm in a reasonable number of iterations.

  5. A distributed database view of network tracking systems

    Science.gov (United States)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  6. Safe Exploration for Identifying Linear Systems via Robust Optimization

    OpenAIRE

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  7. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  8. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  9. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  10. Robust Fallback Scheme for the Danish Automatic Voltage Control System

    DEFF Research Database (Denmark)

    Qin, Nan; Dmitrova, Evgenia; Lund, Torsten

    2015-01-01

    This paper proposes a fallback scheme for the Danish automatic voltage control system. It will be activated in case of the local station loses telecommunication to the control center and/or the local station voltage violates the acceptable operational limits. It cuts in/out switchable and tap...... power system....

  11. Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions

    Science.gov (United States)

    Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong

    2014-09-01

    In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.

  12. Robust Improvement in Estimation of a Covariance Matrix in an Elliptically Contoured Distribution Respect to Quadratic Loss Function

    Directory of Open Access Journals (Sweden)

    Z. Khodadadi

    2008-03-01

    Full Text Available Let S be matrix of residual sum of square in linear model Y = Aβ + e where matrix e is distributed as elliptically contoured with unknown scale matrix Σ. In present work, we consider the problem of estimating Σ with respect to squared loss function, L(Σˆ , Σ = tr(ΣΣˆ −1 −I 2 . It is shown that improvement of the estimators were obtained by James, Stein [7], Dey and Srivasan [1] under the normality assumption remains robust under an elliptically contoured distribution respect to squared loss function

  13. Robust tracking control of uncertain Duffing-Holmes control systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the notion of virtual stabilizability for dynamical systems is introduced and the virtual stabilizability of uncertain Duffing-Holmes control systems is investigated. Based on the time-domain approach with differential inequality, a tracking control is proposed such that the states of uncertain Duffing-Holmes control system track the desired trajectories with any pre-specified exponential decay rate and convergence radius. Moreover, we present an algorithm to find such a tracking control. Finally, a numerical example is provided to illustrate the use of the main results.

  14. Robust, Highly Scalable Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar array systems currently under development are focused on near-term missions with designs optimized for the 30-50 kW power range. However, NASA has a vital...

  15. Robust PID based power system stabiliser: Design and real-time implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bevrani, Hassan [Department of Electrical and Computer Eng., University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Hiyama, Takashi [Department of Electrical and Computer Eng., Kumamoto University, Kumamoto (Japan); Bevrani, Hossein [Department of Statistics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-02-15

    This paper addresses a new robust control strategy to synthesis of robust proportional-integral-derivative (PID) based power system stabilisers (PSS). The PID based PSS design problem is reduced to find an optimal gain vector via an H{infinity} static output feedback control (H{infinity}-SOF) technique, and the solution is easily carried out using a developed iterative linear matrix inequalities algorithm. To illustrate the developed approach, a real-time experiment has been performed for a longitudinal four-machine infinite-bus system using the Analog Power System Simulator at the Research Laboratory of the Kyushu Electric Power Company. The results of the proposed control strategy are compared with full-order H{infinity} and conventional PSS designs. The robust PSS is shown to maintain the robust performance and minimise the effect of disturbances properly. (author)

  16. Markov chain algorithms: a template for building future robust low-power systems

    Science.gov (United States)

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  17. Robust model predictive control for constrained continuous-time nonlinear systems

    Science.gov (United States)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  18. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    ) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection......Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  19. Modelling and validation of robust partial thawing of frozen convenience foods during distribution in the cold chain

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Zammit, Gine Ørnholt

    2011-01-01

    with small blocks of a frozen model food (23 pct. Tylose® gel) and quipped with temperature loggers were distributed by trucks operating in the cold chain. In addition, controlled storage and temperature abuse experiments were conducted. To predict the product temperature–time relationship we developed a new...... frozen even after two days or more of distribution at +5oC, and that the temperatures inside the product and in the middle of the box were quite stable against the normal oscillations of the ambient temperature in the cold chain. The product temperature was also robust against temperature abuse......In collaboration with two commercial distributors we have tested a new concept for distribution, where convenience products for the food service industry are prepared, frozen and packed in cardboard boxes, but distributed in the chill chain at +5°C instead of in the frost chain. This will lead...

  20. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A

    2013-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  1. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  2. A distributed scheduling algorithm for heterogeneous real-time systems

    Science.gov (United States)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  3. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

    Directory of Open Access Journals (Sweden)

    Huipeng Chen

    2018-02-01

    Full Text Available Incorporating linear-scanning micro-electro-mechanical systems (MEMS micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  4. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems.

    Science.gov (United States)

    Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-02-08

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  5. Distributed optimal coordination for distributed energy resources in power systems

    DEFF Research Database (Denmark)

    Wu, Di; Yang, Tao; Stoorvogel, A.

    2017-01-01

    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...

  6. Variable-Speed, Robust Synchronous Reluctance Machine Drive Systems

    DEFF Research Database (Denmark)

    Wang, Dong

    The synchronous reluctance machine drive is getting more and more interests from the industrial side, since it can provide higher system energy efficiency than traditional inverter-fed induction machine drive systems with similar production cost. It is considered as a good candidate for super...... is recommended. In recent years, there is an increasing trend to replace the electrolytic capacitor in the frequency converter with film capacitor, which has a longer expected service lifetime and no explosion risk. Furthermore, it is possible to achieve a compact converter design by using film capacitor, since...

  7. Robust Optimisation for Hydroelectric System Operation under Uncertainty

    OpenAIRE

    Apostolopoulou, D.; De Greve, Z.; McCulloch, M.

    2018-01-01

    In this paper, we propose an optimal dispatch scheme for a cascade hydroelectric power system that maximises the head levels of each dam, and minimises the spillage effects taking into account uncertainty in the net load variations, i.e., the difference between the load and the renewable resources, and inflows to the cascade. By maximising the head levels of each dam the volume of water stored, which is a metric of system resiliency, is maximised. In this regard, the operation of the cascade ...

  8. Optimal interdependence enhances the dynamical robustness of complex systems

    Science.gov (United States)

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  9. Small Aircraft Data Distribution System

    Science.gov (United States)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  10. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  11. Short-term robustness of production management systems

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; Gaury, E.G.A.

    1998-01-01

    Short-term performance of a production management system for make-to-stock factories may be quantified through the service rate per shift; long-term performance through the average monthly work in process (WIP). This may yield, for example, that WIP is minimized, while the probability of the service

  12. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  13. Metadata In, Library Out. A Simple, Robust Digital Library System

    Directory of Open Access Journals (Sweden)

    Tonio Loewald

    2010-06-01

    Full Text Available Tired of being held hostage to expensive systems that did not meet our needs, the University of Alabama Libraries developed an XML schema-agnostic, light-weight digital library delivery system based on the principles of "Keep It Simple, Stupid!" Metadata and derivatives reside in openly accessible web directories, which support the development of web agents and new usability software, as well as modification and complete retrieval at any time. The file name structure is echoed in the file system structure, enabling the delivery software to make inferences about relationships, sequencing, and complex object structure without having to encapsulate files in complex metadata schemas. The web delivery system, Acumen, is built of PHP, JSON, JavaScript and HTML5, using MySQL to support fielded searching. Recognizing that spreadsheets are more user-friendly than XML, an accompanying widget, Archivists Utility, transforms spreadsheets into MODS based on rules selected by the user. Acumen, Archivists Utility, and all supporting software scripts will be made available as open source.

  14. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  15. Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    2001-01-01

    Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.

  16. Frequency-Domain Robust Performance Condition for Controller Uncertainty in SISO LTI Systems: A Geometric Approach

    Directory of Open Access Journals (Sweden)

    Vahid Raissi Dehkordi

    2009-01-01

    Full Text Available This paper deals with the robust performance problem of a linear time-invariant control system in the presence of robust controller uncertainty. Assuming that plant uncertainty is modeled as an additive perturbation, a geometrical approach is followed in order to find a necessary and sufficient condition for robust performance in the form of a bound on the magnitude of controller uncertainty. This frequency domain bound is derived by converting the problem into an optimization problem, whose solution is shown to be more time-efficient than a conventional structured singular value calculation. The bound on controller uncertainty can be used in controller order reduction and implementation problems.

  17. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  18. Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems

    International Nuclear Information System (INIS)

    Jin, Maolin; Chang, Pyung Hun

    2009-01-01

    This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lue system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings. Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.

  19. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  20. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  1. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  2. Simple Algorithms to Calculate Asymptotic Null Distributions of Robust Tests in Case-Control Genetic Association Studies in R

    Directory of Open Access Journals (Sweden)

    Wing Kam Fung

    2010-02-01

    Full Text Available The case-control study is an important design for testing association between genetic markers and a disease. The Cochran-Armitage trend test (CATT is one of the most commonly used statistics for the analysis of case-control genetic association studies. The asymptotically optimal CATT can be used when the underlying genetic model (mode of inheritance is known. However, for most complex diseases, the underlying genetic models are unknown. Thus, tests robust to genetic model misspecification are preferable to the model-dependant CATT. Two robust tests, MAX3 and the genetic model selection (GMS, were recently proposed. Their asymptotic null distributions are often obtained by Monte-Carlo simulations, because they either have not been fully studied or involve multiple integrations. In this article, we study how components of each robust statistic are correlated, and find a linear dependence among the components. Using this new finding, we propose simple algorithms to calculate asymptotic null distributions for MAX3 and GMS, which greatly reduce the computing intensity. Furthermore, we have developed the R package Rassoc implementing the proposed algorithms to calculate the empirical and asymptotic p values for MAX3 and GMS as well as other commonly used tests in case-control association studies. For illustration, Rassoc is applied to the analysis of case-control data of 17 most significant SNPs reported in four genome-wide association studies.

  3. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  4. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  5. Robust Adaptive Sliding Mode Consensus of Multiagent Systems with Perturbed Communications and Actuators

    Directory of Open Access Journals (Sweden)

    Xiao-Zheng Jin

    2013-01-01

    Full Text Available This paper deals with the asymptotic consensus problem for a class of multiagent systems with time-varying additive actuator faults and perturbed communications. The L2 performance of systems is also considered in the consensus controller designs. The upper and lower bounds of faults and perturbations in actuators and communications and controller gains are assumed to be unknown but can be estimated by designing some indirect adaptive laws. Based on the information from the adaptive estimation mechanism, the distributed robust adaptive sliding mode controllers are constructed to automatically compensate for the effects of faults and perturbations and to achieve any given level of L2 gain attenuation from external disturbance to consensus errors. Through Lyapunov functions and adaptive schemes, the asymptotic consensus of resulting adaptive multiagent system can be achieved with a specified performance criterion in the presence of perturbed communications and actuators. The effectiveness of the proposed design is illustrated via a decoupled longitudinal model of F-18 aircraft.

  6. A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective

    Directory of Open Access Journals (Sweden)

    John M. Anderies

    2004-06-01

    Full Text Available What makes social-ecological systems (SESs robust? In this paper, we look at the institutional configurations that affect the interactions among resources, resource users, public infrastructure providers, and public infrastructures. We propose a framework that helps identify potential vulnerabilities of SESs to disturbances. All the links between components of this framework can fail and thereby reduce the robustness of the system. We posit that the link between resource users and public infrastructure providers is a key variable affecting the robustness of SESs that has frequently been ignored in the past. We illustrate the problems caused by a disruption in this link. We then briefly describe the design principles originally developed for robust common-pool resource institutions, because they appear to be a good starting point for the development of design principles for more general SESs and do include the link between resource users and public infrastructure providers.

  7. Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Feten Gannouni

    2017-01-01

    Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.

  8. A Robust Threshold for Iterative Channel Estimation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    A. Kalaycioglu

    2010-04-01

    Full Text Available A novel threshold computation method for pilot symbol assisted iterative channel estimation in OFDM systems is considered. As the bits are transmitted in packets, the proposed technique is based on calculating a particular threshold for each data packet in order to select the reliable decoder output symbols to improve the channel estimation performance. Iteratively, additional pilot symbols are established according to the threshold and the channel is re-estimated with the new pilots inserted to the known channel estimation pilot set. The proposed threshold calculation method for selecting additional pilots performs better than non-iterative channel estimation, no threshold and fixed threshold techniques in poor HF channel simulations.

  9. Video distribution system cost model

    Science.gov (United States)

    Gershkoff, I.; Haspert, J. K.; Morgenstern, B.

    1980-01-01

    A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.

  10. Creating a robust and integrated electrical transmission system

    International Nuclear Information System (INIS)

    McLain, S.

    2004-01-01

    The service territory for Puget Sound Energy (PSE) was presented in terms of electric power and gas transmission. Issues affecting the Puget Sound area include high growth and the west coast energy crisis which has had an adverse financial impact on the power industry. The transmission system is basically at capacity and has been impacted by imports and exports between the United States and Canada. Other issues include the separation between energy resources and transmission, modernizing the power grid, and challenges for independent power producers (IPPs). The Northwest Transmission Assessment Committee (NTAC), which was formed under the Northwest Power Pool, has the potential to bring interested parties to study constrained paths and to plan a single utility concept for the region. It is expected that new challenges such as financing and risk management will emerge once the technical solutions are identified and agreed upon. The issue of enforceable and mandatory reliability standards was also discussed. 1 fig

  11. Robust anonymous authentication scheme for telecare medical information systems.

    Science.gov (United States)

    Xie, Qi; Zhang, Jun; Dong, Na

    2013-04-01

    Patient can obtain sorts of health-care delivery services via Telecare Medical Information Systems (TMIS). Authentication, security, patient's privacy protection and data confidentiality are important for patient or doctor accessing to Electronic Medical Records (EMR). In 2012, Chen et al. showed that Khan et al.'s dynamic ID-based authentication scheme has some weaknesses and proposed an improved scheme, and they claimed that their scheme is more suitable for TMIS. However, we show that Chen et al.'s scheme also has some weaknesses. In particular, Chen et al.'s scheme does not provide user's privacy protection and perfect forward secrecy, is vulnerable to off-line password guessing attack and impersonation attack once user's smart card is compromised. Further, we propose a secure anonymity authentication scheme to overcome their weaknesses even an adversary can know all information stored in smart card.

  12. Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu; Yusong Sun; Yuanzhang Sun [Tsinghua University, Beijing (China). Dept. of Electrical Engineering; Felix F Wu; Yixin Ni [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering; Yokoyama, Akihiko [University of Tokyo (Japan). Dept. of Electrical Engineering; Goto, Masuo; Konishi, Hiroo [Hitachi Ltd., Tokyo (Japan). Power System Div.

    2004-06-01

    A novel nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems is suggested in this paper. The nonelastic water hammer effect and disturbances are considered in the modeling. The advanced differential geometry theory, nonlinear robust control theory and the dynamic feedback method are combined to solve the problem. The nonlinear decentralized robust control law for the speed governor of hydroturbine-generators has been derived. The input signals to the proposed controller are all local measurements and independent to the system parameters. The derived control law guarantees the integrated system stability with disturbance attenuation, which is significant to the real power system application. Computer tests on an 8-machine, 36-bus power system show clearly the effectiveness of the new control strategy in transient stability enhancement and disturbance attenuation. The computer test results based on the suggested controller are compared favorably with those based on the conventional linear governor control. (author)

  13. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  14. A robust model predictive control strategy for improving the control performance of air-conditioning systems

    International Nuclear Information System (INIS)

    Huang Gongsheng; Wang Shengwei; Xu Xinhua

    2009-01-01

    This paper presents a robust model predictive control strategy for improving the supply air temperature control of air-handling units by dealing with the associated uncertainties and constraints directly. This strategy uses a first-order plus time-delay model with uncertain time-delay and system gain to describe air-conditioning process of an air-handling unit usually operating at various weather conditions. The uncertainties of the time-delay and system gain, which imply the nonlinearities and the variable dynamic characteristics, are formulated using an uncertainty polytope. Based on this uncertainty formulation, an offline LMI-based robust model predictive control algorithm is employed to design a robust controller for air-handling units which can guarantee a good robustness subject to uncertainties and constraints. The proposed robust strategy is evaluated in a dynamic simulation environment of a variable air volume air-conditioning system in various operation conditions by comparing with a conventional PI control strategy. The robustness analysis of both strategies under different weather conditions is also presented.

  15. The Unidata LDM Data Distribution System

    Science.gov (United States)

    Emmerson, S.; Yoksas, T. C.; Weber, W. J.; Schmidt, M.

    2010-12-01

    The Unidata LDM is a near real-time, event-driven system for transmitting frequently-generated data-products, 24/7, from a producer to multiple subscribers using the Internet. Once received, a data-product is processed according to user specifications. A data-product can be anything up to 4 gigabytes in size. Downstream LDM-s register a regular expression based selection predicate with upstream LDM-s. Network topologies include point-to-point, star, and tree. Based on ONC RPC, the LDM system is extremely robust and efficient. Since its initial release in 1994, a network of LDM-s called the Internet Data Distribution (IDD) system has been the primary means by which many if not most Earth Sciences departments in the US obtain and process meteorological data (up to 20 GB/hour and 250k products/hour) with latencies measured in seconds or less. Data-products include numerical model output, radar data, WMO bulletins, and lightning data. Users of the LDM also include the international atmospheric science university community, NOAA, NASA, USGS, the US military, ECMWF, and the meteorological agencies of China, Australia, Brazil, South Korea, and Vietnam. The LDM is the highest volume advanced application on Internet-2 (currently averaging 27 terabytes per week). The LDM history and architecture is presented together with an analysis of its strengths and weaknesses.

  16. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  17. Reconstruction of financial networks for robust estimation of systemic risk

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-01-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks

  18. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  19. Distribution system protection with communication technologies

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the communication technologies’ involvement in the distribution power system, the time-critical protection function may be implemented more accurately, therefore distribution power systems’ stability, reliability and security could be improved. This paper presents an active distribution...

  20. Optimal strategy analysis based on robust predictive control for inventory system with random demand

    Science.gov (United States)

    Saputra, Aditya; Widowati, Sutrisno

    2017-12-01

    In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.

  1. Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydroturbine Governing System

    Directory of Open Access Journals (Sweden)

    Fengjiao Wu

    2016-01-01

    Full Text Available The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the designed controller has good robustness which could resist external random disturbances. Numerical simulations are employed to verify the effectiveness and superiority of the designed finite-time sliding mode control scheme. The approach proposed in this paper is simple and also provides a reference for relevant hydropower systems.

  2. Optimal robust control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  3. Alignment Condition-Based Robust Adaptive Iterative Learning Control of Uncertain Robot System

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available This paper proposes an adaptive iterative learning control strategy integrated with saturation-based robust control for uncertain robot system in presence of modelling uncertainties, unknown parameter, and external disturbance under alignment condition. An important merit is that it achieves adaptive switching of gain matrix both in conventional PD-type feedforward control and robust adaptive control in the iteration domain simultaneously. The analysis of convergence of proposed control law is based on Lyapunov's direct method under alignment initial condition. Simulation results demonstrate the faster learning rate and better robust performance with proposed algorithm by comparing with other existing robust controllers. The actual experiment on three-DOF robot manipulator shows its better practical effectiveness.

  4. Gap-metric-based robustness analysis of nonlinear systems with full and partial feedback linearisation

    Science.gov (United States)

    Al-Gburi, A.; Freeman, C. T.; French, M. C.

    2018-06-01

    This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.

  5. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen

    2012-09-01

    In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  6. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  7. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    Directory of Open Access Journals (Sweden)

    Fengjiao Wu

    2016-01-01

    Full Text Available The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the validity and superiority are proved by the numerical simulations.

  8. Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature

  9. Robust Power Supply Restoration for Self-Healing Active Distribution Networks Considering the Availability of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2018-01-01

    Full Text Available The increasing penetration of distributed generations (DGs with intermittent and stochastic characteristics into current power distribution networks can lead to increased fault levels and degradation in network protection. As one of the key requirements of active network management (ANM, efficient power supply restoration solution to guarantee network self-healing capability with full consideration of DG uncertainties is demanded. This paper presents a joint power supply restoration through combining the DG local restoration and switcher operation-based restoration to enhance the self-healing capability in active distribution networks considering the availability of distributed generation. The restoration algorithmic solution is designed to be able to carry out power restoration in parallel upon multiple simultaneous faults to maximize the load restoration while additionally minimizing power loss, topology variation and power flow changes due to switcher operations. The performance of the proposed solution is validated based on a 53-bus distribution network with wind power generators through extensive simulation experiments for a range of fault cases and DG scenarios generated based on Heuristic Moment Matching (HMM method to fully consider the DG randomness. The numerical result in comparison with the existing solutions demonstrates the effectiveness of the proposed power supply restoration solution.

  10. Loss Allocation in a Distribution System with Distributed Generation Units

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar

    2007-01-01

    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...

  11. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  12. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  13. Design of Distributed Engine Control Systems with Uncertain Delay.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  14. Design of Distributed Engine Control Systems with Uncertain Delay.

    Science.gov (United States)

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  15. Quantum distribution function of nonequilibrium system

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1990-03-01

    A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)

  16. Robust control of a class of chaotic and hyperchaotic driven systems

    Indian Academy of Sciences (India)

    2016-12-05

    Dec 5, 2016 ... are recently devoted to generate chaos and hyper- chaos dynamics by proposing new PWL systems [6,7]. However, very few results are published on chaos synchronization for such complex systems [8–10]. Over the past ten years, robust chaos synchroniza- tion via state feedback control has been widely ...

  17. Architecture for self-organizing, co-operative and robust building automation systems

    NARCIS (Netherlands)

    Bernier, F.; Ploennigs, J.; Pesch, D.; Lesecq, S.; Basten, T.; Boubekeur, M.; Denteneer, T.J.J.; Oltmanns, F.; Lehmann, M.; Mai, Linh Tuan; Mc Gibney, A.; Rea, S.; Pacull, F.; Guyon-Gardeux, C.; Ducreux, L.F.; Thior, S.; Hendriks, M.; Verriet, J.H.; Fedor, S.

    2013-01-01

    This paper provides an overview of the architecture for self-organizing, co-operative and robust Building Automation Systems (BAS) proposed by the EC funded FP7 SCUBA1 project. We describe the current situation in monitoring and control systems and outline the typical stakeholders involved in the

  18. Architecture for self-organizing, co-operative and robust Building Automation Systems

    NARCIS (Netherlands)

    Bernier, F.; Ploennigs, J.; Pesch, D.; Lesecq, S.; Basten, T.; Boubekeur, M.; Denteneer, D.; Oltmanns, F.; Bonnard, F.; Lehmann, M.; Mai, T.L.; McGibney, A.; Rea, S.; Pacull, F.; Guyon-Gardeux, C.; Ducreux, L.F.; Thior, S.; Hendriks, M.; Verriet, J.; Fedor, S.

    2013-01-01

    This paper provides an overview of the architecture for self-organizing, co-operative and robust Building Automation Systems (BAS) proposed by the EC funded FP7 SCUBA1 project. We describe the current situation in monitoring and control systems and outline the typical stakeholders involved in the

  19. The Planetary Data System Distributed Inventory System

    Science.gov (United States)

    Hughes, J. Steven; McMahon, Susan K.

    1996-01-01

    The advent of the World Wide Web (Web) and the ability to easily put data repositories on-line has resulted in a proliferation of digital libraries. The heterogeneity of the underlying systems, the autonomy of the individual sites, and distributed nature of the technology has made both interoperability across the sites and the search for resources within a site major research topics. This article will describe a system that addresses both issues using standard Web protocols and meta-data labels to implement an inventory of on-line resources across a group of sites. The success of this system is strongly dependent on the existence of and adherence to a standards architecture that guides the management of meta-data within participating sites.

  20. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  1. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  2. A Parametric Learning and Identification Based Robust Iterative Learning Control for Time Varying Delay Systems

    Directory of Open Access Journals (Sweden)

    Lun Zhai

    2014-01-01

    Full Text Available A parametric learning based robust iterative learning control (ILC scheme is applied to the time varying delay multiple-input and multiple-output (MIMO linear systems. The convergence conditions are derived by using the H∞ and linear matrix inequality (LMI approaches, and the convergence speed is analyzed as well. A practical identification strategy is applied to optimize the learning laws and to improve the robustness and performance of the control system. Numerical simulations are illustrated to validate the above concepts.

  3. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima

    2018-02-13

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  4. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  5. Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

    KAUST Repository

    N U+02BC Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2018-01-01

    In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.

  6. A Novel Robust Communication Algorithm for Distributed Secondary Control of Islanded MicroGrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2013-01-01

    Distributed secondary control (DSC) is a new approach for MicroGrids (MGs) such that frequency, voltage and power regulation is made in each unit locally to avoid using a central controller. Due to the constrained traffic pattern required by the secondary control, it is viable to implement...

  7. Robust H2/H∞ Control for the Electrohydraulic Steering System of a Four-Wheel Vehicle

    Directory of Open Access Journals (Sweden)

    Min Ye

    2014-01-01

    Full Text Available To shorten the steer diameter and to improve the maneuverability flexibility of a construction vehicle, four wheels’ steering system is presented. This steering system consists of mechanical-electrical-hydraulic assemblies. Its diagram and principle are depicted in detail. Then the mathematical models are derived step by step, including the whole vehicle model and the hydraulic route model. Considering the nonlinear and time-varying uncertainty of the steering system, robust H2/H∞ controller is put forward to guarantee both the system performance and the robust stability. The H∞ norm of the sensitive function from the parameter perturbation of the hydraulic system to the yaw velocity of the vehicle is taken as the evaluating index of the robustness and the H2 norm of the transfer function from the external disturbance to the steering angle of the wheel as the index of linear quadratic Gaussian. The experimental results showed that the proposed scheme was superior to classical PID controller and can guarantee both the control performance and the robustness of the steering system.

  8. Robust Backstepping Control for Cold Rolling Main Drive System with Nonlinear Uncertainties

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-01-01

    Full Text Available The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of strip material quality, is built. By transformation, the lower triangular structure form of main drive system is obtained. The backstepping algorithm based on signal compensation is proposed to design a linear time-invariant (LTI robust controller, including a nominal controller and a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is also appropriated to high speed dynamic rolling process.

  9. The Impact of Connecting Distributed Generation to the Distribution System

    Directory of Open Access Journals (Sweden)

    E. V. Mgaya

    2007-01-01

    Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could  improve the effective capacity of the system

  10. Control and operation of distributed generation in distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    Many distribution systems nowadays have significant penetration of distributed generation (DG)and thus, islanding operation of these distribution systems is becoming a viable option for economical and technical reasons. The DG should operate optimally during both grid-connected and island...... algorithm, which uses average rate of change off requency (Af5) and real power shift RPS), in the islanded mode. RPS will increase or decrease the power set point of the generator with increasing or decreasing system frequency, respectively. Simulation results show that the proposed method can operate...

  11. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  12. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique

    International Nuclear Information System (INIS)

    Peng, Y.-F.

    2009-01-01

    The cerebellar model articulation controller (CMAC) is a non-linear adaptive system with built-in simple computation, good generalization capability and fast learning property. In this paper, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive CMAC and H ∞ control technique is proposed for a class of chaotic systems with unknown system dynamics and external disturbance. In the proposed control system, an adaptive backstepping cerebellar model articulation controller (ABCMAC) is used to mimic an ideal backstepping control (IBC), and a robust H ∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H ∞ control theory, so that the stability of the closed-loop system and H ∞ tracking performance can be guaranteed. Finally, three application examples, including a Duffing-Holmes chaotic system, a Genesio chaotic system and a Sprott circuit system, are used to demonstrate the effectiveness and performance of proposed robust control technique.

  13. Robust Fuzzy Control for Fractional-Order Uncertain Hydroturbine Regulating System with Random Disturbances

    OpenAIRE

    Fengjiao Wu; Guitao Zhang; Zhengzhong Wang

    2016-01-01

    The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. ...

  14. Islanding Operation of Distribution System with Distributed Generations

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    The growing interest in distributed generations (DGs) due to environmental concern and various other reasons have resulted in significant penetration of DGs in many distribution system worldwide. DGs come with many benefits. One of the benefits is improved reliability by supplying load during power...

  15. Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light.

    Science.gov (United States)

    Ikuta, Rikizo; Nozaki, Shota; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2017-07-06

    Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.

  16. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    Science.gov (United States)

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to

  17. Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems

    International Nuclear Information System (INIS)

    Peng Yafu

    2009-01-01

    In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua's chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system

  18. PROCESS CAPABILITY ESTIMATION FOR NON-NORMALLY DISTRIBUTED DATA USING ROBUST METHODS - A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Yerriswamy Wooluru

    2016-06-01

    Full Text Available Process capability indices are very important process quality assessment tools in automotive industries. The common process capability indices (PCIs Cp, Cpk, Cpm are widely used in practice. The use of these PCIs based on the assumption that process is in control and its output is normally distributed. In practice, normality is not always fulfilled. Indices developed based on normality assumption are very sensitive to non- normal processes. When distribution of a product quality characteristic is non-normal, Cp and Cpk indices calculated using conventional methods often lead to erroneous interpretation of process capability. In the literature, various methods have been proposed for surrogate process capability indices under non normality but few literature sources offer their comprehensive evaluation and comparison of their ability to capture true capability in non-normal situation. In this paper, five methods have been reviewed and capability evaluation is carried out for the data pertaining to resistivity of silicon wafer. The final results revealed that the Burr based percentile method is better than Clements method. Modelling of non-normal data and Box-Cox transformation method using statistical software (Minitab 14 provides reasonably good result as they are very promising methods for non - normal and moderately skewed data (Skewness <= 1.5.

  19. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  20. Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    Science.gov (United States)

    Lin, Tsui-Tsai

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  1. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  2. Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems

    KAUST Repository

    Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yikchung

    2012-01-01

    In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial

  3. Robust client/server shared state interactions of collaborative process with system crash and network failures

    NARCIS (Netherlands)

    Wang, Lei; Wombacher, Andreas; Ferreira Pires, Luis; van Sinderen, Marten J.; Chi, Chihung

    With the possibility of system crashes and network failures, the design of robust client/server interactions for collaborative process execution is a challenge. If a business process changes state, it sends messages to relevant processes to inform about this change. However, server crashes and

  4. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    Science.gov (United States)

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  5. A Modified LQG Algorithm (MLQG for Robust Control of Nonlinear Multivariable Systems

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1993-07-01

    Full Text Available The original LQG algorithm is often characterized for its lack of robustness. This is because in the design of the estimator (Kalman filter the process disturbance is assumed to be white noise. If the estimator is to give good estimates, the Kalman gain is increased which means that the estimator fails to become robust. A solution to this problem is to replace the proportional Kalman gain matrix by a dynamic PI algorithm and the proportional LQ feedback gain matrix by a PI algorithm. A tuning method is developed which facilitates the tuning of a modified LQG control system (MLQG by only two tuning parameters.

  6. Robust Inventory System Optimization Based on Simulation and Multiple Criteria Decision Making

    Directory of Open Access Journals (Sweden)

    Ahmad Mortazavi

    2014-01-01

    Full Text Available Inventory management in retailers is difficult and complex decision making process which is related to the conflict criteria, also existence of cyclic changes and trend in demand is inevitable in many industries. In this paper, simulation modeling is considered as efficient tool for modeling of retailer multiproduct inventory system. For simulation model optimization, a novel multicriteria and robust surrogate model is designed based on multiple attribute decision making (MADM method, design of experiments (DOE, and principal component analysis (PCA. This approach as a main contribution of this paper, provides a framework for robust multiple criteria decision making under uncertainty.

  7. Quasipolynomial Approach to Simultaneous Robust Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Nikolaj Semenič

    2014-01-01

    Full Text Available A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.

  8. Event-triggered decentralized robust model predictive control for constrained large-scale interconnected systems

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2016-12-01

    Full Text Available This paper considers the problem of event-triggered decentralized model predictive control (MPC for constrained large-scale linear systems subject to additive bounded disturbances. The constraint tightening method is utilized to formulate the MPC optimization problem. The local predictive control law for each subsystem is determined aperiodically by relevant triggering rule which allows a considerable reduction of the computational load. And then, the robust feasibility and closed-loop stability are proved and it is shown that every subsystem state will be driven into a robust invariant set. Finally, the effectiveness of the proposed approach is illustrated via numerical simulations.

  9. System robustness analysis in support of flood and drought risk management

    CERN Document Server

    Mens, MJP

    2015-01-01

    Floods and droughts have an increasing impact on societies worldwide. It is unlikely that the provision of flood protection infrastructure and reservoirs will eliminate this problem, especially as extreme events are expected to increase in probability and magnitude as a result of climate change. For this reason, the focus of water management has shifted to a risk-based approach in recent years; but this also has its limitations.This book examines system robustness as a new perspective on flood and drought risk management. The concept of robustness is familiar from other areas, such as engineer

  10. Synthesis of Robust Control System Using Double-Mass Electro-Mechanical

    Directory of Open Access Journals (Sweden)

    O. F. Opeyko

    2009-01-01

    Full Text Available The paper describes conditions under which a single-mass model can be applied for system synthesis where elastic vibrations take place. This measure makes it possible to ensure the required indices of system quality without its structure complication. A small-parameter method is applied in the paper. A ratio of the required characteristic frequency of the synthesized system to own frequency of free vibrations of an elastic member is taken as a small parameter.The synthesized system is a robust (low-sensitive to changes of the object parameters one. Results of mathematical modeling prove the possibility to ensure acceptable indices of quality and robustness of the synthesized system

  11. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  12. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  13. Towards Robust Predictive Fault–Tolerant Control for a Battery Assembly System

    Directory of Open Access Journals (Sweden)

    Seybold Lothar

    2015-12-01

    Full Text Available The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany. To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.

  14. A new approach to control of xenon spatial oscillation during load follow operation via robust servo systems

    International Nuclear Information System (INIS)

    Ukai, Hiroyuki; Iwazumi, Tetsuo

    1994-01-01

    The control problem of xenon-induced spatial oscillations of PWR in the axial direction during a load following operation is investigated. The system models are described by a one-group diffusion equation with xenon and temperature feed-backs, iodine and xenon dynamic equations, and heat conductions processes. Control is implemented by the full-length and the part-length control rods and the boron concentration. In order to achieve the control purpose, control models are formulated as the design problem of robust servo systems for distributed parameter reactor systems. The total thermal power and the axial offset are chosen as outputs to be controlled. The control systems consist of servo compensators and stabilizing compensators. They are designed based on the finite-dimensional systems which are constructed by linearizing around steady states, approximately by the Galerkin method, and reducing dimensions via the singular perturbation method. A new and simple computational algorithm to obtain an approximate solution of a steady-state neutron balance is developed via the perturbation method. Some results of numerical simulations are shown in order to discuss the effectiveness of the theory developed in this paper. In particular, it is shown that the designed servo systems are robust against model errors with linearization and modal truncation

  15. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  16. Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems

    KAUST Repository

    Xing, Chengwen

    2012-04-01

    In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.

  17. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.

    Science.gov (United States)

    Salceanu, Paul L

    2011-07-01

    This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence ina class of dissipative discrete-time dynamical systems on the positive orthant of R(m), generated by maps. Here a united approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of R(m+) to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.

  18. A Robust H ∞ Controller for an UAV Flight Control System.

    Science.gov (United States)

    López, J; Dormido, R; Dormido, S; Gómez, J P

    2015-01-01

    The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  19. Meta-algorithmics patterns for robust, low cost, high quality systems

    CERN Document Server

    Simske, Steven J

    2013-01-01

    The confluence of cloud computing, parallelism and advanced machine intelligence approaches has created a world in which the optimum knowledge system will usually be architected from the combination of two or more knowledge-generating systems. There is a need, then, to provide a reusable, broadly-applicable set of design patterns to empower the intelligent system architect to take advantage of this opportunity. This book explains how to design and build intelligent systems that are optimized for changing system requirements (adaptability), optimized for changing system input (robustness), an

  20. Validation of a Robust Neural Real-Time Voltage Estimator for Active Distribution Grids on Field Data

    DEFF Research Database (Denmark)

    Pertl, Michael; Douglass, Philip James; Heussen, Kai

    2018-01-01

    network approach for voltage estimation in active distribution grids by means of measured data from two feeders of a real low voltage distribution grid. The approach enables a real-time voltage estimation at locations in the distribution grid, where otherwise only non-real-time measurements are available......The installation of measurements in distribution grids enables the development of data driven methods for the power system. However, these methods have to be validated in order to understand the limitations and capabilities for their use. This paper presents a systematic validation of a neural...

  1. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  2. Review on Islanding Operation of Distribution System with Distributed Generation

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    The growing environmental concern and various benefits of distributed generation (DG) have resulted in significant penetration of DG in many distribution systems worldwide. One of the major expected benefits of DG is the improvement in the reliability of power supply by supplying load during power...... outage by operating in an island mode. However, there are many challenges to overcome before islanding operation of a distribution system with DG can become a viable solution in future. This paper reviews some of the major challenges with islanding operation and explores some possible solutions...

  3. Robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A.

    2012-01-01

    Highlights: ► Robust stability analysis for Markovian jumping interval neural networks is considered. ► Both linear fractional and interval uncertainties are considered. ► A new LKF is constructed with triple integral terms. ► MATLAB LMI control toolbox is used to validate theoretical results. ► Numerical examples are given to illustrate the effectiveness of the proposed method. - Abstract: This paper investigates robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays. The parameter uncertainties are assumed to be bounded in given compact sets. The delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional (LKF), some inequality techniques and stochastic stability theory, new delay-dependent stability criteria have been obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the less conservative and effectiveness of our theoretical results.

  4. Distributed radiation protection console system

    International Nuclear Information System (INIS)

    Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket

    2004-01-01

    Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the

  5. Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids

    Science.gov (United States)

    Efimov, Denis; Schiffer, Johannes; Ortega, Romeo

    2016-05-01

    Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.

  6. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach.

    Science.gov (United States)

    Yang, Jun; Zolotas, Argyrios; Chen, Wen-Hua; Michail, Konstantinos; Li, Shihua

    2011-07-01

    Robust control of a class of uncertain systems that have disturbances and uncertainties not satisfying "matching" condition is investigated in this paper via a disturbance observer based control (DOBC) approach. In the context of this paper, "matched" disturbances/uncertainties stand for the disturbances/uncertainties entering the system through the same channels as control inputs. By properly designing a disturbance compensation gain, a novel composite controller is proposed to counteract the "mismatched" lumped disturbances from the output channels. The proposed method significantly extends the applicability of the DOBC methods. Rigorous stability analysis of the closed-loop system with the proposed method is established under mild assumptions. The proposed method is applied to a nonlinear MAGnetic LEViation (MAGLEV) suspension system. Simulation shows that compared to the widely used integral control method, the proposed method provides significantly improved disturbance rejection and robustness against load variation. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Robust multi-model predictive control of multi-zone thermal plate system

    Directory of Open Access Journals (Sweden)

    Poom Jatunitanon

    2018-02-01

    Full Text Available A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. The mathematical model used in the design was determined through a system identification process. The results showed that when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a system designed to work over a wide range of operating conditions.

  8. Linear systems with unstructured multiplicative uncertainty: Modeling and robust stability analysis.

    Directory of Open Access Journals (Sweden)

    Radek Matušů

    Full Text Available This article deals with continuous-time Linear Time-Invariant (LTI Single-Input Single-Output (SISO systems affected by unstructured multiplicative uncertainty. More specifically, its aim is to present an approach to the construction of uncertain models based on the appropriate selection of a nominal system and a weight function and to apply the fundamentals of robust stability investigation for considered sort of systems. The initial theoretical parts are followed by three extensive illustrative examples in which the first order time-delay, second order and third order plants with parametric uncertainty are modeled as systems with unstructured multiplicative uncertainty and subsequently, the robust stability of selected feedback loops containing constructed models and chosen controllers is analyzed and obtained results are discussed.

  9. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  10. Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants.

    Science.gov (United States)

    Mirbozorgi, S Abdollah; Yeon, Pyungwoo; Ghovanloo, Maysam

    2017-06-01

    This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.

  11. Robust anti-windup control for marine cyber-physical systems

    Directory of Open Access Journals (Sweden)

    Kakanov Mikhail

    2018-01-01

    Full Text Available In this paper the robust output control with anti-windup compensation and its implementation to the robotic boat are addressed. The detailed control design and stability analysis of the closed-loop systems are provided in the work. Extensive experimental verification of the dynamic positioning system based on various modifications of the basic controller is carried out by means of robotic boat. The corresponding experimental results are presented and analysed.

  12. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  13. Control and Operation of Islanded Distribution System

    DEFF Research Database (Denmark)

    Mahat, Pukar

    deviation and real power shift. When a distribution system, with all its generators operating at maximum power, is islanded, the frequency will go down if the total load is more than the total generation. An under-frequency load shedding procedure for islanded distribution systems with DG unit(s) based...... states. Short circuit power also changes when some of the generators in the distribution system are disconnected. This may result in elongation of fault clearing time and hence disconnection of equipments (including generators) in the distribution system or unnecessary operation of protective devices...... operational challenges. But, on the other hand, it has also opened up some opportunities. One opportunity/challenge is an islanded operation of a distribution system with DG unit(s). Islanding is a situation in which a distribution system becomes electrically isolated from the remainder of the power system...

  14. Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers

    Directory of Open Access Journals (Sweden)

    Mohammadtaghi Hamidi Beheshti

    2010-01-01

    Full Text Available We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems with interval uncertainty whereas one does not need to change the poles of the closed-loop system in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear Time Invariant (FO-LTI systems. To determine the control parameters, one needs only a little knowledge about the plant and therefore, the proposed controller is a suitable choice in the control of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical simulations are presented to show the effectiveness of the proposed controller.

  15. DIAMONDS: Engineering Distributed Object Systems

    National Research Council Canada - National Science Library

    Cheng, Evan

    1997-01-01

    This report describes DIAMONDS, a research project at Syracuse University, that is dedicated to producing both a methodology and corresponding tools to assist in the development of heterogeneous distributed software...

  16. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  17. A robust mixed H2/H∞ based LFC of a deregulated power system including SMES

    International Nuclear Information System (INIS)

    Shayeghi, H.; Jalili, A.; Shayanfar, H.A.

    2008-01-01

    This paper presents a new robust decentralized controller based on mixed H 2 /H ∞ control technique for the solution of load frequency control (LFC) problem including superconducting magnetic energy storage (SMES) in a deregulated electricity environment. To achieve decentralization, in each control area, the connections between this area and the rest of the system and the effects of possible contracts are treated as a set of new disturbance signals. In order to minimize effects of load disturbances and to achieve desired level of robust performance in the presence of modeling uncertainties and practical constraints on control action the idea of mixed H 2 /H ∞ control technique is being used for the solution of LFC problem. This newly developed design strategy combines advantage of H 2 and H ∞ control syntheses and gives a powerful multi-objectives design addressed by the linear matrix inequalities (LMI) technique. To demonstrate the effectiveness of the proposed method a four-area restructured power system is considered as a test system under different operating conditions. The simulation results with the proposed controller are shown to maintain robust performance in the presence of SMES unit in two areas at power system and without SMES unit in any of the areas. Analysis reveals that the proposed control strategy with considering SMES unit improves significantly the dynamical performances of system such as settling time and overshoot against parametric uncertainties for a wide range of area load demands and disturbances in either of the areas even in the presence of system nonlinearities

  18. Module-based analysis of robustness tradeoffs in the heat shock response system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kurata

    2006-07-01

    Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

  19. The ATLAS distributed analysis system

    OpenAIRE

    Legger, F.

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...

  20. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  1. Robust filtering and prediction for systems with embedded finite-state Markov-Chain dynamics

    International Nuclear Information System (INIS)

    Pate, E.B.

    1986-01-01

    This research developed new methodologies for the design of robust near-optimal filters/predictors for a class of system models that exhibit embedded finite-state Markov-chain dynamics. These methodologies are developed through the concepts and methods of stochastic model building (including time-series analysis), game theory, decision theory, and filtering/prediction for linear dynamic systems. The methodology is based on the relationship between the robustness of a class of time-series models and quantization which is applied to the time series as part of the model identification process. This relationship is exploited by utilizing the concept of an equivalence, through invariance of spectra, between the class of Markov-chain models and the class of autoregressive moving average (ARMA) models. This spectral equivalence permits a straightforward implementation of the desirable robust properties of the Markov-chain approximation in a class of models which may be applied in linear-recursive form in a linear Kalman filter/predictor structure. The linear filter/predictor structure is shown to provide asymptotically optimal estimates of states which represent one or more integrations of the Markov-chain state. The development of a new saddle-point theorem for a game based on the Markov-chain model structure gives rise to a technique for determining a worst case Markov-chain process, upon which a robust filter/predictor design if based

  2. A new look at the robust control of discrete-time Markov jump linear systems

    Science.gov (United States)

    Todorov, M. G.; Fragoso, M. D.

    2016-03-01

    In this paper, we make a foray in the role played by a set of four operators on the study of robust H2 and mixed H2/H∞ control problems for discrete-time Markov jump linear systems. These operators appear in the study of mean square stability for this class of systems. By means of new linear matrix inequality (LMI) characterisations of controllers, which include slack variables that, to some extent, separate the robustness and performance objectives, we introduce four alternative approaches to the design of controllers which are robustly stabilising and at the same time provide a guaranteed level of H2 performance. Since each operator provides a different degree of conservatism, the results are unified in the form of an iterative LMI technique for designing robust H2 controllers, whose convergence is attained in a finite number of steps. The method yields a new way of computing mixed H2/H∞ controllers, whose conservatism decreases with iteration. Two numerical examples illustrate the applicability of the proposed results for the control of a small unmanned aerial vehicle, and for an underactuated robotic arm.

  3. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  4. Self-organization principles result in robust control of flexible manufacturing systems

    DEFF Research Database (Denmark)

    Nature shows us in our daily life how robust, flexible and optimal self-organized modular constructions work in complex physical, chemical and biological systems, which successfully adapt to new and unexpected situations. A promising strategy is therefore to use such self-organization and pattern...... problems with several autonomous robots and several targets are considered as model of flexible manufacturing systems. Each manufacturing target has to be served in a given time interval by one and only one robot and the total working costs have to be minimized (or total winnings maximized). A specifically...... constructed dynamical system approach (coupled selection equations) is used which is based on pattern formation principles and results in fault resistant and robust behaviour. An important feature is that this type of control also guarantees feasiblitiy of the assignment solutions. In previous work...

  5. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    Science.gov (United States)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  6. Robust approximation-free prescribed performance control for nonlinear systems and its application

    Science.gov (United States)

    Sun, Ruisheng; Na, Jing; Zhu, Bin

    2018-02-01

    This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.

  7. On Distributed Port-Hamiltonian Process Systems

    NARCIS (Netherlands)

    Lopezlena, Ricardo; Scherpen, Jacquelien M.A.

    2004-01-01

    In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the

  8. Distributed Cognition and Distributed Morality: Agency, Artifacts and Systems.

    Science.gov (United States)

    Heersmink, Richard

    2017-04-01

    There are various philosophical approaches and theories describing the intimate relation people have to artifacts. In this paper, I explore the relation between two such theories, namely distributed cognition and distributed morality theory. I point out a number of similarities and differences in these views regarding the ontological status they attribute to artifacts and the larger systems they are part of. Having evaluated and compared these views, I continue by focussing on the way cognitive artifacts are used in moral practice. I specifically conceptualise how such artifacts (a) scaffold and extend moral reasoning and decision-making processes, (b) have a certain moral status which is contingent on their cognitive status, and (c) whether responsibility can be attributed to distributed systems. This paper is primarily written for those interested in the intersection of cognitive and moral theory as it relates to artifacts, but also for those independently interested in philosophical debates in extended and distributed cognition and ethics of (cognitive) technology.

  9. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  10. ROBUST KALMAN FILTERING FOR SYSTEMS UNDER NORM BOUNDED UNCERTAINTIES IN ALL SYSTEM MATRICES AND ERROR COVARIANCE CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    XIA Yuanqing; HAN Jingqing

    2005-01-01

    This paper concerns robust Kalman filtering for systems under norm bounded uncertainties in all the system matrices and error covariance constraints. Sufficient conditions are given for the existence of such filters in terms of Riccati equations. The solutions to the conditions can be used to design the filters. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed design procedure.

  11. Robust Control of Underactuated Systems: Higher Order Integral Sliding Mode Approach

    Directory of Open Access Journals (Sweden)

    Sami ud Din

    2016-01-01

    Full Text Available This paper presents a robust control design for the class of underactuated uncertain nonlinear systems. Either the nonlinear model of the underactuated systems is transformed into an input output form and then an integral manifold is devised for the control design purpose or an integral manifold is defined directly for the concerned class. Having defined the integral manifolds discontinuous control laws are designed which are capable of maintaining sliding mode from the very beginning. The closed loop stability of these systems is presented in an impressive way. The effectiveness and demand of the designed control laws are verified via the simulation and experimental results of ball and beam system.

  12. On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization

    International Nuclear Information System (INIS)

    Lu Zhao; Shieh Leangsan; Chen GuanRong

    2003-01-01

    This paper presents a novel Lyapunov-based control approach which utilizes a Lyapunov function of the nominal plant for robust tracking control of general multi-input uncertain nonlinear systems. The difficulty of constructing a control Lyapunov function is alleviated by means of predefining an optimal sliding mode. The conventional schemes for constructing sliding modes of nonlinear systems stipulate that the system of interest is canonical-transformable or feedback-linearizable. An innovative approach that exploits a chaotic optimizing algorithm is developed thereby obtaining the optimal sliding manifold for the control purpose. Simulations on the uncertain chaotic Chen's system illustrate the effectiveness of the proposed approach

  13. Applying Distributed Object Technology to Distributed Embedded Control Systems

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Dalgaard, Lars

    2012-01-01

    In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. MicroR...... in developing control systems for distributed embedded platforms possessing severe resource restrictions.......RMI supports easy integration of high-level application specific control logic with low-level device specific control logic. Our experience from applying MicroRMI in the context of a distributed robotics control application, clearly demonstrates that it is feasible to use distributed object technology...

  14. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  15. Distributed systems for protecting nuclear power stations

    International Nuclear Information System (INIS)

    Jover, P.

    1980-05-01

    The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr

  16. Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties.

    Science.gov (United States)

    Zischg, Jonatan; Goncalves, Mariana L R; Bacchin, Taneha Kuzniecow; Leonhardt, Günther; Viklander, Maria; van Timmeren, Arjan; Rauch, Wolfgang; Sitzenfrei, Robert

    2017-09-01

    In the urban water cycle, there are different ways of handling stormwater runoff. Traditional systems mainly rely on underground piped, sometimes named 'gray' infrastructure. New and so-called 'green/blue' ambitions aim for treating and conveying the runoff at the surface. Such concepts are mainly based on ground infiltration and temporal storage. In this work a methodology to create and compare different planning alternatives for stormwater handling on their pathways to a desired system state is presented. Investigations are made to assess the system performance and robustness when facing the deeply uncertain spatial and temporal developments in the future urban fabric, including impacts caused by climate change, urbanization and other disruptive events, like shifts in the network layout and interactions of 'gray' and 'green/blue' structures. With the Info-Gap robustness pathway method, three planning alternatives are evaluated to identify critical performance levels at different stages over time. This novel methodology is applied to a real case study problem where a city relocation process takes place during the upcoming decades. In this case study it is shown that hybrid systems including green infrastructures are more robust with respect to future uncertainties, compared to traditional network design.

  17. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  18. Distributed computer systems theory and practice

    CERN Document Server

    Zedan, H S M

    2014-01-01

    Distributed Computer Systems: Theory and Practice is a collection of papers dealing with the design and implementation of operating systems, including distributed systems, such as the amoeba system, argus, Andrew, and grapevine. One paper discusses the concepts and notations for concurrent programming, particularly language notation used in computer programming, synchronization methods, and also compares three classes of languages. Another paper explains load balancing or load redistribution to improve system performance, namely, static balancing and adaptive load balancing. For program effici

  19. Robust stator resistance identification of an IM drive using model reference adaptive system

    International Nuclear Information System (INIS)

    Madadi Kojabadi, Hossein; Abarzadeh, Mostafa; Aghaei Farouji, Said

    2013-01-01

    Highlights: ► We estimate the stator resistance and rotor speed of the IM. ► We proposed a new quantity to estimate the speed and stator resistance of IM. ► The proposed algorithm is robust to rotor resistance variations. ► We estimate the IM speed and stator resistance simultaneously to avoid speed error. - Abstract: Model reference adaptive system (MRAS) based robust stator resistance estimator for sensorless induction motor (IM) drive is proposed. The MRAS is formed with a semi-active power quantity. The proposed identification method can be achieved with on-line tuning of the stator resistance with robustness against rotor resistance variations. Stable and efficient estimation of IM speed at low region will be guaranteed by simultaneous identification of IM speed and stator resistance. The stability of proposed stator resistance estimator is checked through Popov’s hyperstability theorem. Simulation and experimental results are given to highlight the feasibility, the simplicity, and the robustness of the proposed method.

  20. DiSC: A Simulation Framework for Distribution System Voltage Control

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Sloth, Christoffer Eg; Andresen, Gorm

    2015-01-01

    This paper presents the MATLAB simulation framework, DiSC, for verifying voltage control approaches in power distribution systems. It consists of real consumption data, stochastic models of renewable resources, flexible assets, electrical grid, and models of the underlying communication channels....... The simulation framework makes it possible to validate control approaches, and thus advance realistic and robust control algorithms for distribution system voltage control. Two examples demonstrate the potential voltage issues from penetration of renewables in the distribution grid, along with simple control...

  1. Online Scheduling in Distributed Message Converter Systems

    NARCIS (Netherlands)

    Risse, Thomas; Wombacher, Andreas; Surridge, Mike; Taylor, Steve; Aberer, Karl

    The optimal distribution of jobs among hosts in distributed environments is an important factor to achieve high performance. The optimal strategy depends on the application. In this paper we present a new online scheduling strategy for distributed EDI converter system. The strategy is based on the

  2. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  3. Robust multi-model control of an autonomous wind power system

    Science.gov (United States)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  4. Robust fault-sensitive synchronization of a class of nonlinear systems

    International Nuclear Information System (INIS)

    Xu Shi-Yun; Tang Yong; Sun Hua-Dong; Yang Ying; Liu Xian

    2011-01-01

    Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of synchronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H − /H ∞ performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H − index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results. (general)

  5. Robust decentralised PI based LFC design for time delay power systems

    International Nuclear Information System (INIS)

    Bevrani, Hassan; Hiyama, Takashi

    2008-01-01

    In this paper, two robust decentralised proportional integral (PI) control designs are proposed for load frequency control (LFC) with communication delays. In both methodologies, the PI based LFC problem is reduced to a static output feedback (SOF) control synthesis for a multiple delay system. The first one is based on the optimal H ∞ control design using a linear matrix inequalities (LMI) technique. The second control design gives a suboptimal solution using a developed iterative linear matrix inequalities (ILMI) algorithm via the mixed H 2 /H ∞ control technique. The control strategies are suitable for LFC applications that usually employ PI control. The proposed control strategies are applied to a three control area power system with time delays and load disturbance to demonstrate their robustness

  6. Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer

    International Nuclear Information System (INIS)

    Hyun, Chang-Ho; Park, Chang-Woo; Kim, Jae-Hun; Park, Mignon

    2009-01-01

    This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization and secure communication of chaotic systems. It is assumed that their states are immeasurable and their parameters are unknown. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. It improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed observer is analyzed. Some simulation result of synchronization and secure communication of chaotic systems is given to present the validity of theoretical derivations and the performance of the proposed observer as an application.

  7. Constraint propagation of C2-adjusted formulation: Another recipe for robust ADM evolution system

    International Nuclear Information System (INIS)

    Tsuchiya, Takuya; Yoneda, Gen; Shinkai, Hisa-aki

    2011-01-01

    With a purpose of constructing a robust evolution system against numerical instability for integrating the Einstein equations, we propose a new formulation by adjusting the ADM evolution equations with constraints. We apply an adjusting method proposed by Fiske (2004) which uses the norm of the constraints, C 2 . One of the advantages of this method is that the effective signature of adjusted terms (Lagrange multipliers) for constraint-damping evolution is predetermined. We demonstrate this fact by showing the eigenvalues of constraint propagation equations. We also perform numerical tests of this adjusted evolution system using polarized Gowdy-wave propagation, which show robust evolutions against the violation of the constraints than that of the standard ADM formulation.

  8. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  9. Comparison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ling; CHEN Ming-hui; LI Liang-jun; XU Bo

    2008-01-01

    There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system.This paper discussed the use of GPS,but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS).One method is based on the Kalman filter (KF),and the other is based on the robust filter.Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF,given substantial process noise or unknown noise statistics.So the robust filter is an effective and useful method for initial alignment of SINS.This research should make the use of SINS more popular,and is also a step for further research.

  10. A robust rotation-invariance displacement measurement method for a micro-/nano-positioning system

    Science.gov (United States)

    Zhang, Xiang; Zhang, Xianmin; Wu, Heng; Li, Hai; Gan, Jinqiang

    2018-05-01

    A robust and high-precision displacement measurement method for a compliant mechanism-based micro-/nano-positioning system is proposed. The method is composed of an integer-pixel and a sub-pixel matching procedure. In the proposed algorithm (Pro-A), an improved ring projection transform (IRPT) and gradient information are used as features for approximating the coarse candidates and fine locations, respectively. Simulations are conducted and the results show that the Pro-A has the ability of rotation-invariance and strong robustness, with a theoretical accuracy of 0.01 pixel. To validate the practical performance, a series of experiments are carried out using a computer micro-vision and laser interferometer system (LIMS). The results demonstrate that both the LIMS and Pro-A can achieve high precision, while the Pro-A has better stability and adaptability.

  11. Robust Model Predictive Control of a Nonlinear System with Known Scheduling Variable and Uncertain Gain

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    Robust model predictive control (RMPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Because...... of the special structure of the problem, uncertainty is only in the B matrix (gain) of the state space model. Therefore by taking advantage of this structure, we formulate a tractable minimax optimization problem to solve robust model predictive control problem. Wind turbine is chosen as the case study and we...... choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon....

  12. Robust Monotonically Convergent Iterative Learning Control for Discrete-Time Systems via Generalized KYP Lemma

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2014-01-01

    Full Text Available This paper addresses the problem of P-type iterative learning control for a class of multiple-input multiple-output linear discrete-time systems, whose aim is to develop robust monotonically convergent control law design over a finite frequency range. It is shown that the 2 D iterative learning control processes can be taken as 1 D state space model regardless of relative degree. With the generalized Kalman-Yakubovich-Popov lemma applied, it is feasible to describe the monotonically convergent conditions with the help of linear matrix inequality technique and to develop formulas for the control gain matrices design. An extension to robust control law design against systems with structured and polytopic-type uncertainties is also considered. Two numerical examples are provided to validate the feasibility and effectiveness of the proposed method.

  13. Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise

    International Nuclear Information System (INIS)

    Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym

    2008-01-01

    This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method

  14. Low cost metamodel for robust design of periodic nonlinear coupled micro-systems

    Directory of Open Access Journals (Sweden)

    Chikhaoui K.

    2016-01-01

    Full Text Available To achieve robust design, in presence of uncertainty, nonlinearity and structural periodicity, a metamodel combining the Latin Hypercube Sampling (LHS method for uncertainty propagation and an enriched Craig-Bampton Component Mode Synthesis approach (CB-CMS for model reduction is proposed. Its application to predict the time responses of a stochastic periodic nonlinear micro-system proves its efficiency in terms of accuracy and reduction of computational cost.

  15. Robust passive control for Internet-based switching systems with time-delay

    Energy Technology Data Exchange (ETDEWEB)

    Guan Zhihong [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang Hao [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)], E-mail: ehao79@163.com; Yang Shuanghua [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2008-04-15

    In this paper, based on remote control and local control strategy, a class of hybrid multi-rate control models with time-delay and switching controllers are formulated and the problem of robust passive control for this discrete system is investigated. By Lyapunov-Krasovskii function and applying it to a descriptor model transformation some new sufficient conditions in form of LMIs are derived. A numerical example is given to illustrate the effectiveness of the theoretical result.

  16. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  17. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  18. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  19. Robust nonlinear control design with application to a marine cooling system

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    . In this context, we apply a bilinear transformation to obtain a well-posed H-inf problem. The design procedure is applied to a marine cooling system with flow dependent delays and performance of the resulting control design is evaluated through a simulation example where a comparison is made to a linear control......In this paper we consider design of control laws for a class of nonlinear systems with time-varying state delays by use of principles from feedback linearization. To deal with model uncertainties and delay mismatches, a robust linear H-inf controller is designed for the feedback linearized system...

  20. Robust networked H∞ synchronization of nonidentical chaotic Lur'e systems

    International Nuclear Information System (INIS)

    Yang De-Dong

    2014-01-01

    We mainly investigate the robust networked H ∞ synchronization problem of nonidentical chaotic Lur'e systems. In the design of the synchronization scheme, some network characteristics, such as nonuniform sampling, transmission-induced delays, and data packet dropouts, are considered. The parameters of master—slave chaotic Lur'e systems often allow differences. The sufficient condition in terms of linear matrix inequality (LMI) is obtained to guarantee the dissipative synchronization of nonidentical chaotic Lur'e systems in network environments. A numerical example is given to illustrate the validity of the proposed method. (general)

  1. Robust FDI for a Class of Nonlinear Networked Systems with ROQs

    Directory of Open Access Journals (Sweden)

    An-quan Sun

    2014-01-01

    Full Text Available This paper considers the robust fault detection and isolation (FDI problem for a class of nonlinear networked systems (NSs with randomly occurring quantisations (ROQs. After vector augmentation, Lyapunov function is introduced to ensure the asymptotically mean-square stability of fault detection system. By transforming the quantisation effects into sector-bounded parameter uncertainties, sufficient conditions ensuring the existence of fault detection filter are proposed, which can reduce the difference between output residuals and fault signals as small as possible under H∞ framework. Finally, an example linearized from a vehicle system is introduced to show the efficiency of the proposed fault detection filter.

  2. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xianfu Cheng

    2014-01-01

    Full Text Available The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  3. Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

    Science.gov (United States)

    Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system. PMID:24683334

  4. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  5. Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.

    Science.gov (United States)

    Cheng, Xianfu; Lin, Yuqun

    2014-01-01

    The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.

  6. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  7. Protection of Distribution Systems with Distributed Energy Resources

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; Browne, Matthew; Calone, Roberto

    of 17 months of work of the Joint Working Group B5/C6.26/CIRED “Protection of Distribution Systems with Distributed Energy Resources”. The working group used the CIGRE report TB421 “The impact of Renewable Energy Sources and Distributed Generation on Substation Protection and Automation”, published...... by WG B5.34 as the entry document for the work on this report. In doing so, the group aligned the content and the scope of this report, the network structures considered, possible islanding, standardized communication and adaptive protection, interface protection, connection schemes and protection...... are listed (chapter 3). The first main part of the report starts with a summary of the backgrounds on DER and current practices in protection at the distribution level (chapter 4). This chapter contains an analysis of CIGRE TB421, protection relevant characteristics of DER, a review of current practices...

  8. Robust multi-objective control of hybrid renewable microgeneration systems with energy storage

    International Nuclear Information System (INIS)

    Allison, John

    2017-01-01

    Highlights: • A hybrid energy system of micro-CHP, solar PV, and battery storage is presented. • Possible to exploit synergy of systems to fulfil the thermal and electrical demands. • Can control to minimise the interaction with the local electrical network. • Three different control approaches were compared. • The nonlinear inversion-based control strategy exhibits optimum performance. - Abstract: Microgeneration technologies are positioned to address future building energy efficiency requirements and facilitate the integration of renewables into buildings to ensure a sustainable, energy-secure future. This paper explores the development of a robust multi-input multi-output (MIMO) controller applicable to the control of hybrid renewable microgeneration systems with the objective of minimising the electrical grid utilisation of a building while fulfilling the thermal demands. The controller employs the inverse dynamics of the building, servicing systems, and energy storage with a robust control methodology. These inverse dynamics provides the control system with knowledge of the complex cause and effect relationships between the system, the controlled inputs, and the external disturbances, while an outer-loop control ensures robust, stable control in the presence of modelling deficiencies/uncertainty and unknown disturbances. Variable structure control compensates for the physical limitations of the systems whereby the control strategy employed switches depending on the current utilisation and availability of the energy supplies. Preliminary results presented for a system consisting of a micro-CHP unit, solar PV, and battery storage indicate that the control strategy is effective in minimising the interaction with the local electrical network and maximising the utilisation of the available renewable energy.

  9. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  10. Internet and redefining tourism distribution system

    Directory of Open Access Journals (Sweden)

    Đelić Tanja

    2004-01-01

    Full Text Available Since the introduction, computerized systems that manage reservation systems, rapidly became inevitable distribution channel for all service companies in tourist industry. GDS in reality using communication network connects service offer, selling personnel and air companies.

  11. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    Science.gov (United States)

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet

  12. DC Distribution Systems and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... challenges such as protection issues will be effectively resolved in the near future due to fast progress of semiconductor technology which is a key enabler cheap and reliable future DC solid-state protection systems. Therefore, it is the view of the author that more and more DC systems will appear...

  13. Economic Models and Algorithms for Distributed Systems

    CERN Document Server

    Neumann, Dirk; Altmann, Jorn; Rana, Omer F

    2009-01-01

    Distributed computing models for sharing resources such as Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. This book intends to discover fresh avenues of research and amendments to existing technologies, aiming at the successful deployment of commercial distributed systems

  14. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  15. Formal Specification of Distributed Information Systems

    NARCIS (Netherlands)

    Vis, J.; Brinksma, Hendrik; de By, R.A.; de By, R.A.

    The design of distributed information systems tends to be complex and therefore error-prone. However, in the field of monolithic, i.e. non-distributed, information systems much has already been achieved, and by now, the principles of their design seem to be fairly well-understood. The past decade

  16. RF phase distribution systems at the SLC

    International Nuclear Information System (INIS)

    Jobe, R.K.; Schwarz, H.D.

    1989-04-01

    Modern large linear accelerators require RF distribution systems with minimal phase drifts and errors. Through the use of existing RF coaxial waveguides, and additional installation of phase reference cables and monitoring equipment, stable RF distribution for the SLC has been achieved. This paper discusses the design and performance of SLAC systems, and some design considerations for future colliders. 6 refs., 4 figs

  17. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  18. Rapid Prototyping of Formally Modelled Distributed Systems

    OpenAIRE

    Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.

    1999-01-01

    This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.

  19. Programming a Distributed System Using Shared Objects

    NARCIS (Netherlands)

    Tanenbaum, A.S.; Bal, H.E.; Kaashoek, M.F.

    1993-01-01

    Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally,

  20. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  1. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  2. Reliability assessment of distribution power systems including distributed generations

    International Nuclear Information System (INIS)

    Megdiche, M.

    2004-12-01

    Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)

  3. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  4. Attraction Basins as Gauges of Robustness against Boundary Conditions in Biological Complex Systems

    Science.gov (United States)

    Demongeot, Jacques; Goles, Eric; Morvan, Michel; Noual, Mathilde; Sené, Sylvain

    2010-01-01

    One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally. PMID:20700525

  5. Attraction basins as gauges of robustness against boundary conditions in biological complex systems.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally.

  6. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong

    2012-01-01

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme

  7. Robust technology and system for management of sucker rod pumping units in oil wells

    Science.gov (United States)

    Aliev, T. A.; Rzayev, A. H.; Guluyev, G. A.; Alizada, T. A.; Rzayeva, N. E.

    2018-01-01

    We propose a technology for calculating the robust, normalized correlation functions of the signal from the force sensor on the rod string attached to the hanger of the sucker rod pumping unit. The robust normalized correlation functions are used to form sets of informative attribute combinations, each of which corresponds to a technical condition of the sucker rod pumping unit. We demonstrate how these sets can be used to solve identification and management problems in the oil production process in real time using inexpensive controllers. The results obtained from using the system on real objects are also presented in this paper. It was determined that the energy saved and prolonged overhaul period substantially increased the cost-effectiveness.

  8. System Identification and Resonant Control of Thermoacoustic Engines for Robust Solar Power

    Directory of Open Access Journals (Sweden)

    Boe-Shong Hong

    2015-05-01

    Full Text Available It was found that thermoacoustic solar-power generators with resonant control are more powerful than passive ones. To continue the work, this paper focuses on the synthesis of robustly resonant controllers that guarantee single-mode resonance not only in steady states, but also in transient states when modelling uncertainties happen and working temperature temporally varies. Here the control synthesis is based on the loop shifting and the frequency-domain identification in advance thereof. Frequency-domain identification is performed to modify the mathematical modelling and to identify the most powerful mode, so that the DSP-based feedback controller can online pitch the engine to the most powerful resonant-frequency robustly and accurately. Moreover, this paper develops two control tools, the higher-order van-der-Pol oscillator and the principle of Dynamical Equilibrium, to assist in system identification and feedback synthesis, respectively.

  9. Nonfragile Robust Model Predictive Control for Uncertain Constrained Systems with Time-Delay Compensation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-01-01

    Full Text Available This study investigates the problem of asymptotic stabilization for a class of discrete-time linear uncertain time-delayed systems with input constraints. Parametric uncertainty is assumed to be structured, and delay is assumed to be known. In Lyapunov stability theory framework, two synthesis schemes of designing nonfragile robust model predictive control (RMPC with time-delay compensation are put forward, where the additive and the multiplicative gain perturbations are, respectively, considered. First, by designing appropriate Lyapunov-Krasovskii (L-K functions, the robust performance index is defined as optimization problems that minimize upper bounds of infinite horizon cost function. Then, to guarantee closed-loop stability, the sufficient conditions for the existence of desired nonfragile RMPC are obtained in terms of linear matrix inequalities (LMIs. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approaches.

  10. Off-Line Robust Constrained MPC for Linear Time-Varying Systems with Persistent Disturbances

    Directory of Open Access Journals (Sweden)

    P. Bumroongsri

    2014-01-01

    Full Text Available An off-line robust constrained model predictive control (MPC algorithm for linear time-varying (LTV systems is developed. A novel feature is the fact that both model uncertainty and bounded additive disturbance are explicitly taken into account in the off-line formulation of MPC. In order to reduce the on-line computational burdens, a sequence of explicit control laws corresponding to a sequence of positively invariant sets is computed off-line. At each sampling time, the smallest positively invariant set containing the measured state is determined and the corresponding control law is implemented in the process. The proposed MPC algorithm can guarantee robust stability while ensuring the satisfaction of input and output constraints. The effectiveness of the proposed MPC algorithm is illustrated by two examples.

  11. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2012-04-15

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.

  12. A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2015-01-01

    The increasing penetration of renewable energy sources (RESs) in the power grid requires high-quality power injection under various grid conditions. The synchronization method, usually a phase-locked loop (PLL) algorithm, is directly affecting the response of the grid-side converter of the RES....... This paper proposes a new PLL algorithm that uses an advanced decoupling network implemented in the stationary reference frame with limited requirements for processing time to enable a fast and accurate synchronization even under harmonic distorted voltage and low-voltage grid faults. The robust response...... of the proposed PLL is validated, and the effect of the proposed synchronization on the performance of the grid-connected renewable energy system is investigated. This investigation proves that the robust, accurate, and dynamic response of the new PLL can enhance the quality of the injected power from the RES...

  13. Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, 10617 Taipei (China)

    2009-03-15

    This paper applies fixed-order multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system, and implements the designed controllers on a microchip for system miniaturization. In previous studies, robust control was applied to guarantee system stability and to reduce hydrogen consumption for a PEMFC system. It was noted that for standard robust control design, the order of resulting H{sub {infinity}} controllers is dictated by the plants and weighting functions. However, for hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, in this paper the PEMFC is modeled as multivariable transfer matrices, then three fixed-order robust control algorithms are applied to design controllers with specified orders for a PEMFC. Finally, the designed controllers are implemented on a microchip to regulate the air and hydrogen flow rates. From the experimental results, fixed-order robust control is deemed effective in supplying steady power and reducing fuel consumption. (author)

  14. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  15. Is the Speech Transmission Index (STI) a robust measure of sound system speech intelligibility performance?

    Science.gov (United States)

    Mapp, Peter

    2002-11-01

    Although RaSTI is a good indicator of the speech intelligibility capability of auditoria and similar spaces, during the past 2-3 years it has been shown that RaSTI is not a robust predictor of sound system intelligibility performance. Instead, it is now recommended, within both national and international codes and standards, that full STI measurement and analysis be employed. However, new research is reported, that indicates that STI is not as flawless, nor robust as many believe. The paper highlights a number of potential error mechanisms. It is shown that the measurement technique and signal excitation stimulus can have a significant effect on the overall result and accuracy, particularly where DSP-based equipment is employed. It is also shown that in its current state of development, STI is not capable of appropriately accounting for a number of fundamental speech and system attributes, including typical sound system frequency response variations and anomalies. This is particularly shown to be the case when a system is operating under reverberant conditions. Comparisons between actual system measurements and corresponding word score data are reported where errors of up to 50 implications for VA and PA system performance verification will be discussed.

  16. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  17. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    Science.gov (United States)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  18. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  19. Robust synchronization of master-slave chaotic systems using approximate model: An experimental study.

    Science.gov (United States)

    Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor

    2018-02-01

    Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Differences Between Distributed and Parallel Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.