WorldWideScience

Sample records for robotically enhanced advanced

  1. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  2. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  3. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    International Nuclear Information System (INIS)

    Burgess, T.; Noakes, M.; Spampinato, P.

    2005-01-01

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R and D program for improvements to remote handling technology that support operating enhancements

  4. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    Energy Technology Data Exchange (ETDEWEB)

    T. Burgess; M. Noakes; P. Spampinato

    2005-03-17

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.

  5. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  6. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  7. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  8. An experimental program on advanced robotics

    International Nuclear Information System (INIS)

    Yuan, J.S.C.; Stovman, J.; MacDonald, R.; Norgate, G.

    1987-01-01

    Remote handling in hostile environments, including space, nuclear facilities, and mines, requires hybrid systems which permit close cooperation between state of the art teleoperation and advanced robotics. Teleoperation using hand controller commands and television feedback can be enhanced by providing force-feel feedback and simulation graphics enhancement of the display. By integrating robotics features such as computer vision and force/tactile feedback with advanced local control systems, the overall effectiveness of the system can be improved and the operator workload reduced. This has been demonstrated in the laboratory. Applications such as a grappling drifting satellite or transferring material at sea are envisaged

  9. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  10. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  11. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  12. Latest Advances in Robot Kinematics

    CERN Document Server

    Husty, Manfred

    2012-01-01

    This book is  of interest to researchers inquiring about modern topics and methods in the kinematics, control and design of robotic manipulators. It considers the full range of robotic systems, including serial, parallel and cable driven manipulators, both planar and spatial. The systems range from being less than fully mobile to kinematically redundant to overconstrained. In addition to recognized areas, this book also presents recent advances in emerging areas such as the design and control of humanoids and humanoid subsystems, and the analysis, modeling and simulation of human body motions, as well as the mobility analysis of protein molecules and the development of machines which incorporate man.

  13. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  14. Advances in Automation and Robotics

    CERN Document Server

    International conference on Automation and Robotics ICAR2011

    2012-01-01

    The international conference on Automation and Robotics-ICAR2011 is held during December 12-13, 2011 in Dubai, UAE. The proceedings of ICAR2011 have been published by Springer Lecture Notes in Electrical Engineering, which include 163 excellent papers selected from more than 400 submitted papers.   The conference is intended to bring together the researchers and engineers/technologists working in different aspects of intelligent control systems and optimization, robotics and automation, signal processing, sensors, systems modeling and control, industrial engineering, production and management.   This part of proceedings includes 81 papers contributed by many researchers in relevant topic areas covered at ICAR2011 from various countries such as France, Japan, USA, Korea and China etc.     Many papers introduced their advanced research work recently; some of them gave a new solution to problems in the field, with powerful evidence and detail demonstration. Others stated the application of their designed and...

  15. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  16. 4th International Conference on Advanced Robotics

    CERN Document Server

    1989-01-01

    The Fourth International Conference on Advanced Robotics was held in Columbus, Ohio, U. S. A. on June 13th to 15th, 1989. The first two conferences in this series were held in Tokyo. The third was held in Versailles, France in October 1987. The International Conference on Advanced Robotics is affiliated with the International Federation of Robotics. This conference was sponsored by The Ohio State University. The American Society of Mechanical Engineers was a cooperating co-sponsor. The objective of the International Conference on Advanced Robotics is to provide an international exchange of information on the topic of advanced robotics. This was adopted as one of the themes for international research cooperation at a meeting of representatives of seven industrialized countries held in Williamsburg, U. S. A. in May 1983. The present conference is truly international in character with contributions from authors of twelve countries. (Bulgaria, Canada, France, Great Britain, India, Italy, Japan, Peoples Republic o...

  17. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  18. Advancements in robotic-assisted thoracic surgery.

    Science.gov (United States)

    Steenwyk, Brad; Lyerly, Ralph

    2012-12-01

    Advancements in robotic-assisted thoracic surgery present potential advantages for patients as well as new challenges for the anesthesia and surgery teams. This article describes the major aspects of the surgical approach for the most commonly performed robotic-assisted thoracic surgical procedures as well as the pertinent preoperative, intraoperative, and postoperative anesthetic concerns. Copyright © 2012. Published by Elsevier Inc.

  19. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  20. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  1. Social robots in advanced dementia

    Directory of Open Access Journals (Sweden)

    Meritxell eValentí Soler

    2015-09-01

    Full Text Available Aims: Testing the effect of the experimental robot-based therapeutic sessions for patients with dementia in: a controlled study of parallel groups of nursing home patients comparing the effects of therapy sessions utilizing a humanoid robot (NAO, an animal-shaped robot (PARO, or a trained dog (DOG, with conventional therapy (CONTROL on symptoms of dementia; and an experience for patients who attend a day care center, comparing symptom prevalence and severity before and after sessions utilizing NAO and PARO. Methods: In the nursing home, patients were randomly assigned by blocks, based on dementia severity, to one of the 3 therapeutic groups to compare: CONTROL, PARO and NAO (phase 1 and CONTROL, PARO and DOG (phase 2. In the day care center, all patients received therapy with NAO (phase 1 and PARO (phase 2. Therapy sessions were held 2 days/week for 3 months. Evaluation at baseline and follow-up was carried out by blind raters using: the Global Deterioration Scale (GDS, the Severe Mini Mental State Examination (sMMSE, the Mini Mental State Examination (MMSE, the Neuropsychiatric Inventory (NPI, the Apathy Scale for Institutionalized Patients with Dementia Nursing Home version (APADEM-NH, the Apathy Inventory (AI and the Quality of Life Scale (QUALID. Statistical analysis included descriptive statistics and non parametric tests performed by a blinded investigator. Results: In the nursing home, 101 patients (phase 1 and 110 patients (phase 2 were included. There were no significant differences at baseline. The relevant changes at follow-up were: (phase 1 patients in the robot groups showed an improvement in apathy; patients in NAO group showed a decline in cognition as measured by the MMSE scores, but not the sMMSE; the robot groups showed no significant changes between them; (phase 2 QUALID scores increased in the PARO group. In the day care center, 20 patients (phase 1 and 17 patients (phase 2 were included. The main findings were: (phase 1 imp

  2. Advances in Reconfigurable Mechanisms and Robots I

    CERN Document Server

    Zoppi, Matteo; Kong, Xianwen

    2012-01-01

    Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th  July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.   A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and ...

  3. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  4. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  5. Development of an advanced robot manipulator system

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Higuchi, Masaru; Shimizu, Yujiro; Ohnishi, Ken

    1991-01-01

    A sophisticated manipulator system for an advanced robot was developed under the 'Advanced Robot Technology Development' Program promoted and supported by the Agency of Industrial Science and Technology of MITI. The authors have participated in the development of a fingered manipulator with force and tactile sensors applicable to a masterslave robot system. Our slave manipulator is equipped with four fingers. Though the finger needs many degrees of freedom so as to be suitable for skilful handing of an object, our fingers are designed to have minimum degree of freedom in order to reduce weight. Each finger tip was designed to be similar to a human finger which has flexibility, softness and contact feeling. The shape of the master finger manipulator was so designed that the movement of the fingers is smoother and that the constraint feeling of the operator is smaller. We were adopted to a pneumatic pressure system for transmitting the tactile feeling of the slave fingers to the master fingers. A multiple sensory bilateral control system which gives an operator a feeling of force and tactile reduces his feeling of constraint in carrying out work with a robot system. (author)

  6. Proceedings of '85 International conference on advanced robotics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    In these proceedings on advanced robotics four contributions are recorded devoted to the application of robotics in remote handling equipment for interior maintenance and inspection of nuclear power plants. refs.; figs.; tabs.

  7. Robot-assisted urologic surgery in 2010 - Advancements and future outlook

    Directory of Open Access Journals (Sweden)

    Paurush Babbar

    2011-01-01

    Full Text Available Robotic surgery is a cutting edge and minimally invasive procedure, which has generated a great deal of excitement in the urologic community. While there has been much advancement in this emerging technology, it is safe to say that robotic urologic surgery holds tremendous potential for progress in the near future. Hence, it is paramount that urologists stay up-to-date regarding new developments in the realm of robotics with respect to novel applications, limitations and opportunities for incorporation into their practice. Robot-assisted surgery provides an enhanced 3D view, increased magnification of the surgical field, better manual dexterity, relatively bloodless field, elimination of surgeon′s tremor, reduction in a surgeon′s fatigue and mitigation of scattered light. All these factors translate into greater precision of surgical dissection, which is imperative in providing better intraoperative and postoperative outcomes. Pioneering work assessing the feasibility of robotic surgery in urology began in the early 2000′s with robot-assisted radical prostatectomy and has since expanded to procedures such as robot-assisted radical cystectomy, robot-assisted partial nephrectomy, robot-assisted nephroureterectomy and robot-assisted pyeloplasty. A MEDLINE search was used to identify recent articles (within the last two years and publications of specific importance, which highlighted the recent developments and future direction of robotics. This review will use the aforementioned urologic surgeries as vehicles to evaluate the current status and future role of robotics in the advancement of the field of urology.

  8. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year's longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to 'Truck Backer Upper' problem and tuned. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation/removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous

  9. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  10. Robotics Inspection Vehicle for Advanced Storages

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Emilio; Renaldi, Graziano; Puig, David; Franzetti, Michele; Correcher, Carlos [European Commission, Ispra (Italy). Inst. for the Protection and Security of the Citizen

    2003-05-01

    After the dismantling of nuclear weapons and the probable release of large quantities of weapon graded materials under international verification regimes, there will be a wide interest in unmanned, highly automated and secure storage areas. In such circumstances, robotics technologies can provide an effective answer to the problem of securing, manipulating and inventorying all stored materials. In view of this future application JRC's NPNS started the development and construction of an advanced robotics prototype and demonstration system, named Robotics Inspection Vehicle (RIV), for remote inspection, surveillance and remote handling in those areas. The system was designed to meet requirements of reliability, security, high availability, robustness against radiation effects, self-maintainability (i.e., auto-repair capability), and easy installation. Due to its innovative holonomic design, RIV is a highly maneuverable and agile platform able to move in any direction, including sideways. The platform carries on-board a five degree of freedom manipulator arm. The high maneuverability and operation modes take into account the needs for accessing in the most easy way materials in the storage area. The platform is prepared to operate in one of three modes: i) manual tele-operation, ii) semiautonomous and iii) fully autonomous. The paper describes RIV's main design features, and details its GENERIS based control software [JRC's software architecture for robotics] and embedded sensors (i.e., 3D laser range, transponder antenna, ultra-sound, vision-based robot guidance, force-torque sensors, etc.). RIV was designed to incorporate several JRC innovative surveillance and inspection technologies and reveals that the current state of technology is mature to effectively provide a solution to novel storage solutions. The system is available for demonstration at JRC's Rialto Laboratory.

  11. Potential applications of robotics in advanced liquid-metal reactors

    International Nuclear Information System (INIS)

    Carroll, D.G.; Thompson, M.L.

    1990-01-01

    The advanced liquid-metal reactor (ALMR) design includes a range of robots and automation devices. They extend from stationary robots that are a part of the current design to more exotic concepts with mobile, autonomous units, which may become part of the design. Development of robotic application requirements is enhanced by using computer models of work spaces in three dimensions. The primary goals of the more autonomous machines are to: (1) extent and/or enhance one's capabilities in a hazardous environment; some tasks could encounter high temperatures (up to 800 degree F), high radiation (fields up to several hundred thousand roentgens per hour), rooms filled with inert gas and/or sodium aerosol, or combinations of these; (2) reduce operating and maintenance cost through inservice inspection (ISI) of various parts of the reactor, through consideration of as-low-as-reasonably achievable radiation levels, and through automation of some maintenance/processing operations. This paper discusses some applications in the fuel cycle, in refueling operations, and in inspection

  12. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  13. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  14. Prior video game exposure does not enhance robotic surgical performance.

    Science.gov (United States)

    Harper, Jonathan D; Kaiser, Stefan; Ebrahimi, Kamyar; Lamberton, Gregory R; Hadley, H Roger; Ruckle, Herbert C; Baldwin, D Duane

    2007-10-01

    Prior research has demonstrated that counterintuitive laparoscopic surgical skills are enhanced by experience with video games. A similar relation with robotic surgical skills has not been tested. The purpose of this study was to determine whether prior video-game experience enhances the acquisition of robotic surgical skills. A series of 242 preclinical medical students completed a self-reported video-game questionnaire detailing the frequency, duration, and peak playing time. The 10 students with the highest and lowest video-game exposure completed a follow-up questionnaire further quantifying video game, sports, musical instrument, and craft and hobby exposure. Each subject viewed a training video demonstrating the use of the da Vinci surgical robot in tying knots, followed by 3 minutes of proctored practice time. Subjects then tied knots for 5 minutes while an independent blinded observer recorded the number of knots tied, missed knots, frayed sutures, broken sutures, and mechanical errors. The mean playing time for the 10 game players was 15,136 total hours (range 5,840-30,000 hours). Video-game players tied fewer knots than nonplayers (5.8 v 9.0; P = 0.04). Subjects who had played sports for at least 4 years had fewer mechanical errors (P = 0.04), broke fewer sutures (P = 0.01), and committed fewer total errors (P = 0.01). Similarly, those playing musical instruments longer than 5 years missed fewer knots (P = 0.05). In the extremes of video-game experience tested in this study, game playing was inversely correlated with the ability to learn robotic suturing. This study suggests that advanced surgical skills such as robotic suturing may be learned more quickly by athletes and musicians. Prior extensive video-game exposure had a negative impact on robotic performance.

  15. Advanced robotics for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Hamel, W.R.; Haley, D.C.

    1994-01-01

    The decontamination and dismantlement (D ampersand D) robotics technology application area of the US Department of Energy's Robotics Technology Development Program is explained and described. D ampersand D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given

  16. Technological advances in robotic-assisted laparoscopic surgery.

    Science.gov (United States)

    Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K

    2009-05-01

    In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.

  17. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  18. On safety enhancements for medical robots

    International Nuclear Information System (INIS)

    Ng, W.S.; Tan, C.K.

    1996-01-01

    Both software and hardware methods to enhance safety are discussed for active medical robots applied to, among others, neurosurgery, orthopaedic surgery and prostatectomy. This paper advocates that while it is practically difficult, if not impossible, for software reliability to be 100%, there are positive measures by which a medical robot system can be made adequately or inherently safe. Such measures avoid the problems of software reliability but turn to mathematical logic directly to build a safer system. Examples in a newly developed prototype, known as surgeon assistant robot for selected urological disorders (SARUD), are given to illustrate the concept. Although software measures to promote reliability of a system is less preferred compared to hardware measures, as it can never escape from operating on a hardware platform, it is suggested that a complementary/ hybrid approach can be a good solution for achieving a safe and flexible (by being reprogrammable) system. A totally independent safety monitor is being built. It can arrest a servo runaway and detect out-of-safe-boundary conditions, using encoder pulses as input. This dedicated system can resolve some major safety concerns of a medical robot such as SARUD

  19. Survey of advanced general-purpose software for robot manipulators

    International Nuclear Information System (INIS)

    Latombe, J.C.

    1983-01-01

    Computer-controlled sensor-based robots will more and more common in industry. This paper attempts to survey the main trends of the development of advanced general-purpose software for robot manipulators. It is intended to make clear that robots are not only mechanical devices. They are truly programmable machines, and their programming, which occurs in an imperfectly modelled world,is somewhat different from conventional computer programming. (orig.)

  20. The development of advanced robotic technology -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong; Kim, Seung Ho; Kim, Chang Hoi; Hwang, Suk Yeoung; Kim, Byung Soo; Lee, Young Kwang

    1994-07-01

    In this year (the second year of this project), researches and development have been carried out to establish the essential key technologies applied to robot system for nuclear industry. In the area of robot vision, in order to construct stereo vision system necessary to tele-operation, stereo image acquisition camera module and stereo image displayer have been developed. Stereo matching and storing programs have been developed to analyse stereo images. According to the result of tele-operation experiment, operation efficiency has been enhanced about 20% by using the stereo vision system. In a part of object recognition, a tele-operated robot system has been constructed to evaluate the performance of the stereo vision system and to develop the vision algorithm to automate nozzle dam operation. A nuclear fuel rod character recognition system has been developed by using neural network. As a result of perfomance evaluation of the recognition system, 99% recognition rate has been achieved. In the area of sensing and intelligent control, temperature distribution has been measured by using the analysis of thermal image histogram and the inspection algorithm has been developed to determine of the state be normal or abnormal, and the fuzzy controller has been developed to control the compact mobile robot designed for path moving on block-typed path. (Author)

  1. Advanced Applications of Robotics in Digestive Surgery

    Science.gov (United States)

    Patriti, Alberto; Addeo, Pietro; Buchs, Nicolas; Casciola, Luciano; Morel, Philippe

    2011-01-01

    Laparoscopy is widely recognized as feasible and safe approach to many oncologic and benign digestive conditions and is associated with an improved early outcome. Robotic surgery promises to overcome intrinsic limitations of laparoscopic surgery by a three-dimensional view and wristed instruments widening indications for a minimally invasive approach. To date, the more interesting applications of robotic surgery are those operations restricted to one abdominal quadrant and requiring a fine dissection and digestive reconstruction. While robot-assisted rectal and gastric surgery are becoming well-accepted options among the surgical community, applications of robotics in hepato-biliary and pancreatic surgery are still debated. PMID:23905029

  2. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  3. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  4. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  5. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Aitziber Mancisidor

    2018-03-01

    Full Text Available In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error. Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  6. Differential evolution to enhance localization of mobile robots

    DEFF Research Database (Denmark)

    Lisowski, Michal; Fan, Zhun; Ravn, Ole

    2011-01-01

    . In addition, a novel mechanism for effective robot kidnap detection was proposed. Experiments were performed using computer simulations based on the odometer data and laser range finder measurements collected in advance by a robot in real-life. Experimental results showed that integrating DE enables MCL...... to provide more accurate robot pose estimations in shorter time while using fewer particles.......This paper focuses on the mobile robot localization problems: pose tracking, global localization and robot kidnap. Differential Evolution (DE) applied to extend Monte Carlo Localization (MCL) was investigated to better solve localization problem by increasing localization reliability and speed...

  7. Building technology platform aimed to develop service robot with embedded personality and enhanced communication with social environment

    Directory of Open Access Journals (Sweden)

    Aleksandar Rodić

    2015-04-01

    Full Text Available The paper is addressed to prototyping of technology platform aimed to develop of ambient-aware human-centric indoor service robot with attributes of emotional intelligence to enhance interaction with social environment. The robot consists of a wheel-based mobile platform with spinal (segmented torso, bi-manual manipulation system with multi-finger robot hands and robot head. Robot prototype was designed to see, hear, speak and use its multimodal interface for enhanced communication with humans. Robot is capable of demonstrating its affective and social behavior by using audio and video interface as well as body gestures. Robot is equipped with advanced perceptive system based on heterogeneous sensorial system, including laser range finder, ultrasonic distance sensors and proximity detectors, 3-axis inertial sensor (accelerometer and gyroscope, stereo vision system, 2 wide-range microphones, and 2 loudspeakers. The device is foreseen to operate autonomously but it may be also operated remotely from a host computer through wireless communication link as well as by use of a smart-phone based on advanced client-server architecture. Robot prototype has embedded attributes of artificial intelligence and utilizes advanced cognitive capabilities such as spatial reasoning, obstacle and collision avoidance, simultaneous localization and mapping, etc. Robot is designed in a manner to enable uploading of new or changing existing algorithms of emotional intelligence that should provide to robot human-like affective and social behavior. The key objective of the project presented in the paper regards to building advanced technology platform for research and development of personal robots aimed to use for different purpose, e.g. robot-entertainer, battler, robot for medical care, security robot, etc. In a word, the designed technology platform is expected to help in development human-centered service robots to be used at home, in the office, public institutions

  8. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985. (author)

  9. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985.

  10. Advances in Robotic-Assisted Radical Prostatectomy over Time

    Directory of Open Access Journals (Sweden)

    Emma F. P. Jacobs

    2013-01-01

    Full Text Available Since the introduction of robot-assisted radical prostatectomy (RALP, robotics has become increasingly more commonplace in the armamentarium of the urologic surgeon. Robotic utilization has exploded across surgical disciplines well beyond the fields of urology and prostate surgery. The literature detailing technical steps, comparison of large surgical series, and even robotically focused randomized control trials are available for review. RALP, the first robot-assisted surgical procedure to achieve widespread use, has recently become the primary approach for the surgical management of localized prostate cancer. As a result, surgeons are constantly trying to refine and improve upon current technical aspects of the operation. Recent areas of published modifications include bladder neck anastomosis and reconstruction, bladder drainage, nerve sparing approaches and techniques, and perioperative and postoperative management including penile rehabilitation. In this review, we summarize recent advances in perioperative management and surgical technique for RALP.

  11. Robotics research at Electrotechnical Laboratory-R and D program for advanced robot technology

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, S; Akahori, H; Shirai, Y; Kakikura, M

    1983-01-01

    The purposes of this paper are both to introduce the outline of robotics researches at Electrotechnical Laboratory and to describe the relation between those researches and the national project so called robotics for critical work. The authors first describe the robotics researches and related topics historically which have been continued from the latter half of 1960s as a part of researches on artificial intelligence at Electrotechnical Laboratory. Secondly, they mention the present aspects of our researches, its relation with past results, and changes of basic concepts on robotics systems. Finally, as an extension of our researches, they propose some approaches to establish the following techniques which make very important roles for the success of the national project; (1) manipulation techniques, (2) sensor techniques, (3) autonomous robot control techniques, (4) advanced tele-operation techniques and, (5) system totalizing techniques. 15 references.

  12. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  13. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  14. Advanced robotics for medical rehabilitation current state of the art and recent advances

    CERN Document Server

    Xie, Shane

    2016-01-01

    Focussing on the key technologies in developing robots for a wide range of medical rehabilitation activities – which will include robotics basics, modelling and control, biomechanics modelling, rehabilitation strategies, robot assistance, clinical setup/implementation as well as neural and muscular interfaces for rehabilitation robot control – this book is split into two parts; a review of the current state of the art, and recent advances in robotics for medical rehabilitation. Both parts will include five sections for the five key areas in rehabilitation robotics: (i) the upper limb; (ii) lower limb for gait rehabilitation (iii) hand, finger and wrist; (iv) ankle for strains and sprains; and (v) the use of EEG and EMG to create interfaces between the neurological and muscular functions of the patients and the rehabilitation robots. Each chapter provides a description of the design of the device, the control system used, and the implementation and testing to show how it fulfils the needs of that specific ...

  15. Advanced programming languages for industrial robots

    International Nuclear Information System (INIS)

    Wolter, H.

    1983-02-01

    With this report, the sponsor of the project on automation in manufacture introduces to the public several new programming procedures for industrial robots which are still under construction. In addition to the programming systems SRL - which, as already previously reported, represent an further development of the AL and ROBEX systems - two additional programming procedures are being described. These are adjusted to perform interactive work at the production site. As introduction to this report, a survey is offered on the status and development of robot programming in the Federal Republic of Germany and in other countries. (orig.) [de

  16. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  17. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  18. AN IMPLEMENTATION OF PACMAN GAME USING ROBOTS

    OpenAIRE

    Madhav. Rao

    2011-01-01

    As the field of robotics are advancing, robotics education needs to consider technological advances and societal level of interest. Realizing computer games in robotic platforms is one such technological advance for educating students in robotics science. Realizing computer games in robotics environment is still a challenge due to high investment factor in developing robot models. However the effort can lead to the enhanced interest in robotics education and further involvement in science and...

  19. DOE/NE University Program in robotics for advanced reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Gonzalez, R.C.; Trivedi, M.M.; Wehe, D.K.

    1990-05-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of advanced robotic systems capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of economically performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. The approach to achieving the program objective is a transition from teleoperation to the capability of autonomous operation within three successive generations of robotic systems. The strategy adopted in order to achieve the program goals in an efficient and timely manner consists in utilizing, and advancing where required, state-of-the-art robotics technology through close interaction between the universities and the manufacturers and operators of nuclear power plants. There is a potentially broad range of applications for the robotic systems developed in the course of this project. Therefore, it is expected that efforts to obtain additional support from other agencies, e.g., DOD and NASA, will be successful. Areas of cooperation with other nations (e.g., Japan, France, Germany) are being explored. This Program features a unique teaming arrangement among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Odetics, Gulf State Utilities, Florida Power and Light Company, Remotec, and Telerobotics International

  20. Evaluation of robotically controlled advanced endoscopic instruments

    NARCIS (Netherlands)

    Reilink, Rob; Kappers, Astrid M.L.; Stramigioli, Stefano; Misra, Sarthak

    Background Advanced flexible endoscopes and instruments with multiple degrees of freedom enable physicians to perform challenging procedures such as the removal of large sections of mucosal tissue. However, these advanced endoscopes are difficult to control and require several physicians to

  1. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  2. Joining teleoperation with robotics for advanced manipulation in hostile environments

    International Nuclear Information System (INIS)

    Martin, H.L.; Hamel, W.R.

    1984-01-01

    Manipulators have been used for many years to perform remote handling tasks in hazardous environments. The development history of teleoperators is reviewed, and applications around the world are summarized. The effect of computer supervisory control is discussed, and similarities between robots and teleoperator research activities are delineated. With improved control strategies and system designs, combination of positive attributes of robots with teleoperators will lead to advanced machines capable of autonomy in unstructured environments. This concept of a telerobot is introduced as a goal for future activities

  3. Advanced gloss sensing for robotic applications

    Science.gov (United States)

    Deinhammer, Christian; Brandner, Markus

    2012-10-01

    Specular gloss is an important measurand used in quality control of manufacturing processes of highly reflective parts. In this work we present an in-process quality control system to evaluate the gloss of free-form surfaces to be used in an automated polishing process. Due to the geometry of our test objects the presented sensor is mounted on a robot arm and, therefore, needs to be robust against sensor misalignment. This robustness is achieved using a 2D CCD-camera as detector which allows us to properly handle sensor orientation deviations of up to 10. The required dynamic range of the sensor is obtained based on the acquisition of high dynamic range images. We present first results of a sensor prototype and show its applicability to the target application.

  4. Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions.

    Science.gov (United States)

    Jayaraman, Arun; Burt, Sheila; Rymer, William Zev

    2017-07-01

    To review lower-limb technology currently available for people with neurological disorders, such as spinal cord injury, stroke, or other conditions. We focus on 3 emerging technologies: treadmill-based training devices, exoskeletons, and other wearable robots. Efficacy for these devices remains unclear, although preliminary data indicate that specific patient populations may benefit from robotic training used with more traditional physical therapy. Potential benefits include improved lower-limb function and a more typical gait trajectory. Use of these devices is limited by insufficient data, cost, and in some cases size of the machine. However, robotic technology is likely to become more prevalent as these machines are enhanced and able to produce targeted physical rehabilitation. Therapists should be aware of these technologies as they continue to advance but understand the limitations and challenges posed with therapeutic/mobility robots.

  5. Indoor Robot Positioning Using an Enhanced Trilateration Algorithm

    Directory of Open Access Journals (Sweden)

    Pablo Cotera

    2016-06-01

    Full Text Available This paper presents algorithms implemented for positioning a wheeled robot on a production floor inside a factory by means of radio-frequency distance measurement and trilateration techniques. A set of radio-frequency transceivers located on the columns of the factory (anchors create a grid with several triangular zones capable of measuring the line-of-sight distance between each anchor and the transceiver installed in the wheeled robot. After measuring only three of these distances (radii, an enhanced trilateration algorithm is applied to obtain X and Y coordinates in a Cartesian plane, i.e., the position of the robot on the factory floor. The embedded systems developed for the anchors and the robot are robust enough to establish communication, select the closest anchors for measuring radii, and identify in which of the grid zones the robot is located.

  6. LEGO mindstorm masterpieces building and programming advanced robots

    CERN Document Server

    2003-01-01

    In LEGO Mindstorm Masterpieces, some of the world's leading LEGO Mindstorms inventors share their knowledge and development secrets. The unique style of this book will allow it to cover an incredibly broad range of topics in unparalleled detail. Chapters within the book will include detailed discussions of the mechanics that drive the robot - and also provide step-by-step construction diagrams for each of the robots. This is perfect book for LEGO hobbyists looking to take their skills to the next level whether they build world-class competitive robots or just like to mess around for the fun of it.For experienced users of LEGO Mindstorms, LEGO Mindstorms Masterpiece is composed of three fundamental sections:·Part One: A review of the advanced robot building concepts and theories.·Part Two: Step-by-step building instructions for a series of complex models. The companion programming code is included, along with in-depth explanations of concepts needed for the specific models. Robots include Line Followers, Bip...

  7. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  8. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  9. Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report

    International Nuclear Information System (INIS)

    Spelt, P.F.; Harvey, H.W.

    1998-01-01

    This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot's performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mk VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory's Center for Engineering Systems Advanced Research (CESAR, B ampersand R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding

  10. Referral of sensation to an advanced humanoid robotic hand prosthesis.

    Science.gov (United States)

    Rosén, Birgitta; Ehrsson, H Henrik; Antfolk, Christian; Cipriani, Christian; Sebelius, Fredrik; Lundborg, Göran

    2009-01-01

    Hand prostheses that are currently available on the market are used by amputees to only a limited extent, partly because of lack of sensory feedback from the artificial hand. We report a pilot study that showed how amputees can experience a robot-like advanced hand prosthesis as part of their own body. We induced a perceptual illusion by which touch applied to the stump of the arm was experienced from the artificial hand. This illusion was elicited by applying synchronous tactile stimulation to the hidden amputation stump and the robotic hand prosthesis in full view. In five people who had had upper limb amputations this stimulation caused referral touch sensation from the stump to the artificial hand, and the prosthesis was experienced more like a real hand. We also showed that this illusion can work when the amputee controls the movements of the artificial hand by recordings of the arm muscle activity with electromyograms. These observations indicate that the previously described "rubber hand illusion" is also valid for an advanced hand prosthesis, even when it has a robotic-like appearance.

  11. Enhancing Tele-robotics with Immersive Virtual Reality

    Science.gov (United States)

    2017-11-03

    The spheres displayed in the virtual environment represent the real-world readings from the robot in real-time from its LRF and sonar sensors. In...Inc., is comprised of an advanced graphics rendering engine, sound engine, and physics and animation engines. This game engine is capable of delivering

  12. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  13. Advances in mechanisms, robotics and design education and research

    CERN Document Server

    Schmiedeler, James; Sreenivasan, S; Su, Hai-Jun

    2013-01-01

    This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into  five main categories headed ‘Historical Perspectives’, ‘Kinematics and Mechanisms’, ‘Robotic Systems’, ‘Legged Locomotion’, and ‘Design Engineering Education’. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education.   This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.

  14. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  15. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  16. Towards Service Robots for Everyday Environments Recent Advances in Designing Service Robots for Complex Tasks in Everyday Environments

    CERN Document Server

    Zöllner, Marius; Bischoff, Rainer; Burgard, Wolfram; Haschke, Robert; Hägele, Martin; Lawitzky, Gisbert; Nebel, Bernhard; Plöger, Paul; Reiser, Ulrich

    2012-01-01

    People have dreamed of machines, which would free them from unpleasant, dull, dirty and dangerous tasks and work for them as servants, for centuries if not millennia. Service robots seem to finally let these dreams come true. But where are all these robots that eventually serve us all day long, day for day? A few service robots have entered the market: domestic and professional cleaning robots, lawnmowers, milking robots, or entertainment robots. Some of these robots look more like toys or gadgets rather than real robots. But where is the rest? This is a question, which is asked not only by customers, but also by service providers, care organizations, politicians, and funding agencies. The answer is not very satisfying. Today’s service robots have their problems operating in everyday environments. This is by far more challenging than operating an industrial robot behind a fence. There is a comprehensive list of technical and scientific problems, which still need to be solved. To advance the state of the art...

  17. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  18. Technology advances in hospital practices: robotics in treatment of patients.

    Science.gov (United States)

    Rosiek, Anna; Leksowski, Krzysztof

    2015-06-01

    Laparoscopic cholecystectomy is widely considered as the treatment of choice for acute cholecystitis. The safety of the procedure and its minimal invasiveness made it a valid treatment option for a patient not responding to antibiotic therapy. Our research shows that patients positively assess this treatment method, but the world's tendency is to turn to a more sophisticated method utilizing robot-assisted surgery as a gold standard. Providing patient with minimally invasive surgical procedures that utilize the state-of-the-art equipment like the da Vinci Robotic Surgical System underscores the commitment to high-quality patient care while enhancing patient safety. The advantages include minimal invasive scarring, less pain and bleeding, faster recovery time, and shorter hospital stay. The move toward less invasive and less morbid procedures and a need to re-create the true open surgical experience have paved the way for the development and application of robotic and computer-assisted systems in surgery in Poland as well as the rest of the world. © The Author(s) 2014.

  19. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Science.gov (United States)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  20. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Woong; Cho, Jae Wan; Lee, Nam Ho; Kim, Woong Ki; Moon, Byung Soo; Lee, Young Jae; Kim, Chang Hoi; Kim, Seung Ho; Hwang, Seok Yong; Kim, Byung Soo; Moon, Jae Sun; Lee, Young Kwang; Choi, Kap Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The comparison study of 3 kinds of stereo camera modules done in this final year of 4 year`s longterm project shows that regenerating characteristics of stereo image of stereo camera using horizontally moving lens axis method is superior to the other two modules. Base on this comparison result, stereo camera module using horizontally moving lens method is developed. Also, stereo-Boom unit, high definition polarized stereo monitor(KAERI-PSM II) and 10.4sec. auto-stereogram TV using parallax barrier method are developed. These developed systems can be used for people involved in extremely hazardous working area to give vivid reality image of work environment. In the recognition and tracking section, auto-vergencing technology using focus fixation and cepstral filter, stereo camera calibration, range measurement technology using stereo camera module are developed. And active target tracking technology is developed also. In the sensing and intelligent control research part, active radioactivity image monitoring unit is developed. The spatial resolution of monitoring unit is 10cm at 1m distance, FOV is 60x40 deg [HXV], and radioactivity detection limit is 1mR/hr. Also, radiation-resistant inspection camera for nuclear facilities is designed. In the intelligent control section, fuzzy control algorithm for obstacle detouring navigation of mobile robot is developed. The smoothing techniques by fuzzy set is adapted to raise the pliability of obstacle detouring navigation of mobile robot. In order to raise robustness of developed fuzzy algorithm, fuzzy control algorithm is applied to `Truck Backer Upper` problem and tuned. (Abstract Truncated)

  1. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  2. International Advanced Robotics Programme. First workshop on manipulators, sensors and steps towards mobility

    International Nuclear Information System (INIS)

    Martin, T.

    1987-09-01

    This Workshop was held within the framework of the international collaboration in the area of advanced robotics, formerly initiated by the Economic Summit, called the International Advanced Robotics Programme (IARP). It was hosted by the Nuclear Research Center Karlsruhe on May 11-13, 1987. Ninety scientists of eight countries presented and discussed 32 R+D projects. The Proceedings contain full papers of most contributions (and summaries of the remaining ones) and summary reports on all of the eight sessions. The material presented reflects well the present endeavor to integrate advanced robotics and teleoperation techniques for difficult applications in harsh, demanding or dangerous conditions or environment. (orig.) [de

  3. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  4. Proceedings of the international conference on advancements in automation, robotics and sensing: souvenir

    International Nuclear Information System (INIS)

    Vinod, B.; Sundaram, M.; Sujatha, K.S.; Brislin, J. Joe; Prabhakarab, S.

    2016-01-01

    Robotics and automation is a thriving domain in the field of engineering, comprising of major areas like electrical, electronics, mechanical, automation, computer and robotics engineering. This conference address issues related to technical advances in all these fields. Papers relevant to INIS are indexed separately

  5. Robot Enhanced Therapy for Children with Autism (DREAM): A Social Model of Autism

    OpenAIRE

    Richardson, Kathleen; Coecklebergh, M; Wakunuma, Kutoma; Billing, Erik; Ziemke, Tom; Gomez, P; Vanderborght, Bram; Belpaeme, Tony

    2017-01-01

    Development of Robot-enhanced Therapy for Children with Autism Spectrum Disorders The development of social robots for children with autism has been a growth field in the last 15 years. This paper reviews studies in robots and autism as a neurodevelopmental disorder that impacts on social-communication development and the way in which social robots could help children with autism develop social skills. Drawing on the ethics research from the EU funded DREAM project (framework 7), based on ...

  6. The development of functional fail-safe control for advanced robots

    International Nuclear Information System (INIS)

    Hosaka, Shigetaka; Shimizu, Yujiro; Hayashi, Tetsuji

    1990-01-01

    Advanced robots for the nuclear power plant maintenance are increasing the complexity in comparison with industrial robots, and severe in condition of use, and are increasing the importance of safety and reliability. In this paper, as a high reliability technology for Advanced Robot, Functional Failsafe control (FFC) is described. FFC isolates the faults, and keeps the minimum function of robot, using the remained potential redundancy of robot, with minimizing of additional parts to robot, at the occurrence of faults. We suggest the three reliability evaluation principles for Advanced robot, then define the FFC in these principles. In the proposed FFC, the method of using an amplifier between two servosystems in common, and the method of stucking the degrees of freedom of robot arm are studied and proved by experiments on the design of FFC. And, a new design method is showed, based on not only the reliability of time, but also the reliability of amount of working. So, we clarified some remained subjects to develop for the FFC. (author)

  7. Robotic-assisted laparoscopic surgery: recent advances in urology.

    Science.gov (United States)

    Autorino, Riccardo; Zargar, Homayoun; Kaouk, Jihad H

    2014-10-01

    The aim of the present review is to summarize recent developments in the field of urologic robotic surgery. A nonsystematic literature review was performed to retrieve publications related to robotic surgery in urology and evidence-based critical analysis was conducted by focusing on the literature of the past 5 years. The use of the da Vinci Surgical System, a robotic surgical system, has been implemented for the entire spectrum of extirpative and reconstructive laparoscopic kidney procedures. The robotic approach can be applied for a range of adrenal indications as well as for ureteral diseases, including benign and malignant conditions affecting the proximal, mid, and distal ureter. Current evidence suggests that robotic prostatectomy is associated with less blood loss compared with the open surgery. Besides prostate cancer, robotics has been used for simple prostatectomy in patients with symptomatic benign prostatic hyperplasia. Recent studies suggest that minimally invasive radical cystectomy provides encouraging oncologic outcomes mirroring those reported for open surgery. In recent years, the evolution of robotic surgery has enabled urologic surgeons to perform urinary diversions intracorporeally. Robotic vasectomy reversal and several other robotic andrological applications are being explored. In summary, robotic-assisted surgery is an emerging and safe technology for most urologic operations. The acceptance of robotic prostatectomy during the past decade has paved the way for urologists to explore the entire spectrum of extirpative and reconstructive urologic procedures. Cost remains a significant issue that could be solved by wider dissemination of the technology. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    Science.gov (United States)

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  9. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  10. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  11. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  12. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. Economy

    Science.gov (United States)

    1991-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the thirteenth in a series of progress updates and covers the period between 14 Feb. - 15 Aug. 1991. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 12, and issues of A&R implementation into Ground Mission Operations and A&R enhancement of science productivity. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  13. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  14. The use of robots for advanced intervention devices

    International Nuclear Information System (INIS)

    1981-01-01

    The main purpose of robots is to improve working conditions and to protect operators. Robots also enable interventions to be carried out in environments inaccessible to man. Extensive work carried out by the CEA in this field has led to the realization of equipment and original materials. Although, a lot of the development activities were initially related to nuclear work, a great diversity of applications have been found in other fields. Several applications are cited in this article; they are related to computer assisted remote controlled manipulators, remote controlled exploratory vehicles, robot medical equipment, and oceanographic research equipment [fr

  15. R and D on robots for nuclear power plants in 'advanced robot technology' project

    International Nuclear Information System (INIS)

    Ando, Hiroaki

    1987-01-01

    The project aims at developing a safe man-robot system of high mobility and workability, highly adaptable to the working environment, and readily and reliably remote-controlled. The plan is to develop 'multi-purpose robots' that can do monitoring, inspection and light work quickly and correctly in areas where access of humans is difficult (e.g. hot spots and the inner space of the primary containment vessel), and 'robots used exclusively for valves, pumps, and other equipment, multi-functional to be used only for specific purposes'. This can be expected to be completed on the basis of results in research and development for the multi-purpose robots. R and D on the total system means manufacturing an optimum system with sufficient functions and performance required for the robot by combining existing technologies most adequately on the basis of the results of research and development on the project. After conceptual drawing and conceptual design, the system will be manufactured and demonstration tests will be completed by fiscal 1987 or 1988. This report describes the total image of the robots concerning the shape, locomotion, manipulation, perception, communication, control management, reliability and environmental durability, and then outlines the research and development activities regarding locomotion, manipulator, tectile sensor, actuator, single-eye three-dimensional measurement, visual data processing, optical spacial transmission, failure repair controller, functional reduction, robot health care and radiation resistance. (Nogami, K.)

  16. A Survey of Wall Climbing Robots: Recent Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Shunsuke Nansai

    2016-07-01

    Full Text Available In recent decades, skyscrapers, as represented by the Burj Khalifa in Dubai and Shanghai Tower in Shanghai, have been built due to the improvements of construction technologies. Even in such newfangled skyscrapers, the façades are generally cleaned by humans. Wall climbing robots, which are capable of climbing up vertical surfaces, ceilings and roofs, are expected to replace the manual workforce in façade cleaning works, which is both hazardous and laborious work. Such tasks require these robotic platforms to possess high levels of adaptability and flexibility. This paper presents a detailed review of wall climbing robots categorizing them into six distinct classes based on the adhesive mechanism that they use. This paper concludes by expanding beyond adhesive mechanisms by discussing a set of desirable design attributes of an ideal glass façade cleaning robot towards facilitating targeted future research with clear technical goals and well-defined design trade-off boundaries.

  17. Enhancing Docking and Manipulation Capability for Microgravity Robotic Free Flyers

    Data.gov (United States)

    National Aeronautics and Space Administration — The risks and challenges of the space environment have logically led to proposals to use robots to perform tasks for efficiency and safety reasons. Robotic free...

  18. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    Science.gov (United States)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  19. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    Science.gov (United States)

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  20. Wireless Communication Enhancement Methods for Mobile Robots in Radiation Environments

    CERN Document Server

    Nattanmai Parasuraman, Ramviyas; Ferre, Manuel

    In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs ...

  1. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  2. Advanced robotics R+D at KfK

    International Nuclear Information System (INIS)

    Rininsland, H.; Smidt, D.; Trauboth, H.; Kernforschungszentrum Karlsruhe G.m.b.H.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1987-01-01

    Particular considerations for teleoperated and very long reach robotic systems are given. Robotic systems involving long reach referred to, include the TFTR maintenance boom developed for the Princeton fusion reactor and future automated cranes and bridge inspection equipment. A project to develop such long reach booms currently involves Putzmeister and the NRC, who will be responsible for developing the collision avoidance algorithms as part of a 'computer aided telemanipulation' approach. Problems encountered with operating equipment of this kind remotely were addressed during the recent Chernobyl disaster at which a range of equipment developed by Putzmeister was applied to combat the disaster. (orig./HP)

  3. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  4. Study on fundamental mechanism of nuclear advanced robot. An analysis of fundamental motion with pliability for end-effector of advanced robot

    International Nuclear Information System (INIS)

    Ohki, Arahiko; Hirano, Sigeo; Yoshida, Tomoya.

    1997-01-01

    Most of present robots only perform works simulating human action, but hereafter, it is required to do advanced works smoothly with robots in place of men. Among the mechanisms of high performance robots, as one of the important components that do advanced action and adapt to diversified purposes, there is manipulator. The manipulator comprises arm and end effector. In the process of heightening robot performance hereafter, the reproduction of detailed action is the indispensable subject of research. The object of carrying out this research is to elucidate the possibility of giving the functions close to those of delicate human hands to end effector. First, the joints of human hands were measured, and based on these data, the equation for determining the change of angle in relation to the time of motion of respective joints was established. Further, the simulation of simple actions was carried out, and the concept of the mechanism model was built by analyzing the motion similar to human body. The structural difference in the joints of human and manipulator, the measurement of hands and the analysis of the motion of hand joints are reported. (K.I.)

  5. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  6. Robotics development for the enhancement of space endeavors

    Science.gov (United States)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  7. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  8. Topology Optimization and Robotic Fabrication of Advanced Timber Space-frame Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Eversmann, Phillip

    2016-01-01

    This paper presents a novel method for integrated topology optimization and fabrication of advanced timber space-frame structures. The method, developed in research collaboration between ETH Zürich, Aarhus School of Architecture and Israel Institute of Technology, entails the coupling of truss...... processes solving timber joint intersections, robotically controlling member prefabrication, and spatial robotic assembly of the optimized timber structures. The implication of this concept is studied through pilot fabrication and load-testing of a full scale prototype structure.......-based topology optimization with digital procedures for rationalization and robotic assembly of bespoke timber members, through a procedural, cross-application workflow. Through this, a direct chaining of optimization and robotic fabrication is established, in which optimization data is driving subsequent...

  9. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  10. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Directory of Open Access Journals (Sweden)

    Joachim de Greeff

    Full Text Available Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference; the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  11. [The advancement of robotic surgery--successes, failures, challenges].

    Science.gov (United States)

    Haidegger, Tamás

    2010-10-10

    Computer-integrated robotic surgery systems appeared more than twenty years ago and since then hundreds of different prototypes have been developed. Only a fraction of them have been commercialized, mostly to support neurosurgical and orthopaedic procedures.Unquestionably, the most successful one is the da Vinci surgical system, primarily deployed in urology and general laparoscopic surgery. It is developed and marketed by Intuitive Surgical Inc. (Sunnyvale, CA, USA), the only profitable company of the segment. The da Vinci made robotic surgery is known and acknowledged throughout the world, and the great results delivered convinced most of the former critics of the technology. Success derived from the well chosen business development strategy, proficiency of the developers, appropriate timing and a huge pot of luck. This article presents the most important features of the da Vinci system, the history of development along with its medical, economical and financial aspects, and seeks the answer why this particular system became successful.

  12. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  13. Intelligent assistive robots recent advances in assistive robotics for everyday activities

    CERN Document Server

    Moreno, Juan; Kong, Kyoungchul; Amirat, Yacine

    2015-01-01

    This book deals with the growing challenges of using assistive robots in our everyday activities along with providing intelligent assistive services. The presented applications concern mainly healthcare and wellness such as helping elderly people, assisting dependent persons, habitat monitoring in smart environments, well-being, security, etc. These applications reveal also new challenges regarding control theory, mechanical design, mechatronics, portability, acceptability, scalability, security, etc.  

  14. Robots with a gentle touch: advances in assistive robotics and prosthetics.

    Science.gov (United States)

    Harwin, W S

    1999-01-01

    As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.

  15. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

  16. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  17. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    Science.gov (United States)

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  18. Advancing automation and robotics technology for the space station and the US economy

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  19. Advances in Autonomous Mini Robots : Proceedings of the 6-th AMiRE Symposium

    CERN Document Server

    Joaquin, Sitte; Felix, Werner

    2012-01-01

    Autonomous robots must carry out useful tasks all by themselves relying entirely on their own perceptions of their environment. The cognitive abilities required for autonomous action are largely independent of robot size, which makes mini robots attractive as artefacts for research, education and entertainment. Autonomous mini robots must be small enough for experimentation on a desktop or a small laboratory.  They must be easy to carry and safe for interaction with humans. They must not be expensive. Mini robot designers have to work at the leading edge of technology so that their creations can carry out purposeful autonomic action under these constraints. Since 2001 researchers have met every two years for an international symposium to report on the advances achieved in Autonomous Mini  Robots for Research and Edutainment (AMiRE). The AMiRE Symposium is a single track conference that offers ample opportunities for discussion and exchange of ideas. This volume contains the contributed papers of the 2011 AM...

  20. Tracked Robot with Blade Arms to Enhance Crawling Capability

    OpenAIRE

    Jhu-Wei Ji; Fa-Shian Chang; Lih-Tyng Hwang; Chih-Feng Liu; Jeng-Nan Lee; Shun-Min Wang; Kai-Yi Cho

    2016-01-01

    This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains t...

  1. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  2. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

  3. Balancing of linkages and robot manipulators advanced methods with illustrative examples

    CERN Document Server

    Arakelian, Vigen

    2015-01-01

    In this book advanced balancing methods for planar and spatial linkages, hand operated and automatic robot manipulators are presented. It is organized into three main parts and eight chapters. The main parts are the introduction to balancing, the balancing of linkages and the balancing of robot manipulators. The review of state-of-the-art literature including more than 500 references discloses particularities of shaking force/moment balancing and gravity compensation methods. Then new methods for balancing of linkages are considered. Methods provided in the second part of the book deal with the partial and complete shaking force/moment balancing of various linkages. A new field for balancing methods applications is the design of mechanical systems for fast manipulation. Special attention is given to the shaking force/moment balancing of robot manipulators. Gravity balancing methods are also discussed. The suggested balancing methods are illustrated by numerous examples.

  4. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    OpenAIRE

    Richard Chiou; Yongjin (james) Kwon; Tzu-Liang (bill) Tseng; Robin Kizirian; Yueh-Ting Yang

    2010-01-01

    This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote c...

  5. Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots.

    Science.gov (United States)

    Sartorato, Felippe; Przybylowski, Leon; Sarko, Diana K

    2017-07-01

    For children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown. To date, social robot studies have primarily relied on expertise in fields such as engineering and clinical psychology, with measures of social robot efficacy principally limited to qualitative observational assessments of children's interactions with robots. In this review, we examine a range of socially interactive robots that currently have the most widespread use as well as the utility of these robots and their therapeutic effects. In addition, given that social interactions rely on audiovisual communication, we discuss how enhanced sensory processing and integration of robotic social cues may underlie the perceptual and behavioral benefits that social robots confer. Although overall multisensory processing (including audiovisual integration) is impaired in individuals with ASD, social robot interactions may provide therapeutic benefits by allowing audiovisual social cues to be experienced through a simplified version of a human interaction. By applying systems neuroscience tools to identify, analyze, and extend the multisensory perceptual substrates that may underlie the therapeutic benefits of social robots, future studies have the potential to strengthen the clinical utility of social robots for individuals with ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Basic Framework for Robot Applicability Enhancement of Nuclear Risk Management in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Jeong, Kungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Inn Seock [bISSA Technology, Inc., Germantown (United States)

    2015-05-15

    Beyond-design-basis external events such as the one having occurred at the Fukushima Daiichi Nuclear Power Plant typically pose considerable challenges to the plant personnel because of the harsh environments caused by the events (e.g., extreme terrains, high radiation, radioactive rubbles, high heat, and explosive environment). Therefore, remote response techniques by use of robotic systems are needed to help the plant personnel cope with the extreme events. In this study the basic framework for enhancing robotic applicability to disaster management was developed using the analytic technique of Master Logic Diagram (MLD) and Goal-Tree Success-Tree (GTST). The users of robots have to devise a sound maintenance program, otherwise their unscheduled downtime may increase beyond limit, consequently defeating the purpose of robot applications. In addition, maintainability could be enhanced by designing for ease of diagnosis, and ease of access and repair. Ways to upgrade maintainability could be devised by evaluating maintainability in the design stage. The basic framework discussed herein shall be used by the KAERI's robotics team as a fundamental framework in enhancing the applicability of disaster robots in the hazardous environment caused by extreme events.

  7. An advanced semiautonomous robotic system for hazardous response work for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Crane, C.; Tulenko, J.F.

    1990-01-01

    The articulated transporter/manipulator system (ATMS) under development by the University of Florida (UF) with Odetics Corporation as lead subcontractor will be able to manipulate through obstructed areas. Since 1987, the Advanced Technology Division of the US Department of Energy has sponsored a university team composed of the UF, University of Michigan, University of Tennessee, and the University of Texas under the leadership of the Oak Ridge National Laboratory to pursue innovative robotics research leading to the development of advanced robotic systems. The UF has the task of developing the ATMS innovative transport system. As part of this task, UF has been focusing on developing horizontal and external navigation algorithms that carry out ongoing ATMS autonomous path planning. The flexibility of the ATMS is also being demonstrated as a surveillance/maintenance robot for the PRISM reactor. The ATMS has demonstrated that it can carry out autonomous planning responding both to obstacles and set operating levels. The ATMS also has demonstrated that it has sufficient flexibility to serve in a surveillance/maintenance mode. Work is progressing on developing the hardware to deliver the mechanical capabilities demonstrated by simulated robotic system

  8. Advancing automation and robotics technology for the space station and for the US economy

    Science.gov (United States)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  9. Advanced composite alloys for constructional parts of robots

    Science.gov (United States)

    Issin, D. K.; Zholdubayeva, Zh D.; Neshina, Y. G.; Alkina, A. D.; Khuangan, N.; Rahimova, G. M.

    2018-05-01

    In recent years all over the world special attention has been paid to the development and implementation of nanostructured materials possessing unique properties and opening fascinating prospects for the development of technical progress in various fields of human activities. A special place can be given to the development of service robots, the market of which is actively developing. There is problem associated mainly with the lack of heat-strengthened alloys which consists in low thermal stability of the alloy properties under the conditions of elevated variable temperatures and loads. The article presents studies to assess the effect of composition, the amounts of refractory nanoscale particles and methods for their introduction into the melt on the structure and properties in nanostructured composite aluminum alloys. The powders of metals, alloys, as well as silicon carbide and aluminum oxide were used to produce the nanostructured powder composite materials. As a result of the research, NPCM compositions containing micro-size particles of transition metals that are carriers of nanosized reinforcing particles and initiators of the formation of an intermetallide of endogenous origin in a melt.

  10. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States

  11. The development of advanced robotics for the nuclear industry -The development of robotic system for the nuclear power plants-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Kim, Kee Hoh; Lee, Jae Kyung; Lee, Yung Kwang; Suh, Yong Chil; Lee, Yong Bum; Kim, Woong Kee; Park, Soon Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The Advanced Robotics Department of the Korea Atomic Energy Research Institute (KAERI) is developing a Dexterous Manipulation System (DMS) and a teleoperated mobile robot, identified as KAEROT/ml, for use in nuclear power plants. The DMS is being developed for performing tasks such as the opening and closing of nozzle dam inside water chamber of steam generator. The DMS has two major subsystems; a master-slave 6 degrees of freedom (dof) manipulator and a support device. The master-slave arms are designed dissimilar kinematically and dynamically, and their functions are performed by a bilateral force-reflecting force control. The slave is a hydraulically powered arm with a 3 dof end effector, and is mounted on the top of the support device for nozzle dam operation. The support device guides the slave arm into the water chamber and supports it during its operation. The DMS can be operated either in teleoperated or supervisory control modes. The KAEROT/ml is designed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. The KAEROT/ml equipped with four-omnidirectional planetary wheels has a 6 dof joint-controlled arm and is capable of ascending and descending stairs and navigating flat surface with zero turning radius. This report describes the mechanical design, features, modeling and control system of both the DMS and the KAEROT/ml. 209 figs, 49 pix, 69 tabs, 62 refs. (Author).

  12. The development of advanced robotics for the nuclear industry -The development of robotic system for the nuclear power plants-

    International Nuclear Information System (INIS)

    Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Kim, Kee Hoh; Lee, Jae Kyung; Lee, Yung Kwang; Suh, Yong Chil; Lee, Yong Bum; Kim, Woong Kee; Park, Soon Yong

    1995-07-01

    The Advanced Robotics Department of the Korea Atomic Energy Research Institute (KAERI) is developing a Dexterous Manipulation System (DMS) and a teleoperated mobile robot, identified as KAEROT/ml, for use in nuclear power plants. The DMS is being developed for performing tasks such as the opening and closing of nozzle dam inside water chamber of steam generator. The DMS has two major subsystems; a master-slave 6 degrees of freedom (dof) manipulator and a support device. The master-slave arms are designed dissimilar kinematically and dynamically, and their functions are performed by a bilateral force-reflecting force control. The slave is a hydraulically powered arm with a 3 dof end effector, and is mounted on the top of the support device for nozzle dam operation. The support device guides the slave arm into the water chamber and supports it during its operation. The DMS can be operated either in teleoperated or supervisory control modes. The KAEROT/ml is designed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. The KAEROT/ml equipped with four-omnidirectional planetary wheels has a 6 dof joint-controlled arm and is capable of ascending and descending stairs and navigating flat surface with zero turning radius. This report describes the mechanical design, features, modeling and control system of both the DMS and the KAEROT/ml. 209 figs, 49 pix, 69 tabs, 62 refs. (Author)

  13. The development of advanced robotics for the nuclear industry -The development of optimal design technology in robotics-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong; Park, Jin Suk; Jung, Seung Hoh; Park, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Light weight nozzle dam was fabricated with the carbon fabric reinforced plastic(CFRP). The stiffness-to-weight ratio of the nozzle dam was remarkably improved from 18.25 x 10{sup 3} N m{sup 2}/kg(Kori nozzle dam) to 29.83 x 10{sup 3} (KAERI nozzle dam). The structure integrity of KAERI nozzle dam was verified through the stress analysis using ANSYS program. Design of nozzle dam diaphragm seal assembly which consists of inflatable seals(a wet and a dry seal) and a mechanical seal has been completed. It is used to prevent the coolant leakage from steam generator nozzles. Control console panel, which controls pneumatic pressure supplied to inflatable seals and hydraulic pressure applied to nozzle dam at leak test, has been manufactured. KAERI gripper, which is proper to handle a heavy object such as the nozzle dam, was designed and manufactured based on the enhanced driving force-to-gripping force ratio (performance index). The performance index of the KAERI gripper was found to be 4.1, while that of Schilling gripper (product of Schilling Inc.) is 10.0. The position analysis and the kinematic analysis of the KAERI gripper were also carried out. To control the gripper system a fuzzy logic controller was proposed. The controller takes two sensory inputs, position feedback from the LVDT and pressure feedback from pressure transducers. Computer simulation considering the actual environments where the controller is to be put was carried out to test control performance. The simulation results show that the designed controller can effectively control the gripper system. A bolting tool to fasten the nozzle dam to the nozzle ring of steam generator was also designed and manufactured. Preliminary design of robot manipulator was done by considering maximum load on robot end-effector. Driving torque required at each joint of robot was calculated through the simulation for the predetermined working path which is conservatively similar to the actual path. (Abstract Truncated)

  14. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  15. Robotics Laboratory to Enhance the STEM Research Experience

    Science.gov (United States)

    2015-04-30

    Research Platforms Clearpath Robotics 2 $66,118 Open IMU system integrated with Husky SICK LMS Outdoor LIDAR Outdoor PTZ Camera NovAtel...currently focusing our attention and efforts on simultaneous localization and mapping ( SLAM ) algorithms, obstacle avoidance, and communication between

  16. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  17. The development of advanced robotics for the nuclear industry -The development of optimal design technology in robotics-

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Park, Jin Suk; Jung, Seung Hoh; Park, Jin Hoh

    1995-07-01

    Light weight nozzle dam was fabricated with the carbon fabric reinforced plastic(CFRP). The stiffness-to-weight ratio of the nozzle dam was remarkably improved from 18.25 x 10 3 N m 2 /kg(Kori nozzle dam) to 29.83 x 10 3 (KAERI nozzle dam). The structure integrity of KAERI nozzle dam was verified through the stress analysis using ANSYS program. Design of nozzle dam diaphragm seal assembly which consists of inflatable seals(a wet and a dry seal) and a mechanical seal has been completed. It is used to prevent the coolant leakage from steam generator nozzles. Control console panel, which controls pneumatic pressure supplied to inflatable seals and hydraulic pressure applied to nozzle dam at leak test, has been manufactured. KAERI gripper, which is proper to handle a heavy object such as the nozzle dam, was designed and manufactured based on the enhanced driving force-to-gripping force ratio (performance index). The performance index of the KAERI gripper was found to be 4.1, while that of Schilling gripper (product of Schilling Inc.) is 10.0. The position analysis and the kinematic analysis of the KAERI gripper were also carried out. To control the gripper system a fuzzy logic controller was proposed. The controller takes two sensory inputs, position feedback from the LVDT and pressure feedback from pressure transducers. Computer simulation considering the actual environments where the controller is to be put was carried out to test control performance. The simulation results show that the designed controller can effectively control the gripper system. A bolting tool to fasten the nozzle dam to the nozzle ring of steam generator was also designed and manufactured. Preliminary design of robot manipulator was done by considering maximum load on robot end-effector. From the preliminary design, the dynamic equation for the robot was derived. Driving torque required at each joint of robot was calculated through the simulation for the predetermined working path which is

  18. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  19. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    Science.gov (United States)

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  20. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  1. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    Science.gov (United States)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  2. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  3. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  4. Space station as a vital focus for advancing the technologies of automation and robotics

    Science.gov (United States)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  5. Mobile Mixed-Reality Interfaces That Enhance Human–Robot Interaction in Shared Spaces

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2017-06-01

    Full Text Available Although user interfaces with gesture-based input and augmented graphics have promoted intuitive human–robot interactions (HRI, they are often implemented in remote applications on research-grade platforms requiring significant training and limiting operator mobility. This paper proposes a mobile mixed-reality interface approach to enhance HRI in shared spaces. As a user points a mobile device at the robot’s workspace, a mixed-reality environment is rendered providing a common frame of reference for the user and robot to effectively communicate spatial information for performing object manipulation tasks, improving the user’s situational awareness while interacting with augmented graphics to intuitively command the robot. An evaluation with participants is conducted to examine task performance and user experience associated with the proposed interface strategy in comparison to conventional approaches that utilize egocentric or exocentric views from cameras mounted on the robot or in the environment, respectively. Results indicate that, despite the suitability of the conventional approaches in remote applications, the proposed interface approach provides comparable task performance and user experiences in shared spaces without the need to install operator stations or vision systems on or around the robot. Moreover, the proposed interface approach provides users the flexibility to direct robots from their own visual perspective (at the expense of some physical workload and leverages the sensing capabilities of the tablet to expand the robot’s perceptual range.

  6. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    Science.gov (United States)

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  7. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ji-Hwan Hwang

    2017-01-01

    Full Text Available In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.

  8. DOE/NE University Program in robotics for advanced reactors research

    International Nuclear Information System (INIS)

    Trivedi, M.M.

    1990-01-01

    The document presents the bimonthly progress reports published during 1990 regarding the US Department of Energy/NE-sponsored research at the University of Tennessee Knoxville under the DOE Robitics for Advanced Reactors Research Grant. Significant accomplishments are noted in the following areas: development of edge-segment based stereo matching algorithm; vision system integration in the CESAR laboratory; evaluation of algorithms for surface characterization from range data; comparative study of data fusion techniques; development of architectural framework, software, and graphics environment for sensor-based robots; algorithms for acquiring tactile images from planer surfaces; investigations in geometric model-based robotic manipulation; investigations of non-deterministic approaches to sensor fusion; and evaluation of sensor calibration techniques. (MB)

  9. Monocular SLAM for autonomous robots with enhanced features initialization.

    Science.gov (United States)

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-04-02

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  10. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Science.gov (United States)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  11. Advanced handling-systems with enhanced performance flexibility

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the results of a project related to future applications and requirements for advanced handling systems. This report consists of six chapters. Following the description of the aims the tools for setting up the requirements for the handling systems including the experience during the data acquisition process is described. Furthermore some information is given about the current state of the art of robotics and manipulators. Of paramount importance are the descriptions of applications and related concepts in the following chapters leading to specific categories of advanced handling units. The paper closes with the description of the first concepts for realization. (orig./HP) [de

  12. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  13. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  14. Towards Plug-n-Play robot guidance: Advanced 3D estimation and pose estimation in Robotic applications

    DEFF Research Database (Denmark)

    Sølund, Thomas

    and move objects, which are physical located at the same positions. In order to place objects in the same position each time, custom-made mechanical fixtures and aligners are constructed to ensure that objects are not moving. It is expensive to design and build these fixtures and it is difficult to quickly...... change to a novel task. In some cases where objects are placed in bins and boxes it is not possible to position the objects in the same location each time. To avoid designing expensive mechanical solutions and to be able to pick objects from boxes and bins, a sensor is necessary to guide the robot. Today...... while the robot motion programming is easily handled with the new collaborative robots. This thesis deals with robot vision technologies and how these are made easier for production workers program in order to get robots to recognize and compute the position of objects in the industry. This thesis...

  15. Adapting a robotics program to enhance participation and interest in STEM among children with disabilities: a pilot study.

    Science.gov (United States)

    Lindsay, Sally; Hounsell, Kara Grace

    2017-10-01

    Youth with disabilities are under-represented in science, technology, engineering, and math (STEM) in school and in the workforce. One encouraging approach to engage youth's interest in STEM is through robotics; however, such programs are mostly for typically developing youth. The purpose of this study was to understand the development and implementation of an adapted robotics program for children and youth with disabilities and their experiences within it. Our mixed methods pilot study (pre- and post-workshop surveys, observations, and interviews) involved 41 participants including: 18 youth (aged 6-13), 12 parents and 11 key informants. The robotics program involved 6, two-hour workshops held at a paediatric hospital. Our findings showed that several adaptations made to the robotics program helped to enhance the participation of children with disabilities. Adaptations addressed the educational/curriculum, cognitive and learning, physical and social needs of the children. In regards to experiences within the adapted hospital program, our findings highlight that children enjoyed the program and learned about computer programming and building robots. Clinicians and educators should consider engaging youth with disabilities in robotics to enhance learning and interest in STEM. Implications for Rehabilitation Clinicians and educators should consider adapting curriculum content and mode of delivery of LEGO ® robotics programs to include youth with disabilities. Appropriate staffing including clinicians and educators who are knowledgeable about youth with disabilities and LEGO ® robotics are needed. Clinicians should consider engaging youth with disabilities in LEGO ® to enhance learning and interest in STEM.

  16. An Exploration of the Benefits of an Animallike Robot Companion with More Advanced Touch Interaction Capabilities for Dementia Care

    Directory of Open Access Journals (Sweden)

    Merel M. Jung

    2017-06-01

    Full Text Available Animallike robot companions such as robotic seal Paro are increasingly used in dementia care due to the positive effects that interaction with these robots can have on the well-being of these patients. Touch is one of the most important interaction modalities for patients with dementia and can be a natural way to interact with animallike robots. To advance the development of animallike robots, we explored in what ways people with dementia could benefit from interaction with an animallike robot with more advanced touch recognition capabilities and which touch gestures would be important in their interaction with Paro. In addition, we explored which other target groups might benefit from interaction with animallike robots with more advanced interaction capabilities. In this study, we administered a questionnaire and conducted interviews with two groups of health-care providers who all worked in a geriatric psychiatry department. One group used Paro in their work (i.e., the expert group; n = 5 while the other group had no experience with the use of animallike robot (i.e., the layman group; n = 4. The results showed that health-care providers perceived Paro as an effective intervention to improve the well-being of people with dementia. Examples of usages for Paro that were mentioned were providing distraction, interrupting problematic behaviors, and stimulating communication. Furthermore, the care providers indicated that people with dementia (would use mostly positive forms of touch and speech to interact with Paro. Paro’s auditory responses were criticized because they can overstimulate the patients. In addition, the care providers argued that social interactions with Paro are currently limited and therefore the robot does not meet the needs of a broader audience such as healthy elderly people who still live in their own homes. The development of robot pets with more advanced social capabilities such as touch and speech recognition might

  17. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2017-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  18. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2018-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  19. JTEL Winter School for Advanced Technologically Enhanced Learning

    NARCIS (Netherlands)

    Glahn, Christian; Gruber, Marion

    2010-01-01

    Glahn, C., & Gruber, M. (2010). JTEL Winter School for Advanced Technologically Enhanced Learning. In ~mail. Das Magazin des Tiroler Bildungsinstituts, 01/10, März (p. 3-4). Innsbruck: Grillhof, Medienzentrum.

  20. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    Science.gov (United States)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  1. Limits of Nature and Advances of Technology: What Does Biomimetics Have to Offer to Aquatic Robots?

    Directory of Open Access Journals (Sweden)

    F. E. Fish

    2006-01-01

    Full Text Available In recent years, the biomimetic approach has been utilized as a mechanism for technological advancement in the field of robotics. However, there has not been a full appreciation of the success and limitations of biomimetics. Similarities between natural and engineered systems are exhibited by convergences, which define environmental factors, which impinge upon design, and direct copying that produces innovation through integration of natural and artificial technologies. Limitations of this integration depend on the structural and mechanical differences of the two technologies and on the process by which each technology arises. The diversity of organisms that arose through evolutionary descent does not necessarily provide all possible solutions of optimal functions. However, in instances where organisms exhibit superior performance to engineered systems, features of the organism can be targeted for technology transfer. In this regard, cooperation between biologists and engineers is paramount.

  2. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  3. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Daw, J.E.; Taylor, S.C.

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  4. An Underwater Image Enhancement Algorithm for Environment Recognition and Robot Navigation

    Directory of Open Access Journals (Sweden)

    Kun Xie

    2018-03-01

    Full Text Available There are many tasks that require clear and easily recognizable images in the field of underwater robotics and marine science, such as underwater target detection and identification of robot navigation and obstacle avoidance. However, water turbidity makes the underwater image quality too low to recognize. This paper proposes the use of the dark channel prior model for underwater environment recognition, in which underwater reflection models are used to obtain enhanced images. The proposed approach achieves very good performance and multi-scene robustness by combining the dark channel prior model with the underwater diffuse model. The experimental results are given to show the effectiveness of the dark channel prior model in underwater scenarios.

  5. Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human–Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Alireza Haji Fathaliyan

    2018-04-01

    Full Text Available Human–robot collaboration could be advanced by facilitating the intuitive, gaze-based control of robots, and enabling robots to recognize human actions, infer human intent, and plan actions that support human goals. Traditionally, gaze tracking approaches to action recognition have relied upon computer vision-based analyses of two-dimensional egocentric camera videos. The objective of this study was to identify useful features that can be extracted from three-dimensional (3D gaze behavior and used as inputs to machine learning algorithms for human action recognition. We investigated human gaze behavior and gaze–object interactions in 3D during the performance of a bimanual, instrumental activity of daily living: the preparation of a powdered drink. A marker-based motion capture system and binocular eye tracker were used to reconstruct 3D gaze vectors and their intersection with 3D point clouds of objects being manipulated. Statistical analyses of gaze fixation duration and saccade size suggested that some actions (pouring and stirring may require more visual attention than other actions (reach, pick up, set down, and move. 3D gaze saliency maps, generated with high spatial resolution for six subtasks, appeared to encode action-relevant information. The “gaze object sequence” was used to capture information about the identity of objects in concert with the temporal sequence in which the objects were visually regarded. Dynamic time warping barycentric averaging was used to create a population-based set of characteristic gaze object sequences that accounted for intra- and inter-subject variability. The gaze object sequence was used to demonstrate the feasibility of a simple action recognition algorithm that utilized a dynamic time warping Euclidean distance metric. Averaged over the six subtasks, the action recognition algorithm yielded an accuracy of 96.4%, precision of 89.5%, and recall of 89.2%. This level of performance suggests that

  6. Future of robotic surgery.

    Science.gov (United States)

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  7. The development of advanced robotic technology - A study on the development of Motion capturing system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Ki Ho; Lee, Yong Woo; Park, Soo Il; Choi, Jin Sung; Kim, Hae Dong; Park, Chan Yong [System Engineering Research Institute, Taejon= (Korea, Republic of)

    1996-07-01

    Robots are used to perform jobs where the performer are exposed to the radioactivity. Good human-robot-interface is required to operate the robots easily and smoothly. It is believed that virtual reality and 3D graphics technology will be the beat solution for the good human-robot-interface. Using 3D computer graphics, complex human motions can be captured and displayed on the screen. The captured motion data can be used as the input to= control the remote robots using virtual reality technologies. Thus good human-robot-interface can be constructed. The motion capturing system developed in this study are very convenient and easy to be used to operate the robot. And the required time to operate the robot with the developed system is much shorter than to operate the robots without our motion capturing system. Therefore, efficient usage of the robot and related facilities will prolong the life time of them and reduce the manpower of the operators. The 3D data produced by our system will be used to generate commands to control the robot. 6 refs., 60 figs. (author)

  8. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    Science.gov (United States)

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p

  9. Advanced robotics technology applied to mixed waste characterization, sorting and treatment

    International Nuclear Information System (INIS)

    Wilhelmsen, K.; Hurd, R.; Grasz, E.

    1994-04-01

    There are over one million cubic meters of radioactively contaminated hazardous waste, known as mixed waste, stored at Department of Energy facilities. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing methods to safely and efficiently treat this type of waste. LLNL has automated and demonstrated a means of segregating items in a mixed waste stream. This capability incorporates robotics and automation with advanced multi-sensor information for autonomous and teleoperational handling of mixed waste items with previously unknown characteristics. The first phase of remote waste stream handling was item singulation; the ability to remove individual items of heterogeneous waste directly from a drum, box, bin, or pile. Once objects were singulated, additional multi-sensory information was used for object classification and segregation. In addition, autonomous and teleoperational surface cleaning and decontamination of homogeneous metals has been demonstrated in processing mixed waste streams. The LLNL waste stream demonstration includes advanced technology such as object classification algorithms, identification of various metal types using active and passive gamma scans and RF signatures, and improved teleoperational and autonomous grasping of waste objects. The workcell control program used an off-line programming system as a server to perform both simulation control as well as actual hardware control of the workcell. This paper will discuss the motivation for remote mixed waste stream handling, the overall workcell layout, sensor specifications, workcell supervisory control, 3D vision based automated grasp planning and object classification algorithms

  10. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  11. Advanced tools for enhancing control room collaborations

    International Nuclear Information System (INIS)

    Abla, G.; Flanagan, S.M.; Peng, Q.; Burruss, J.R.; Schissel, D.P.

    2006-01-01

    The US National Fusion Collaboratory (NFC) project has been exploring a variety of computer and network technologies to develop a persistent, efficient, reliable and convenient collaborative environment for magnetic fusion research. One goal is to enhance remote and collocated team collaboration by integrating collaboration software tools into control room operations as well as with data analysis tools. To achieve this goal, the NFC recently introduced two new collaboration technologies into the DIII-D tokamak control room. The first technology is a high-resolution, large format Shared Display Wall (SDW). By creating a shared public display space and providing real time visual information about the multiple aspects of complex experiment activity, the large SDW plays an important role in increasing the rate of information dissemination and promoting interaction among team members. The second technology being implemented is the 'tokamak control room aware' Instant Messaging (IM) service. In addition to providing text-chat capabilities for research scientists, it enables them to automatically receive information about experiment operations and data analysis processes to remotely monitor the status of ongoing tokamak experiment. As a result, the IM service has become a unified portal interface for team collaboration and remote participation

  12. Advanced tools for enhancing control room collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States)]. E-mail: abla@fusion.gat.com; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Peng, Q. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Burruss, J.R. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Schissel, D.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States)

    2006-07-15

    The US National Fusion Collaboratory (NFC) project has been exploring a variety of computer and network technologies to develop a persistent, efficient, reliable and convenient collaborative environment for magnetic fusion research. One goal is to enhance remote and collocated team collaboration by integrating collaboration software tools into control room operations as well as with data analysis tools. To achieve this goal, the NFC recently introduced two new collaboration technologies into the DIII-D tokamak control room. The first technology is a high-resolution, large format Shared Display Wall (SDW). By creating a shared public display space and providing real time visual information about the multiple aspects of complex experiment activity, the large SDW plays an important role in increasing the rate of information dissemination and promoting interaction among team members. The second technology being implemented is the 'tokamak control room aware' Instant Messaging (IM) service. In addition to providing text-chat capabilities for research scientists, it enables them to automatically receive information about experiment operations and data analysis processes to remotely monitor the status of ongoing tokamak experiment. As a result, the IM service has become a unified portal interface for team collaboration and remote participation.

  13. Advanced, enhanced HEX program for PIXE

    International Nuclear Information System (INIS)

    Lipworth, A.D.; Annegarn, H.J.; Kneen, M.A.

    1993-01-01

    The REX code and subsequent HEX code, originating at Florida State University, have been extensively used for PIXE spectra fitting. In 1989 we produce a renovated HEX package: WITS-HEX, enabling the original Fortran program to be more accessible to the PIXE community. We modernised the user interface by replacing the batch mode of operation with an integrated, menu-driven environment. We added the ability to edit support data files from within the program, provided detailed feedback during the fitting process and enhanced spectral plots using high resolution colour graphics. Our prototype also permitted the inclusion of many more peaks and absorption coefficients into the element library than the original HEX, permitting a more extensive element request list to be used during the fitting operation. We have now completed the second phase of the renewal of HEX. The man-machine interface has been upgraded to conform to the IBM SAA Common User Access (CUA) standard. This eliminated several of the sequential (modal) human-computer dialogues, replacing them with a single parallel system. The support utility used in WITS-HEX to convert the binary format of spectra captured using foreign data acquisition systems has been replaced by code to directly access data in ASCII format. The program is now equipped with context-sensitive help and a tutorial. The polynomial background mode has been supplemented by a digital filter model, eliminating the associated instability from the fitting process and other spectral features modelled. The program has been validated by comparing results with those obtained from the former versions: WITS-HEX and HEX. A demonstration version is available on request for evaluation purposes. (orig.)

  14. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy

    Science.gov (United States)

    1993-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixteenth in a series of progress updates and covers the period between 15 Sep. 1992 - 16 Mar. 1993. The report describes the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 15; and includes a status review of Space Station Freedom Launch Processing facilities at Kennedy Space Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  15. Effect of Robotics-Enhanced Inquiry-Based Learning in Elementary Science Education in South Korea

    Science.gov (United States)

    Park, Jungho

    2015-01-01

    Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…

  16. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke

    Directory of Open Access Journals (Sweden)

    Dalia eDe Santis

    2015-01-01

    Full Text Available Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved 7 chronic hemiparetic subjects over three weeks. The protocol included evaluation sessions, that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their

  17. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.

    Science.gov (United States)

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2014-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject's kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

  18. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  19. An overview of the program to place advanced automation and robotics on the Space Station

    Science.gov (United States)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  20. A multimodal imaging framework for enhanced robot-assisted partial nephrectomy guidance

    Science.gov (United States)

    Halter, Ryan J.; Wu, Xiaotian; Hartov, Alex; Seigne, John; Khan, Shadab

    2015-03-01

    Robot-assisted laparoscopic partial nephrectomies (RALPN) are performed to treat patients with locally confined renal carcinoma. There are well-documented benefits to performing partial (opposed to radical) kidney resections and to using robot-assisted laparoscopic (opposed to open) approaches. However, there are challenges in identifying tumor margins and critical benign structures including blood vessels and collecting systems during current RALPN procedures. The primary objective of this effort is to couple multiple image and data streams together to augment visual information currently provided to surgeons performing RALPN and ultimately ensure complete tumor resection and minimal damage to functional structures (i.e. renal vasculature and collecting systems). To meet this challenge we have developed a framework and performed initial feasibility experiments to couple pre-operative high-resolution anatomic images with intraoperative MRI, ultrasound (US) and optical-based surface mapping and kidney tracking. With these registered images and data streams, we aim to overlay the high-resolution contrast-enhanced anatomic (CT or MR) images onto the surgeon's view screen for enhanced guidance. To date we have integrated the following components of our framework: 1) a method for tracking an intraoperative US probe to extract the kidney surface and a set of embedded kidney markers, 2) a method for co-registering intraoperative US scans with pre-operative MR scans, and 3) a method for deforming pre-op scans to match intraoperative scans. These components have been evaluated through phantom studies to demonstrate protocol feasibility.

  1. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.

    Science.gov (United States)

    Gui, Kai; Liu, Honghai; Zhang, Dingguo

    2017-11-01

    Robotic exoskeletons for physical rehabilitation have been utilized for retraining patients suffering from paraplegia and enhancing motor recovery in recent years. However, users are not voluntarily involved in most systems. This paper aims to develop a locomotion trainer with multiple gait patterns, which can be controlled by the active motion intention of users. A multimodal human-robot interaction (HRI) system is established to enhance subject's active participation during gait rehabilitation, which includes cognitive HRI (cHRI) and physical HRI (pHRI). The cHRI adopts brain-computer interface based on steady-state visual evoked potential. The pHRI is realized via admittance control based on electromyography. A central pattern generator is utilized to produce rhythmic and continuous lower joint trajectories, and its state variables are regulated by cHRI and pHRI. A custom-made leg exoskeleton prototype with the proposed multimodal HRI is tested on healthy subjects and stroke patients. The results show that voluntary and active participation can be effectively involved to achieve various assistive gait patterns.

  2. Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair.

    Science.gov (United States)

    Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G; Ding, Dan; Cooper, Rory A

    2013-07-01

    This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. The mobile base of PerMMA Gen II has two operating modes: "advanced driving mode" on flat and uneven terrain, and "automatic climbing mode" during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests.

  3. Towards safe robots approaching Asimov’s 1st law

    CERN Document Server

    Haddadin, Sami

    2014-01-01

    The vision of seamless human-robot interaction in our everyday life that allows for tight cooperation between human and robot has not become reality yet. However, the recent increase in technology maturity finally made it possible to realize systems of high integration, advanced sensorial capabilities and enhanced power to cross this barrier and merge living spaces of humans and robot workspaces to at least a certain extent. Together with the increasing industrial effort to realize first commercial service robotics products this makes it necessary to properly address one of the most fundamental questions of Human-Robot Interaction: How to ensure safety in human-robot coexistence? In this authoritative monograph, the essential question about the necessary requirements for a safe robot is addressed in depth and from various perspectives. The approach taken in this book focuses on the biomechanical level of injury assessment, addresses the physical evaluation of robot-human impacts, and isolates the major factor...

  4. Recent advances in functional assays of transcriptional enhancers.

    Science.gov (United States)

    Babbitt, Courtney C; Markstein, Michele; Gray, Jesse M

    2015-09-01

    In this special edition of Genomics, we present reviews of the current state of the field in identifying and functionally understanding transcriptional enhancers in cells and developing tissues. Typically several enhancers coordinate the expression of an individual target gene, each controlling that gene's expression in specific cell types at specific times. Until recently, identifying each gene's enhancers had been challenging because enhancers do not occupy prescribed locations relative to their target genes. Recently there have been powerful advances in DNA sequencing and other technologies that make it possible to identify the majority of enhancers in virtually any cell type of interest. The reviews in this edition of Genomics highlight some of these new and powerful approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The value of contrast-enhanced laparoscopic ultrasound during robotic-assisted surgery for primary colorectal cancer

    DEFF Research Database (Denmark)

    Ellebaek, Signe Bremholm; Fristrup, Claus Wilki; Pless, Torsten

    2018-01-01

    AIM: The aim of this study was to assess the potential clinical value of contrast enhanced laparoscopic ultrasonography (CE-LUS) as a screening modality for liver metastases during robotic assisted surgery for primary colorectal cancer (CRC). METHOD: A prospective, descriptive (feasibility) study...... including 50 consecutive patients scheduled for robotic assisted surgery for primary CRC. CE-LUS was performed by 2 experienced specialists. Only patients without metastatic disease were included. Follow-up was obtained with contrast-enhanced CT imaging at 3 and 12 months postoperatively. RESULTS: Fifty......-up revealed no liver metastasis in any of the patients. CONCLUSION: CE-LUS did not increase the detection rate of occult liver metastasis during robotic assisted primary CRC surgery. The use of CE-LUS as a screening modality for detection of liver metastasis cannot be recommended based on this study...

  6. The development of robotic system for the nuclear power plants -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Lee, Yong Bum; Hwang, Suk Yeoung; Kim, Woong Ki; Park, Soon Yong; Lee, Young Kwang; Lee, Jae Gyeong; Seo, Yong Chil

    1994-07-01

    The omni-directional planetary wheel type mobile robot (KAEROT/ml) has been developed on the concepts of the modularity, reliability, and stability. Manipulator system is designed in order to be able to install on mobile system and to upgrade operating capability. Control system consists of 68030 processor board, servo motor controller and I/O board. The 6 DOFs hydraulic manipulator is designed for nozzle dam installation and removal. The reachable length of manipulator is 1.7 m with the wrist configuration of pitch-yaw-roll. For the easy installation of manipulator from outside steam generator, specially designed guider is considered. Also master manipulator is designed for force feedback control. RCP (Remote Control Part) is constructed with Sparc processor boards and servo control boards. Graphic simulation has done for the evaluation of manipulator performance of nozzle dam works. (Author)

  7. US Department of Energy Nuclear Energy University program in robotics for advanced reactors: Program plan, FY 1987-1991

    International Nuclear Information System (INIS)

    Mann, R.C.; Gonzalez, R.C.; Tulenko, J.S.; Tesar, D.; Wehe, D.K.

    1987-07-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of an advanced robotic system capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. This goal will be achieved through a team effort among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Combustion Engineering, Martin Marietta Baltimore Aerospace, Odetics, Remotec, and Telerobotics International. Each of the universities and ORNL have ongoing activities and corresponding facilities in areas of R and D related to robotics. This program is designed to take full advantage of these existing resources at the participating institutions

  8. Advance directives as autonomy enhancers: reality or myth?

    OpenAIRE

    Navarro Michel, Mónica

    2015-01-01

    In the last few decades there has been a wealth of literature and legislation on advance directives. As you all know, it is an instrument by which a person can express their wishes as regards what treatment they should be given or, more to the point, not to be given, when he is in a situation when he can not do so himself. Regulations in the western world seem to promote advance directives as a way to enhance patient¿s autonomy in the context of human rights, and the media has presen...

  9. Framework for Educational Robotics: A Multiphase Approach to Enhance User Learning in a Competitive Arena

    Science.gov (United States)

    Lye, Ngit Chan; Wong, Kok Wai; Chiou, Andrew

    2013-01-01

    Educational robotics involves using robots as an educational tool to provide a long term, and progressive learning activity, to cater to different age group. The current concern is that, using robots in education should not be an instance of a one-off project for the sole purpose of participating in a competitive event. Instead, it should be a…

  10. A System on Chip approach to enhanced learning in interdisciplinary robotics

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Falsig, Simon

    2011-01-01

    the framework in an embedded systems course and various student projects, and have found that it greatly enhance the students abilities to control hardware from software, and dramatically reduce the time spent on software $\\leftrightarrow$ hardware interfacing. As the framework is also scalable, it can support......p, li { white-space: pre-wrap; } To sustain interdisciplinary teaching and learning in the rapidly growing and diversifying field of robotics, we have successfully employed FPGA based System on Chip (SoC) technology to provide abstraction between high level software and low level IO/ and control...... hardware. Our approach is to provides students with a simple FPGA based framework for hardware access, and hardware I/O development, which is independent of computer platform and programming language, and enable the students to add to, or change I/O hardware in accordance with their skills. We have tested...

  11. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.

    Science.gov (United States)

    Ha, Junhyoung; Park, Frank C; Dupont, Pierre E

    2017-02-01

    Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length. Stability conditions for a planar tube pair are derived and used to formulate an optimal design problem. An analytic formulation of the optimal precurvature function is derived that achieves a desired tip orientation range while maximizing stability and respecting bending strain limits. This formulation also includes straight transmission segments at the proximal ends of the tubes. The result, confirmed by both numerical and physical experiment, enables designs with enhanced stability in comparison to designs of constant precurvature.

  12. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Preissner, C.; Nocher, D.; Han, Y.; Barraza, J.; Lee, P.; Lee, W.-K.; Cai, Z.; Ginell, S.; Alkire, R.; Lazarski, K.; Schuessler, R.; Joachimiak, A.

    2004-01-01

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper

  13. University of Michigan workscope for 1991 DOE University program in robotics for advanced reactors

    International Nuclear Information System (INIS)

    Wehe, D.K.

    1990-01-01

    The University of Michigan (UM) is a member of a team of researchers, including the universities of Florida, Texas, and Tennessee, along with Oak Ridge National Laboratory, developing robotic for hazardous environments. The goal of this research is to develop the intelligent and capable robots which can perform useful functions in the new generation of nuclear reactors currently under development. By augmenting human capabilities through remote robotics, increased safety, functionality, and reliability can be achieved. In accordance with the established lines of research responsibilities, our primary efforts during 1991 will continue to focus on the following areas: radiation imaging; mobile robot navigation; three-dimensional vision capabilities for navigation; and machine-intelligence. This report discuss work that has been and will be done in these areas

  14. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  15. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    Science.gov (United States)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  16. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy. Submitted to the Congress of the U.S. May 1991

    Science.gov (United States)

    Lum, Henry, Jr.

    1991-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.

  17. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    Science.gov (United States)

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  18. Robotics_MobileRobot Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  19. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

    Directory of Open Access Journals (Sweden)

    Casellato Claudia

    2012-07-01

    Full Text Available Abstract Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A, constant disturbing force (B and deactivation of the additive external force again (C. The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining

  20. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    Halme, A.

    1994-01-01

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  1. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    Science.gov (United States)

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  2. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    Science.gov (United States)

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  3. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics.

    Science.gov (United States)

    Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco

    2017-01-01

    In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.

  4. Enhancing the effectiveness of human-robot teaming with a closed-loop system.

    Science.gov (United States)

    Teo, Grace; Reinerman-Jones, Lauren; Matthews, Gerald; Szalma, James; Jentsch, Florian; Hancock, Peter

    2018-02-01

    With technological developments in robotics and their increasing deployment, human-robot teams are set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able to communicate implicitly, the present study implemented a closed-loop system. This system enabled the robot to provide adaptive aid without the need for explicit commands from the human teammate, through the use of multiple physiological workload measures. Such measures of workload vary in sensitivity and there is large inter-individual variability in physiological responses to imposed taskload. Workload models enacted via closed-loop system should accommodate such individual variability. The present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and workload. Results showed that adaptive robot aid driven by an individualized workload model for physiological response resulted in greater improvements in performance compared to aid that was simply imposed by the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  6. Quadruped locomotion system of prototype advanced robot for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Sugiyama, Sakae

    1991-01-01

    The development of the robots for the works in nuclear power stations has been promoted. The demonstration machine developed comprises subsystems so that the design, manufacture, operation, maintenance and so on of the robots are simplified and made convenient, that is, the command for all actions, visual information processing subsystem, manipulation subsystem and movement subsystem. In this report, the elementary technology of movement and the movement subsystem are described. Quadruped walking, intelligent type motion control, and the target specification, movement subsystem and test of the demonstration machine are explained. (K.I.)

  7. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  8. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  9. Navigation control of a multi-functional eye robot

    International Nuclear Information System (INIS)

    Ali, F.A.M.; Hashmi, B.; Younas, A.; Abid, B.

    2016-01-01

    The advancement in robotic field is enhanced rigorously in the past Few decades. Robots are being used in different fields of science as well as warfare. The research shows that in the near future, robots would be able to serve in fighting wars. Different countries and their armies have already deployed several military robots. However, there exist some drawbacks of robots like their inefficiency and inability to work under abnormal conditions. Ascent of artificial intelligence may resolve this issue in the coming future. The main focus of this paper is to provide a low cost and long range most efficient mechanical as well as software design of an Eye Robot. Using a blend of robotics and image processing with an addition of artificial intelligence path navigation techniques, this project is designed and implemented by controlling the robot (including robotic arm and camera) through a 2.4 GHz RF module manually. Autonomous function of the robot includes navigation based on the path assigned to the robot. The path is drawn on a VB based application and then transferred to the robot wirelessly or through serial port. A Wi-Fi based Optical Character Recognition (OCR) implemented video streaming can also be observed at remote devices like laptops. (author)

  10. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  11. Robotics in nuclear engineering. Computer-assisted teleoperation in hazardous environments with particular reference to radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Larcombe, M H.E.; Halsall, J R

    1984-01-01

    The subject is covered in chapters, entitled: foreword and definitions; introduction; robotics state of the art 1984; potential applications; advanced remote control; robot system design principles; robot system skills; planning of remote control robotics R and D; example systems; REMCON (advanced remote control robotic systems) guidelines; robot activation; robot instrumentation; robot guidance; design of equipment for robotic maintenance; ergonomics of control.

  12. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    Science.gov (United States)

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement

  13. Advanced robotics handling and controls applied to Mixed Waste characterization, segregation and treatment

    International Nuclear Information System (INIS)

    Grasz, E.; Huber, L.; Horvath, J.; Roberson, P.; Wilhelmsen, K.; Ryon, R.

    1994-11-01

    At Lawrence Livermore National Laboratory under the Mixed Waste Operations program of the Department of Energy Robotic Technology Development Program (RTDP), a key emphasis is developing a total solution to the problem of characterizing, handling and treating complex and potentially unknown mixed waste objects. LLNL has been successful at looking at the problem from a system perspective and addressing some of the key issues including non-destructive evaluation of the waste stream prior to the materials entering the handling workcell, the level of automated material handling required for effective processing of the waste stream objects (both autonomous and tele-operational), and the required intelligent robotic control to carry out the characterization, segregation, and waste treating processes. These technologies were integrated and demonstrated in a prototypical surface decontamination workcell this past year

  14. Surface-based geometric modelling using teaching trees for advanced robots

    International Nuclear Information System (INIS)

    Nakamura, Akira; Ogasawara, Tsukasa; Tsukune, Hideo; Oshima, Masaki

    2000-01-01

    Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)

  15. Recent Advances in Liquid Metal Manipulation toward Soft Robotics and Biotechnologies.

    Science.gov (United States)

    Yu, Yue; Miyako, Eijiro

    2018-04-06

    Interest has grown significantly in the field of soft robotics, which seeks to develop machinery capable of duplicating the elastic and rheological properties of typically polymeric or elastomeric biological tissues and organs. As a result of a number of unique properties, gallium-based liquid metals (LMs) are emerging as materials used in the forefront of soft robotics research. Finding methods to enable the sophisticated manipulation of LMs will be essential for further progress in the field. This review provides a critical discussion of the manipulation of LMs and on important biotechnological applications of LMs including microfluidics, healthcare devices, biomaterials, and nanomedicines. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Socially grounded game strategy enhances bonding and perceived smartness of a humanoid robot

    Science.gov (United States)

    Barakova, E. I.; De Haas, M.; Kuijpers, W.; Irigoyen, N.; Betancourt, A.

    2018-01-01

    In search for better technological solutions for education, we adapted a principle from economic game theory, namely that giving a help will promote collaboration and eventually long-term relations between a robot and a child. This principle has been shown to be effective in games between humans and between humans and computer agents. We compared the social and cognitive engagement of children when playing checkers game combined with a social strategy against a robot or against a computer. We found that by combining the social and game strategy the children (average age of 8.3 years) had more empathy and social engagement with the robot since the children did not want to necessarily win against it. This finding is promising for using social strategies for the creation of long-term relations between robots and children and making educational tasks more engaging. An additional outcome of the study was the significant difference in the perception of the children about the difficulty of the game - the game with the robot was seen as more challenging and the robot - as a smarter opponent. This finding might be due to the higher perceived or expected intelligence from the robot, or because of the higher complexity of seeing patterns in three-dimensional world.

  17. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    Science.gov (United States)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  18. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke rehabilitation. It detects and recognizes the user's motion intent based on electromyography (EMG) signals, and then helps the user to accomplish hand motions in real time. The hand exoskeleton can perform six kinds of motions, including the whole hand closing/opening, tripod pinch/opening, and the "gun" sign/opening. A 52-year-old woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in robot-assisted hand training. Though she was unable to move her fingers on her right hand before the training, EMG activities could be detected on her right forearm. In each visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of Fugl-Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 1 to Stage 2 in Chedoke-McMaster assessment. The results demonstrate the feasibility of robot-assisted training driven by myoelectric pattern recognition after stroke.

  19. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  20. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  1. Enhancing fuzzy robot navigation systems by mimicking human visual perception of natural terrain traversibility

    Science.gov (United States)

    Tunstel, E.; Howard, A.; Edwards, D.; Carlson, A.

    2001-01-01

    This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data.

  2. Gecko inspired adhesives for enhanced dexterity of robotic manipulation systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Valuable time is spent by astronauts performing simple, mundane, or ergonomically taxing tasks. Therefore, one center of focus for NASA is to have robots...

  3. Advancements in solar stills for enhanced flow rate

    Science.gov (United States)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R ampersand D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER ampersand WM) operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER ampersand WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER ampersand WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs

  5. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  6. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    Science.gov (United States)

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  7. The safety of domestic robotics: A survey of various safety-related publications

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    Different branches of technology are striving to come up with new advancements that will enhance civilization and ultimately improve the quality of life. In the robotics community, strides have been made to bring the use of personal robots in office and home environments on the horizon. Safety is

  8. The safety of domestic robotics: A survey of various safety-related publications

    OpenAIRE

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano

    2014-01-01

    Different branches of technology are striving to come up with new advancements that will enhance civilization and ultimately improve the quality of life. In the robotics community, strides have been made to bring the use of personal robots in office and home environments on the horizon. Safety is one of the critical issues that must be guaranteed for the successful acceptance, deployment, and utilization of domestic robots. Unlike the barrier-based operational safety guarantee that is widely ...

  9. An Exploration of the Benefits of an Animallike Robot Companion with More Advanced Touch Interaction Capabilities for Dementia Care

    NARCIS (Netherlands)

    Jung, Merel Madeleine; van der Leij, Lisa; Kelders, Saskia Marion

    2017-01-01

    Animallike robot companions such as robotic seal Paro are increasingly used in dementia care due to the positive effects that interaction with these robots can have on the well-being of these patients. Touch is one of the most important interaction modalities for patients with dementia and can be a

  10. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system

  11. Do laparoscopic skills transfer to robotic surgery?

    Science.gov (United States)

    Panait, Lucian; Shetty, Shohan; Shewokis, Patricia A; Sanchez, Juan A

    2014-03-01

    Identifying the set of skills that can transfer from laparoscopic to robotic surgery is an important consideration in designing optimal training curricula. We tested the degree to which laparoscopic skills transfer to a robotic platform. Fourteen medical students and 14 surgery residents with no previous robotic but varying degrees of laparoscopic experience were studied. Three fundamentals of laparoscopic surgery tasks were used on the laparoscopic box trainer and then the da Vinci robot: peg transfer (PT), circle cutting (CC), and intracorporeal suturing (IS). A questionnaire was administered for assessing subjects' comfort level with each task. Standard fundamentals of laparoscopic surgery scoring metric were used and higher scores indicate a superior performance. For the group, PT and CC scores were similar between robotic and laparoscopic modalities (90 versus 90 and 52 versus 47; P > 0.05). However, for the advanced IS task, robotic-IS scores were significantly higher than laparoscopic-IS (80 versus 53; P robotic-PT score when compared with laparoscopic-PT (92 versus 105; P  0.05). The robot was favored over laparoscopy for all drills (PT, 66.7%; CC, 88.9%; IS, 94.4%). For simple tasks, participants with preexisting skills perform worse with the robot. However, with increasing task difficulty, robotic performance is equal or better than laparoscopy. Laparoscopic skills appear to readily transfer to a robotic platform, and difficult tasks such as IS are actually enhanced, even in subjects naive to the technology. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  13. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  14. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  15. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Science.gov (United States)

    1987-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy.

  16. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  17. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics

    Directory of Open Access Journals (Sweden)

    Morone G

    2017-05-01

    Full Text Available Giovanni Morone,1,2 Stefano Paolucci,1,2 Andrea Cherubini,3 Domenico De Angelis,1 Vincenzo Venturiero,1 Paola Coiro,1 Marco Iosa1,2 1Private Inpatient Unit, 2Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy; 3Department of Robotics, LIRMM UM-CNRS, Montpellier, France Abstract: In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. Keywords: exoskeleton, neurorehabilitation, robot-assisted walking training, wearable robot, activities of daily living, motor learning, plasticity

  18. Enhancing Practice and Achievement in Introductory Programming with a Robot Olympics

    Science.gov (United States)

    Scott, Michael James; Counsell, Steve; Lauria, Stanislao; Swift, Stephen; Tucker, Allan; Shepperd, Martin; Ghinea, Gheorghita

    2015-01-01

    Computer programming is notoriously difficult to learn. To this end, regular practice in the form of application and reflection is an important enabler of student learning. However, educators often find that first-year B.Sc. students do not readily engage in such activities. Providing each student with a programmable robot, however, could be used…

  19. Designing a Robot Teaching Assistant for Enhancing and Sustaining Learning Motivation

    Science.gov (United States)

    Hung, I-Chun; Chao, Kuo-Jen; Lee, Ling; Chen, Nian-Shing

    2013-01-01

    Although many researchers have pointed out that educational robots can stimulate learners' learning motivation, the learning motivation will be hardly sustained and rapidly decreased over time if the amusement and interaction merely come from the new technology itself without incorporating instructional strategies. Many researchers have…

  20. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    International Nuclear Information System (INIS)

    Schalkoff, Robert J.

    1999-01-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  1. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  2. Advanced real-time multi-display educational system (ARMES): An innovative real-time audiovisual mentoring tool for complex robotic surgery.

    Science.gov (United States)

    Lee, Joong Ho; Tanaka, Eiji; Woo, Yanghee; Ali, Güner; Son, Taeil; Kim, Hyoung-Il; Hyung, Woo Jin

    2017-12-01

    The recent scientific and technologic advances have profoundly affected the training of surgeons worldwide. We describe a novel intraoperative real-time training module, the Advanced Robotic Multi-display Educational System (ARMES). We created a real-time training module, which can provide a standardized step by step guidance to robotic distal subtotal gastrectomy with D2 lymphadenectomy procedures, ARMES. The short video clips of 20 key steps in the standardized procedure for robotic gastrectomy were created and integrated with TilePro™ software to delivery on da Vinci Surgical Systems (Intuitive Surgical, Sunnyvale, CA). We successfully performed the robotic distal subtotal gastrectomy with D2 lymphadenectomy for patient with gastric cancer employing this new teaching method without any transfer errors or system failures. Using this technique, the total operative time was 197 min and blood loss was 50 mL and there were no intra- or post-operative complications. Our innovative real-time mentoring module, ARMES, enables standardized, systematic guidance during surgical procedures. © 2017 Wiley Periodicals, Inc.

  3. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress May 15, 1987

    Science.gov (United States)

    1987-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.

  4. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1986

    Science.gov (United States)

    1986-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.

  5. Advancing automation and robotics technology for the Space Station Freedom and for the US economy: Submitted to the United States Congress

    Science.gov (United States)

    1990-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.

  6. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    % yield, demonstrated the need to consider up-front the limitations of trying to adopt existing equipment to a task for which subsequent basic research studies indicated it was not suitable. New information was developed in the most complex of the chemical conversions studied, advanced catalysis to make acrylic acid, a chemical used widely to make paints, and this was published in a scientific journal. In regard to the technical effectiveness, the crop science aspects were for the most part remarkably effective in addressing the underlying objectives indicating the soundness of the technical approach. With time, it should be possible to fully develop the advanced biomass biorefinery feedstock. Challenges within the thermolysis step to recover crotonic acid meant that by the end of the project we were not able to demonstrate an economic case based on data from scaled up equipment. Solving this will take further research and development work. As a general statement, the broadest public good is in demonstrating the value of funding a very unique approach to the complex problem of enabling large-scale biomass biorefineries which resulted in significant progress towards the ultimate goal and a clearer understanding of the technical hurdles remaining. Perhaps not surprisingly, some of the broader benefits to the public come from the use of the REFABB project innovations in areas unrelated to the initial objective. It is worth highlighting the breakthrough developments in identifying three single global regulator genes which can be engineered into plants to dramatically increase photosynthesis and carbon capturing ability. These genes have tremendous potential for use in major food crops, in particular corn to enhance grain yield and based on recent findings, increase the root density, a critical key to increasing carbon sequestration in agriculture and improving the sustainability of global food and biofuel production.

  7. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing

    Directory of Open Access Journals (Sweden)

    Javier Ramírez De La Pinta

    2017-03-01

    Full Text Available In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.

  8. Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing.

    Science.gov (United States)

    Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio

    2017-03-06

    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.

  9. Verification of brain ring enhancing lesions by advanced MR ...

    African Journals Online (AJOL)

    Momena Essam Elsadway

    2017-05-25

    May 25, 2017 ... Conclusions: Characterization of ring enhancing lesions of the brain has ... were presented with visual disorders, and 3 were already known to .... ring like marginal enhancement, no perifocal edema or mass effect, MR ...

  10. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    OpenAIRE

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we...

  11. Advances in Integrating Autonomy with Acoustic Communications for Intelligent Networks of Marine Robots

    Science.gov (United States)

    2013-02-01

    whole or in part is permitted for any purpose of the United States Government . This thesis should be cited as: Toby Edwin Schneider, 2013. Advances...Sonar AUV #Environmental Sampling Environmental AUV +name : string = OEX Ocean Explorer +name : string = Hammerhead Iver2 +name : string = Unicorn ...executable» Google Earth Bluefin 21 AUV ( Unicorn ) MOOS Computer GPS «serial» Bluefin 21 AUV (Macrura) MOOS Computer «acoustic» Micro-Modem «wired

  12. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-03-24

    Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational

  14. Future robotic platforms in urologic surgery: Recent Developments

    Science.gov (United States)

    Herrell, S. Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803

  15. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  16. Robot-assisted vitreoretinal surgery: current perspectives.

    Science.gov (United States)

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.

  17. The Design and Implementation of a Semi-Autonomous Surf-Zone Robot Using Advanced Sensors and a Common Robot Operating System

    Science.gov (United States)

    2011-06-01

    effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the

  18. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R ampersand D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER ampersand WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT ampersand E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs

  19. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  20. Dementia and Robotics: People with Advancing Dementia and Their Carers Driving an Exploration into an Engineering Solution to Maintaining Safe Exercise Regimes.

    Science.gov (United States)

    Cooper, Carol; Penders, Jacques; Procter, Paula M

    2016-01-01

    The merging of the human world and the information technology world is advancing at a pace, even for those with dementia there are many useful smart 'phone applications including reminders, family pictures display, GPS functions and video communications. This paper will report upon initial collaborative work developing a robotic solution to engaging individuals with advancing dementia in safe exercise regimes. The research team has been driven by the needs of people with advancing dementia and their carers through a focus group methodology, the format, discussions and outcomes of these groups will be reported. The plans for the next stage of the research will be outlined including the continuing collaboration with advancing dementia and their carers.

  1. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Juan M. Gandarias

    2018-02-01

    Full Text Available The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM. Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more, with a lower mean of pressure values (up to 72% less than when using a rigid sensor, with a softer grip, which is needed in physical human–robot interaction (pHRI. A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78% with a rigid sensor.

  2. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human-Robot Interaction.

    Science.gov (United States)

    Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J

    2018-02-26

    The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.

  3. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-01-01

    Finally, we take a step further by developing a novel feature selection method suitable for defining a computational framework capable of analyzing the genomic content of enhancers and reporting cell-line specific predictive signatures.

  4. Elevated fluoride products enhance remineralization of advanced enamel lesions

    NARCIS (Netherlands)

    ten Cate, J.M.; Buijs, M.J.; Chaussain Miller, C.; Exterkate, R.A.M.

    2008-01-01

    Caries prevention might benefit from the use of toothpastes containing over 1500 ppm F. With few clinical studies available, the aim of this pH-cycling study was to investigate the dose response between 0 and 5000 ppm F of de- and remineralization of advanced (> 150 µm) enamel lesions. Treatments

  5. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  6. An In-home Advanced Robotic System to Manage Elderly Home-care Patients' Medications: A Pilot Safety and Usability Study.

    Science.gov (United States)

    Rantanen, Pekka; Parkkari, Timo; Leikola, Saija; Airaksinen, Marja; Lyles, Alan

    2017-05-01

    We examined the safety profile and usability of an integrated advanced robotic device and telecare system to promote medication adherence for elderly home-care patients. There were two phases. Phase I aimed to verify under controlled conditions in a single nursing home (n = 17 patients) that no robotic malfunctions would hinder the device's safe use. Phase II involved home-care patients from 3 sites (n = 27) who were on long-term medication. On-time dispensing and missed doses were recorded by the robotic system. Patients' and nurses' experiences were assessed with structured interviews. The 17 nursing home patients had 457 total days using the device (Phase I; mean, 26.9 per patient). On-time sachet retrieval occurred with 97.7% of the alerts, and no medication doses were missed. At baseline, Phase II home-dwelling patients reported difficulty remembering to take their medicines (23%), and 18% missed at least 2 doses per week. Most Phase II patients (78%) lived alone. The device delivered and patients retrieved medicine sachets for 99% of the alerts. All patients and 96% of nurses reported the device was easy to use. This trial demonstrated the safety profile and usability of an in-home advanced robotic device and telecare system and its acceptability to patients and nurses. It supports individualized patient dosing schedules, patient-provider communications, and on-time, in-home medication delivery to promote adherence. Real time dose-by-dose monitoring and communication with providers if a dose is missed provide oversight generally not seen in home care. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Collaborative Assistive Robot for Mobility Enhancement (CARMEN) The bare necessities assisted wheelchair navigation and beyond

    CERN Document Server

    Urdiales, Cristina

    2012-01-01

    In nowadays aging society, many people require mobility assistance. Sometimes, assistive devices need a certain degree of autonomy when users' disabilities difficult manual control. However, clinicians report that excessive assistance may lead to loss of residual skills and frustration. Shared control focuses on deciding when users need help and providing it. Collaborative control aims at giving just the right amount of help in a transparent, seamless way. This book presents the collaborative control paradigm. User performance may be indicative of physical/cognitive condition, so it is used to decide how much help is needed. Besides, collaborative control integrates machine and user commands so that people contribute to self-motion at all times. Collaborative control was extensively tested for 3 years using a robotized wheelchair at a rehabilitation hospital in Rome with volunteer inpatients presenting different disabilities, ranging from mild to severe. We also present a taxonomy of common metrics for wheelc...

  8. The development of advanced robotic technology. A study on the tele-existence and intelligent control of a robot system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Byun, Jueng Nam; Kim, Jong Hwan; Lee, Ju Jang; Bang, Seok Won; Chu, Gil Hwan; Park, Jong Cheol; Choi, Jong Seok; Yang, Jung Min; Hong, Sun Ki [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    To increase the efficiency of human intelligence it is required to develop an intelligent monitoring and system. In this research, we develop intelligent control methods related with tele-operation, tele-existence, real-time control technique, and intelligent control technique. Those are key techniques in tele-operation, especially for the repair and maintenance of nuclear power plants. The objective of this project is to develop of the tele-existence and intelligent control system for a robot used in the nuclear power plants. (author). 20 refs.

  9. Robotics in General Surgery

    OpenAIRE

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  10. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  11. Current status of endovascular catheter robotics.

    Science.gov (United States)

    Lumsden, Alan B; Bismuth, Jean

    2018-06-01

    In this review, we will detail the evolution of endovascular therapy as the basis for the development of catheter-based robotics. In parallel, we will outline the evolution of robotics in the surgical space and how the convergence of technology and the entrepreneurs who push this evolution have led to the development of endovascular robots. The current state-of-the-art and future directions and potential are summarized for the reader. Information in this review has been drawn primarily from our personal clinical and preclinical experience in use of catheter robotics, coupled with some ground-breaking work reported from a few other major centers who have embraced the technology's capabilities and opportunities. Several case studies demonstrating the unique capabilities of a precisely controlled catheter are presented. Most of the preclinical work was performed in the advanced imaging and navigation laboratory. In this unique facility, the interface of advanced imaging techniques and robotic guidance is being explored. Although this procedure employs a very high-tech approach to navigation inside the endovascular space, we have conveyed the kind of opportunities that this technology affords to integrate 3D imaging and 3D control. Further, we present the opportunity of semi-autonomous motion of these devices to a target. For the interventionist, enhanced precision can be achieved in a nearly radiation-free environment.

  12. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  13. Robotics in endoscopy.

    Science.gov (United States)

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  14. On the Use of ROMOT—A RObotized 3D-MOvie Theatre—To Enhance Romantic Movie Scenes

    Directory of Open Access Journals (Sweden)

    Cristina Portalés

    2017-04-01

    Full Text Available In this paper, we introduce the use of ROMOT—a RObotic 3D-MOvie Theatre—to enhance love and sex movie scenes. ROMOT represents the next generation of movie theatres, where scenes are enhanced with multimodal content, also allowing audience interaction. ROMOT is highly versatile as it can support different setups, integrated hardware and content and, thus, it can be easily adapted to different groups and purposes. Regarding the setups, currently, ROMOT supports a traditional movie setup (including first-person movies, a mixed reality environment, a virtual reality interactive environment, and an augmented reality mirror-based scene. Regarding the integrated hardware, the system currently integrates a variety of devices and displays that allow audiences to see, hear, smell, touch, and feel the movement, all synchronized with the film experience. Finally, regarding to content, here we theorize about the use of ROMOT for romantic-related interactive movies. Though the work presented in this sense is rather speculative, it might open new avenues of research and for the film and other creative industries.

  15. Humanlike Robots - The Upcoming Revolution in Robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  16. Humanlike robots: the upcoming revolution in robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  17. Potential of telepresence robots to enhance social connectedness in older adults with dementia: an integrative review of feasibility.

    Science.gov (United States)

    Moyle, Wendy; Arnautovska, Urska; Ownsworth, Tamara; Jones, Cindy

    2017-12-01

    Socially assistive robots are increasingly used as a therapeutic tool for people with dementia, as a means to improve quality of life through social connection. This paper presents a mixed-method integrative review of telepresence robots used to improve social connection of people with dementia by enabling real-time communication with their carers. A systematic search of Medline, ProQuest, PubMed, Scopus, Web of Science, CINAHL, EMBASE, and the Cochrane library was conducted to gather available evidence on the use of telepresence robots, specifically videoconferencing, to improve social connectedness, in people with dementia. A narrative synthesis was used to analyze the included studies. A review of 1,035 records, identified four eligible peer-reviewed publications, reporting findings about three different mobile telepresence robots. The study designs included qualitative and mixed-methods approaches, focusing primarily on examining the feasibility and acceptability of the telepresence robots within the context of dementia care. These studies reported both positive outcomes of using telepresence robots to connect people with dementia to others, as well as barriers, such as a lack of experience in using a robot and technological issues. Although limited, the current literature suggests that telepresence robots have potential utility for improving social connectedness of people with dementia and their carers. However, more systematic feasibility studies are needed to inform the development of telepresence robots followed by clinical trials to establish efficacy within dementia care.

  18. Recent advances in contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Meaney, J.F.M.; Goyen, M.

    2007-01-01

    Magnetic resonance angiography (MRA) provides a means of visualizing vascular structures noninvasively and is increasingly replacing conventional X-ray angiography in routine use. Contrast-enhanced MRA (CE-MRA), in which gadolinium contrast agents are used to shorten the T1 relaxation, offers increased resolution and higher signal-to-noise ratio compared with earlier flow-dependent [time-of-flight (TOF) or phase-contrast (PC)] techniques. Currently available contrast agents differ in their ability to lower T1 values, and hence the choice of contrast agent is an important consideration in the successful use of CE-MRA. Gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany) is the first of a new class of intravascular contrast agents. This agent is extensively (approximately 85%) and reversibly bound to human serum albumin and is retained within the vasculature thus allowing steady-state imaging to be perform-ed. An additional benefit is that gado0fosveset offers higher relaxivity compared with other contrast agents, thus giving a lower blood T1 values which also makes it ideal for first-pass imaging. Clinical trials have consistently shown that gadofosveset enhanced MRA is more sensitive, specific and accurate than time-of-flight MRA, gives fewer uninterpretable scans and affords greater diagnostic confidence. Intravascular contrast agents such as gadofosveset, therefore, offer the potential for improved vascular imaging. (orig.)

  19. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  20. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  1. Optical Robotics in Mesoscopia

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    With light’s miniscule momentum, shrinking robotics down to the micro-scale regime creates opportunities for exploiting optical forces and torques in advanced actuation and control at the nano- and micro-scale dimensions. Advancing light-driven nano- or micro-robotics requires the optimization...... of optimized shapes in the micro-robotics structures [1]. We designed different three-dimensional microstructures and had them fabricated by two-photon polymerization at BRC Hungary. These microstructures were then handled by our proprietary BioPhotonics Workstation to show proof-of-principle 3 demonstrations...

  2. [Robots in general surgery: present and future].

    Science.gov (United States)

    Galvani, Carlos; Horgan, Santiago

    2005-09-01

    Robotic surgery is an emerging technology. We began to use this technique in 2000, after it was approved by the Food and Drug Administration. Our preliminary experience was satisfactory. We report 4 years' experience of using this technique in our institution. Between August 2000 and December 2004, 399 patients underwent robotic surgery using the Da Vinci system. We performed 110 gastric bypass procedures, 30 Lap band, 59 Heller myotomies, 12 Nissen fundoplications, 6 epiphrenic diverticula, 18 total esophagectomies, 3 esophageal leiomyoma resections, 1 pyloroplasty, 2 gastrojejunostomies, 2 transduodenal sphincteroplasties, 10 adrenalectomies and 145 living-related donor nephrectomies. Operating times for fundoplications and Lap band were longer. After the learning curve, the operating times and morbidity of the remaining procedures were considerably reduced. Robot-assisted surgery allows advanced laparoscopic procedures to be performed with enhanced results given that it reduces the learning curve as measured by operating time and morbidity.

  3. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  4. Humanoid Robots and Human Society

    OpenAIRE

    Bahishti, Adam A

    2017-01-01

    Almost every aspect of modern human life starting from the smartphone to the smart houses you live in has been influenced by science and technology. The field of science and technology has advanced throughout the last few decades. Among those advancements, robots have become significant by managing most of our day-to-day tasks and trying to get close to human lives. As robotics and autonomous systems flourish, human-robot relationships are becoming increasingly important. Recently humanoid ro...

  5. Advanced radiographic scanning, enhancement and electronic data storage

    International Nuclear Information System (INIS)

    Savoie, C.; Rivest, D.

    2003-01-01

    It is a well-known fact that radiographs deteriorate with time. Substantial cost is attributed to cataloguing and storage. To eliminate deterioration issues and save time retrieving radiographs, laser scanning techniques were developed in conjunction with viewing and enhancement software. This will allow radiographs to be successfully scanned and stored electronically for future reference. Todays radiographic laser scanners are capable Qf capturing images with an optical density of up to 4.1 at 256 grey levels and resolutions up to 4096 pixels per line. An industrial software interface was developed for the nondestructive testing industry so that, certain parameters such as scan resolution, number of scans, file format and location to be saved could be adjusted as needed. Once the radiographs have been scanned, the tiff images are stored, or retrieved into Radiance software (developed by Rivest Technologies Inc.), which will help to properly interpret the radiographs. Radiance was developed to allow the user to quickly view the radiographs correctness or enhance its defects for comparison and future evaluation. Radiance also allows the user to zoom, measure and annotate areas of interest. Physical cost associated with cataloguing, storing and retrieving radiographs can be eliminated. You can now successfully retrieve and view your radiographs from CD media or dedicated hard drive at will. For continuous searches and/or field access, dedicated hard drives controlled by a server would be the media of choice. All scanned radiographs will be archived to CD media (CD-R). Laser scanning with a proper acquisition interface and easy to use viewing software will permit a qualified user to identify areas of interest and share this information with his/her colleagues via e-mail or web data access. (author)

  6. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  7. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  8. How to Build a Supervised Autonomous System for Robot-Enhanced Therapy for Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Esteban Pablo G.

    2017-04-01

    Full Text Available Robot-Assisted Therapy (RAT has successfully been used to improve social skills in children with autism spectrum disorders (ASD through remote control of the robot in so-called Wizard of Oz (WoZ paradigms.However, there is a need to increase the autonomy of the robot both to lighten the burden on human therapists (who have to remain in control and, importantly, supervise the robot and to provide a consistent therapeutic experience. This paper seeks to provide insight into increasing the autonomy level of social robots in therapy to move beyond WoZ. With the final aim of improved human-human social interaction for the children, this multidisciplinary research seeks to facilitate the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.We introduce the clinical framework in which the developments are tested, alongside initial data obtained from patients in a first phase of the project using a WoZ set-up mimicking the targeted supervised-autonomy behaviour. We further describe the implemented system architecture capable of providing the robot with supervised autonomy.

  9. Using Robotics and Game Design to Enhance Children's Self-Efficacy, STEM Attitudes, and Computational Thinking Skills

    Science.gov (United States)

    Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan

    2016-01-01

    This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy…

  10. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  11. Dynamic performance enhancement of microgrids by advanced sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Sofla, Mohammadhassan Abdollahi [Electrical Engineering and Computer Science Dept., University of Toledo, Ohio (United States); Gharehpetian, Gevorg B. [Electrical Engineering Dept., Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Dynamics are the most important problems in the microgrid operation. In the islanded microgrid, the mismatch of parallel operations of inverters during dynamics can result in the instability. This paper considers severe dynamics which can occur in the microgrid. Microgrid can have different configurations with different load and generation dynamics which are facing voltage disturbances. As a result, microgrid has many uncertainties and is placed in the distribution network where is full of voltage disturbances. Moreover, characteristics of the distribution network and distributed energy resources in the islanded mode make microgrid vulnerable and easily lead to instability. The main aim of this paper is to discuss the suitable mathematical modeling based on microgrid characteristics and to design properly inner controllers to enhance the dynamics of microgrid with uncertain and changing parameters. This paper provides a method for inner controllers of inverter-based distributed energy resources to have a suitable response for different dynamics. Parallel inverters in distribution networks were considered to be controlled by nonlinear robust voltage and current controllers. Theoretical prove beyond simulation results, reveal evidently the effectiveness of the proposed controller. (author)

  12. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    Science.gov (United States)

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  14. Innovations in robotic surgery.

    Science.gov (United States)

    Gettman, Matthew; Rivera, Marcelino

    2016-05-01

    Developments in robotic surgery have continued to advance care throughout the field of urology. The purpose of this review is to evaluate innovations in robotic surgery over the past 18 months. The release of the da Vinci Xi system heralded an improvement on the Si system with improved docking, the ability to further manipulate robotic arms without clashing, and an autofocus universal endoscope. Robotic simulation continues to evolve with improvements in simulation training design to include augmented reality in robotic surgical education. Robotic-assisted laparoendoscopic single-site surgery continues to evolve with improvements on technique that allow for tackling previously complex pathologic surgical anatomy including urologic oncology and reconstruction. Last, innovations of new surgical platforms with robotic systems to improve surgeon ergonomics and efficiency in ureteral and renal surgery are being applied in the clinical setting. Urologic surgery continues to be at the forefront of the revolution of robotic surgery with advancements in not only existing technology but also creation of entirely novel surgical systems.

  15. Advanced olive selections with enhanced quality for minor constituents

    Directory of Open Access Journals (Sweden)

    Velasco, L.

    2015-12-01

    Full Text Available Squalene, phytosterols and tocopherols are minor constituents of paramount importance for the olive fruit and oil quality. The objective of this research was to conduct a two-year evaluation of these compounds in the fruits of seven advanced breeding selections. They were mainly selected for early bearing and high oil content from progenies of crosses between the cultivars ‘Arbequina’ and ‘Picual’. An analysis of variance showed high genotypic effects, non-significant year effects, and genotype x year interactions of low magnitude. The selections showed great variability for the traits, surpassing in some cases the parental values. One selection with total tocopherol content of 263 mg·kg−1 fruit flesh, compared to a maximum of 148 mg·kg −1 in the parents, and another one with Δ5-avenasterol concentration of 30.7% of total sterols, compared to a maximum of 22.1% in the parents, were the most relevant phenotypes. These selections may play an important role for improving olive fruit and oil quality for specific market niches.Compuestos como el escualeno, los fitoesteroles y los tocoferoles tienen una enorme importancia para la calidad del fruto y del aceite de oliva. El objetivo de este trabajo fue la evaluación durante dos años de estos compuestos en los frutos de siete selecciones avanzadas de olivo, seleccionadas principalmente para entrada temprana en producción y alto contenido en aceite a partir de las descendencias de cruzamientos entre los cultivares ‘Arbequina’ y ‘Picual’. El análisis de la varianza mostró, para la mayoría de los caracteres, un elevado efecto del genotipo, ausencia de efecto del factor año, e interacciones entre año y genotipo de baja magnitud. Las selecciones mostraron gran variabilidad para todos los caracteres, sobrepasando en algunos casos los valores de los parentales. Entre las selecciones con valores superiores a los parentales, destacaron una selección con un contenido en tocoferoles

  16. Development of Inspection Robots for Bridge Cables

    Directory of Open Access Journals (Sweden)

    Hae-Bum Yun

    2013-01-01

    Full Text Available This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  17. Development of inspection robots for bridge cables.

    Science.gov (United States)

    Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  18. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    Science.gov (United States)

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  19. The path to the enhanced and advanced LIGO gravitational-wave detectors

    International Nuclear Information System (INIS)

    Smith, J R

    2009-01-01

    We report on the status of the Laser Interferometric Gravitational-Wave Observatory (LIGO) and the plans and progress toward Enhanced and Advanced LIGO. The initial LIGO detectors have finished a two-year long data run during which a full year of triple-coincidence data was collected at design sensitivity. Much of this run was also coincident with the data runs of interferometers in Europe, GEO600 and Virgo. The joint analysis of data from this international network of detectors is ongoing. No gravitational wave signals have been detected in analyses completed to date. Currently two of the LIGO detectors are being upgraded to increase their sensitivity in a program called Enhanced LIGO. The Enhanced LIGO detectors will start another roughly one-year long data run with increased sensitivity in 2009. In parallel, construction of Advanced LIGO, a major upgrade to LIGO, has begun. Installation and commissioning of Advanced LIGO hardware at the LIGO sites will commence at the end of the Enhanced LIGO data run in 2011. When fully commissioned, the Advanced LIGO detectors will be ten times as sensitive as the initial LIGO detectors. Advanced LIGO is expected to make several gravitational-wave detections per year.

  20. Eliminating drift of the head gesture reference to enhance Google Glass-based control of an NAO humanoid robot

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-03-01

    Full Text Available This article presents a strategy for hand-free control of an NAO humanoid robot via head gesture detected by Google Glass-based multi-sensor fusion. First, we introduce a Google Glass-based robot system by integrating the Google Glass and the NAO humanoid robot, which is able to send robot commands through Wi-Fi communications between the Google Glass and the robot. Second, we detect the operator’s head gestures by processing data from multiple sensors including accelerometers, geomagnetic sensors and gyroscopes. Next, we use a complementary filter to eliminate drift of the head gesture reference, which greatly improves the control performance. This is accomplished by the high-pass filter component on the control signal. Finally, we conduct obstacle avoidance experiments while navigating the robot to validate the effectiveness and reliability of this system. The experimental results show that the robot is smoothly navigated from its initial position to its destination with obstacle avoidance via the Google Glass. This hands-free control system can benefit those with paralysed limbs.

  1. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    Science.gov (United States)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  2. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  3. Career Advancement, Career Enhancement, and Personal Growth of Pepperdine University's Educational Leadership Academy Graduate Program Alumni

    Science.gov (United States)

    Nichols, Ruth I.

    2012-01-01

    The purpose of this phenomenological study was two-fold: (a) to explore and describe the perceived impact of Pepperdine University's Educational Leadership Academy (ELA) on 2003-2006 ELA graduates' career advancement, career enhancement, and personal growth; and (b) to obtain ELA graduates' suggestions for ELA program improvement to better prepare…

  4. Vascular Surgery and Robotics

    Directory of Open Access Journals (Sweden)

    Indrani Sen

    2016-01-01

    Full Text Available The application of robotics to Vascular surgery has not progressed as rapidly as of endovascular technology, but this is changing with the amalgamation of these two fields. The advent of Endovascular robotics is an exciting field which overcomes many of the limitations of endovascular therapy like vessel tortuosity and operator fatigue. This has much clinical appeal for the surgeon and hold significant promise of better patient outcomes. As with most newer technological advances, it is still limited by cost and availability. However, this field has seen some rapid progress in the last decade with the technology moving into the clinical realm. This review details the development of robotics, applications, outcomes, advantages, disadvantages and current advances focussing on Vascular and Endovascular robotics

  5. Feasibility of using a humanoid robot for enhancing attention and social skills in adolescents with autism spectrum disorder.

    Science.gov (United States)

    Jordan, Kimberlee; King, Marcus; Hellersteth, Sophia; Wirén, Anna; Mulligan, Hilda

    2013-09-01

    This study investigated the use of robotic technology for promoting attention, communication and social skills in adolescents with autism spectrum disorder (ASD). Attention, communication and social skills were measured while participants played a memory card matching game (Face Match) using (a) a humanoid robot, (b) a Smart Board and (c) playing cards. Three participants with ASD and three with other cognitive impairments were recruited from a secondary school with a special needs unit. Participants were paired such that one of each pair had a diagnosis of ASD and Face Match was played in these pairs for ∼15 min, with a game organizer present. On 3 separate days, video recordings were made as the participants played Face Match; a different game mode (robot, Smart Board, playing cards) was used each day. A system for categorizing attention, communication and social skills was developed that described 16 subcategories of interactions and intra-actions. In general, participants with ASD showed highly individualized patterns of behaviour in the three different modes. However, repetitive behaviour was reduced in participants with ASD when using both the robot and the Smart Board compared with playing cards. We show that it is feasible to use a robot to assist teaching of social skills to adolescents with ASD, but suggest that the robot features could be further explored and utilized.

  6. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  7. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  8. Robotics in medicine

    Science.gov (United States)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  9. Odico Formwork Robotics

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn

    2014-01-01

    In the next decade or so, the widespread adoption of robotics is set to transform the construction industry: building techniques will become increasingly automated both on– and off–site, dispensing with manual labour and enabling greater cost and operational efficiencies. What unique opportunities......, however, does robotics afford beyond operational effectiveness explicitly for the practice of architecture? What is the potential for the serial production of non–standard elements as well as for varied construction processes? In order to scale up and advance the application of robotics, for both...

  10. 3D light robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    2016-01-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale ...... research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short....

  11. A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-User Engagement Models.

    Science.gov (United States)

    Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A; Mion, Lorraine C; Sarkar, Nilanjan

    2017-08-01

    The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment.

  12. Robotic surgery for lung resections—total port approach: advantages and disadvantages

    Science.gov (United States)

    Ramadan, Omar I.; Cerfolio, Robert J.

    2017-01-01

    Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury. PMID:29078585

  13. Robotic surgery for lung resections-total port approach: advantages and disadvantages.

    Science.gov (United States)

    Ramadan, Omar I; Wei, Benjamin; Cerfolio, Robert J

    2017-01-01

    Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury.

  14. Recent Development of Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Zhiqin Qian

    2015-02-01

    Full Text Available We have conducted a critical review on the development of rehabilitation robots to identify the limitations of existing studies and clarify some promising research directions in this field. This paper is presented to summarize our findings and understanding. The demands for assistive technologies for elderly and disabled population have been discussed, the advantages and disadvantages of rehabilitation robots as assistive technologies have been explored, the issues involved in the development of rehabilitation robots are investigated, some representative robots in this field by leading research institutes have been introduced, and a few of critical challenges in developing advanced rehabilitation robots have been identified. Finally to meet the challenges of developing practical rehabilitation robots, reconfigurable and modular systems have been proposed to meet the identified challenges, and a few of critical areas leading to the potential success of rehabilitation robots have been discussed.

  15. International Conference Educational Robotics 2016

    CERN Document Server

    Moro, Michele; Menegatti, Emanuele

    2017-01-01

    This book includes papers presented at the International Conference “Educational Robotics 2016 (EDUROBOTICS)”, Athens, November 25, 2016. The papers build on constructivist and constructionist pedagogy and cover a variety of topics, including teacher education, design of educational robotics activities, didactical models, assessment methods, theater robotics, programming & making electronics with Snap4Arduino, the Duckietown project, robotics driven by tangible programming, Lego Mindstorms combined with App Inventor, the Orbital Education Platform, Anthropomorphic Robots and Human Meaning Makers in Education, and more. It provides researchers interested in educational robotics with the latest advances in the field with a focus on science, technology, engineering, arts and mathematics (STEAM) education. At the same time it offers teachers and educators from primary to secondary and tertiary education insights into how educational robotics can trigger the development of technological interest and 21st c...

  16. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  17. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  18. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  19. Study on fundamental mechanism of nuclear advanced robot. Some consideration of driving mechanism on remotely operated and submerged vehicle using the maintenance for nuclear power plant

    International Nuclear Information System (INIS)

    Ohki, Arahiko; Hirano, Sigeo; Oogihara, Hirotugu

    1998-01-01

    A propulsion system of fish was studied as a research of the driving mechanism of robot for nuclear maintenance in water. Fish sailing with higher speed than a constant value can sail by an Ostraciform type swimming method. Fish can advance by a winding actuation. The movement of fishes trunk and caudal at the stationary movement was studied in this paper. The hypothetical formulae of movement were constructed on the basis of the movements of trunk and caudal. The elements related to the driving force were analysed and evaluated. Then, a model for reproducing the movement was designed. The movement of model was tested. The theoretical formula proved that the driving forces were consisted of the force vectors in the forward direction to be generated by the phase differences of each points of trunk and caudal in their cyclic movements. (S.Y.)

  20. New trends in medical and service robots human centered analysis, control and design

    CERN Document Server

    Chevallereau, Christine; Pisla, Doina; Bleuler, Hannes; Rodić, Aleksandar

    2016-01-01

    Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.

  1. Studying Robots Outside the Lab

    DEFF Research Database (Denmark)

    Blond, Lasse

    and ethnographic studies will enhance understandings of the dynamics of HRI. Furthermore, the paper emphasizes how users and the context of use matters to integration of robots, as it is shown how roboticists are unable to control how their designs are implemented in practice and that the sociality of social...... robots is inscribed by its users in social practice. This paper can be seen as a contribution to studies of long-term HRI. It presents the challenges of robot adaptation in practice and discusses the limitations of the present conceptual understanding of human-robotic relations. The ethnographic data......As more and more robots enter our social world there is a strong need for further field studies of human-robotic interaction. Based on a two-year ethnographic study of the implementation of the South Korean socially assistive robot in Danish elderly care this paper argues that empirical...

  2. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  3. Light-driven robotics for nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2013-01-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires...... and matter for robotically probing at the smallest biological length scales....

  4. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  5. Robotics in Japan

    International Nuclear Information System (INIS)

    Martin, T.

    1987-02-01

    In September 1986, a group of German scientists visited Japanese institutions dealing with advanced robotics research, to gain a deeper insight in the Japanese status of this technology. Research projects found and discussions led in seven leading research institutes and seven firms are reported. Advanced robot or handling systems to ease or avoid human exposure to activities in harsh, demanding or dangerous conditions or environment are mainly dealt with. The Japanese show vast research activities in this area in the pre-competitive stage especially in the nuclear and underwater application area. (orig.) [de

  6. Using Robotics and Game Design to Enhance Children's Self-Efficacy, STEM Attitudes, and Computational Thinking Skills

    Science.gov (United States)

    Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan

    2016-12-01

    This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy scores on the construct of computer use declined significantly, while the constructs of videogaming and computer gaming remained unchanged. When these constructs were analyzed by type of learning environment, self-efficacy on videogaming increased significantly in the combined robotics/gaming environment compared with the gaming-only context. Student attitudes toward STEM, however, did not change significantly as a result of the study. Finally, children's computational thinking (CT) strategies varied by method of instruction as students who participated in holistic game development (i.e., Project First) had higher CT ratings. This study contributes to the STEM education literature on the use of robotics and game design to influence self-efficacy in technology and CT, while informing the research team about the adaptations needed to ensure project fidelity during the remaining years of the study.

  7. Concurrent Unimodal Learning Enhances Multisensory Responses of Bi-Directional Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2018-01-01

    modalities to independently update modality-specific neural weights on a moment-by-moment basis, in response to dynamic changes in noisy sensory stimuli. The circuit is embodied as a non-holonomic robotic agent that must orient a towards a moving audio-visual target. The circuit continuously learns the best...

  8. Robotics in Colorectal Surgery

    Science.gov (United States)

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  9. Design and Development of a Landmines Removal Robot

    Directory of Open Access Journals (Sweden)

    K.T.M.U. Hemapala

    2012-03-01

    Full Text Available Humanitarian demining is a calamity of war affecting many third world countries. Mines are cheap weapons, built to sustain horrible injuries that target active people with a knock-on effect upon economic growth. The clearing is time consuming and expensive. Clearing is an engineering duty and the humanitarian goal is a technical challenge. Advanced robotics fulfils this task cleanly and reliably on the condition that upgrades and cost are met, meaning that they lose third-world appropriateness. The challenge is to turn local machines and awareness into effective robotic aids, willingly used by the local people, and to enhance the on-going outcomes. The solution to the demining problem shall be a low cost robotic outfit with resort to nearby available resources and competences (e.g., drawn from the local agricultural machinery and know-how. This paper discusses an ongoing project that aims to develop a low-cost robot with intelligent remote-command abilities, as a cheap productivity upgrading, assembled from standard farming devices, through the shared know-how and commitment of locally involved operators. During the study, the authors have developed a low-cost robot capable of removing mines. The robot consists of modified agricultural components including its mobile carrier and the mine effector.

  10. Gathering asychronous mobile robots with inaccurate compasses

    OpenAIRE

    Souissi, Samia; Defago, Xavier; Yamashita, Masafumi

    2006-01-01

    This paper considers a system of asynchronous autonomous mobile robots that can move freely in a twodimensional plane with no agreement on a common coordinate system. Starting from any initial configuration, the robots are required to eventually gather at a single point, not fixed in advance (gathering problem). Prior work has shown that gathering oblivious (i.e., stateless) robots cannot be achieved deterministically without additional assumptions. In particular, if robots can detect multipl...

  11. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  12. The development of graphic simulation technology for tele-operated robot

    International Nuclear Information System (INIS)

    Kim, Chang Hoi; Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Hwang, Suk Yeoung; Kim, Byung Soo; Seo, Yong Chil; Lee, Young Kwang

    1998-02-01

    In hostile environments like a nuclear power plant, human access is limited to the strict minimum due to the high-level of radiation. The design of tele-robotic system requires careful preparation because of the nature of its safety. Also, the human operator should have a capability of supervising the robot system and responding promptly to the unexpected events. In this study, the graphic simulation technology has been developed to construct tele-robotic system which can effectively perform the specified tasks in nuclear facilities. The developed graphic simulator utilizes the Indigo 2 workstation of Silicon Graphics as a main computer and its software is written in the OpenGL graphic library in X windows environments. The developed simulator, interfaced with the control system of the real robot through the ethernet, acts as a supervisory controller. Since clear and concise visual information on real robot posture and task environments can be processed in real time, the efficiency of tele-operation can be remarkably enhanced with this simulator. This simulator using advanced 3 dimensional graphics has many advantages of modeling complicated shapes of robot and constructing the virtual work environments similar to the real ones. With the use of this developed simulator, the operator can evaluate the performance of the tele-robot before it is put into real operation. This system can prevents the possible disaster of the robot resulting from the collision with its work environments. (author). 9 refs., 23 tabs., 13 figs

  13. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  14. Robotic assisted andrological surgery

    Science.gov (United States)

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  15. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Manned spacecraft automation and robotics

    Science.gov (United States)

    Erickson, Jon D.

    1987-01-01

    The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.

  17. Advances in steam generator service technology

    International Nuclear Information System (INIS)

    Perez, Ric

    1998-01-01

    The most recent advances in pressurized water reactor steam generator service technology are discussed in this article. Focus is on new developments in robotics, including the Remotely Operated Service Arm (ROSA III); repair and maintenance services on the SG secondary side; and the newest advances in SG inspection. These products and services save utility costs, shorten outage durations, enhance plant performance and safety, and reduce radiation exposure. (author)

  18. EnViSoRS: Enhanced Vision System for Robotic Surgery. A User-Defined Safety Volume Tracking to Minimize the Risk of Intraoperative Bleeding

    Directory of Open Access Journals (Sweden)

    Veronica Penza

    2017-05-01

    Full Text Available In abdominal surgery, intraoperative bleeding is one of the major complications that affect the outcome of minimally invasive surgical procedures. One of the causes is attributed to accidental damages to arteries or veins, and one of the possible risk factors falls on the surgeon’s skills. This paper presents the development and application of an Enhanced Vision System for Robotic Surgery (EnViSoRS, based on a user-defined Safety Volume (SV tracking to minimize the risk of intraoperative bleeding. It aims at enhancing the surgeon’s capabilities by providing Augmented Reality (AR assistance toward the protection of vessels from injury during the execution of surgical procedures with a robot. The core of the framework consists in (i a hybrid tracking algorithm (LT-SAT tracker that robustly follows a user-defined Safety Area (SA in long term; (ii a dense soft tissue 3D reconstruction algorithm, necessary for the computation of the SV; (iii AR features for visualization of the SV to be protected and of a graphical gage indicating the current distance between the instruments and the reconstructed surface. EnViSoRS was integrated with a commercial robotic surgical system (the dVRK system for testing and validation. The experiments aimed at demonstrating the accuracy, robustness, performance, and usability of EnViSoRS during the execution of a simulated surgical task on a liver phantom. Results show an overall accuracy in accordance with surgical requirements (<5 mm, and high robustness in the computation of the SV in terms of precision and recall of its identification. The optimization strategy implemented to speed up the computational time is also described and evaluated, providing AR features update rate up to 4 fps, without impacting the real-time visualization of the stereo endoscopic video. Finally, qualitative results regarding the system usability indicate that the proposed system integrates well with the commercial surgical robot and

  19. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  20. Aircrew helmet design and manufacturing enhancements through the use of advanced technologies

    Science.gov (United States)

    Cadogan, David P.; George, Alan E.; Winkler, Edward R.

    1993-12-01

    With the development of helmet mounted displays (HMD) and night vision systems (NVS) for use in military and civil aviation roles, new methods of helmet development need to be explored. The helmet must be designed to provide the user with the most lightweight, form fitting system, while meeting other system performance requirements. This can be achieved through a complete analysis of the system requirements. One such technique for systems analysis, a quality function deployment (QFD) matrix, is explored for this purpose. The advanced helmet development process for developing aircrew helmets includes the utilization of several emerging technologies such as laser scanning, computer aided design (CAD), computer generated patterns from 3-D surfaces, laser cutting of patterns and components, and rapid prototyping (stereolithography). Advanced anthropometry methods for helmet development are also available for use. Besides the application of advanced technologies to be used in the development of helmet assemblies, methods of mass reduction are also discussed. The use of these advanced technologies will minimize errors in the development cycle of the helmet and molds, and should enhance system performance while reducing development time and cost.

  1. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  2. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    Science.gov (United States)

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  3. Living with robots: investigating the user acceptance of social robots in domestic environments

    NARCIS (Netherlands)

    de Graaf, M.M.A.

    2015-01-01

    Over the most recent decades, the field of social robotics has advanced rapidly. There are a growing number of different types of robots, and their roles within society are expanding. This dissertation has argued that investigating the long-term acceptance of social robots in home environments is

  4. Mathematics and "Lego" Robots

    Science.gov (United States)

    Hansen, Janus Halkier; Traeholt, Rune

    2007-01-01

    For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…

  5. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  6. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  7. Self-Organizing Robots

    CERN Document Server

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  8. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  9. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  10. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  11. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  12. From Illusion to Reality: A Brief History of Robotic Surgery.

    Science.gov (United States)

    Marino, Marco Vito; Shabat, Galyna; Gulotta, Gaspare; Komorowski, Andrzej Lech

    2018-04-01

    Robotic surgery is currently employed for many surgical procedures, yielding interesting results. We performed an historical review of robots and robotic surgery evaluating some critical phases of its evolution, analyzing its impact on our life and the steps completed that gave the robotics its current popularity. The origins of robotics can be traced back to Greek mythology. Different aspects of robotics have been explored by some of the greatest inventors like Leonardo da Vinci, Pierre Jaquet-Droz, and Wolfgang Von-Kempelen. Advances in many fields of science made possible the development of advanced surgical robots. Over 3000 da Vinci robotic platforms are installed worldwide, and more than 200 000 robotic procedures are performed every year. Despite some potential adverse events, robotic technology seems safe and feasible. It is strictly linked to our life, leading surgeons to a new concept of surgery and training.

  13. Robots for Astrobiology!

    Science.gov (United States)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  14. Faster-than-real-time robot simulation for plan development and robot safety

    International Nuclear Information System (INIS)

    Crane, C.D. III; Dalton, R.; Ogles, J.; Tulenko, J.S.; Zhou, X.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory (ORNL), is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of a faster-than-real-time robotic simulation program for planning and control of mobile robotic operations to ensure the efficient and safe operation of mobile robots in nuclear power plants and other hazardous environments

  15. Advances in Mental Health Care : Five N = 1 Studies on the Effects of the Robot Seal Paro in Adults With Severe Intellectual Disabilities

    NARCIS (Netherlands)

    Wagemaker, E.; Dekkers, T.J.; Agelink van Rentergem, J.A.; Volkers, K. M.; Huizenga, H.M.

    2017-01-01

    Background: The evidence base for psychological treatments for autism and mood disorders in people with moderate to severe intellectual disabilities (ID) is limited. Recent promising robot-based innovations in mental health care suggest that robot-based animal assisted therapy (AAT) could be useful

  16. Advances in Mental Health Care: Five N = 1 Studies on the Effects of the Robot Seal Paro in Adults with Severe Intellectual Disabilities

    Science.gov (United States)

    Wagemaker, Eline; Dekkers, Tycho J.; Agelink van Rentergem, Joost A.; Volkers, Karin M.; Huizenga, Hilde M.

    2017-01-01

    Background: The evidence base for psychological treatments for autism and mood disorders in people with moderate to severe intellectual disabilities (ID) is limited. Recent promising robot-based innovations in mental health care suggest that robot-based animal assisted therapy (AAT) could be useful to improve social skills and mood in people with…

  17. A study on the economics enhancement of OPR1000 applied to advanced construction methods

    International Nuclear Information System (INIS)

    Park, Ki Jo; Yoon, Eun Sang

    2007-01-01

    OPR1000 (Optimized Power Reactor 1000MW) is a totally improved design model of Korea nuclear power plants and the latest 1,000MW nuclear power plant in the Republic of Korea. Shin Kori 1 and 2 and Shin Wolsong 1 and 2 and under construction and these are OPR1000 types. Although OPR1000 is up to data 1,000MW nuclear power plant, it is not enough to be much superior to other nuclear power plants. Under the WTO and FTA circumstance of domestic and stiff overseas competition for nuclear power plants, it is necessary to enhance the economics of OPR1000. And then, the enhanced economic alternatives are reviewed and the advanced construction methods are considered. Based on research and a comprehensive review of nuclear power plant construction experiences, an alternative application of advanced construction methods is developed and compared with existing OPR1000 for schedule and economics. In this paper, economic analyses of a construction cost and a levelized electricity generation cost are performed

  18. Robots and Moral Agency

    OpenAIRE

    Johansson, Linda

    2011-01-01

      Machine ethics is a field of applied ethics that has grown rapidly in the last decade. Increasingly advanced autonomous robots have expanded the focus of machine ethics from issues regarding the ethical development and use of technology by humans to a focus on ethical dimensions of the machines themselves. This thesis contains two essays, both about robots in some sense, representing these different perspectives of machine ethics. The first essay, “Is it Morally Right to use UAVs in War?” c...

  19. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  20. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    Science.gov (United States)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  1. Automatic Operation For A Robot Lawn Mower

    Science.gov (United States)

    Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.

    1987-02-01

    A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.

  2. Pharmacological cognitive enhancement-how neuroscientific research could advance ethical debate.

    Science.gov (United States)

    Maslen, Hannah; Faulmüller, Nadira; Savulescu, Julian

    2014-01-01

    THERE ARE NUMEROUS WAYS PEOPLE CAN IMPROVE THEIR COGNITIVE CAPACITIES: good nutrition and regular exercise can produce long-term improvements across many cognitive domains, whilst commonplace stimulants such as coffee temporarily boost levels of alertness and concentration. Effects like these have been well-documented in the medical literature and they raise few (if any) ethical issues. More recently, however, clinical research has shown that the off-label use of some pharmaceuticals can, under certain conditions, have modest cognition-improving effects. Substances such as methylphenidate and modafinil can improve capacities such as working memory and concentration in some healthy individuals. Unlike their more mundane predecessors, these methods of "cognitive enhancement" are thought to raise a multitude of ethical issues. This paper presents the six principal ethical issues raised in relation to pharmacological cognitive enhancers (PCEs)-issues such as whether: (1) the medical safety-profile of PCEs justifies restricting or permitting their elective or required use; (2) the enhanced mind can be an "authentic" mind; (3) individuals might be coerced into using PCEs; (4), there is a meaningful distinction to be made between the treatment vs. enhancement effect of the same PCE; (5) unequal access to PCEs would have implications for distributive justice; and (6) PCE use constitutes cheating in competitive contexts. In reviewing the six principal issues, the paper discusses how neuroscientific research might help advance the ethical debate. In particular, the paper presents new arguments about the contribution neuroscience could make to debates about justice, fairness, and cheating, ultimately concluding that neuroscientific research into "personalized enhancement" will be essential if policy is to be truly informed and ethical. We propose an "ethical agenda" for neuroscientific research into PCEs.

  3. Physical Human Robot Interaction for a Wall Mounting Robot - External Force Estimation

    DEFF Research Database (Denmark)

    Alonso García, Alejandro; Villarmarzo Arruñada, Noelia; Pedersen, Rasmus

    2018-01-01

    The use of collaborative robots enhances human capabilities, leading to better working conditions and increased productivity. In building construction, such robots are needed, among other tasks, to install large glass panels, where the robot takes care of the heavy lifting part of the job while...

  4. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive...

  5. Robotic Telesurgery Research

    Science.gov (United States)

    2010-10-01

    transabdominal (SLIT) surgery – adjustable gas- tric banding: a novel minimally invasive surgical approach. Obese Surgery 2008; 18: 1628–1613. 13. Asakuma M...nephrectomy and prostatectomy in a canine model. This miniature robot provides an enhanced view of the operating field from various angles during

  6. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interactive robots in experimental biology.

    Science.gov (United States)

    Krause, Jens; Winfield, Alan F T; Deneubourg, Jean-Louis

    2011-07-01

    Interactive robots have the potential to revolutionise the study of social behaviour because they provide several methodological advances. In interactions with live animals, the behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that different morphologies and behavioural strategies can be combined), behaviour can be manipulated in complex interaction sequences and models of behaviour can be embodied by the robot and thereby be tested. Furthermore, robots can be used as demonstrators in experiments on social learning. As we discuss here, the opportunities that robots create for new experimental approaches have far-reaching consequences for research in fields such as mate choice, cooperation, social learning, personality studies and collective behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Artificial heart for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  10. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Science.gov (United States)

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  11. Toward the art of robotic-assisted vitreoretinal surgery

    Directory of Open Access Journals (Sweden)

    Amir Molaei

    2017-01-01

    Full Text Available New technological progress in robotics has brought many beneficial clinical applications. Currently, computer integrated robotic surgery has gained clinical acceptance for several surgical procedures. Robotically assisted eye surgery is envisaged as a promising solution to overcome the shortcomings inherent to conventional surgical procedures as in vitreoretinal surgeries. Robotics by its high precision and fine mechanical control can improve dexterity, cancel tremor, and allow highly precise remote surgical capability, delicate vitreoretinal manipulation capabilities. Combined with magnified three-dimensional imaging of the surgical site, it can enhance surgical precision. Tele-manipulation can provide the ability for tele-surgery or haptic feedback of forces generated by the manipulation of intraocular tissues. It presents new solutions for some sight-threatening conditions such as retinal vein cannulation where, due to physiological limitations of the surgeon's hand, the procedure cannot be adequately performed. In this paper, we provide an overview of the research and advances in robotically assisted vitreoretinal eye surgery. Additionally the barriers to the integration of this method in the field of ocular surgery are summarized. Finally, we discuss the possible applications of the method in the area of vitreoretinal surgery.

  12. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  13. HCBPM: An Idea toward a Social Learning Environment for Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Fady Alnajjar

    2010-01-01

    Full Text Available To advance robotics toward real-world applications, a growing body of research has focused on the development of control systems for humanoid robots in recent years. Several approaches have been proposed to support the learning stage of such controllers, where the robot can learn new behaviors by observing and/or receiving direct guidance from a human or even another robot. These approaches require dynamic learning and memorization techniques, which the robot can use to reform and update its internal systems continuously while learning new behaviors. Against this background, this study investigates a new approach to the development of an incremental learning and memorization model. This approach was inspired by the principles of neuroscience, and the developed model was named “Hierarchical Constructive Backpropagation with Memory” (HCBPM. The validity of the model was tested by teaching a humanoid robot to recognize a group of objects through natural interaction. The experimental results indicate that the proposed model efficiently enhances real-time machine learning in general and can be used to establish an environment suitable for social learning between the robot and the user in particular.

  14. Comprehensive simulation-enhanced training curriculum for an advanced minimally invasive procedure: a randomized controlled trial.

    Science.gov (United States)

    Zevin, Boris; Dedy, Nicolas J; Bonrath, Esther M; Grantcharov, Teodor P

    2017-05-01

    There is no comprehensive simulation-enhanced training curriculum to address cognitive, psychomotor, and nontechnical skills for an advanced minimally invasive procedure. 1) To develop and provide evidence of validity for a comprehensive simulation-enhanced training (SET) curriculum for an advanced minimally invasive procedure; (2) to demonstrate transfer of acquired psychomotor skills from a simulation laboratory to live porcine model; and (3) to compare training outcomes of SET curriculum group and chief resident group. University. This prospective single-blinded, randomized, controlled trial allocated 20 intermediate-level surgery residents to receive either conventional training (control) or SET curriculum training (intervention). The SET curriculum consisted of cognitive, psychomotor, and nontechnical training modules. Psychomotor skills in a live anesthetized porcine model in the OR was the primary outcome. Knowledge of advanced minimally invasive and bariatric surgery and nontechnical skills in a simulated OR crisis scenario were the secondary outcomes. Residents in the SET curriculum group went on to perform a laparoscopic jejunojejunostomy in the OR. Cognitive, psychomotor, and nontechnical skills of SET curriculum group were also compared to a group of 12 chief surgery residents. SET curriculum group demonstrated superior psychomotor skills in a live porcine model (56 [47-62] versus 44 [38-53], Ppsychomotor skills in the live porcine model and in the OR in a human patient (56 [47-62] versus 63 [61-68]; P = .21). SET curriculum group demonstrated inferior knowledge (13 [11-15] versus 16 [14-16]; P<.05), equivalent psychomotor skill (63 [61-68] versus 68 [62-74]; P = .50), and superior nontechnical skills (41 [38-45] versus 34 [27-35], P<.01) compared with chief resident group. Completion of the SET curriculum resulted in superior training outcomes, compared with conventional surgery training. Implementation of the SET curriculum can standardize training

  15. ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; TOM O. EARLY, T; TYLER GILMORE, T; FRANCIS H. CHAPELLE, F; NORMAN H. CUTSHALL, N; JEFF ROSS, J; MARK ANKENY, M; Michael Heitkamp, M; DAVID MAJOR, D; CHARLES J. NEWELL, C; W. JODY WAUGH, W; GARY WEIN, G; Karen Vangelas, K; Karen-M Adams, K; CLAIRE H. SINK, C

    2006-12-27

    This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals

  16. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss

    Directory of Open Access Journals (Sweden)

    Randall B. Hellman

    2015-02-01

    Full Text Available Many upper limb amputees experience an incessant, post-amputation phantom limb pain and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF, rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech rubber hand illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the BairClaw presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced

  17. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Science.gov (United States)

    Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.

  18. Surgery with cooperative robots.

    Science.gov (United States)

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  19. Performance Analysis of enhanced Inter-cell Interference Coordination in LTE-Advanced Heterogeneous Networks

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus I.

    2012-01-01

    The performance of enhanced Inter-Cell Interference Coordination (eICIC) for Long Term Evolution (LTE)- Advanced with co-channel deployment of both macro and pico is analyzed. The use of pico-cell Range Extension (RE) and time domain eICIC (TDM muting) is combined. The performance is evaluated...... in the downlink by means of extensive system level simulations that follow the 3GPP guidelines. The overall network performance is analyzed for different number of pico-eNBs, transmit power levels, User Equipment (UE) distributions, and packet schedulers. Recommended settings of the RE offset and TDM muting ratio...... in different scenarios are identified. The presented performance results and findings can serve as input to guidelines for co-channel deployment of macro and pico-eNBs with eICIC....

  20. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas

    DEFF Research Database (Denmark)

    Hameed, Ibahim; Bochtis, D.; Sørensen, C.A.

    2013-01-01

    -field obstacle areas, the headland paths generation for the field and each obstacle area, the implementation of a genetic algorithm to optimize the sequence that the field robot vehicle will follow to visit the blocks, and an algorithmically generation of the task sequences derived from the farmer practices......Technological advances combined with the demand of cost efficiency and environmental considerations lead farmers to review their practices towards the adoption of new managerial approaches including enhanced automation. The application of field robots is one of the most promising advances among....... This approach has proven that it is possible to capture the practices of farmers and embed these practices in an algorithmic description providing a complete field area coverage plan in a form prepared for execution by the navigation system of a field robot....

  1. Enhanced Prophylaxis plus Antiretroviral Therapy for Advanced HIV Infection in Africa.

    Science.gov (United States)

    Hakim, James; Musiime, Victor; Szubert, Alex J; Mallewa, Jane; Siika, Abraham; Agutu, Clara; Walker, Simon; Pett, Sarah L; Bwakura-Dangarembizi, Mutsa; Lugemwa, Abbas; Kaunda, Symon; Karoney, Mercy; Musoro, Godfrey; Kabahenda, Sheila; Nathoo, Kusum; Maitland, Kathryn; Griffiths, Anna; Thomason, Margaret J; Kityo, Cissy; Mugyenyi, Peter; Prendergast, Andrew J; Walker, A Sarah; Gibb, Diana M

    2017-07-20

    In sub-Saharan Africa, among patients with advanced human immunodeficiency virus (HIV) infection, the rate of death from infection (including tuberculosis and cryptococcus) shortly after the initiation of antiretroviral therapy (ART) is approximately 10%. In this factorial open-label trial conducted in Uganda, Zimbabwe, Malawi, and Kenya, we enrolled HIV-infected adults and children 5 years of age or older who had not received previous ART and were starting ART with a CD4+ count of fewer than 100 cells per cubic millimeter. They underwent simultaneous randomization to receive enhanced antimicrobial prophylaxis or standard prophylaxis, adjunctive raltegravir or no raltegravir, and supplementary food or no supplementary food. Here, we report on the effects of enhanced antimicrobial prophylaxis, which consisted of continuous trimethoprim-sulfamethoxazole plus at least 12 weeks of isoniazid-pyridoxine (coformulated with trimethoprim-sulfamethoxazole in a single fixed-dose combination tablet), 12 weeks of fluconazole, 5 days of azithromycin, and a single dose of albendazole, as compared with standard prophylaxis (trimethoprim-sulfamethoxazole alone). The primary end point was 24-week mortality. A total of 1805 patients (1733 adults and 72 children or adolescents) underwent randomization to receive either enhanced prophylaxis (906 patients) or standard prophylaxis (899 patients) and were followed for 48 weeks (loss to follow-up, 3.1%). The median baseline CD4+ count was 37 cells per cubic millimeter, but 854 patients (47.3%) were asymptomatic or mildly symptomatic. In the Kaplan-Meier analysis at 24 weeks, the rate of death with enhanced prophylaxis was lower than that with standard prophylaxis (80 patients [8.9% vs. 108 [12.2%]; hazard ratio, 0.73; 95% confidence interval [CI], 0.55 to 0.98; P=0.03); 98 patients (11.0%) and 127 (14.4%), respectively, had died by 48 weeks (hazard ratio, 0.76; 95% CI, 0.58 to 0.99; P=0.04). Patients in the enhanced-prophylaxis group had

  2. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  3. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  4. Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.

    Science.gov (United States)

    Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale

    2003-01-01

    Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.

  5. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Kang; Tsai, Tsung-Yueh; Liu, Jiunn-Ching; Chen, Mei-Chen [Energy and Resources Labs., ITRI, Hsinchu (Taiwan)

    2001-07-01

    The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200mg O{sub 3}/hr, respectively. After pre-ozonation of 30 min treatment, BOD{sub 5}/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 1/h and 120-l50nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3kg COD/m{sup 3} day and 0.6-1.6 kg-COD/m{sup 3} day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed to be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem. (Author)

  6. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  7. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  8. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  9. Robots conquering local government services

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Agger; Andersen, Kim Normann; Sigh, Anne

    2016-01-01

    labour-intensive services, the public administration research community is short on knowledge of the impact on the work processes carried out in public organizations and how staff and clients react toward robots. This case study investigates the implementation and use of robot vacuum cleaners in Danish......The movement of robots from the production line to the service sector provides a potentially radical solution to innovate and transform public service delivery. Although robots are increasingly being adopted in service delivery (e.g., health- and eldercare) to enhance and in some cases substitute...... eldercare, demonstrating how robot vacuums have proven to have considerable interpretive flexibility with variation in the perceived nature of technology, technology strategy, and technology use between key stakeholders in eldercare....

  10. Programming industrial robots using advanced input-output devices: test-case example using a CAD package and a digital pen based on the Anoto technology

    Directory of Open Access Journals (Sweden)

    J. Norberto Pires

    2007-08-01

    Full Text Available Interaction with robot systems for specification of manufacturing tasks and motions needs to be simple, to enable wide-spread use of robots in SMEs. In the best case, existing practices from manual work could be used, to smoothly let current employees start using robot technology as a natural part of their work. Our aim is to simplify the robot programming task by allowing the user to simply make technical drawings on a sheet of paper. Craftsman use paper and raw sketches for several situations; to share ideas, to get a better imagination or to remember the customer situation. Currently these sketches have either to be interpreted by the worker when producing the final product by hand, or transferred into CAD file using an according tool. The former means that no automation is included, the latter means extra work and much experience in using the CAD tool. Our approach is to use the digital pen and paper from Anoto as input devices for SME robotic tasks, thereby creating simpler and more user friendly alternatives for programming, parameterization and commanding actions. To this end, the basic technology has been investigated and fully working prototypes have been developed to explore the possibilities and limitation in the context of typical SME applications. Based on the encouraging experimental results, we believe that drawings on digital paper will, among other means of human-robot interaction, play

  11. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  12. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  13. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  14. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  15. Pharmacological cognitive enhancement – how future neuroscientific research could advance ethical debate

    Directory of Open Access Journals (Sweden)

    Hannah eMaslen

    2014-06-01

    Full Text Available There are numerous ways people can improve their cognitive capacities: good nutrition and regular exercise can produce long-term improvements across many cognitive domains, whilst commonplace stimulants such as coffee temporarily boost levels of alertness and concentration. Effects like these have been well-documented in the medical literature and they raise few (if any ethical issues. More recently, however, clinical research has shown that the off-label use of some pharmaceuticals can, under certain conditions, have modest cognition-improving effects. Substances such as methylphenidate and modafinil can improve capacities such as working memory and concentration in some healthy individuals. Unlike their more mundane predecessors, these methods of ‘cognitive enhancement’ are thought to raise a multitude of ethical issues. This paper presents the six principal ethical issues raised in relation to pharmacological cognitive enhancers (PCEs – issues such as whether: (1 the medical safety-profile of PCEs justifies restricting or permitting their elective or required use; (2 the enhanced mind can be an ‘authentic’ mind; (3 individuals might be coerced into using PCEs; (4, there is a meaningful distinction to be made between the treatment versus enhancement effect of the same PCE; (5 unequal access to PCEs would have implications for distributive justice; and (6 PCE use constitutes cheating in competitive contexts. In reviewing the six principal issues, the paper discusses how future neuroscientific research might help advance the ethical debate. In particular, the paper presents new arguments about the contribution neuroscience could make to debates about justice, fairness and cheating, ultimately concluding that neuroscientific research into ‘personalised enhancement’ will be essential if policy is to be truly informed and ethical. We propose an ‘ethical agenda’ for neuroscientific research into PCEs.

  16. Rehabilitation robotics: an academic engineer perspective.

    Science.gov (United States)

    Krebs, Hermano I

    2011-01-01

    In this paper, we present a retrospective review of our efforts to revolutionize the way physical medicine is practiced by developing and deploying rehabilitation robots. We present a sample of our clinical results with well over 600 stroke patients, both inpatients and outpatients. We discuss the different robots developed at our laboratory over the past 20 years and their unique characteristics. All are configured both to deliver reproducible interactive therapy and also to measure outcomes with minimal encumbrance, thus providing critical measurement tools to help unravel the key remaining question: what constitutes "best practice"? While success to date indicates that this therapeutic application of robots has opened an emerging new frontier in physical medicine and rehabilitation, the barrier to further progress lies not in developing new hardware but rather in finding the most effective way to enhance neuro-recovery. We close this manuscript discussing some of the tools required for advancing the effort beyond the present state to what we believe will be the central feature of research during the next 10 years.

  17. The robotics divide a new frontier in the 21st century?

    CERN Document Server

    López Peláez, Antonio

    2013-01-01

    Analyzes how robotics will shape our societies in the twenty-first century; a time when industrial and service robotics, particularly for military and aerospace purposes, will become an essential technology Examines an emerging divide: the "robotics divide"; a phenomenon linked to the model to integrate advanced robotics in economic, social and military spheres Focuses on the main technological trends in the field of robotics, and the impact that robotics will have on different facets of social life

  18. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  19. Randomized clinical trial to evaluate mental practice in enhancing advanced laparoscopic surgical performance.

    Science.gov (United States)

    Louridas, M; Bonrath, E M; Sinclair, D A; Dedy, N J; Grantcharov, T P

    2015-01-01

    Mental practice, the cognitive rehearsal of a task without physical movement, is known to enhance performance in sports and music. Investigation of this technique in surgery has been limited to basic operations. The purpose of this study was to develop mental practice scripts, and to assess their effect on advanced laparoscopic skills and surgeon stress levels in a crisis scenario. Twenty senior surgical trainees were randomized to either conventional training or mental practice groups, the latter being trained by an expert performance psychologist. Participants' skills were assessed while performing a porcine laparoscopic jejunojejunostomy as part of a crisis scenario in a simulated operating room, using the Objective Structured Assessment of Technical Skill (OSATS) and bariatric OSATS (BOSATS) instruments. Objective and subjective stress parameters were measured, as well as non-technical skills using the Non-Technical Skills for Surgeons rating tool. An improvement in OSATS (P = 0.003) and BOSATS (P = 0.003) scores was seen in the mental practice group compared with the conventional training group. Seven of ten trainees improved their technical performance during the crisis scenario, whereas four of the ten conventionally trained participants deteriorated. Mental imagery ability improved significantly following mental practice training (P = 0.011), but not in the conventional group (P = 0.083). No differences in objective or subjective stress levels or non-technical skills were evident. Mental practice improves technical performance for advanced laparoscopic tasks in the simulated operating room, and allows trainees to maintain or improve their performance despite added stress. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  20. Recent advances in the use of ASEDRA in post processing scintillator spectra for resolution enhancement

    International Nuclear Information System (INIS)

    Sjoden, G.E.

    2012-01-01

    The ASEDRA (Advanced Synthetically Enhanced Detector Resolution Algorithm, patent pending) has been successfully applied as a post processing algorithm to both sodium iodide (NaI(Tl)) and cesium iodide (CsI(Na)) scintillator detectors to synthetically enhance their realized spectral data resolution by as much as a factor of three, wherein from these detectors the 'raw' unprocessed spectra are traditionally of poor resolution. ASEDRA uses noise reduction and built-in high resolution Monte Carlo radiation transport based detector response functions (DRFs) to rapidly post-process a spectrum in a few seconds on a standard laptop; gamma lines are extracted with an accuracy that makes the scintillator detectors competitive with higher resolution, higher material cost detectors. ASEDRA differs from other tools in the field, such as Sandia's GADRAS software, in that ASEDRA performs a differential spectrum attribution and cumulative extraction from the sample spectrum, rather than an integral-based approach, as in GADRAS. Previous publications have highlighted the successful application of ASEDRA in samples with plutonium and various isotopes. A new SmartID nuclide identification package to accompany ASEDRA has recently been implemented for test and evaluation purposes for sample attribution; in addition, the application of ASEDRA+SmartID has occurred with success in long dwell cargo monitoring and SNM detection applications, enabling new protocols for HEU detection. Overall, this paper presents recent developments and results along with a discussion of follow-on steps in the development of ASEDRA as an effective field gamma spectrum analysis tool for low cost scintillators. (author)

  1. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  2. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  3. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  4. Robotic surgery

    Science.gov (United States)

    ... with this type of surgery give it some advantages over standard endoscopic techniques. The surgeon can make ... Elsevier Saunders; 2015:chap 87. Muller CL, Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: ...

  5. Robotic parathyroidectomy.

    Science.gov (United States)

    Okoh, Alexis Kofi; Sound, Sara; Berber, Eren

    2015-09-01

    Robotic parathyroidectomy has recently been described. Although the procedure eliminates the neck scar, it is technically more demanding than the conventional approaches. This report is a review of the patients' selection criteria, technique, and outcomes. © 2015 Wiley Periodicals, Inc.

  6. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  7. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  8. Robots and Cultural Heritage: New Museum Experiences

    Directory of Open Access Journals (Sweden)

    Claudio Germak

    2015-12-01

    Full Text Available The introduction of new technologies to enhance the visiting museum experience is not a novelty. A large variety of interactive systems are nowadays available, including virtual tours, which makes cultural heritage accessible remotely. The theme of increase in accessibility and attractiveness has lately been faced with the employment of the service robotics, covering various types of applications. Regrettably, many of robotics solutions appear less successful in terms of utility and usability. On the basis of this awareness, a design for a new robotic solution for cultural heritage has been proposed. The project, developed at the royal residence of Racconigi Castle, consists of a telepresence robot designed as a tool to explore inaccessible areas of the heritage. The employed robot, called Virgil, was expressly designed for the project. The control of the robot is entrusted to the museum guides in order to enhance their work and enrich the cultural storytelling.

  9. Asilomar Leadership Skills Seminar: The Career Preparation, Advancement, and Enhancement of Women in California Community College Leadership

    Science.gov (United States)

    Castillo-Garrison, Estella M.

    2012-01-01

    This mixed-methods research study examined the effects on the career preparation, advancement, and enhancement of women from California community college leadership who participated in the Asilomar Leadership Skills Seminar (Asilomar) from 2005-2011. Data were collected during the 2011-2012 academic year and were gathered from the results of 67…

  10. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  11. Enhancing the value of information collected by advanced meters : customer and operational procedures

    International Nuclear Information System (INIS)

    Huntley, R.

    2006-01-01

    Advanced metering infrastructure (AMI) meters will have the ability to transform electric power utilities if data is utilized in an appropriate manner. This presentation provided an overview of the benefits of AMI. Case studies were used to present details of new meter data management (MDM) tools developed by Nexus Energy Software. The segmentation and loading aspects of AMI have the capacity to handle complex billing processes as well as increase distribution efficiency. AMI multi-dimensional aggregation can increase revenue protection and provide outage support. Customer bill integration and analytics can aid utilities in forecasting and load research activities. Demand and response, and customer AMI applications can lower customer service costs and leverage more effective pricing programs. A critical peak pricing support tool was used at a California utility to send monthly enhanced information electronic mail to increase customer understanding of behaviours on costs. The result was an amplified customer response to dynamic pricing. Day ahead notification is now regularly provided for peak periods. It was concluded that meter data has little value until it is aligned and synchronized with customer and asset data. Systems should be expandable over time to support new business processes and associated data elements without the need for customization. refs., tabs., figs

  12. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Directory of Open Access Journals (Sweden)

    Klaudia Borysiuk

    2018-05-01

    Full Text Available Nitrate (NO3– and ammonium (NH4+ are prevalent nitrogen (N sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG, which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins in the contribution to NH4+ toxicity symptoms in Arabidopsis.

  13. Studies on an advanced repository system with enhanced engineered barriers (a framework)

    International Nuclear Information System (INIS)

    Fujiwara, A.; Tashiro, S.; Ikari, S.; Suzuki, A.

    1993-01-01

    In order to propose advanced designs of repositories with enhanced engineered barriers of relatively high radioactive wastes such as burnable poisons, channel boxes, control rods and highly irradiated metals, studies started in 1987 and completed the first phase in 1992. This paper presents the framework and brief results of the first phase. The studies set preliminary design concepts of the repositories with various combinations with engineered barriers and natural barriers for different models and locations such as a silo type in shallow land or a tunnel type in intermediate depth. Through the designs, four component technics were picked up and studied for (1) construction of the components in repository; (2) performance evaluation to realize repository design; (3) improvement of circumstances inside or around repository; and (4) surveillance of repository performance to realize the repository designs. Finally, some repository systems were provided using obtained results, and then the applicability and the economy were evaluated. The studies will continue to the second phase focusing on the long-term performance of the repositories

  14. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2015-01-01

    Full Text Available The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  15. Enhancement of MARS with an Advanced Fuel Model by Coupling FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong Chol; Lee, Young Jin; Han, Sam Hee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    FRAPTRAN calculates heat conduction, heat transfer from cladding to coolant, elastic-plastic fuel and cladding deformation, cladding oxidation, fission gas release, and fuel rod gas pressure. FRAPTRAN is used for analyzing the fuel response under postulated accidents such as reactivity-initiated accidents (RIAs) and loss-of-coolant accidents (LOCAs), and also for analyzing and interpreting experimental results. Burnup dependent variables such as fuel densification and swelling, and cladding creep and irradiation growth may be considered by incorporating FRAPCON steady state depletion calculation results as the initial conditions. FRAPTRAN-DLL has been successfully verified and the coupled calculations have shown to provide reasonable results. An EOC core loaded with irradiated fuels was analyzed with the integrated code system. The coupled code system has demonstrated its applicability to variety of applications such as assessing the effects of fuel thermal conductivity degradation with burnup. MARS has been enhanced with the advanced fuel model of FRAPTRAN so that users can use the fuel rod performance evaluation capability in the transient analyses.

  16. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Science.gov (United States)

    Borysiuk, Klaudia; Ostaszewska-Bugajska, Monika; Vaultier, Marie-Noëlle; Hasenfratz-Sauder, Marie-Paule; Szal, Bożena

    2018-01-01

    Nitrate (NO3–) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis. PMID:29881392

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  18. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  19. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Science.gov (United States)

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  20. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  1. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  2. Light robotics: a new field of research

    DEFF Research Database (Denmark)

    Engay, Einstom; Chouliara, Manto; Bañas, Andrew

    2018-01-01

    After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics - Light Robotics - which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and information optics. In the Summer 2017 we are publishing a 482 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics...

  3. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation

    Science.gov (United States)

    Lee, Kit-Hang; Fu, Denny K.C.; Leong, Martin C.W.; Chow, Marco; Fu, Hing-Choi; Althoefer, Kaspar; Sze, Kam Yim; Yeung, Chung-Kwong

    2017-01-01

    Abstract Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments. PMID:29251567

  4. The robotic Whipple: operative strategy and technical considerations.

    Science.gov (United States)

    MacKenzie, Shawn; Kosari, Kambiz; Sielaff, Timothy; Johnson, Eric

    2011-03-01

    Advances in robotic surgery have allowed the frontiers of minimally invasive pancreatic surgery to expand. We present a step-by-step approach to the robotic Whipple procedure. The discussion includes port setting and robotic docking, kocherization and superior mesenteric vein identification, portal dissection, releasing the ligament of Treitz, uncinate dissection, and reconstruction. A brief report of our initial 2-year experience with the robotic Whipple procedure is also presented.

  5. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  6. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes

    NARCIS (Netherlands)

    Weel, Berend; D'Angelo, M.; Haasdijk, Evert; Eiben, A. E.

    2017-01-01

    Evolutionary robotics using real hardware is currently restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. Rapid prototyping (3D printing) and automated assembly are the main enablers of robotic systems where robot offspring can be produced

  7. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery.

    Science.gov (United States)

    KleinJan, Gijs H; van den Berg, Nynke S; de Jong, Jeroen; Wit, Esther M; Thygessen, Helene; Vegt, Erik; van der Poel, Henk G; van Leeuwen, Fijs W B

    2016-07-01

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green-(99m)Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green-(99m)Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs

  8. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery

    Energy Technology Data Exchange (ETDEWEB)

    KleinJan, Gijs H. [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Berg, Nynke S. van den [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Jong, Jeroen de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Pathology, Amsterdam (Netherlands); Wit, Esther M.; Poel, Henk G. van der [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Thygessen, Helene [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Biostatistics, Amsterdam (Netherlands); Vegt, Erik [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Hospital, Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2016-07-15

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green-{sup 99m}Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green-{sup 99m}Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs

  9. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery

    International Nuclear Information System (INIS)

    KleinJan, Gijs H.; Berg, Nynke S. van den; Jong, Jeroen de; Wit, Esther M.; Poel, Henk G. van der; Thygessen, Helene; Vegt, Erik; Leeuwen, Fijs W.B. van

    2016-01-01

    Radical prostatectomy and complementary extended pelvic lymph node dissection (ePLND) of sentinel lymph nodes (SNs) and non-sentinel lymph nodes (LNs) at risk of containing metastases are increasingly being performed using high-tech robot-assisted approaches. Although this technological evolution has clear advantages, the physical nature of robotic systems limits the integrated use of routine radioguided surgery technologies. Hence, engineering effort in robotics are focused on the integration of fluorescence guidance technologies. Using the hybrid SN tracer indocyanine green- 99m Tc-nanocolloid (radioactive and fluorescent), for the first time in combination with a robot-integrated laparoscope, we investigated whether the robot-assisted approach affects the accuracy of fluorescence detection of SNs identified preoperatively using nuclear medicine. The study included 55 patients (Briganti nomogram-based risk >5 % on LN metastases) scheduled for robot-assisted radical prostatectomy, SN biopsy and ePLND. Following indocyanine green- 99m Tc-nanocolloid injection, preoperative nuclear imaging (lymphoscintigraphy and SPECT/CT) was used to locate the SN(s). The fluorescence laparoscope was used intraoperatively to identify the SN(s) with standard fluorescence settings (in 50 patients) and with customized settings (in 5 patients). The number and location of the SNs, the radioactive, fluorescence (both in vivo and ex vivo) and tumour status of the resected SNs/LNs, and postoperative complications were recorded and analysed. Combined, preoperative lymphoscintigraphy and SPECT/CT imaging identified 212 SNs (median 4 per patient). Intraoperative fluorescence imaging using standard fluorescence settings visualized 80.4 % (148/184 SNs; 50 patients; ex vivo 97.8 %). This increased to 85.7 % (12/14 SNs; 5 patients; ex vivo 100 %) with customized fluorescence settings. SPECT/CT images provided guidance towards the residual SNs. Ex vivo all removed SNs were radioactive. SNs were

  10. Will robots replace us? : an Empirical analysis of the impacts of robotization on employment in the Norwegian manufacturing industry

    OpenAIRE

    Grøndahl, Fredrik; Eriksen, Gina Hegland

    2017-01-01

    Rapid advances in robotics, artificial intelligence, and digital technologies have introduced renewed concern that labor will become redundant. The aim of this thesis is to assess whether there exists a relationship between robotization and employment in the time periods 1996-2005 and 2008-2015 in Norwegian manufacturing industries. We exploit data on operational robots from the International Federation of Robotics and individual level data from the Norwegian Labour Force Surve...

  11. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  12. Robotics in Orthopedics: A Brave New World.

    Science.gov (United States)

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Towards Light‐guided Micro‐robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ‐dimensional microstructures. Furthermore, we exploit the light shaping capabilities available in the workstation to demonstrate a new strategy for controlling microstructures that goes beyond the typical refractive light deflections that are exploited in conventional optical trapping and manipulation e.g. of micro......Robotics in the macro‐scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro‐scale regime creates opportunities for exploiting optical forces...... and torques in micro‐robotic actuation and control. Indeed, the literature on optical trapping and micro‐manipulation attests to the possibilities for optical micro‐robotics. Advancing light‐driven micro‐robotics requires the optimization of optical force and optical torque that, in turn, requires...

  14. Designing the Mind of a Social Robot

    Directory of Open Access Journals (Sweden)

    Nicole Lazzeri

    2018-02-01

    Full Text Available Humans have an innate tendency to anthropomorphize surrounding entities and have always been fascinated by the creation of machines endowed with human-inspired capabilities and traits. In the last few decades, this has become a reality with enormous advances in hardware performance, computer graphics, robotics technology, and artificial intelligence. New interdisciplinary research fields have brought forth cognitive robotics aimed at building a new generation of control systems and providing robots with social, empathetic and affective capabilities. This paper presents the design, implementation, and test of a human-inspired cognitive architecture for social robots. State-of-the-art design approaches and methods are thoroughly analyzed and discussed, cases where the developed system has been successfully used are reported. The tests demonstrated the system’s ability to endow a social humanoid robot with human social behaviors and with in-silico robotic emotions.

  15. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  16. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process

    International Nuclear Information System (INIS)

    Paul Guin, Jhimli; Bhardwaj, Y.K.; Varshney, Lalit

    2017-01-01

    An effective process for the oxidation of Methyl Orange dye (MO) was determined by comparing the mineralization efficiency between two advanced oxidation processes (AOPs) viz., ozonolysis and gamma radiolysis in presence and absence of an added inorganic salt potassium persulfate (K_2S_2O_8). The effects of various operating parameters such as ozone flow rate and reaction temperature were optimized to achieve the best possible mineralization extent of MO by ozonolysis. The mineralization efficiency of MO was significantly enhanced during gamma radiolysis in presence of K_2S_2O_8 (γ+K_2S_2O_8) compared to in absence of K_2S_2O_8. The presence of methyl group at the amine of phenyl ring assisted the mineralization of dye during γ+K_2S_2O_8. The oxygen-equivalent chemical-oxidation capacities (OCC) of ozonolysis and γ+K_2S_2O_8 for 75% mineralization of the dye solution were calculated as 7.008 and 0.0336 kg equiv. O_2 m"−"3, respectively which signifies that γ+K_2S_2O_8 can be explored as an effective AOP. The non-biodegradable MO dye solution became biodegradable even after the dose of 0.5 kGy during γ+K_2S_2O_8 compared to 1 kGy in absence of K_2S_2O_8. The study concludes that a lower dose γ+K_2S_2O_8 could be one of the efficient pretreatment steps before undergoing biological degradation of dye solution. - Highlights: • Systematic investigation was performed for the treatment of Methyl Orange dye solution. • AOPs investigated were ozonolysis and gamma radiolysis. • The OCC and % mineralizations of the AOPs were compared. • Gamma radiolysis in presence of K_2S_2O_8 was found as most effective AOP.

  17. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  18. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS)

    International Nuclear Information System (INIS)

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-01-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework

  19. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  20. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  1. Mobile Robots in Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael

    intelligent mobile robotic devices capable of being a more natural and sociable actor in a human environment. More specific the emphasis is on safe and natural motion and navigation issues. First part of the work focus on developing a robotic system, which estimates human interest in interacting......, lawn mowers, toy pets, or as assisting technologies for care giving. If we want robots to be an even larger and more integrated part of our every- day environments, they need to become more intelligent, and behave safe and natural to the humans in the environment. This thesis deals with making...... as being able to navigate safely around one person, the robots must also be able to navigate in environments with more people. This can be environments such as pedestrian streets, hospital corridors, train stations or airports. The developed human-aware navigation strategy is enhanced to formulate...

  2. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  3. New development in robot vision

    CERN Document Server

    Behal, Aman; Chung, Chi-Kit

    2015-01-01

    The field of robotic vision has advanced dramatically recently with the development of new range sensors.  Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related...

  4. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  5. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  6. 'Filigree Robotics'

    DEFF Research Database (Denmark)

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  7. Introducing autonomy to robotic manipulators in the nuclear industry

    International Nuclear Information System (INIS)

    Boddy, C.L.; Webster, A.W.

    1991-01-01

    The National Advanced Robotics Research Centre was set up in 1988 to provide a forum for the development and transfer to industry of the technology of Advanced Robotics. In the area of robot manipulators, research has been carried out into increasing the low-level autonomy of such devices e.g. reactive collision avoidance, gross base disturbance rejection. This groundwork has proven the feasibility of using advanced control concepts in robotic manipulators, and, indeed, indicated new areas of robot kinematic design which can now be successfully exploited. Within the newly defined BNFL Integrated Robotics Programme a number of joint projects have been defined to demonstrate this technology in realistic environments, including the use of advanced interactive computer simulation and kinematically redundant manipulators. (author)

  8. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  9. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  10. Service Robots

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Jeppe Agger; Andersen, Kim Normann

    The position presented in this paper is that in order to understand how service robots shape, and are being shaped by, the physical and social contexts in which they are used, we need to consider both work/organizational analysis and interaction design. We illustrate this with qualitative data...... and personal experiences to generate discussion about how to link these two traditions. This paper presents selected results from a case study that investigated the implementation and use of robot vacuum cleaners in Danish eldercare. The study demonstrates interpretive flexibility with variation...

  11. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  12. A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide.

  13. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  14. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  15. Robotics in agriculture and forestry

    NARCIS (Netherlands)

    Bergerman, M.; Billingsley, J.; Reid, J.; Henten, van E.J.

    2016-01-01

    Robotics for agriculture and forestry (A&F) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude,

  16. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  17. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    International Nuclear Information System (INIS)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina; Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E.; Pastor, Catherine M.

    2017-01-01

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  18. Robotic Surgery

    Science.gov (United States)

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  19. Book Review: Invitation to Topological Robotics by Michael Farber

    DEFF Research Database (Denmark)

    Raussen, Martin

    2009-01-01

    Book Review: Invitaton to Topological Robotics by Michael Farber. Zurich Lectures in Advanced Mathematics, European Mathematical Society (2008), ISBN 978-3-03719-054-8......Book Review: Invitaton to Topological Robotics by Michael Farber. Zurich Lectures in Advanced Mathematics, European Mathematical Society (2008), ISBN 978-3-03719-054-8...

  20. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games....... Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled...... children who often could be prevented from using and taking benefits from modern technologies. The objective is to get any children moving, exchanging, experimenting and having fun, regardless of their cognitive or physical ability levels. The paper describes two prototype systems developed as modular...

  1. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  2. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  3. 24th International Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    2016-01-01

    This volume includes the Proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2015, which was held in Bucharest, Romania, on May 27-29, 2015. The Conference brought together academic and industry researchers in robotics from the 11 countries affiliated to the Alpe-Adria-Danube space: Austria, Croatia, Czech Republic, Germany, Greece, Hungary, Italy, Romania, Serbia, Slovakia and Slovenia, and their worldwide partners. According to its tradition, RAAD 2015 covered all important areas of research, development and innovation in robotics, including new trends such as: bio-inspired and cognitive robots, visual servoing of robot motion, human-robot interaction, and personal robots for ambient assisted living. The accepted papers have been grouped in nine sessions: Robot integration in industrial applications; Grasping analysis, dexterous grippers and component design; Advanced robot motion control; Robot vision and sensory control; Human-robot interaction and collaboration;...

  4. Attitudes towards care robots among Finnish home care personnel : a comparison of two approaches

    OpenAIRE

    Rantanen, Teemu; Lehto, Paula; Vuorinen, Pertti; Coco, Kirsi

    2017-01-01

    Study's rationale The significance of care robotics has been highlighted in recent years. Aims and objective The article examines the adoption of care robots in home care settings, and in particular Finnish home care personnel's attitudes towards robots. The study compares the importance of the Negative Attitudes towards Robots Scale advanced by Nomura and specific positive attitudes related to the usefulness of care robots for different tasks in the home care. Methodological ...

  5. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific...

  6. Advanced glycation end products in the skin are enhanced in COPD

    NARCIS (Netherlands)

    Hoonhorst, Susan J. M.; Loi, Adele T. Lo Tam; Hartman, Jorine E.; Telenga, Eef D.; van den Berge, Maarten; Koenderman, Leo; Lammers, Jan Willem J.; Boezen, H. Marike; Postma, Dirkje S.; ten Hacken, Nick H. T.

    Background. Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) inducing oxidative stress and local tissue injury, resulting in pulmonary inflammation. Advanced glycation end products (AGEs) are produced by glycation and oxidation processes and their formation is

  7. Elastic Inflatable Actuators for Soft Robotic Applications.

    Science.gov (United States)

    Gorissen, Benjamin; Reynaerts, Dominiek; Konishi, Satoshi; Yoshida, Kazuhiro; Kim, Joon-Wan; De Volder, Michael

    2017-11-01

    The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  9. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  10. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    Science.gov (United States)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  11. Review on design and control aspects of ankle rehabilitation robots.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  12. Development of Robust Behaviour Recognition for an at-Home Biomonitoring Robot with Assistance of Subject Localization and Enhanced Visual Tracking

    Science.gov (United States)

    Imamoglu, Nevrez; Dorronzoro, Enrique; Wei, Zhixuan; Shi, Huangjun; González, José; Gu, Dongyun; Yu, Wenwei

    2014-01-01

    Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy. PMID:25587560

  13. Development of Robust Behaviour Recognition for an at-Home Biomonitoring Robot with Assistance of Subject Localization and Enhanced Visual Tracking

    Directory of Open Access Journals (Sweden)

    Nevrez Imamoglu

    2014-01-01

    Full Text Available Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy.

  14. Development of robust behaviour recognition for an at-home biomonitoring robot with assistance of subject localization and enhanced visual tracking.

    Science.gov (United States)

    Imamoglu, Nevrez; Dorronzoro, Enrique; Wei, Zhixuan; Shi, Huangjun; Sekine, Masashi; González, José; Gu, Dongyun; Chen, Weidong; Yu, Wenwei

    2014-01-01

    Our research is focused on the development of an at-home health care biomonitoring mobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals. Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy.

  15. Robotic bariatric surgery: a systematic review.

    Science.gov (United States)

    Fourman, Matthew M; Saber, Alan A

    2012-01-01

    Obesity is a nationwide epidemic, and the only evidence-based, durable treatment of this disease is bariatric surgery. This field has evolved drastically during the past decade. One of the latest advances has been the increased use of robotics within this field. The goal of our study was to perform a systematic review of the recent data to determine the safety and efficacy of robotic bariatric surgery. The setting was the University Hospitals Case Medical Center (Cleveland, OH). A PubMed search was performed for robotic bariatric surgery from 2005 to 2011. The inclusion criteria were English language, original research, human, and bariatric surgical procedures. Perioperative data were then collected from each study and recorded. A total of 18 studies were included in our review. The results of our systematic review showed that bariatric surgery, when performed with the use of robotics, had similar or lower complication rates compared with traditional laparoscopy. Two studies showed shorter operative times using the robot for Roux-en-Y gastric bypass, but 4 studies showed longer operative times in the robotic arm. In addition, the learning curve appears to be shorter when robotic gastric bypass is compared with the traditional laparoscopic approach. Most investigators agreed that robotic laparoscopic surgery provides superior imaging and freedom of movement compared with traditional laparoscopy. The application of robotics appears to be a safe option within the realm of bariatric surgery. Prospective randomized trials comparing robotic and laparoscopic outcomes are needed to further define the role of robotics within the field of bariatric surgery. Longer follow-up times would also help elucidate any long-term outcomes differences with the use of robotics versus traditional laparoscopy. Copyright © 2012 American Society for Metabolic and Bariatric Surgery. All rights reserved.

  16. New trends in medical and service robots challenges and solutions

    CERN Document Server

    Pisla, Doina; Bleuler, Hannes

    2014-01-01

    This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cogn...

  17. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  18. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  19. Presentation robot Advee

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human - robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  20. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  1. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  2. Fable: Design of a Modular Robotic Playware Platform

    DEFF Research Database (Denmark)

    Pacheco, Moises; Moghadam, Mikael; Magnússon, Arnþór

    2013-01-01

    -based system composed of reconfigurable heterogeneous modules with a reliable and scalable connector. Furthermore, this paper describes tests where the connector design is tested with children, and presents examples of a moving snake and a quadruped robot, as well as an interactive upper humanoid torso.......We are developing the Fable modular robotic system as a playware platform that will enable non-expert users to develop robots ranging from advanced robotic toys to robotic solutions to problems encountered in their daily lives. This paper presents the mechanical design of Fable: a chain...

  3. Robotics crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1996-08-01

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology

  4. Practice parameters facilitating adoption of advanced technologies for enhancing neuropsychological assessment paradigms.

    Science.gov (United States)

    Parsons, Thomas D; McMahan, Timothy; Kane, Robert

    2018-01-01

    Clinical neuropsychologists have long underutilized computer technologies for neuropsychological assessment. Given the rapid advances in technology (e.g. virtual reality; tablets; iPhones) and the increased accessibility in the past decade, there is an on-going need to identify optimal specifications for advanced technologies while minimizing potential sources of error. Herein, we discuss concerns raised by a joint American Academy of Clinical Neuropsychology/National Academy of Neuropsychology position paper. Moreover, we proffer parameters for the development and use of advanced technologies in neuropsychological assessments. We aim to first describe software and hardware configurations that can impact a computerized neuropsychological assessment. This is followed by a description of best practices for developers and practicing neuropsychologists to minimize error in neuropsychological assessments using advanced technologies. We also discuss the relevance of weighing potential computer error in light of possible errors associated with traditional testing. Throughout there is an emphasis on the need for developers to provide bench test results for their software's performance on various devices and minimum specifications (documented in manuals) for the hardware (e.g. computer, monitor, input devices) in the neuropsychologist's practice. Advances in computerized assessment platforms offer both opportunities and challenges. The challenges can appear daunting but are a manageable and require informed consumers who can appreciate the issues and ask pertinent questions in evaluating their options.

  5. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  6. On Compliant Underactuated Robotic Fingers

    NARCIS (Netherlands)

    Wassink, M.

    2011-01-01

    Driven by societal trends, such as aging, and by a desire to drive economic growth and enhance commercial competitiveness, researchers have tried to move robots from structured manufacturing tasks to unstructured professional and personal service applications. As announced in the Falcon project, an

  7. Robotics at Savannah River site: activity report

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report

  8. Robotics in Arthroplasty: A Comprehensive Review.

    Science.gov (United States)

    Jacofsky, David J; Allen, Mark

    2016-10-01

    Robotic-assisted orthopedic surgery has been available clinically in some form for over 2 decades, claiming to improve total joint arthroplasty by enhancing the surgeon's ability to reproduce alignment and therefore better restore normal kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semiactive, or passive control systems. Semiactive systems have become dominant, providing a haptic window through which the surgeon is able to consistently prepare an arthroplasty based on preoperative planning. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Despite this cautious optimism, many still wonder whether robotics will ultimately increase cost and operative time without objectively improving outcomes. Over the long term, every industry that has seen robotic technology be introduced, ultimately has shown an increase in production capacity, improved accuracy and precision, and lower cost. A new generation of robotic systems is now being introduced into the arthroplasty arena, and early results with unicompartmental knee arthroplasty and total hip arthroplasty have demonstrated improved accuracy of placement, improved satisfaction, and reduced complications. Further studies are needed to confirm the cost effectiveness of these technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Legal and ethical issues in robotic surgery.

    Science.gov (United States)

    Mavroforou, A; Michalodimitrakis, E; Hatzitheo-Filou, C; Giannoukas, A

    2010-02-01

    With the rapid introduction of revolutionary technologies in surgical practice, such as computer-enhanced robotic surgery, the complexity in various aspects, including medical, legal and ethical, will increase exponentially. Our aim was to highlight important legal and ethical implications emerged from the application of robotic surgery. Search of the pertinent medical and legal literature. Robotic surgery may open new avenues in the near future in surgical practice. However, in robotic surgery, special training and experience along with high quality assessment are required in order to provide normal conscientious care and state-of-the-art treatment. While the legal basis for professional liability remains exactly the same, litigation with the use of robotic surgery may be complex. In case of an undesirable outcome, in addition to physician and hospital, the manufacturer of the robotic system may be sued. In respect to ethical issues in robotic surgery, equipment safety and reliability, provision of adequate information, and maintenance of confidentiality are all of paramount importance. Also, the cost of robotic surgery and the lack of such systems in most of the public hospitals may restrict the majority from the benefits offered by the new technology. While surgical robotics will have a significant impact on surgical practice, it presents challenges so much in the realm of law and ethics as of medicine and health care.

  10. Robot Programming.

    Science.gov (United States)

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  11. Liability exposure for surgical robotics instructors.

    Science.gov (United States)

    Lee, Yu L; Kilic, Gokhan; Phelps, John Y

    2012-01-01

    Surgical robotics instructors provide an essential service in improving the competency of novice gynecologic surgeons learning robotic surgery and advancing surgical skills on behalf of patients. However, despite best intentions, robotics instructors and the gynecologists who use their services expose themselves to liability. The fear of litigation in the event of a surgical complication may reduce the availability and utility of robotics instructors. A better understanding of the principles of duty of care and the physician-patient relationship, and their potential applicability in a court of law likely will help to dismantle some concerns and uncertainties about liability. This commentary is not meant to discourage current and future surgical instructors but to raise awareness of liability issues among robotics instructors and their students and to recommend certain preventive measures to curb potential liability risks. Published by Elsevier Inc.

  12. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  13. Modular Robotics in an African Context

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2011-01-01

    In this paper, we review the concept, development and use of modular robotic devices for education, health improvements, and business in Africa. The modular robotics inspired technology has the advantage of allowing any user easy access to a physical construction of new and advanced technology. We...... conceptualized several educational tools inspired by modular robotics for contextualized IT education in Tanzania, leading to a novel IT degree program and the development of East Africa’s first science and business park in Iringa, Tanzania. The prototypes inspired by modular robotics were developed in the local......, rural context and tested by local users in hospitals and rehabilitation centres. In this paper, we review the development of both modular building blocks for education and modular robotic tiles for rehabilitation in Tanzania....

  14. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-01-01

    zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic

  15. Advanced ship systems condition monitoring for enhanced inspection, maintenance and decision making in ship operations

    OpenAIRE

    Lazakis, Iraklis; Dikis, Konstantinos; Michala, Anna Lito; Theotokatos, Gerasimos

    2016-01-01

    Structural and machinery failures in the day-to-day ship operations may lead to major accidents, endangering crew and\\ud passengers onboard, posing a threat to the environment, damaging the ship itself and having a great impact in terms of business\\ud losses. In this respect, this paper presents the INCASS (Inspection Capabilities for Enhanced Ship Safety) project which aims\\ud bringing an innovative solution to the ship inspection regime through the introduction of enhanced inspection of shi...

  16. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  17. The perihelion of Mercury advance and the light bending calculated in (enhanced) Newton's theory

    Czech Academy of Sciences Publication Activity Database

    Abramowicz, M. A.; Ellis, G. F. R.; Horák, Jiří; Wielgus, M.

    2014-01-01

    Roč. 46, č. 1 (2014), 1630/1-1630/14 ISSN 0001-7701 Grant - others:AV ČR(CZ) M100031242 Institutional support: RVO:67985815 Keywords : space curvature * Newton's gravity * Perihelion advance Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.771, year: 2014

  18. Just-in-Time Teaching: A Tool for Enhancing Student Engagement in Advanced Foreign Language Learning

    Science.gov (United States)

    Abreu, Laurel; Knouse, Stephanie

    2014-01-01

    Scholars have indicated a need for further research on effective pedagogical strategies designed for advanced foreign language courses in the postsecondary setting, especially in light of decreased enrollments at this level and the elimination of foreign language programs altogether in some institutions (Paesani & Allen, 2012). This article…

  19. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  20. Robotics Algorithms Provide Nutritional Guidelines

    Science.gov (United States)

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat