WorldWideScience

Sample records for robotic system executes

  1. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  2. Compliant Task Execution and Learning for Safe Mixed-Initiative Human-Robot Operations

    Science.gov (United States)

    Dong, Shuonan; Conrad, Patrick R.; Shah, Julie A.; Williams, Brian C.; Mittman, David S.; Ingham, Michel D.; Verma, Vandana

    2011-01-01

    We introduce a novel task execution capability that enhances the ability of in-situ crew members to function independently from Earth by enabling safe and efficient interaction with automated systems. This task execution capability provides the ability to (1) map goal-directed commands from humans into safe, compliant, automated actions, (2) quickly and safely respond to human commands and actions during task execution, and (3) specify complex motions through teaching by demonstration. Our results are applicable to future surface robotic systems, and we have demonstrated these capabilities on JPL's All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot.

  3. Safe robot execution in model-based reinforcement learning

    OpenAIRE

    Martínez Martínez, David; Alenyà Ribas, Guillem; Torras, Carme

    2015-01-01

    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans...

  4. Automatic Error Recovery in Robot Assembly Operations Using Reverse Execution

    DEFF Research Database (Denmark)

    Laursen, Johan Sund; Schultz, Ulrik Pagh; Ellekilde, Lars-Peter

    2015-01-01

    , in particular for small-batch productions. As an alternative, we propose a system for automatically handling certain classes of errors instead of preventing them. Specifically, we show that many operations can be automatically reversed. Errors can be handled through automatic reverse execution of the control...... program to a safe point, from which forward execution can be resumed. This paper describes the principles behind automatic reversal of robotic assembly operations, and experimentally demonstrates the use of a domain-specific language that supports automatic error handling through reverse execution. Our...

  5. Functional Modeling for Monitoring of Robotic System

    DEFF Research Database (Denmark)

    Wu, Haiyan; Bateman, Rikke R.; Zhang, Xinxin

    2018-01-01

    With the expansion of robotic applications in the industrial domain, it is important that the robots can execute their tasks in a safe and reliable way. A monitoring system can be implemented to ensure the detection of abnormal situations of the robots and report the abnormality to their human su...

  6. Robot bicolor system

    Science.gov (United States)

    Yamaba, Kazuo

    1999-03-01

    In case of robot vision, most important problem is the processing speed of acquiring and analyzing images are less than the speed of execution of the robot. In an actual robot color vision system, it is considered that the system should be processed at real time. We guessed this problem might be solved using by the bicolor analysis technique. We have been testing a system which we hope will give us insight to the properties of bicolor vision. The experiment is used the red channel of a color CCD camera and an image from a monochromatic camera to duplicate McCann's theory. To mix the two signals together, the mono image is copied into each of the red, green and blue memory banks of the image processing board and then added the red image to the red bank. On the contrary, pure color images, red, green and blue components are obtained from the original bicolor images in the novel color system after the scaling factor is added to each RGB image. Our search for a bicolor robot vision system was entirely successful.

  7. Robotic guarded motion system and method

    Science.gov (United States)

    Bruemmer, David J.

    2010-02-23

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.

  8. Integrating Multi-Purpose Natural Language Understanding, Robot's Memory, and Symbolic Planning for Task Execution in Humanoid Robots

    DEFF Research Database (Denmark)

    Wächter, Mirko; Ovchinnikova, Ekaterina; Wittenbeck, Valerij

    2017-01-01

    We propose an approach for instructing a robot using natural language to solve complex tasks in a dynamic environment. In this study, we elaborate on a framework that allows a humanoid robot to understand natural language, derive symbolic representations of its sensorimotor experience, generate....... The framework is implemented within the robot development environment ArmarX. We evaluate the framework on the humanoid robot ARMAR-III in the context of two experiments: a demonstration of the real execution of a complex task in the kitchen environment on ARMAR-III and an experiment with untrained users...

  9. IMPERA: Integrated Mission Planning for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Daniel Saur

    2015-10-01

    Full Text Available This paper presents the results of the project IMPERA (Integrated Mission Planning for Distributed Robot Systems. The goal of IMPERA was to realize an extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main challenge was the development of a multi-robot planning and plan execution architecture. The robot team consists of three heterogeneous robots, which have to explore an unknown environment and collect lunar drill samples. The team activities are described using the language ALICA (A Language for Interactive Agents. Furthermore, we use the mission planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems to provide an intuitive interface to generate team activities. Therefore, we define the basic skills of our team with ALICA and define the desired goal states by using a logic description. Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed by the team. The paper describes the basic components for communication, coordinated exploration, perception and object transportation. Finally, we evaluate the planning engine pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of pRoPhEt MAS in more dynamic environments.

  10. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  11. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  12. Concurrent Path Planning with One or More Humanoid Robots

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  13. An Architecture for Robot Assemblt Task Planning

    DEFF Research Database (Denmark)

    Sun, Hongyan

    1999-01-01

    This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution.......This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution....

  14. Robotics virtual rail system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  15. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Rafael Barea

    2013-01-01

    Full Text Available Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot’s back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  16. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  17. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    Science.gov (United States)

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  18. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  19. Distributed consensus with visual perception in multi-robot systems

    CERN Document Server

    Montijano, Eduardo

    2015-01-01

    This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: ·         distributed consensus algorithms; ·         data association and robustne...

  20. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Science.gov (United States)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  1. Motion Planning in Multi-robot Systems using Timed Automata

    DEFF Research Database (Denmark)

    Andersen, Michael. S.; Jensen, Rune S.; Bak, Thomas

    This paper dscribes how interacting timed automata can be used to model, analyze, and verify motion planning problems for systems with multiple mobile robots. The method assumes an infra-structure of simple unicycle type robots, moving om a planar grid. The motion of the robots, including simple...... kinematics, is captured in an automata formalism that allows formal composition and symbolic reasoning. The verification software UppAal is used to verify specification requirements formulated in computational tree logic (CTL), generating all feasible trajectories that satisfy specifications. The results...... of the planning are demonstrateted in a testbed that allows execution of the planned paths and motion primitives by synchronizing the planning results from UppAal with actual robotic vehicles. The planning problem may be modified online by moving obstacles in the physical environment, which causes a re...

  2. Control system for a multi-joint inspection robot

    International Nuclear Information System (INIS)

    Asano, K.

    1984-01-01

    Remote systems, in which a human operator in a safe zone determines pertinent circumstances and makes decisions on work procedures, while a robot does direct work in hazardous environments, have been becoming more and more important in accordance with the increase in nuclear facilities. In such remote systems, to perform tasks which are merely ambiguously defined beforehand, it is very important that the systems have the ability to execute desired tasks easily and immediately without any programming or teaching work on the spot. A control system, named Self Approach System (SAS), for a multi-joint inspection robot has been developed as a key component in a remote inspection system for use in physically difficult or dangerous environments. It has 8 joints and 17 degrees-of-freedom and was designed taking many of the above points into account. This paper describes SAS details

  3. Assistance System for Disabled People: A Robot Controlled by Blinking and Wireless Link

    Science.gov (United States)

    Del Val, Lara; Jiménez, María I.; Alonso, Alonso; de La Rosa, Ramón; Izquierdo, Alberto; Carrera, Albano

    Disabled people already profit from a lot of technical assistance that improves their quality of life. This article presents a system which will allow interaction between a physically disabled person and his environment. This system is controlled by voluntary muscular movements, particularly those of face muscles. These movements will be translated into machine-understandable instructions, and they will be sent by means of a wireless link to a mobile robot that will execute them. Robot includes a video camera, in order to show the user the environment of the route that the robot follows. This system gives a greater personal autonomy to people with reduced mobility.

  4. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    from all three robots for decision- making at each step, and to control the physical connections among the robots. In addition, TRESSA (as in prior systems that have utilized this architecture) , incorporates a capability for deterministic response to unanticipated situations from yet another architecture reported in Control Architecture for Robotic Agent Command and Sensing (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40. Tether tension control is a major consideration in the design and operation of TRESSA. Tension is measured by force sensors connected to each tether at the Cliffbot. The direction of the tension (both azimuth and elevation) is also measured. The tension controller combines a controller to counter gravitational force and an optional velocity controller that anticipates the motion of the Cliffbot. The gravity controller estimates the slope angle from the inclination of the tethers. This angle and the weight of the Cliffbot determine the total tension needed to counteract the weight of the Cliffbot. The total needed tension is broken into components for each Anchorbot. The difference between this needed tension and the tension measured at the Cliffbot constitutes an error signal that is provided to the gravity controller. The velocity controller computes the tether speed needed to produce the desired motion of the Cliffbot. Another major consideration in the design and operation of TRESSA is detection of faults. Each robot in the TRESSA system monitors its own performance and the performance of its teammates in order to detect any system faults and prevent unsafe conditions. At startup, communication links are tested and if any robot is not communicating, the system refuses to execute any motion commands. Prior to motion, the Anchorbots attempt to set tensions in the tethers at optimal levels for counteracting the weight of the Cliffbot; if either Anchorbot fails to reach its optimal tension level within a specified time, it sends

  5. Towards Real-Time Distributed Planning in Multi-Robot Systems

    KAUST Repository

    Abdelkader, Mohamed

    2018-04-01

    Recently, there has been an increasing interest in robotics related to multi-robot applications. Such systems can be involved in several tasks such as collaborative search and rescue, aerial transportation, surveillance, and monitoring, to name a few. There are two possible architectures for the autonomous control of multi-robot systems. In the centralized architecture, a master controller communicates with all the robots to collect information. It uses this information to make decisions for the entire system and then sends commands to each robot. In contrast, in the distributed architecture, each robot makes its own decision independent from a central authority. While distributed architecture is a more portable solution, it comes at the expense of extensive information exchange (communication). The extensive communication between robots can result in decision delays because of which distributed architecture is often impractical for systems with strict real-time constraints, e.g. when decisions have to be taken in the order of milliseconds. In this thesis, we propose a distributed framework that strikes a balance between limited communicated information and reasonable system-wide performance while running in real-time. We implement the proposed approach in a game setting of two competing teams of drones, defenders and attackers. Defending drones execute a proposed linear program algorithm (using only onboard computing modules) to obstruct attackers from infiltrating a defense zone while having minimal local message passing. Another main contribution is that we developed a realistic simulation environment as well as lab and outdoor hardware setups of customized drones for testing the system in realistic scenarios. Our software is completely open-source and fully integrated with the well-known Robot Operating System (ROS) in hopes to make our work easily reproducible and for rapid future improvements.

  6. Knowledge assistant for robotic environmental characterization

    International Nuclear Information System (INIS)

    Feddema, J.; Rivera, J.; Tucker, S.; Matek, J.

    1996-08-01

    A prototype sensor fusion framework called the open-quotes Knowledge Assistantclose quotes has been developed and tested on a gantry robot at Sandia National Laboratories. This Knowledge Assistant guides the robot operator during the planning, execution, and post analysis stages of the characterization process. During the planning stage, the Knowledge Assistant suggests robot paths and speeds based on knowledge of sensors available and their physical characteristics. During execution, the Knowledge Assistant coordinates the collection of data through a data acquisition open-quotes specialist.close quotes During execution and postanalysis, the Knowledge Assistant sends raw data to other open-quotes specialists,close quotes which include statistical pattern recognition software, a neural network, and model-based search software. After the specialists return their results, the Knowledge Assistant consolidates the information and returns a report to the robot control system where the sensed objects and their attributes (e.g., estimated dimensions, weight, material composition, etc.) are displayed in the world model. This report highlights the major components of this system

  7. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  8. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.

    Science.gov (United States)

    Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin

    2013-09-28

    Rehabilitation robotics is progressing towards developing robots that can be used as advanced tools to augment the role of a therapist. These robots are capable of not only offering more frequent and more accessible therapies but also providing new insights into treatment effectiveness based on their ability to measure interaction parameters. A requirement for having more advanced therapies is to identify how robots can 'adapt' to each individual's needs at different stages of recovery. Hence, our research focused on developing an adaptive interface for the GENTLE/A rehabilitation system. The interface was based on a lead-lag performance model utilising the interaction between the human and the robot. The goal of the present study was to test the adaptability of the GENTLE/A system to the performance of the user. Point-to-point movements were executed using the HapticMaster (HM) robotic arm, the main component of the GENTLE/A rehabilitation system. The points were displayed as balls on the screen and some of the points also had a real object, providing a test-bed for the human-robot interaction (HRI) experiment. The HM was operated in various modes to test the adaptability of the GENTLE/A system based on the leading/lagging performance of the user. Thirty-two healthy participants took part in the experiment comprising of a training phase followed by the actual-performance phase. The leading or lagging role of the participant could be used successfully to adjust the duration required by that participant to execute point-to-point movements, in various modes of robot operation and under various conditions. The adaptability of the GENTLE/A system was clearly evident from the durations recorded. The regression results showed that the participants required lower execution times with the help from a real object when compared to just a virtual object. The 'reaching away' movements were longer to execute when compared to the 'returning towards' movements irrespective of the

  9. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    Science.gov (United States)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  10. Fiscal 2000 report on result of R and D on robot system cooperating and coexisting with human beings. R and D on robot system cooperating and coexisting with human beings; 2000 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    A highly safe and reliable robot is being developed capable of cooperating with human beings and executing complicated operations in a human working/living space. This paper describes the fiscal 2000 results. Development of robot motion library was continued for extended task for providing services to people in care houses for the aged controlling motions of the humanoid robot. A basic design for a personal service system by the humanoid robot was conducted with the aim of nursing assistance and for the objective of developing a portable terminal type tele-operation device. A public and a home cockpit were researched with the purpose of developing user interfaces for telexistence control. A dynamic simulator for humanoid robots was built, with motions of standing-up and walking examined, in order to develop basic theories for the dual-handed tasks aided by the leg-arm cooperative motion. To develop a robot that properly and safely cooperates and coexists with the human beings, it is essential to obtain a dynamically reasonable and natural control law, so that the basic studies were conducted in this direction. With the purpose of developing a motion capture and learning system, a virtual robot platform and an information acquiring interface were developed. Studies were also conducted on modeling technique for achieving realistic material properties from high-precision image synthesis and actual images. (NEDO)

  11. Towards an Explanation Generation System for Robots: Analysis and Recommendations

    Directory of Open Access Journals (Sweden)

    Ben Meadows

    2016-10-01

    Full Text Available A fundamental challenge in robotics is to reason with incomplete domain knowledge to explain unexpected observations and partial descriptions extracted from sensor observations. Existing explanation generation systems draw on ideas that can be mapped to a multidimensional space of system characteristics, defined by distinctions, such as how they represent knowledge and if and how they reason with heuristic guidance. Instances in this multidimensional space corresponding to existing systems do not support all of the desired explanation generation capabilities for robots. We seek to address this limitation by thoroughly understanding the range of explanation generation capabilities and the interplay between the distinctions that characterize them. Towards this objective, this paper first specifies three fundamental distinctions that can be used to characterize many existing explanation generation systems. We explore and understand the effects of these distinctions by comparing the capabilities of two systems that differ substantially along these axes, using execution scenarios involving a robot waiter assisting in seating people and delivering orders in a restaurant. The second part of the paper uses this study to argue that the desired explanation generation capabilities corresponding to these three distinctions can mostly be achieved by exploiting the complementary strengths of the two systems that were explored. This is followed by a discussion of the capabilities related to other major distinctions to provide detailed recommendations for developing an explanation generation system for robots.

  12. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  13. Lessons learned from the STS-120/ISS 10A robotics operations

    Science.gov (United States)

    Aziz, Sarmad

    2010-01-01

    The STS-120/ISS 10A assembly mission was an unprecedented period during the life of the International Space Stations (ISS). The successful completion of the mission laid the foundation for the launch of the European and Japanese laboratories and continued assembly of the station. Unlike previous missions that concluded when the Space Shuttle undocked from the ISS, the 10A mission required critical assembly operations to continue after the Shuttle's departure to relocate the Harmony module to its permanent location and activate its systems. The end-to-end mission lasted for almost a month and required the execution of seven space walks, over 20 major robotics operations, and countless hours of ground commanding. The Canadian built mobile servicing system (MSS) and its robotics space station remote manipulator system (SSRMS) played a key a role in the success of the assembly operations. The mission presented the ISS robotics flight control team (ROBO) with unique challenges during the pre-mission planning and real-time execution of complex assembly tasks. The mission included the relocation of the P6 truss segment from the Z1 Node to its permanent location on the P5 truss; a three day marathon of highly choreographed sequence of robotics operations and space walks, and the reconfiguration of ISS structure to attach Harmony (Node 2) to the US destiny laboratory module; a six day sequence of complex robotics operations the majority of which was executed after the departure of the shuttle and included an unprecedented amount of ground commanded robotics operations. Of all the robotics operations executed during the mission, none were more challenging than supporting the repair of a torn P6 solar array that was damaged during its deployment; a dramatic space walk that pushed the MSS and the robotics flight control team to new limits and required the real-time planning and execution of an intricate series of operations that spanned two days. This paper will present an

  14. Supervision and atuomatic control of robotics systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    The paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  15. Supervision and automatic control of robotic systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    This paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  16. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  17. Multi-agent System for Off-line Coordinated Motion Planning of Multiple Industrial Robots

    Directory of Open Access Journals (Sweden)

    Shital S. Chiddarwar

    2011-03-01

    Full Text Available This article presents an agent based framework for coordinated motion planning of multiple robots. The emerging paradigm of agent based systems is implemented to address various issues related to safe and fast task execution when multiple robots share a common workspace. In the proposed agent based framework, each issue vital for coordinated motion planning of multiple robots and every robot participating in coordinated task is considered as an agent. The identified agents are interfaced with each other in order to incorporate the desired flexibility in the developed framework. This framework gives a complete strategy for determination of optimal trajectories of robots working in coordination with due consideration to their kinematic, dynamic and payload constraint. The complete architecture of the proposed framework and the detailed discussion on various modules are covered in this paper.

  18. Fuzzy Behaviors for Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  19. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  20. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  1. Distributed Fault Detection and Isolation for Flocking in a Multi-robot System with Imperfect Communication

    Directory of Open Access Journals (Sweden)

    Shao Shiliang

    2014-06-01

    Full Text Available In this paper, we focus on distributed fault detection and isolation (FDI for a multi-robot system where multiple robots execute a flocking task. Firstly, we propose a fault detection method based on the local-information-exchange and sensor-measurement technologies to cover cases of both perfect communication and imperfect communication. The two detection technologies can be adaptively selected according to the packet loss rate (PLR. Secondly, we design a fault isolation method, considering a situation in which faulty robots still influence the behaviours of other robots. Finally, a complete FDI scheme, based on the proposed detection and isolation methods, is simulated in various scenarios. The results demonstrate that our FDI scheme is effective.

  2. Modified bug-1 algorithm based strategy for obstacle avoidance in multi robot system

    Directory of Open Access Journals (Sweden)

    Kandathil Jom J.

    2018-01-01

    Full Text Available One of the primary ability of an intelligent mobile robot system is obstacle avoidance. BUG algorithms are classic examples of the algorithms used for achieving obstacle avoidance. Unlike many other planning algorithms based on global knowledge, BUG algorithms assume only local knowledge of the environment and a global goal. Among the variations of the BUG algorithms that prevail, BUG-0, BUG-1 and BUG-2 are the more prominent versions. The exhaustive search algorithm present in BUG-1 makes it more reliable and safer for practical applications. Overall, this provides a more predictable and dependable performance. Hence, the essential focus in this paper is on implementing the BUG-1 algorithm across a group of robots to move them from a start location to a target location. The results are compared with the results from BUG-1 algorithm implemented on a single robot. The strategy developed in this work reduces the time involved in moving the robots from starting location to the target location. Further, the paper shows that the total distance covered by each robot in a multi robot-system is always lesser than or equal to that travelled by a single robot executing the same problem.

  3. TRUST MODEL FOR INFORMATION SECURITY OF MULTI-AGENT ROBOTIC SYSTEMS WITH A DECENTRALIZED MANAGEMENT

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-03-01

    Full Text Available The paper deals with the issues on protection of multi-agent robotic systems against attacks by robots-saboteurs. The operation analysis of such systems with decentralized control is carried out. Concept of harmful information impact (attack from a robot-saboteur to the multi-agent robotic system is given. The class of attacks is considered using interception of messages, formation and transfer of misinformation to group of robots, and also carrying out other actions with vulnerabilities of multiagent algorithms without obviously identified signs of invasion of robots-saboteurs. The model of information security is developed, in which robots-agents work out trust levels to each other analyzing the events occurring in the system. The idea of trust model consists in the analysis of transferred information by each robot and the executed actions of other members in a group, comparison of chosen decision on iteration step k with objective function of the group. Distinctive feature of the trust model in comparison with the closest analogue - Buddy Security Model in which the exchange between the agents security tokens is done — is involvement of the time factor during which agents have to "prove" by their actions the usefulness in achievement of a common goal to members of the group. Variants of this model realization and ways of an assessment of trust levels for agents in view of the security policy accepted in the group are proposed.

  4. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  5. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  6. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    Science.gov (United States)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  7. Robotic system for orbital welding of pipes; Sistema robotizado para soldagem orbital de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Bracarense, Alexandre Queiroz; Lima, II, Eduardo Jose; Torres, Guilherme Fortunato; Ramalho, Frederico [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Felizardo, Ivanilza; Zanon, Gislaine Pires [ROTECH Tecnologia Robotica Ltda., Belo Horizonte, MG (Brazil)

    2004-07-01

    This work presents the robotic system projected for orbital welding of pipelines of oil and gas. The system consists of a controller (microcomputer), that allows the execution of all the referring tasks to the welding in an autonomous way, and two manipulates, to what are coupled the welding torches that are connected to a welding power source with double wire feeders. With this system, GMA W process is used to execute the root pass, while FCA W process, besides the GMA W, is used for the filling and finishing passes. The system has four degrees of freedom, allowing the control of stick out, travel speed, torch angle and positioning. Besides these, the arc voltage and and welding current are also controlled during the process. Knowing that for each welding position (plane, vertical up and down and over head) a great group of parameters must be used, several tests were accomplished. With these values a controlled variation could be accomplished in an uninterrupted way when welding position changes, getting the increase of the productivity and also the quality of the weld performed by a robotic system. (author)

  8. Intelligent viewing control for robotic and automation systems

    Science.gov (United States)

    Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.

    1994-10-01

    We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.

  9. Novel robotic systems and future directions

    Directory of Open Access Journals (Sweden)

    Ki Don Chang

    2018-01-01

    Full Text Available Robot-assistance is increasingly used in surgical practice. We performed a nonsystematic literature review using PubMed/MEDLINE and Google for robotic surgical systems and compiled information on their current status. We also used this information to predict future about the direction of robotic systems based on various robotic systems currently being developed. Currently, various modifications are being made in the consoles, robotic arms, cameras, handles and instruments, and other specific functions (haptic feedback and eye tracking that make up the robotic surgery system. In addition, research for automated surgery is actively being carried out. The development of future robots will be directed to decrease the number of incisions and improve precision. With the advent of artificial intelligence, a more practical form of robotic surgery system can be introduced and will ultimately lead to the development of automated robotic surgery system.

  10. Robot Task Commander with Extensible Programming Environment

    Science.gov (United States)

    Hart, Stephen W (Inventor); Yamokoski, John D. (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  11. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    Science.gov (United States)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  12. System and method for controlling a vision guided robot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yhu-Tin; Daro, Timothy; Abell, Jeffrey A.; Turner, III, Raymond D.; Casoli, Daniel J.

    2017-03-07

    A method includes the following steps: actuating a robotic arm to perform an action at a start position; moving the robotic arm from the start position toward a first position; determining from a vision process method if a first part from the first position will be ready to be subjected to a first action by the robotic arm once the robotic arm reaches the first position; commencing the execution of the visual processing method for determining the position deviation of the second part from the second position and the readiness of the second part to be subjected to a second action by the robotic arm once the robotic arm reaches the second position; and performing a first action on the first part using the robotic arm with the position deviation of the first part from the first position predetermined by the vision process method.

  13. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  14. Modelling reversible execution of robotic assembly

    DEFF Research Database (Denmark)

    Laursen, Johan Sund; Ellekilde, Lars Peter; Schultz, Ulrik Pagh

    2018-01-01

    Programming robotic assembly for industrial small-batch production is challenging; hence, it is vital to increase robustness and reduce development effort in order to achieve flexible robotic automation. A human who has made an assembly error will often simply undo the process until the error is ...

  15. Robotics and tele-operation technology for applications in nuclear fields

    International Nuclear Information System (INIS)

    Kosuge, Kazuhiro; Hirata, Yasuhisa; Takeo, Koji

    2002-01-01

    In this article, we introduce available robotics and tele-operation technology for applications in Nuclear Fields. First, robotics technology for manipulation of a large object is introduced which has been experimentally applied to ITER Maintenance Robot. Then, transportation technology of a large object by multiple mobile robots is reviewed. At last, recent tele-operation technologies and a prototype tele-operation system, referred to as VISIT (Visual Interface System for Interactive Task-execution), is introduced. Several experimental results are also introduced. (author)

  16. Anthropomorphic Robot Hand And Teaching Glove

    Science.gov (United States)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  17. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  18. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  19. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  20. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  1. Stochastic approach to error estimation for image-guided robotic systems.

    Science.gov (United States)

    Haidegger, Tamas; Gyõri, Sándor; Benyo, Balazs; Benyó, Zoltáán

    2010-01-01

    Image-guided surgical systems and surgical robots are primarily developed to provide patient safety through increased precision and minimal invasiveness. Even more, robotic devices should allow for refined treatments that are not possible by other means. It is crucial to determine the accuracy of a system, to define the expected overall task execution error. A major step toward this aim is to quantitatively analyze the effect of registration and tracking-series of multiplication of erroneous homogeneous transformations. First, the currently used models and algorithms are introduced along with their limitations, and a new, probability distribution based method is described. The new approach has several advantages, as it was demonstrated in our simulations. Primarily, it determines the full 6 degree of freedom accuracy of the point of interest, allowing for the more accurate use of advanced application-oriented concepts, such as Virtual Fixtures. On the other hand, it becomes feasible to consider different surgical scenarios with varying weighting factors.

  2. 3D YAG laser cutting robot. 3 jigen YAG laser setsudan robot

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Y. (Matsushita Electric Industrial Co. Ltd., Osaka (Japan))

    1991-11-01

    The present status was introduced of three-dimensional processing by the YAG laser multi-articulation robot to introduce the focusing system. The lowering in locus accuracy of multi-articulation robot is caused by the accuracy and time of computation to interpolate the locus, response characteristics of servo system, and calibration problem of mechanical/structural system. Also as low in output power of laser, it has problem in focusing the energy in the radiating optical system. A focusing system, high in response velocity, is necessary in the processor to use the optical fiber in the optical transfer system. As processing and measuring at an identical spot, the present system can integrate the detection use electrode and nozzle so as to use an electrostatic capacity type sensor, high in response frequency. To avoid the interference with jig, etc., the nozzle of radiating unit was integrated with the detection use electrode so that development was made of height sensor, capable of executing the three-dimensional processing. The present robot is characterized by a standardized equipment of control system with a sliding shaft, independent of the operational shaft properly of robot in order to be exclusively used for the focusing. 9 figs.

  3. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  4. Development of a robot system for converter relining; Tenro chikuro robot system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y; Kurahashi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1995-09-12

    In steelmaking plants, the relining work of converters requires plenty of manpower and time. Recently, the number of expert brick workers has decreased, and it has been difficult to get together the necessary number of workers for the converter relining. To solve these problems, a robot system has been developed and realized for the converter relining. The system consists of two intelligent robots and an automatic brick conveying machine. With visual function and flexibly controlled hands, the robot enables to heap up bricks in the same manner as expert workers do. The automatic brick conveying machine consists of roller conveyers and a cage lifter that convey bricks on palettes to the suitable position for the robot to easily handle. This robot system has enabled to save much labor for the converter relining. 8 figs.

  5. Hybrid System Design for the Coordination of Multi-Modal Aerial Robots

    DEFF Research Database (Denmark)

    Koo, T. John; Quottrup, Michael Melholt; Clifton, C. A.

    2006-01-01

    In this paper we provide a framework for the coordination of a network of heterogeneous aerial robots by using temporal logic to formulate mission speci¯cations for the network of robots. The full dynamics of the aerial robots are considered, and multiple controllers that can cope with various......¯ed. These robots are coordinated by communicating through a single occupancy table. By using the model checker Uppaal, a discrete plan that satis¯es a given temporal logic formula, speci¯ed in CTL, is generated for the robot to execute. Finally, the discrete plan for each robot is re¯ned into a discrete control...... constraints are designed to ensure that desired reachability properties can be preserved by properly switching among the controllers. A timed automaton is then constructed for preserving the temporal properties of a given robot. For di®erent types of robots, unique temporal properties can be speci...

  6. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  7. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  8. Robot learning and error correction

    Science.gov (United States)

    Friedman, L.

    1977-01-01

    A model of robot learning is described that associates previously unknown perceptions with the sensed known consequences of robot actions. For these actions, both the categories of outcomes and the corresponding sensory patterns are incorporated in a knowledge base by the system designer. Thus the robot is able to predict the outcome of an action and compare the expectation with the experience. New knowledge about what to expect in the world may then be incorporated by the robot in a pre-existing structure whether it detects accordance or discrepancy between a predicted consequence and experience. Errors committed during plan execution are detected by the same type of comparison process and learning may be applied to avoiding the errors.

  9. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  10. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    Science.gov (United States)

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  11. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    Directory of Open Access Journals (Sweden)

    Shaowu Pan

    2015-04-01

    Full Text Available A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT, which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  12. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  13. A preliminary cyber-physical security assessment of the Robot Operating System (ROS)

    Science.gov (United States)

    McClean, Jarrod; Stull, Christopher; Farrar, Charles; Mascareñas, David

    2013-05-01

    Over the course of the last few years, the Robot Operating System (ROS) has become a highly popular software framework for robotics research. ROS has a very active developer community and is widely used for robotics research in both academia and government labs. The prevalence and modularity of ROS cause many people to ask the question: "What prevents ROS from being used in commercial or government applications?" One of the main problems that is preventing this increased use of ROS in these applications is the question of characterizing its security (or lack thereof). In the summer of 2012, a crowd sourced cyber-physical security contest was launched at the cyber security conference DEF CON 20 to begin the process of characterizing the security of ROS. A small-scale, car-like robot was configured as a cyber-physical security "honeypot" running ROS. DEFFCON-20 attendees were invited to find exploits and vulnerabilities in the robot while network traffic was collected. The results of this experiment provided some interesting insights and opened up many security questions pertaining to deployed robotic systems. The Federal Aviation Administration is tasked with opening up the civil airspace to commercial drones by September 2015 and driverless cars are already legal for research purposes in a number of states. Given the integration of these robotic devices into our daily lives, the authors pose the following question: "What security exploits can a motivated person with little-to-no experience in cyber security execute, given the wide availability of free cyber security penetration testing tools such as Metasploit?" This research focuses on applying common, low-cost, low-overhead, cyber-attacks on a robot featuring ROS. This work documents the effectiveness of those attacks.

  14. Simplified Human-Robot Interaction: Modeling and Evaluation

    Directory of Open Access Journals (Sweden)

    Balazs Daniel

    2013-10-01

    Full Text Available In this paper a novel concept of human-robot interaction (HRI modeling is proposed. Including factors like trust in automation, situational awareness, expertise and expectations a new user experience framework is formed for industrial robots. Service Oriented Robot Operation, proposed in a previous paper, creates an abstract level in HRI and it is also included in the framework. This concept is evaluated with exhaustive tests. Results prove that significant improvement in task execution may be achieved and the new system is more usable for operators with less experience with robotics; personnel specific for small and medium enterprises (SMEs.

  15. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  16. Generative Programming for Functional Safety in Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin

    2018-01-01

    execution environment. The effective usage of DeRoS to specify safetyrelated properties of mobile robots and generation of a runtime verification infrastructure for the different controllers has been experimentally demonstrated on ROS-based systems, safety PLCs and microcontrollers. The key issue of making......Safety is a major challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but the existing approaches for addressing safety do not provide a clearly defined and isolated programmatic safety...... layer, with an easily understandable specification for facilitating safety certification. Moreover, mobile robots are advanced systems often implemented using a distributed architecture where software components are deployed on heterogeneous hardware modules. Many components are key to the overall...

  17. Training in Robotic Surgery-an Overview.

    Science.gov (United States)

    Sridhar, Ashwin N; Briggs, Tim P; Kelly, John D; Nathan, Senthil

    2017-08-01

    There has been a rapid and widespread adoption of the robotic surgical system with a lag in the development of a comprehensive training and credentialing framework. A literature search on robotic surgical training techniques and benchmarks was conducted to provide an evidence-based road map for the development of a robotic surgical skills for the novice robotic surgeon. A structured training curriculum is suggested incorporating evidence-based training techniques and benchmarks for progress. This usually involves sequential progression from observation, case assisting, acquisition of basic robotic skills in the dry and wet lab setting along with achievement of individual and team-based non-technical skills, modular console training under supervision, and finally independent practice. Robotic surgical training must be based on demonstration of proficiency and safety in executing basic robotic skills and procedural tasks prior to independent practice.

  18. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Yamokoski, John D. (Inventor); Strawser, Philip A. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  19. Robotics in Arthroplasty: A Comprehensive Review.

    Science.gov (United States)

    Jacofsky, David J; Allen, Mark

    2016-10-01

    Robotic-assisted orthopedic surgery has been available clinically in some form for over 2 decades, claiming to improve total joint arthroplasty by enhancing the surgeon's ability to reproduce alignment and therefore better restore normal kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semiactive, or passive control systems. Semiactive systems have become dominant, providing a haptic window through which the surgeon is able to consistently prepare an arthroplasty based on preoperative planning. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Despite this cautious optimism, many still wonder whether robotics will ultimately increase cost and operative time without objectively improving outcomes. Over the long term, every industry that has seen robotic technology be introduced, ultimately has shown an increase in production capacity, improved accuracy and precision, and lower cost. A new generation of robotic systems is now being introduced into the arthroplasty arena, and early results with unicompartmental knee arthroplasty and total hip arthroplasty have demonstrated improved accuracy of placement, improved satisfaction, and reduced complications. Further studies are needed to confirm the cost effectiveness of these technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. On the reproducibility of expert-operated and robotic ultrasound acquisitions.

    Science.gov (United States)

    Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir

    2017-06-01

    We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.

  1. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2004-01-01

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning (DandD) operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, this project focused on the basic science challenges leading to the development of visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix and by disturbances such as nonlinear radial distortion. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This research project focused on the development of a visual servo control methodology that targets compensating for disturbances in the camera model (i.e., camera calibration and the recovery of range information) as a means to achieve predictable response by the robotic system operating in unstructured environments. The fundamental idea is to use nonlinear Lyapunov-based techniques along with photogrammetry methods to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current robotic applications. The outcome of this control methodology is a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature recognition and extraction to enable robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). The developed methodology has been reported in numerous peer-reviewed publications and the

  2. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  3. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  4. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  5. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  6. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  7. Mobile application for executing therapies with robots

    NARCIS (Netherlands)

    Martin-Ortiz, M.; Kim, M.G.; Barakova, E.I.; Rojas, I.; Joya, G.; Catala, A.

    2017-01-01

    While robotic technology is being incorporated in therapies, still not enough research has been done to find out how different end-users are willing or able to use robots in their practice. To investigate this issue, a specific study has been designed to determine the preferences of end-users that

  8. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  9. Functional Evaluation of Asibot: A New Approach on Portable Robotic System for Disabled People

    Directory of Open Access Journals (Sweden)

    Alberto Jardón

    2012-01-01

    Full Text Available In this work, an innovative robotic solution for human care and assistance is presented. Our main objective is to develop a new concept of portable robot able to support the elderly and those people with different levels of disability during the execution of daily tasks, such as washing their face or hands, brushing their teeth, combing their hair, eating, drinking, and bringing objects closer, among others. Our prototype, ASIBOT, is a five degrees of freedom (DOF self-contained manipulator that includes the control system and electronic equipment on board. The main advantages of the robot are its light weight, about 11 kg for a 1.3 m reach, its autonomy, and its ability to move between different points (docking stations of the room or from the environment to a wheelchair and vice versa, which facilitates its supportive functions. The functional evaluation of ASIBOT is addressed in this paper. For this purpose the robotic arm is tested in different experiments with disabled people, gathering and discussing the results according to a methodology that allows us to assess users' satisfaction.

  10. Algorithms of walking and stability for an anthropomorphic robot

    Science.gov (United States)

    Sirazetdinov, R. T.; Devaev, V. M.; Nikitina, D. V.; Fadeev, A. Y.; Kamalov, A. R.

    2017-09-01

    Autonomous movement of an anthropomorphic robot is considered as a superposition of a set of typical elements of movement - so-called patterns, each of which can be considered as an agent of some multi-agent system [ 1 ]. To control the AP-601 robot, an information and communication infrastructure has been created that represents some multi-agent system that allows the development of algorithms for individual patterns of moving and run them in the system as a set of independently executed and interacting agents. The algorithms of lateral movement of the anthropomorphic robot AP-601 series with active stability due to the stability pattern are presented.

  11. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  12. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    Science.gov (United States)

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  13. Developing concepts for improved efficiency of robot work preparation

    OpenAIRE

    Essers, M.S.; Vaneker, Thomas H.J.

    2013-01-01

    SInBot[1] is a large research project that focuses on maximizing the efficient use of mobile industrial robots during medium sized production runs. The system that will be described in this paper will focusses on the development and validation of concepts for efficient work preparation for cells of intelligent mobile robots that execute medium sized production runs. For a wide range of products, the machining tasks will be defined on an appropriate level, enabling control over the robots beha...

  14. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours.

    Science.gov (United States)

    Xu, Jing; Jia, Zhen-zhong; Song, Zhang-jun; Yang, Xiang-dong; Chen, Ken; Liang, Ping

    2010-09-01

    The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a 'remote centre of motion' (RCM) wrist and a non-RCM wrist, which is preferred in real applications. The needle placement accuracies were robot with the RCM wrist was improved to 1.6 +/- 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 +/- 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright 2010 John Wiley & Sons, Ltd.

  15. Multisensory guidance of goal-oriented behaviour of legged robots

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate; Tuxworth, Gervase

    2017-01-01

    Biological systems often combine cues from two different sensory modalities to execute goal-oriented sensorimotor tasks, which otherwise cannot be accurately executed with either sensory stream in isolation. When auditory cues alone are not sufficient to accurately localise an audio-visual target...... is tasked with localising an audio-visual target by turning towards it. The architecture extracts sound direction information with a model of the peripheral auditory system of lizards to modulate locomotion control parameters driving the turning behaviour. The visual information adaptively changes...... the strength of the acoustomotor coupling to adjust turning speed of the robot. Our experiments demonstrate improved orientation towards the audio-visual target emitting a tone of frequency 2.2kHz located at an angular offset of 45 degrees from the robot....

  16. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  17. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  18. An assigned responsibility system for robotic teleoperation control.

    Science.gov (United States)

    Small, Nicolas; Lee, Kevin; Mann, Graham

    2018-01-01

    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.

  19. Internet remote control interface for a multipurpose robotic arm

    Directory of Open Access Journals (Sweden)

    Matthew W. Dunnigan

    2008-11-01

    Full Text Available This paper presents an Internet remote control interface for a MITSUBISHI PA10-6CE manipulator established for the purpose of the ROBOT museum exhibition during spring and summer 2004. The robotic manipulator is a part of the Intelligent Robotic Systems Laboratory at Heriot ? Watt University, which has been established to work on dynamic and kinematic aspects of manipulator control in the presence of environmental disturbances. The laboratory has been enriched by a simple vision system consisting of three web-cameras to broadcast the live images of the robots over the Internet. The Interface comprises of the TCP/IP server providing command parsing and execution using the open controller architecture of the manipulator and a client Java applet web-site providing a simple robot control interface.

  20. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    Science.gov (United States)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  1. The development of robot application technology in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Young; Sohn, Surg Won; Lee, Yong Bum; Kim, Woong Ki

    1991-01-01

    The project of this study is intended to develop the application technology for autonomous robotic systems operated in hostile environments where human access is prohibited. The mobile robot, named as KAEROT, has been designed by adopting the controller of multiprocessor of distributed system architecture in order to get flexibility. 2 driving wheel assembles and 1 steering mechanism has been adopted and each of them is made of planetary wheel which is composed of a couple of star-like arms with 3 wheels. The 6 D.O.F of manipulator is controlled by CCD camera mounted on the elbow and base, to provide wide view of the working area for tele-operation. The off-line programming system is being developed for checking robot constraint violations within workspace prior to execution of robot programming. (Author)

  2. HYBRID COMMUNICATION NETWORK OF MOBILE ROBOT AND QUAD-COPTER

    Directory of Open Access Journals (Sweden)

    Moustafa M. Kurdi

    2017-01-01

    Full Text Available This paper introduces the design and development of QMRS (Quadcopter Mobile Robotic System. QMRS is a real-time obstacle avoidance capability in Belarus-132N mobile robot with the cooperation of quadcopter Phantom-4. The function of QMRS consists of GPS used by Mobile Robot and image vision and image processing system from both robot and quad-copter and by using effective searching algorithm embedded inside the robot. Having the capacity to navigate accurately is one of the major abilities of a mobile robot to effectively execute a variety of jobs including manipulation, docking, and transportation. To achieve the desired navigation accuracy, mobile robots are typically equipped with on-board sensors to observe persistent features in the environment, to estimate their pose from these observations, and to adjust their motion accordingly. Quadcopter takes off from Mobile Robot, surveys the terrain and transmits the processed Image terrestrial robot. The main objective of research paper is to focus on the full coordination between robot and quadcopter by designing an efficient wireless communication using WIFI. In addition, it identify the method involving the use of vision and image processing system from both robot and quadcopter; analyzing path in real-time and avoiding obstacles based-on the computational algorithm embedded inside the robot. QMRS increases the efficiency and reliability of the whole system especially in robot navigation, image processing and obstacle avoidance due to the help and connection among the different parts of the system.

  3. Design Minimalism in Robotics Programming

    Directory of Open Access Journals (Sweden)

    Anthony Cowley

    2008-11-01

    Full Text Available With the increasing use of general robotic platforms in different application scenarios, modularity and reusability have become key issues in effective robotics programming. In this paper, we present a minimalist approach for designing robot software, in which very simple modules, with well designed interfaces and very little redundancy can be connected through a strongly typed framework to specify and execute different robotics tasks.

  4. Design Minimalism in Robotics Programming

    Directory of Open Access Journals (Sweden)

    Anthony Cowley

    2006-03-01

    Full Text Available With the increasing use of general robotic platforms in different application scenarios, modularity and reusability have become key issues in effective robotics programming. In this paper, we present a minimalist approach for designing robot software, in which very simple modules, with well designed interfaces and very little redundancy can be connected through a strongly typed framework to specify and execute different robotics tasks.

  5. Dynamic Parameter Update for Robot Navigation Systems through Unsupervised Environmental Situational Analysis

    OpenAIRE

    Shantia, Amirhossein; Bidoia, Francesco; Schomaker, Lambert; Wiering, Marco

    2017-01-01

    A robot’s local navigation is often done through forward simulation of robot velocities and measuring the possible trajectories against safety, distance to the final goal and the generated path of a global path planner. Then, the computed velocities vector for the winning trajectory is executed on the robot. This process is done continuously through the whole navigation process and requires an extensive amount of processing. This only allows for a very limited sampling space. In this paper, w...

  6. Master-slave robotic system for needle indentation and insertion.

    Science.gov (United States)

    Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan

    2017-12-01

    Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.

  7. Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor

    Science.gov (United States)

    Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang

    2017-01-01

    In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.

  8. Safety assessment of high consequence robotics system

    International Nuclear Information System (INIS)

    Robinson, D.G.; Atcitty, C.B.

    1996-01-01

    This paper outlines the use of a failure modes and effects analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, the weigh and leak check system, is to replace a manual process for weight and leakage of nuclear materials at the DOE Pantex facility. Failure modes and effects analyses were completed for the robotics process to ensure that safety goals for the systems have been met. Due to the flexible nature of the robot configuration, traditional failure modes and effects analysis (FMEA) were not applicable. In addition, the primary focus of safety assessments of robotics systems has been the protection of personnel in the immediate area. In this application, the safety analysis must account for the sensitivities of the payload as well as traditional issues. A unique variation on the classical FMEA was developed that permits an organized and quite effective tool to be used to assure that safety was adequately considered during the development of the robotic system. The fundamental aspects of the approach are outlined in the paper

  9. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  10. 3D printing of soft robotic systems

    Science.gov (United States)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  11. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  12. Real-time Stereoscopic 3D for E-Robotics Learning

    Directory of Open Access Journals (Sweden)

    Richard Y. Chiou

    2011-02-01

    Full Text Available Following the design and testing of a successful 3-Dimensional surveillance system, this 3D scheme has been implemented into online robotics learning at Drexel University. A real-time application, utilizing robot controllers, programmable logic controllers and sensors, has been developed in the “MET 205 Robotics and Mechatronics” class to provide the students with a better robotic education. The integration of the 3D system allows the students to precisely program the robot and execute functions remotely. Upon the students’ recommendation, polarization has been chosen to be the main platform behind the 3D robotic system. Stereoscopic calculations are carried out for calibration purposes to display the images with the highest possible comfort-level and 3D effect. The calculations are further validated by comparing the results with students’ evaluations. Due to the Internet-based feature, multiple clients have the opportunity to perform the online automation development. In the future, students, in different universities, will be able to cross-control robotic components of different types around the world. With the development of this 3D ERobotics interface, automation resources and robotic learning can be shared and enriched regardless of location.

  13. Assistive and Rehabilitation Robotic System

    Directory of Open Access Journals (Sweden)

    Adrian Abrudean

    2015-06-01

    Full Text Available A short introduction concerning the content of Assistive Technology and Rehabilitation Engineering is followed by a study of robotic systems which combine two or more assistive functions. Based on biomechanical aspects, a complex robotic system is presented, starting with the study of functionality and ending with the practical aspects of the prototype development.

  14. Continuing Robot Skill Learning after Demonstration with Human Feedback

    Directory of Open Access Journals (Sweden)

    Argall Brenna D.

    2011-12-01

    Full Text Available Though demonstration-based approaches have been successfully applied to learning a variety of robot behaviors, there do exist some limitations. The ability to continue learning after demonstration, based on execution experience with the learned policy, therefore has proven to be an asset to many demonstration-based learning systems. This paper discusses important considerations for interfaces that provide feedback to adapt and improve demonstrated behaviors. Feedback interfaces developed for two robots with very different motion capabilities - a wheeled mobile robot and high degree-of-freedom humanoid - are highlighted.

  15. Integrated Robotic systems for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    E. Colon

    2007-06-01

    Full Text Available This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typical data acquisition results obtained during trial campaigns with robots and data acquisition systems are reported. Lessons learned during the project and future work conclude this paper.

  16. DOE EM industry programs robotics development

    International Nuclear Information System (INIS)

    Staubly, R.; Kothari, V.

    1998-01-01

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy's (DOE's) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution

  17. Report on the achievements in fiscal 1999 on research and development of a human cooperating and coexisting type robot system (Development of energy use rationalization technology); 1999 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development has been performed on a system technology for the human cooperating and coexisting type robot that can perform various types of works substituting human hands. This paper summarizes the achievements in fiscal 1999. In developing a high-function hand, development and fabrication were executed on a device to teach four finger holding actions that correspond to the enhancement in action stability and control responsiveness of the four finger hand and to positions and attitudes of objects. In fabricating the robot platforms, single platform tests and remotely controlled platform connection tests were performed, which demonstrated the functions as an integrated system. In developing libraries for topography adaptive three-dimensional basic walking actions, development was carried out on libraries that correspond to menus for direct advance on a flat land, slewing, and walking on staircases and irregular land. It was found that control closer to that for actually usable robot is possible by considering time delay in articulate control when simulation was performed using the testing robot body. In the study and survey of robot proliferation, development plans were presented that take into consideration the social influence, technological factors, and cost need adaptability. (NEDO)

  18. The NASA automation and robotics technology program

    Science.gov (United States)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  19. A concept of distributed architecture for maintenance robot systems

    International Nuclear Information System (INIS)

    Asama, Hajime

    1990-01-01

    Aiming at development of a robot system for maintenance tasks in nuclear power plants, a concept of distributed architecture for autonomous robot systems is discussed. At first, based on investigation of maintenance tasks, requirements for maintenance robots are introduced, and structures to realize multi-functions are discussed. Then, as a new design strategy of maintenance robot system, an autonomous and decentralized robot systems is proposed, which is composed of multiple robots, computers, and equipments, and concept of ACTRESS (ACTor-based Robots and Equipments Synthetic System) including communication framework between robotic components is designed. Finally, as a model of ACTRESS, a experimental system is developed, which deals with object-pushing tasks by two micromice and an environment modeler with communicating with each other. Both of parallel independent motion and cooperative motion based on communication is reconciled, and the efficiency of the distributed architecture is verified. (author)

  20. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  1. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  2. Development and demonstration of a teleoperated modular open-quotes snakeclose quotes robot system. Final report, September 30, 1986--December 31, 1993

    International Nuclear Information System (INIS)

    Tesar, D.; Hooper, R.

    1995-01-01

    The U.S. Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of advanced robotic systems capable of performing tasks that generate significant occupational radiation exposure and/or whose execution times can be reduced if performed by an automated system. The goal was to develop advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. The approach to achieving the program objective was a transition from teleoperation to the capability of autonomous operation within three successive generations of robotic systems. The robotic system will always have the capability to request human assistance. The development of general purpose robots to perform skilled labor tasks in restricted environments was shown to have extensive payback in areas of energy systems (nuclear and fossil units), chemical plants, fire fighting, space operations, underwater activities, defense, and other hazardous activities. The strategy that was used to achieve the program goals in an efficient and timely manner consisted in utilizing, and advancing where required, state-of-the-art robotics technology through close interaction between the universities and the manufacturers and operators of nuclear power plants. The research effort showed that a broad range of applications for the robotic systems existed for the improved operation of nuclear reactors and in other hazardous tasks. As a consequence, each institution was able to obtain additional support from other agencies, e.g., DoD and NASA. Areas of cooperation with other nations (e.g., Japan, France, Germany) were utilized

  3. Teaching Human Poses Interactively to a Social Robot

    Science.gov (United States)

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  4. Teaching Human Poses Interactively to a Social Robot

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2013-09-01

    Full Text Available The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher’s explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  5. Robotically assisted MRgFUS system

    Science.gov (United States)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  6. Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback

    Directory of Open Access Journals (Sweden)

    Liying Su

    2009-01-01

    Full Text Available This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.

  7. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  8. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  9. Robotic sample preparation for radiochemical plutonium and americium analyses

    International Nuclear Information System (INIS)

    Stalnaker, N.; Beugelsdijk, T.; Thurston, A.; Quintana, J.

    1985-01-01

    A Zymate robotic system has been assembled and programmed to prepare samples for plutonium and americium analyses by radioactivity counting. The system performs two procedures: a simple dilution procedure and a TTA (xylene) extraction of plutonium. To perform the procedures, the robotic system executes 11 unit operations such as weighing, pipetting, mixing, etc. Approximately 150 programs, which require 64 kilobytes of memory, control the system. The system is now being tested with high-purity plutonium metal and plutonium oxide samples. Our studies indicate that the system can give results that agree within 5% at the 95% confidence level with determinations performed manually. 1 ref., 1 fig., 1 tab

  10. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  11. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  12. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  13. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok

    2013-01-01

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  14. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  15. Task oriented evaluation system for maintenance robots

    International Nuclear Information System (INIS)

    Asame, Hajime; Endo, Isao; Kotosaka, Shin-ya; Takata, Shozo; Hiraoka, Hiroyuki; Kohda, Takehisa; Matsumoto, Akihiro; Yamagishi, Kiichiro.

    1994-01-01

    The adaptability evaluation of maintenance robots to autonomous plants has been discussed. In this paper, a new concept of autonomous plant with maintenance robots are introduced, and a framework of autonomous maintenance system is proposed. Then, task-oriented evaluation of robot arms is discussed for evaluating their adaptability to maintenance tasks, and a new criterion called operability is proposed for adaptability evaluation. The task-oriented evaluation system is implemented and applied to structural design of robot arms. Using genetic algorithm, an optimal structure adaptable to a pump disassembly task is obtained. (author)

  16. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  17. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    Science.gov (United States)

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  18. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    Science.gov (United States)

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  19. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    Science.gov (United States)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  20. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  1. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  2. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  3. Intelligent monitoring-based safety system of massage robot

    Institute of Scientific and Technical Information of China (English)

    胡宁; 李长胜; 王利峰; 胡磊; 徐晓军; 邹雲鹏; 胡玥; 沈晨

    2016-01-01

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  4. Development and demonstration of a teleoperated modular {open_quotes}snake{close_quotes} robot system. Final report, September 30, 1986--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, D.; Hooper, R.

    1995-04-12

    The U.S. Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of advanced robotic systems capable of performing tasks that generate significant occupational radiation exposure and/or whose execution times can be reduced if performed by an automated system. The goal was to develop advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. The approach to achieving the program objective was a transition from teleoperation to the capability of autonomous operation within three successive generations of robotic systems. The robotic system will always have the capability to request human assistance. The development of general purpose robots to perform skilled labor tasks in restricted environments was shown to have extensive payback in areas of energy systems (nuclear and fossil units), chemical plants, fire fighting, space operations, underwater activities, defense, and other hazardous activities. The strategy that was used to achieve the program goals in an efficient and timely manner consisted in utilizing, and advancing where required, state-of-the-art robotics technology through close interaction between the universities and the manufacturers and operators of nuclear power plants. The research effort showed that a broad range of applications for the robotic systems existed for the improved operation of nuclear reactors and in other hazardous tasks. As a consequence, each institution was able to obtain additional support from other agencies, e.g., DoD and NASA. Areas of cooperation with other nations (e.g., Japan, France, Germany) were utilized.

  5. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  6. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  7. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  8. Intraoperative navigation of an optically tracked surgical robot.

    Science.gov (United States)

    Cornellà, Jordi; Elle, Ole Jakob; Ali, Wajid; Samset, Eigil

    2008-01-01

    This paper presents an adaptive control scheme for improving the performance of a surgical robot when it executes tasks autonomously. A commercial tracking system is used to correlate the robot with the preoperative plan as well as to correct the position of the robot when errors between the real and planned positions are detected. Due to the noisy signals provided by the tracking system, a Kalman filter is proposed to smooth the variations and to increase the stability of the system. The efficiency of the approach has been validated using rigid and flexible endoscopic tools, obtaining in both cases that the target points can be reached with an error less than 1mm. These results make the approach suitable for a range of abdominal procedures, such as autonomous repositioning of endoscopic tools or probes for percutaneous procedures.

  9. Dynamic Parameter Update for Robot Navigation Systems through Unsupervised Environmental Situational Analysis

    NARCIS (Netherlands)

    Shantia, Amirhossein; Bidoia, Francesco; Schomaker, Lambert; Wiering, Marco

    2017-01-01

    A robot’s local navigation is often done through forward simulation of robot velocities and measuring the possible trajectories against safety, distance to the final goal and the generated path of a global path planner. Then, the computed velocities vector for the winning trajectory is executed on

  10. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  11. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  13. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  15. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    Science.gov (United States)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  16. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design...... autonomously, exactly when it is needed. It is the firm belief of this researcher that industrial robotics need to go in a direction towards what is outlined in this dissertation, both in academia and in the industry. In order for manufacturing companies to remain competitive, robotics is the definite way...

  17. Robot Learning from Demonstration: A Task-level Planning Approach

    Directory of Open Access Journals (Sweden)

    Staffan Ekvall

    2008-09-01

    Full Text Available In this paper, we deal with the problem of learning by demonstration, task level learning and planning for robotic applications that involve object manipulation. Preprogramming robots for execution of complex domestic tasks such as setting a dinner table is of little use, since the same order of subtasks may not be conceivable in the run time due to the changed state of the world. In our approach, we aim to learn the goal of the task and use a task planner to reach the goal given different initial states of the world. For some tasks, there are underlying constraints that must be fulfille, and knowing just the final goal is not sufficient. We propose two techniques for constraint identification. In the first case, the teacher can directly instruct the system about the underlying constraints. In the second case, the constraints are identified by the robot itself based on multiple observations. The constraints are then considered in the planning phase, allowing the task to be executed without violating any of them. We evaluate our work on a real robot performing pick-and-place tasks.

  18. Human Robotic Systems (HRS): Robotic ISRU Acquisition Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic ISRU Resource Acquisition project element will develop two technologies:Exploration Ground Data Systems (xGDS)Sample Acquisition on...

  19. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  20. Self-Imitation and Environmental Scaffolding for Robot Teaching

    Directory of Open Access Journals (Sweden)

    Joe Saunders

    2007-03-01

    Full Text Available Imitative learning and learning by observation are social mechanisms that allow a robot to acquire knowledge from a human or another robot. However to be able to obtain skills in this way the robot faces many complex issues, one of which is that of finding solutions to the correspondence problem. Evolutionary predecessors to observational imitation may have been self-imitation where an agent avoids the complexities of the correspondence problem by learning and replicating actions it has experienced through the manipulation of its body. We investigate how a robotic control and teaching system using self-imitation can be constructed with reference to psychological models of motor control and ideas from social scaffolding seen in animals. Within these scaffolded environments sets of competencies can be built by constructing hierarchical state/action memory maps of the robot's interaction within that environment. The scaffolding process provides a mechanism to enable learning to be scaled up. The resulting system allows a human trainer to teach a robot new skills and modify skills that the robot may possess. Additionally the system allows the robot to notify the trainer when it is being taught skills it already has in its repertoire and to direct and focus its attention and sensor resources to relevant parts of the skill being executed. We argue that these mechanisms may be a first step towards the transformation from self-imitation to observational imitation. The system is validated on a physical pioneer robot that is taught using self-imitation to track, follow and point to a patterned object.

  1. Self-imitation and Environmental Scaffolding for Robot Teaching

    Directory of Open Access Journals (Sweden)

    Chrystopher L. Nehaniv

    2008-11-01

    Full Text Available Imitative learning and learning by observation are social mechanisms that allow a robot to acquire knowledge from a human or another robot. However to be able to obtain skills in this way the robot faces many complex issues, one of which is that of finding solutions to the correspondence problem. Evolutionary predecessors to observational imitation may have been self-imitation where an agent avoids the complexities of the correspondence problem by learning and replicating actions it has experienced through the manipulation of its body. We investigate how a robotic control and teaching system using self-imitation can be constructed with reference to psychological models of motor control and ideas from social scaffolding seen in animals. Within these scaffolded environments sets of competencies can be built by constructing hierarchical state/action memory maps of the robot's interaction within that environment. The scaffolding process provides a mechanism to enable learning to be scaled up. The resulting system allows a human trainer to teach a robot new skills and modify skills that the robot may possess. Additionally the system allows the robot to notify the trainer when it is being taught skills it already has in its repertoire and to direct and focus its attention and sensor resources to relevant parts of the skill being executed. We argue that these mechanisms may be a first step towards the transformation from self-imitation to observational imitation. The system is validated on a physical pioneer robot that is taught using self-imitation to track, follow and point to a patterned object.

  2. Fast Grasp Contact Computation for a Serial Robot

    Science.gov (United States)

    Shi, Jianying (Inventor); Hargrave, Brian (Inventor); Diftler, Myron A. (Inventor)

    2015-01-01

    A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.

  3. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  4. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  6. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  7. Automated Planning Enables Complex Protocols on Liquid-Handling Robots.

    Science.gov (United States)

    Whitehead, Ellis; Rudolf, Fabian; Kaltenbach, Hans-Michael; Stelling, Jörg

    2018-03-16

    Robotic automation in synthetic biology is especially relevant for liquid handling to facilitate complex experiments. However, research tasks that are not highly standardized are still rarely automated in practice. Two main reasons for this are the substantial investments required to translate molecular biological protocols into robot programs, and the fact that the resulting programs are often too specific to be easily reused and shared. Recent developments of standardized protocols and dedicated programming languages for liquid-handling operations addressed some aspects of ease-of-use and portability of protocols. However, either they focus on simplicity, at the expense of enabling complex protocols, or they entail detailed programming, with corresponding skills and efforts required from the users. To reconcile these trade-offs, we developed Roboliq, a software system that uses artificial intelligence (AI) methods to integrate (i) generic formal, yet intuitive, protocol descriptions, (ii) complete, but usually hidden, programming capabilities, and (iii) user-system interactions to automatically generate executable, optimized robot programs. Roboliq also enables high-level specifications of complex tasks with conditional execution. To demonstrate the system's benefits for experiments that are difficult to perform manually because of their complexity, duration, or time-critical nature, we present three proof-of-principle applications for the reproducible, quantitative characterization of GFP variants.

  8. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  9. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  10. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  11. Instruction understanding for intelligent robots in nuclear facilities

    International Nuclear Information System (INIS)

    Kambayashi, Shaw; Abe, Yasuaki

    1993-01-01

    As a first step to realize an autonomous mobile robot for plant maintenance, where the robot is capable to understand instructions written in natural languages, we have developed a prototype of instruction understanding system which makes the robot construct its motion sequences to approach instrumentations and inspect them from input sentences written in Japanese. In the prototype system, the instruction understanding and planning capabilities are integrated by an inference engine which consists of a cyclic operation of three processings, i.e., sensing, decision, and execution. Based on environmental data and current states of the robot, a proper process such as natural language processing is triggered by the decision part of the inference engine to accomplish the input instructions. The multiple- and dynamic-planning capabilities, which are necessary to cope with dynamic changes of environments surrounding the robot, are achieved by utilizing the cyclic inference engine together with a set of the inference packets which keep intermediate results of natural language processing and planning for respective input instructions. (orig.)

  12. Smart mobile robot system for rubbish collection

    Science.gov (United States)

    Ali, Mohammed A. H.; Sien Siang, Tan

    2018-03-01

    This paper records the research and procedures of developing a smart mobility robot with detection system to collect rubbish. The objective of this paper is to design a mobile robot that can detect and recognize medium-size rubbish such as drinking cans. Besides that, the objective is also to design a mobile robot with the ability to estimate the position of rubbish from the robot. In addition, the mobile robot is also able to approach the rubbish based on position of rubbish. This paper explained about the types of image processing, detection and recognition methods and image filters. This project implements RGB subtraction method as the prior system. Other than that, algorithm for distance measurement based on image plane is implemented in this project. This project is limited to use computer webcam as the sensor. Secondly, the robot is only able to approach the nearest rubbish in the same views of camera vision and any rubbish that contain RGB colour components on its body.

  13. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation.

    Science.gov (United States)

    Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin

    2017-04-01

    Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.

  14. The methods and algorithms for designing complex three-dimensional robots

    International Nuclear Information System (INIS)

    Solovjev, A.E.; Naumov, V.B.

    1996-01-01

    For automation designing by the Robotics laboratory were executed some fundamental and applied researches. This researching allowed to create rational mathematical model for numeric modeling with real-time simulation. In the mathematical model used set of equations of rigid body's motion in Lagrange's form and set of Appel's equations taking into consideration holonomic and non-holonomic connections. In present article are considered methods and algorithms of dynamic modeling of a system of rigid bodies for robotics task and brief description of the package Computer Aided Engineering for Industrial Robots, based on considered algorithms. So far as, in researching of robots the dynamic tasks (direct and inverse) are more interesting than another tasks, authors pay attention just on these problems

  15. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  16. Biologically based neural network for mobile robot navigation

    Science.gov (United States)

    Torres Muniz, Raul E.

    1999-01-01

    The new tendency in mobile robots is to crete non-Cartesian system based on reactions to their environment. This emerging technology is known as Evolutionary Robotics, which is combined with the Biorobotic field. This new approach brings cost-effective solutions, flexibility, robustness, and dynamism into the design of mobile robots. It also provides fast reactions to the sensory inputs, and new interpretation of the environment or surroundings of the mobile robot. The Subsumption Architecture (SA) and the action selection dynamics developed by Brooks and Maes, respectively, have successfully obtained autonomous mobile robots initiating this new trend of the Evolutionary Robotics. Their design keeps the mobile robot control simple. This work present a biologically inspired modification of these schemes. The hippocampal-CA3-based neural network developed by Williams Levy is used to implement the SA, while the action selection dynamics emerge from iterations of the levels of competence implemented with the HCA3. This replacement by the HCA3 results in a closer biological model than the SA, combining the Behavior-based intelligence theory with neuroscience. The design is kept simple, and it is implemented in the Khepera Miniature Mobile Robot. The used control scheme obtains an autonomous mobile robot that can be used to execute a mail delivery system and surveillance task inside a building floor.

  17. Whole-body impedance control of wheeled humanoid robots

    CERN Document Server

    Dietrich, Alexander

    2016-01-01

    Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body ...

  18. Parallel Robot for Lower Limb Rehabilitation Exercises

    Directory of Open Access Journals (Sweden)

    Alireza Rastegarpanah

    2016-01-01

    Full Text Available The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.

  19. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  20. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  1. A novel teaching system for industrial robots.

    Science.gov (United States)

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  2. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  3. Integrated Robotic Systems for Humanitarian Demining

    OpenAIRE

    Colon, E.; Cubber, G. De; Ping, H.; Habumuremyi, J-C; Sahli, H.; Baudoin, Y.

    2007-01-01

    This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typica...

  4. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  5. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  6. Usability testing of a mobile robotic system for in-home telerehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Brière, Simon; Corriveau, Hélène; Grant, Andrew; Lauria, Michel; Michaud, François

    2011-01-01

    Mobile robots designed to enhance telepresence in the support of telehealth services are being considered for numerous applications. TELEROBOT is a teleoperated mobile robotic platform equipped with videoconferencingcapabilities and designed to be used in a home environment to. In this study, learnability of the system's teleoperation interface and controls was evaluated with ten rehabilitation professionals during four training sessions in a laboratory environment and in an unknown home environment while performing the execution of a standardized evaluation protocol typically used in home care. Results show that the novice teleoperators' performances on two of the four metrics used (number of command and total time) improved significantly across training sessions (ANOVAS, phome environment during navigation tasks (r=0,77 and 0,60). With only 4 hours of training, rehabilitation professionals were able learn to teleoperate successfully TELEROBOT. However teleoperation performances remained significantly less efficient then those of an expert. Under the home task condition (navigating the home environment from one point to the other as fast as possible) this translated to completion time between 350 seconds (best performance) and 850 seconds (worse performance). Improvements in other usability aspects of the system will be needed to meet the requirements of in-home telerehabilitation.

  7. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  8. An Intuitive Robot Teleoperation System for Nuclear Power Plant Decommissioning

    International Nuclear Information System (INIS)

    Lee, Chang-hyuk; Gu, Taehyeong; Lee, Kyung-min; Ye, Sung-Joon; Bang, Young-bong

    2017-01-01

    A robot teleoperation system consists of a master device and a slave robot. The master device senses human intention and delivers it to the salve robot. A haptic device and an exoskeletal robot are widely used as the master device. The slave robot carries out operations delivered by the master device. It should guarantee enough degree of freedom (DOF) to perform the instructed operation and mobility in the environment inside the nuclear plant, such as flat surfaces and stairs. A 7-DOF robotic arm is commonly used as the slave device. This paper proposed a robot teleoperation system for nuclear power plant decommissioning. It discussed an experiment that was performed to validate the system's usability. The operator wearing the exoskeletal master device at the master site controlled the slave robot enabling it to move on a flat surface, climb/descend stairs, and move obstacles. The proposed robot teleoperation system can also be used in hazardous working environments where the use of such robots would be beneficial to human health and safety. In the future, research studies on the protection against radiation that damages the slave robot should be conducted.

  9. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  10. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  11. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    Science.gov (United States)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern

  12. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  13. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  14. Wireless Communication Enhancement Methods for Mobile Robots in Radiation Environments

    CERN Document Server

    Nattanmai Parasuraman, Ramviyas; Ferre, Manuel

    In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs ...

  15. Message Encryption in Robot Operating System: Collateral Effects of Hardening Mobile Robots

    Directory of Open Access Journals (Sweden)

    Francisco J. Rodríguez-Lera

    2018-03-01

    Full Text Available In human–robot interaction situations, robot sensors collect huge amounts of data from the environment in order to characterize the situation. Some of the gathered data ought to be treated as private, such as medical data (i.e., medication guidelines, personal, and safety information (i.e., images of children, home habits, alarm codes, etc.. However, most robotic software development frameworks are not designed for securely managing this information. This paper analyzes the scenario of hardening one of the most widely used robotic middlewares, Robot Operating System (ROS. The study investigates a robot’s performance when ciphering the messages interchanged between ROS nodes under the publish/subscribe paradigm. In particular, this research focuses on the nodes that manage cameras and LIDAR sensors, which are two of the most extended sensing solutions in mobile robotics, and analyzes the collateral effects on the robot’s achievement under different computing capabilities and encryption algorithms (3DES, AES, and Blowfish to robot performance. The findings present empirical evidence that simple encryption algorithms are lightweight enough to provide cyber-security even in low-powered robots when carefully designed and implemented. Nevertheless, these techniques come with a number of serious drawbacks regarding robot autonomy and performance if they are applied randomly. To avoid these issues, we define a taxonomy that links the type of ROS message, computational units, and the encryption methods. As a result, we present a model to select the optimal options for hardening a mobile robot using ROS.

  16. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  17. Robotics and telecommunication systems to provide better access to ultrasound expertise in the OR.

    Science.gov (United States)

    Angelini, L; Papaspyropoulos, V

    2000-01-01

    Surgery has begun to evolve as a result of the intense use of technological innovations. The result of this is better services for patients and enormous opportunities for the producers of biomedical instruments. The surgeon and the technologist are fast becoming allies in applying the latest developments of robotics, image treatment, simulation, sensors and telecommunications to surgery, in particular to the emerging field of minimally-invasive surgery. Ultrasonography is at present utilised both for diagnostic and therapeutic purposes in various fields. Intraoperative US examination can be of primary importance, especially when dealing with space-occupying lesions. The widening use of minimally-invasive surgery has furthered the development of US for use during this type of surgery. The success of a US examination requires not only a correct execution of the procedure, but also a correct interpretation of the images. We describe two projects that combine robotics and telecommunication systems to provide better access to US expertise in the operating room. The Midstep project has as its object the realisation of two robotic arms, one for the distant control of the US probe during laparoscopic surgery and the second to perform tele-interventional US. The second project, part of the Strategic CNR Project-'Robotics in Surgery', involves the realisation of a common platform for tracking and targeting surgical instruments in video-assisted surgery.

  18. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  19. Construction Tele-Robotics System with AR Presentation

    International Nuclear Information System (INIS)

    Ootsubo, K; Kawamura, T; Yamada, H

    2013-01-01

    Tele-Robotics system using bilateral control is an effective tool for task in disaster scenes, and also in extreme environments. The conventional systems are equipped with a few color video cameras captures view of the task field, and their video images are sent to the operator via some network. Usually, the images are captured only from some fixed angles. So the operator cannot obtain intuitively 3D-sense of the task field. In our previous study, we proposed a construction tele-robotics system based on VR presentation. The operator intuits the geometrical states of the robot presented by CG, but the information of the surrounding environment is not included like a video image. So we thought that the task efficiency could be improved by appending the CG image to the video image. In this study, we developed a new presentation system based on augmented reality (AR). In this system, the CG image, which represents 3D geometric information for the task, is overlaid on the video image. In this study, we confirmed the effectiveness of the system experimentally. Additionally, we verified its usefulness to reduction of the communication delay associated with a tele-robotics system.

  20. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Action understanding and imitation learning in a robot-human task

    NARCIS (Netherlands)

    Erlhagen, W.; Mukovskiy, A.; Bicho, E.; Panin, G.; Kiss, C.; Knoll, A.; Schie, H.T. van; Bekkering, H.

    2005-01-01

    We report results of an interdisciplinary project which aims at endowing a real robot system with the capacity for learning by goal-directed imitation. The control architecture is biologically inspired as it reflects recent experimental findings in action observation/execution studies. We test its

  2. Sensory Integration with Articulated Motion on a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    J. Rojas

    2005-01-01

    Full Text Available This paper describes the integration of articulated motion with auditory and visual sensory information that enables a humanoid robot to achieve certain reflex actions that mimic those of people. Reflexes such as reach-and-grasp behavior enables the robot to learn, through experience, its own state and that of the world. A humanoid robot with binaural audio input, stereo vision, and pneumatic arms and hands exhibited tightly coupled sensory-motor behaviors in four different demonstrations. The complexity of successive demonstrations was increased to show that the reflexive sensory-motor behaviors combine to perform increasingly complex tasks. The humanoid robot executed these tasks effectively and established the groundwork for the further development of hardware and software systems, sensory-motor vector-space representations, and coupling with higher-level cognition.

  3. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  4. BellBot - A Hotel Assistant System Using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-01-01

    Full Text Available There is a growing interest in applying intelligent technologies to assistant robots. These robots should have a number of characteristics such as autonomy, easy reconfiguration, robust perception systems and they should be oriented towards close interaction with humans. In this paper we present an automatic hotel assistant system based on a series of mobile platforms that interact with guests and service personnel to help them in different tasks. These tasks include bringing small items to customers, showing them different points of interest in the hotel, accompanying the guests to their rooms and providing them with general information. Each robot can also autonomously handle some daily scheduled tasks. Apart from user-initiated and scheduled tasks, the robots can also perform tasks based on events triggered by the building's automation system (BAS. The robots and the BAS are connected to a central server via a local area network. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively in different environments.

  5. Evolution of Robot-assisted ultrasound-guided breast biopsy systems

    Directory of Open Access Journals (Sweden)

    Mustafa Z. Mahmoud

    2018-01-01

    Full Text Available Robot-assisted ultrasound-guided breast biopsy combines ultrasound (US imaging with a robotic system for medical interventions. This study was designed to provide a literature review of a robotic US-guided breast biopsy system to delineate its efficacious impact on current medical practice. In addition, the strengths and limitations of this approach were also addressed. Articles published in the English language between 2000 and 2016 were appraised in this review. A wide range of systems that bind robotics with US imaging and guided breast biopsy were examined in this article. The fundamental safety and real-time imaging capabilities of US, together with the accuracy and maneuverability of robotic devices, is clearly an effective association with unmatched capabilities. Numerous experimental systems have obvious benefits over old-fashioned techniques, and the future of robot-assisted US-guided breast biopsy will be characterized by increasing levels of automation, and they hold tremendous possibility to impact doctor achievement, patient recovery, and clinical management.

  6. Concept and Functional Structure of a Service Robot

    Directory of Open Access Journals (Sweden)

    Luis A. Pineda

    2015-02-01

    Full Text Available In this paper, we present a concept of service robot and a framework for its functional specification and implementation. The present discussion is grounded in Newell's system levels hierarchy which suggests organizing robotics research in three different layers, corresponding to Marr's computational, algorithmic and implementation levels, as follows: (1 the service robot proper, which is the subject of the present paper, (2 perception and action algorithms, and (3 the systems programming level. The concept of a service robot is articulated in practice through the introduction of a conceptual model for particular service robots; this consists of the specification of a set of basic robotic behaviours and a number of mechanisms for assembling such behaviours during the execution of complex tasks. The model involves an explicit representation of the task structure, allowing for deliberative reasoning and task management. The model also permits distinguishing between a robot's competence and performance, along the lines of Chomsky's corresponding distinction. We illustrate how this model can be realized in practice with two composition modes that we call static and dynamic; these are illustrated with the Restaurant Test and the General Purpose Service Robot Test of the RoboCup@Home competition, respectively. The present framework and methodology has been implemented in the robot Golem-II+, which is also described. The paper is concluded with an overall reflection upon the present concept of a service robot and its associated functional specifications, and the potential impact of such a conceptual model in the study, development and application of service robots in general.

  7. Unibot, a Universal Agent Architecture for Robots

    Directory of Open Access Journals (Sweden)

    Saša Mladenović

    2017-01-01

    Full Text Available Today there are numerous robots in different applications domains despite the fact that they still have limitations in perception, actuation and decision process. Consequently, robots usually have limited autonomy, they are domain specific or have difficulty to adapt on new environments. Learning is the property that makes an agent intelligent and the crucial property that a robot should have to proliferate into the human society. Embedding the learning ability into the robot may simplify the development of the robot control mechanism. The motivation for this research is to develop the agent architecture of the universal robot – Unibot. In our approach the agent is the robot i.e. Unibot that acts in the physical world and is capable of learning. The Unibot conducts several simultaneous simulations of a problem of interest like path-finding. The novelty in our approach is the Multi-Agent Decision Support System which is developed and integrated into the Unibot agent architecture in order to execute simultaneous simulations. Furthermore, the Unibot calculates and evaluates between multiple solutions, decides which action should be performed and performs the action. The prototype of the Unibot agent architecture is described and evaluated in the experiment supported by the Lego Mindstorms robot and the NetLogo.

  8. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  9. Siroco, a configurable robot control system

    International Nuclear Information System (INIS)

    Tejedor, B.G.; Maraggi, G.J.B.

    1988-01-01

    The SIROCO (Configurable Robot Control System) is an electronic system designed to work in applications where mechanized remote control equipment and robots are necessary especially in Nuclear Power Plants. The structure of the system (hardware and software) determines the following user characteristics: a) Reduction in the time spent in NDT and in radiation doses absorbed, due to remote control operation; b) possibility for full automation in NDT, c) the system can simultaneously control up to six axes and can generate movements in remote areas; and d) possibility for equipment unification, due to SIROCO being a configurable system. (author)

  10. Research on wheelchair robot control system based on EOG

    Science.gov (United States)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  11. Robotic Services at Home: An Initialization System Based on Robots' Information and User Preferences in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Nor Nur Safwati Mohd

    2014-07-01

    Full Text Available One important issue in robotic services is the construction of the robotic system in the actual environment. In other words, robots must perform environment sensing or have information on real objects, such as location and 3D dimensions, in order to live together with humans. It is crucial to have a mechanism to create an actual robotic system (intelligent space such that there is no initialization framework for the objects in the environment, or we have to perform SLAM and object recognition as well as mapping to generate a useful environmental database. In intelligent space research, normally the objects are attached to various sensors in order to extract the necessary information. However, that approach will highly depend on sensor accuracy and the robotic system will be burdened if there are too many sensors in an environment. Therefore, in this paper we present a system in which a robot can obtain information about an object and even create the furniture layout map for an unknown environment. Our approach is intended to improve home-based robotic services by taking into account the user or individual preferences for the Intelligent Space (IS. With this information, we can create an informational map of the home-based environment for the realization of robot assistance of humans in their daily activities at home, especially for disabled people. The result shows the system design and development in our approach by using model-based system engineering.

  12. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  13. System for exchanging tools and end effectors on a robot

    International Nuclear Information System (INIS)

    Burry, D.B.; Williams, P.M.

    1991-01-01

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures

  14. Overview of NASA's In Space Robotic Servicing

    Science.gov (United States)

    Reed, Benjamin B.

    2015-01-01

    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  15. Robotics and remote systems for hazardous environments

    International Nuclear Information System (INIS)

    Jamshidi, M.; Eicker, P.

    1993-01-01

    This is the first volume in a series of books to be published by Prentice Hall on Environmental and Intelligent Manufacturing Systems. The editors have assembled an interdisciplinary collection of authors from industry, government, and academia, that provide a broad range of expertise on robotics and remote systems. Readily accessible to practicing engineers, the book provides case studies and introduces new technology applicable to remote operations in unstructured and/or hazardous environments. Chapter 1 gives an overview of the US Environmental Protection Agency's efforts to apply robotic technology to assist in the operations at hazardous waste sites. The next chapter focuses on the theory and implementation of robust impedance control for robotic manipulators. Chapter 3 presents a discussion on the integration of failure tolerance into robotic systems. The next two chapters address the issue of sensory feedback and its indispensable role in remote and/or hazardous environments. Chapter 6 presents numerous examples of robots and telemanipulators that have been applied for various tasks at the DOE's Savannah River Site. The following chapter picks up on this theme and discusses the fundamental paradigm shifts that are required in artificial intelligence for robots to deal with hazardous, unstructured, and dynamic environments. Chapter 8 returns to the issue of impedance control first raised in Chapter 2. While the majority of the applications discussed in this book are related to the nuclear industry, chapter 9 considers applying telerobotics for the control of traditional heavy machinery that is widely used in forestry, mining, and construction. The final chapter of the book returns to the topic of artificial intelligence's role in producing increased autonomy for robotic systems and provides an interesting counterpoint to the philosophy of reactive control discussed earlier

  16. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  17. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  18. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  19. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  20. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    Science.gov (United States)

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  1. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  2. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  3. An off-line programming system for palletizing robot

    Directory of Open Access Journals (Sweden)

    Youdong Chen

    2016-09-01

    Full Text Available Off-line programming systems are essential tools for the effective use of palletizing robots. This article presents a dedicated off-line programming system for palletizing robots. According to the user practical requirements, there are many user-defined patterns that can’t be easily generated by commercial off-line robot programming systems. This study suggests a pattern generation method that users can easily define their patterns. The proposed method has been simulation and experiment. The results have attested the effectiveness of the proposed pattern generation method.

  4. Application of robotics to distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsbottom, W

    1986-06-01

    Robotic technology has been recognized as having potential application in lifeline maintenance and repair. A study was conducted to investigate the feasibility of utilizing robotics for this purpose, and to prepare a general design of appropriate equipment. Four lifeline tasks were selected as representative of the majority of work. Based on a detailed task decomposition, subtasks were rated on amenability to robot completion. All tasks are feasible, but in some cases special tooling is required. Based on today's robotics, it is concluded that a force reflecting master/slave telemanipulator, augmented by automatic robot tasks under a supervisory control system, provides the optimal approach. No commercially available products are currently adequate for lifeline work. A general design of the telemanipulator, which has been named the SKYARM has been developed, addressing all subsystems such as the manipulator, video, control power and insulation. The baseline system is attainable using today's technology. Improved performance and lower cost will be achieved through developments in artificial intelligence, machine vision, supervisory control and dielectrics. Immediate benefits to utilities include increased safety, better service and savings on a subset of maintenance tasks. In 3-5 years, the SKYARM will prove cost effective as a general purpose lifeline tool. 7 refs., 26 figs., 3 tabs.

  5. Development of an advanced robot manipulator system

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Higuchi, Masaru; Shimizu, Yujiro; Ohnishi, Ken

    1991-01-01

    A sophisticated manipulator system for an advanced robot was developed under the 'Advanced Robot Technology Development' Program promoted and supported by the Agency of Industrial Science and Technology of MITI. The authors have participated in the development of a fingered manipulator with force and tactile sensors applicable to a masterslave robot system. Our slave manipulator is equipped with four fingers. Though the finger needs many degrees of freedom so as to be suitable for skilful handing of an object, our fingers are designed to have minimum degree of freedom in order to reduce weight. Each finger tip was designed to be similar to a human finger which has flexibility, softness and contact feeling. The shape of the master finger manipulator was so designed that the movement of the fingers is smoother and that the constraint feeling of the operator is smaller. We were adopted to a pneumatic pressure system for transmitting the tactile feeling of the slave fingers to the master fingers. A multiple sensory bilateral control system which gives an operator a feeling of force and tactile reduces his feeling of constraint in carrying out work with a robot system. (author)

  6. Development of a remote controlled robot system for monitoring nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)

    1996-12-31

    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  7. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  8. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  9. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  10. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  11. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  12. Tenth workshop on the algorithmic foundations of robotics (WAFR)

    CERN Document Server

    Lozano-Perez, Tomas; Roy, Nicholas; Rus, Daniela; Algorithmic foundations of robotics X

    2013-01-01

    Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 201...

  13. Manifold traversing as a model for learning control of autonomous robots

    Science.gov (United States)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  14. Vision-based robotic system for object agnostic placing operations

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Nalpantidis, Lazaros; Andersen, Nils Axel

    2016-01-01

    Industrial robots are part of almost all modern factories. Even though, industrial robots nowadays manipulate objects of a huge variety in different environments, exact knowledge about both of them is generally assumed. The aim of this work is to investigate the ability of a robotic system to ope...... to the system, neither for the objects nor for the placing box. The experimental evaluation of the developed robotic system shows that a combination of seemingly simple modules and strategies can provide effective solution to the targeted problem....... to operate within an unknown environment manipulating unknown objects. The developed system detects objects, finds matching compartments in a placing box, and ultimately grasps and places the objects there. The developed system exploits 3D sensing and visual feature extraction. No prior knowledge is provided...

  15. Supervised Remote Robot with Guided Autonomy and Teleoperation (SURROGATE): A Framework for Whole-Body Manipulation

    Science.gov (United States)

    Hebert, Paul; Ma, Jeremy; Borders, James; Aydemir, Alper; Bajracharya, Max; Hudson, Nicolas; Shankar, Krishna; Karumanchi, Sisir; Douillard, Bertrand; Burdick, Joel

    2015-01-01

    The use of the cognitive capabilties of humans to help guide the autonomy of robotics platforms in what is typically called "supervised-autonomy" is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a "Supervised Remote Robot with Guided Autonomy and Teleoperation" (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of "behaviors" to chain together sequences of "actions" for the robot to perform which is then executed real time.

  16. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  17. Development of a Survivable Cloud Multi-Robot Framework for Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Isaac Osunmakinde

    2014-10-01

    Full Text Available Cloud robotics is a paradigm that allows for robots to offload computationally intensive and data storage requirements into the cloud by providing a secure and customizable environment. The challenge for cloud robotics is the inherent problem of cloud disconnection. A major assumption made in the development of the current cloud robotics frameworks is that the connection between the cloud and the robot is always available. However, for multi-robots working in heterogeneous environments, the connection between the cloud and the robots cannot always be guaranteed. This work serves to assist with the challenge of disconnection in cloud robotics by proposing a survivable cloud multi-robotics (SCMR framework for heterogeneous environments. The SCMR framework leverages the combination of a virtual ad hoc network formed by robot-to-robot communication and a physical cloud infrastructure formed by robot-to-cloud communications. The quality of service (QoS on the SCMR framework was tested and validated by determining the optimal energy utilization and time of response (ToR on drivability analysis with and without cloud connection. The design trade-off, including the result, is between the computation energy for the robot execution and the offloading energy for the cloud execution.

  18. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  19. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  20. A Study on Bipedal and Mobile Robot Behavior Through Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Nirmala Nirmala

    2015-05-01

    Full Text Available The purpose of this work is to study and analyze mobile robot behavior. In performing this, a framework is adopted and developed for mobile and bipedal robot. The robots are design, build, and run as proceed from the development of mechanical structure, electronics and control integration, and control software application. The behavior of those robots are difficult to be observed and analyzed qualitatively. To evaluate the design and behavior quality, modeling and simulation of robot structure and its task capability is performed. The stepwise procedure to robot behavior study is explained. Behavior cases study are experimented to bipedal robots, transporter robot and Autonomous Guided Vehicle (AGV developed at our institution. The experimentation are conducted on those robots by adjusting their dynamic properties and/or surrounding environment. Validation is performed by comparing the simulation result and the real robot execution. The simulation gives a more idealistic behavior execution rather than realistic one. Adjustments are performed to fine tuning simulation's parameters to provide a more realistic performance.

  1. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  2. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system.

    Science.gov (United States)

    Maurice, Matthew J; Kaouk, Jihad H

    2017-12-01

    To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  3. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  4. Detection of Subtle Context-Dependent Model Inaccuracies in High-Dimensional Robot Domains.

    Science.gov (United States)

    Mendoza, Juan Pablo; Simmons, Reid; Veloso, Manuela

    2016-12-01

    Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However, when operating in unconstrained environments, the complexity of the world makes it infeasible to create models that are accurate in every situation. This article addresses the problem of using potentially large and high-dimensional sets of robot execution data to detect situations in which a robot model is inaccurate-that is, detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies tractably, the robot conducts an informed search through low-dimensional projections of execution data to find parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that this approach significantly enhances the detection power of existing RIM-detection algorithms in high-dimensional spaces.

  5. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot......The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... assembly task is discussed....

  6. Overview of the NASA automation and robotics research program

    Science.gov (United States)

    Holcomb, Lee; Larsen, Ron

    1985-01-01

    NASA studies over the last eight years have identified five opportunities for the application of automation and robotics technology: (1) satellite servicing; (2) system monitoring, control, sequencing and diagnosis; (3) space manufacturing; (4) space structure assembly; and (5) planetary rovers. The development of these opportunities entails two technology R&D thrusts: telerobotics and system autonomy; both encompass such concerns as operator interface, task planning and reasoning, control execution, sensing, and systems integration.

  7. Developing and modeling of voice control system for prosthetic robot arm in medical systems

    Directory of Open Access Journals (Sweden)

    Koksal Gundogdu

    2018-04-01

    Full Text Available In parallel with the development of technology, various control methods are also developed. Voice control system is one of these control methods. In this study, an effective modelling upon mathematical models used in the literature is performed, and a voice control system is developed in order to control prosthetic robot arms. The developed control system has been applied on four-jointed RRRR robot arm. Implementation tests were performed on the designed system. As a result of the tests; it has been observed that the technique utilized in our system achieves about 11% more efficient voice recognition than currently used techniques in the literature. With the improved mathematical modelling, it has been shown that voice commands could be effectively used for controlling the prosthetic robot arm. Keywords: Voice recognition model, Voice control, Prosthetic robot arm, Robotic control, Forward kinematic

  8. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  9. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    Science.gov (United States)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  10. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  11. A Multimodal Emotion Detection System during Human-Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.

    2013-01-01

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598

  12. EnViSoRS: Enhanced Vision System for Robotic Surgery. A User-Defined Safety Volume Tracking to Minimize the Risk of Intraoperative Bleeding

    Directory of Open Access Journals (Sweden)

    Veronica Penza

    2017-05-01

    Full Text Available In abdominal surgery, intraoperative bleeding is one of the major complications that affect the outcome of minimally invasive surgical procedures. One of the causes is attributed to accidental damages to arteries or veins, and one of the possible risk factors falls on the surgeon’s skills. This paper presents the development and application of an Enhanced Vision System for Robotic Surgery (EnViSoRS, based on a user-defined Safety Volume (SV tracking to minimize the risk of intraoperative bleeding. It aims at enhancing the surgeon’s capabilities by providing Augmented Reality (AR assistance toward the protection of vessels from injury during the execution of surgical procedures with a robot. The core of the framework consists in (i a hybrid tracking algorithm (LT-SAT tracker that robustly follows a user-defined Safety Area (SA in long term; (ii a dense soft tissue 3D reconstruction algorithm, necessary for the computation of the SV; (iii AR features for visualization of the SV to be protected and of a graphical gage indicating the current distance between the instruments and the reconstructed surface. EnViSoRS was integrated with a commercial robotic surgical system (the dVRK system for testing and validation. The experiments aimed at demonstrating the accuracy, robustness, performance, and usability of EnViSoRS during the execution of a simulated surgical task on a liver phantom. Results show an overall accuracy in accordance with surgical requirements (<5 mm, and high robustness in the computation of the SV in terms of precision and recall of its identification. The optimization strategy implemented to speed up the computational time is also described and evaluated, providing AR features update rate up to 4 fps, without impacting the real-time visualization of the stereo endoscopic video. Finally, qualitative results regarding the system usability indicate that the proposed system integrates well with the commercial surgical robot and

  13. ADAMS executive and operating system

    Science.gov (United States)

    Pittman, W. D.

    1981-01-01

    The ADAMS Executive and Operating System, a multitasking environment under which a variety of data reduction, display and utility programs are executed, a system which provides a high level of isolation between programs allowing them to be developed and modified independently, is described. The Airborne Data Analysis/Monitor System (ADAMS) was developed to provide a real time data monitoring and analysis capability onboard Boeing commercial airplanes during flight testing. It inputs sensor data from an airplane performance data by applying transforms to the collected sensor data, and presents this data to test personnel via various display media. Current utilization and future development are addressed.

  14. SRAO: the first southern robotic AO system

    Science.gov (United States)

    Law, Nicholas M.; Ziegler, Carl; Tokovinin, Andrei

    2016-08-01

    We present plans for SRAO, the first Southern Robotic AO system. SRAO will use AO-assisted speckle imaging and Robo-AO-heritage high efficiency observing to confirm and characterize thousands of planet candidates produced by major new transit surveys like TESS, and is the first AO system to be capable of building a comprehensive several-thousand-target multiplicity survey at sub-AU scales across the main sequence. We will also describe results from Robo-AO, the first robotic LGS-AO system. Robo-AO has observed tens of thousands of Northern targets, often using a similar speckle or Lucky-Imaging assisted mode. SRAO will be a moderate-order natural-guide-star adaptive optics system which uses an innovative photoncounting wavefront sensor and EMCCD speckle-imaging camera to guide on faint stars with the 4.1m SOAR telescope. The system will produce diffraction-limited imaging in the NIR on targets as faint as mν = 16. In AO-assisted speckle imaging mode the system will attain the 30-mas visible diffraction limit on targets at least as faint as mν = 17. The system will be the first Southern hemisphere robotic adaptive optics system, with overheads an order of magnitude smaller than comparable systems. Using Robo-AO's proven robotic AO software, SRAO will be capable of observing overheads on sub-minute scales, allowing the observation of at least 200 targets per night. SRAO will attain three times the angular resolution of the Palomar Robo-AO system in the visible.

  15. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  16. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  17. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  18. Task path planning, scheduling and learning for free-ranging robot systems

    Science.gov (United States)

    Wakefield, G. Steve

    1987-01-01

    The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.

  19. Coordinated robotic system for civil structural health monitoring

    Directory of Open Access Journals (Sweden)

    Qidwai Uvais

    2017-01-01

    Full Text Available With the recent advances in sensors, robotics, unmanned aerial vehicles, communication, and information technologies, it is now feasible to move towards the vision of ubiquitous cities, where virtually everything throughout the city is linked to an information system through technologies such as wireless networking and radio-frequency identification (RFID tags, to provide systematic and more efficient management of urban systems, including civil and mechanical infrastructure monitoring, to achieve the goal of resilient and sustainable societies. In this proposed system, unmanned aerial vehicle (UAVs is used to ascertain the coarse defect signature using panoramic imaging. This involves image stitching and registration so that a complete view of the surface is seen with reference to a common reference or origin point. Thereafter, crack verification and localization has been done using the magnetic flux leakage (MFL approach which has been performed with the help of a coordinated robotic system. In which the first robot is placed at the top of the structure whereas the second robot is equipped with the designed MFL sensory system. With the initial findings, the proposed system identifies and localize the crack in the given structure.

  20. MARBLE: A system for executing expert systems in parallel

    Science.gov (United States)

    Myers, Leonard; Johnson, Coe; Johnson, Dean

    1990-01-01

    This paper details the MARBLE 2.0 system which provides a parallel environment for cooperating expert systems. The work has been done in conjunction with the development of an intelligent computer-aided design system, ICADS, by the CAD Research Unit of the Design Institute at California Polytechnic State University. MARBLE (Multiple Accessed Rete Blackboard Linked Experts) is a system of C Language Production Systems (CLIPS) expert system tool. A copied blackboard is used for communication between the shells to establish an architecture which supports cooperating expert systems that execute in parallel. The design of MARBLE is simple, but it provides support for a rich variety of configurations, while making it relatively easy to demonstrate the correctness of its parallel execution features. In its most elementary configuration, individual CLIPS expert systems execute on their own processors and communicate with each other through a modified blackboard. Control of the system as a whole, and specifically of writing to the blackboard is provided by one of the CLIPS expert systems, an expert control system.

  1. Organizational System for the LEGO WeDo 2.0 Robotics System

    Science.gov (United States)

    Dolecheck, Suzann Hagan; Ewers, Timothy

    2017-01-01

    In this article, we explain an organizational system for the new LEGO Education WeDo 2.0 Core Set used in 4-H robotics; in school enrichment, afterschool, and other youth robotics programs; and by hobbyists. The system presented is for organizing WeDo parts into a translucent parts tray that includes part names and numbers. The article provides…

  2. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  3. A robotic system for researching social integration in honeybees.

    Science.gov (United States)

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  4. Artificial emotion triggered stochastic behavior transitions with motivational gain effects for multi-objective robot tasks

    Science.gov (United States)

    Dağlarli, Evren; Temeltaş, Hakan

    2007-04-01

    This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.

  5. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  6. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  7. Model-based systems engineering to design collaborative robotics applications

    NARCIS (Netherlands)

    Hernandez Corbato, Carlos; Fernandez-Sanchez, Jose Luis; Rassa, Bob; Carbone, Paolo

    2017-01-01

    Novel robot technologies are becoming available to automate more complex tasks, more flexibly, and collaborating with humans. Methods and tools are needed in the automation and robotics industry to develop and integrate this new breed of robotic systems. In this paper, the ISE&PPOOA

  8. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  9. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  10. Methods in the analysis of mobile robots behavior in unstructured environment

    Science.gov (United States)

    Mondoc, Alina; Dolga, Valer; Gorie, Nina

    2012-11-01

    A mobile robot can be described as a mechatronic system that must execute an application in a working environment. From mechatronic concept, the authors highlight mechatronic system structure based on its secondary function. Mobile robot will move, either in a known environment - structured environment may be described in time by an appropriate mathematical model or in an unfamiliar environment - unstructured - the random aspects prevail. Starting from a point robot must reach a START STOP point in the context of functional constraints imposed on the one hand, the application that, on the other hand, the working environment. The authors focus their presentation on unstructured environment. In this case the evolution of mobile robot is based on obtaining information in the work environment, their processing and integration results in action strategy. Number of sensory elements used is subject to optimization parameter. Starting from a known structure of mobile robot, the authors analyze the possibility of developing a mathematical model variants mathematical contact wheel - ground. It analyzes the various types of soil and the possibility of obtaining a "signature" on it based on sensory information. Theoretical aspects of the problem are compared to experimental results obtained in robot evolution. The mathematical model of the robot system allowed the simulation environment and its evolution in comparison with the experimental results estimated.

  11. An iterative learning controller for nonholonomic mobile robots

    International Nuclear Information System (INIS)

    Oriolo, G.; Panzieri, S.; Ulivi, G.

    1998-01-01

    The authors present an iterative learning controller that applies to nonholonomic mobile robots, as well as other systems that can be put in chained form. The learning algorithm exploits the fact that chained-form. The learning algorithm exploits the fact that chained-form systems are linear under piecewise-constant inputs. The proposed control scheme requires the execution of a small number of experiments to drive the system to the desired state in finite time, with nice convergence and robustness properties with respect to modeling inaccuracies as well as disturbances. To avoid the necessity of exactly reinitializing the system at each iteration, the basic method is modified so as to obtain a cyclic controller, by which the system is cyclically steered through an arbitrary sequence of states. As a case study, a carlike mobile robot is considered. Both simulation and experimental results are reported to show the performance of the method

  12. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  13. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  14. The implementation of common object request broker architecture (CORBA) for controlling robot arm via web

    International Nuclear Information System (INIS)

    Syed Mahamad Zuhdi Amin; Mohd Yazid Idris; Wan Mohd Nasir Wan Kadir

    2001-01-01

    This paper presents the employment of the Common Object Request Broker Architecture (CORBA) technology in the implementation of our distributed Arm Robot Controller (ARC). CORBA is an industrial standard architecture based on distributed abstract object model, which is developed by Object Management Group (OMG). The architecture consists of five components i.e. Object Request Broker (ORB), Interface Definition Language (IDL), Dynamic Invocation Interface (DII), Interface Repositories (IR) and Object adapter (OA). CORBA objects are different from typical programming objects in three ways i.e. they can be executed on any platform, located anywhere on the network and written in any language that supports IDL mapping. In the implementation of the system, 5 degree of freedom (DOF) arm robot RCS 6.0 and Java as a programming mapping to the CORBA IDL. By implementing this architecture, the objects in the server machine can be distributed over the network in order to run the controller. the ultimate goal for our ARC system is to demonstrate concurrent execution of multiple arm robots through multiple instantiations of distributed object components. (Author)

  15. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  16. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  17. Interventional robotic systems: Applications and technology state-of-the-art

    Science.gov (United States)

    CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN

    2011-01-01

    Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193

  18. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  19. Universal compact lower limb turning module intended for use in orthotic robots

    Directory of Open Access Journals (Sweden)

    Janowski Mateusz

    2018-01-01

    Full Text Available In this paper, a model of an orthotic robot’s lower limb rotation system is presented. The system is intended for use in typical contemporary orthotic robots such as the ‘Veni-Prometheus’ System for Verticalization and Aiding Motion designed at the Faculty of Mechatronics, Warsaw University of Technology. In the paper, the state of the art is briefly stated, with the relatively low number of orthotic robots allowing realization of pivoting turns highlighted. The intended two-stage pivoting turning movement is analyzed in detail and the operating conditions as well as limitations of the turning module are indicated. The conception of a turning module introduces additional degree of freedom to the existing orthotic robot designs by realizing the rotation about the lengthwise axis in the thigh link. A three-dimensional model and its analysis are shown. The proposed design ensures the necessary movement of the lower limb and the torso of an impaired person during the execution of pivoting turn while remaining compact in order to ease the introduction of the turning system to different orthotic robot designs.

  20. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  1. A new CT-aided robotic stereotaxis system

    International Nuclear Information System (INIS)

    Shao, H.M.; Chen, J.Y.; Truong, T.K.; Reed, I.S.

    1985-01-01

    In this paper, it is shown that a robot arm may be programmed to replace the stereotaxic frame for trajectory guidance. Since the robot is driven by a computer, it offers substantial flexibility, speed and accuracy advantages over the frame. It allows a surgeon to conveniently manipulate the probe trajectory in a variety of possible directions. As a consequence, even more sophisticated stereotaxic procedures are now possible. An experimental robotic stereotaxic system is now in operation. It is described in detail in this paper

  2. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  3. Essential technologies for developing human and robot collaborative system

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1997-10-01

    In this study, we aim to develop a concept of new robot system, i.e., 'human and robot collaborative system', for the patrol of nuclear power plants. This paper deals with the two essential technologies developed for the system. One is the autonomous navigation program with human intervention function which is indispensable for human and robot collaboration. The other is the position estimation method by using gyroscope and TV image to make the estimation accuracy much higher for safe navigation. Feasibility of the position estimation method is evaluated by experiment and numerical simulation. (author)

  4. Development of Pneumatic Robot Hand and Construction of Master-Slave System

    Science.gov (United States)

    Tsujiuchi, Nobutaka; Koizumi, Takayuki; Nishino, Shinya; Komatsubara, Hiroyuki; Kudawara, Tatsuwo; Hirano, Masanori

    Recently, research and development has focused on robots that work in place of people. It is necessary for robots to perform the same flexible motions as people. Additionally, such robots need to incorporate high-level safety features in order not to injure people. For creation of such robots, we need to develop a robot hand that functions like a human hand. At the same time, this type of robot hand can be used as an artificial hand. Here, we present artificial muscle-type pneumatic actuators as the driving source of a robot hand that is both safe and flexible. Some development of robot hands using pneumatic actuators has already taken place. But, until now, when a pneumatic actuator is used, a big compressor is needed. So, the driving system also needs to be big; enlargement of the driving system is a major problem. Consequently, in this research, we develop a low-pressure, low-volume pneumatic actuator for driving a robot hand that works flexibly and safely on the assumption that it will be in contact with people. We develop a five-fingered robot hand with pneumatic actuators. And, we construct a master-slave system to enable the robot hand to perform the same operations as a human hand. We make a 1-link arm that has one degree of freedom using a pneumatic actuator, and construct a control system for the 1-link arm and verify its control performance.

  5. A new method to evaluate human-robot system performance

    Science.gov (United States)

    Rodriguez, G.; Weisbin, C. R.

    2003-01-01

    One of the key issues in space exploration is that of deciding what space tasks are best done with humans, with robots, or a suitable combination of each. In general, human and robot skills are complementary. Humans provide as yet unmatched capabilities to perceive, think, and act when faced with anomalies and unforeseen events, but there can be huge potential risks to human safety in getting these benefits. Robots provide complementary skills in being able to work in extremely risky environments, but their ability to perceive, think, and act by themselves is currently not error-free, although these capabilities are continually improving with the emergence of new technologies. Substantial past experience validates these generally qualitative notions. However, there is a need for more rigorously systematic evaluation of human and robot roles, in order to optimize the design and performance of human-robot system architectures using well-defined performance evaluation metrics. This article summarizes a new analytical method to conduct such quantitative evaluations. While the article focuses on evaluating human-robot systems, the method is generally applicable to a much broader class of systems whose performance needs to be evaluated.

  6. Robot path planning using expert systems and machine vision

    Science.gov (United States)

    Malone, Denis E.; Friedrich, Werner E.

    1992-02-01

    This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.

  7. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform.

    Science.gov (United States)

    Russell, Jonathon O; Noureldine, Salem I; Al Khadem, Mai G; Chaudhary, Hamad A; Day, Andrew T; Kim, Hoon Yub; Tufano, Ralph P; Richmon, Jeremy D

    2017-09-01

    Transoral thyroid surgery allows the surgeon to conceal incisions within the oral cavity without significantly increasing the amount of required dissection. TORT provides an ideal scarless, midline access to the thyroid gland and bilateral central neck compartments. This approach, however, presents multiple technical challenges. Herein, we present our experience using the latest generation robotic surgical system to accomplish transoral robotic thyroidectomy (TORT). In two human cadavers, the da Vinci Xi surgical system (Intuitive Surgical, Sunnyvale, CA, USA) was used to complete TORT. Total thyroidectomy and bilateral central neck dissection was successfully completed in both cadavers. The da Vinci Xi platform offered several technologic advantages over previous robotic generations including overhead docking, narrower arms, and improved range of motion allowing for improved execution of previously described TORT techniques.

  8. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  9. Robotic radiation survey and analysis system for radiation waste casks

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    Sandia National Laboratories (SNL) and the Hanford Engineering Development Laboratories have been involved in the development of remote systems technology concepts for handling defense high-level waste (DHLW) shipping casks at the waste repository. This effort was demonstrated the feasibility of using this technology for handling DHLW casks. These investigations have also shown that cask design can have a major effect on the feasibility of remote cask handling. Consequently, SNL has initiated a program to determine cask features necessary for robotic remote handling at the waste repository. The initial cask handling task selected for detailed investigation was the robotic radiation survey and analysis (RRSAS) task. In addition to determining the design features required for robotic cask handling, the RRSAS project contributes to the definition of techniques for random selection of swipe locations, the definition of robotic swipe parameters, force control techniques for robotic swipes, machine vision techniques for the location of objects in 3-D, repository robotic systems requirements, and repository data management system needs

  10. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  11. Achievement report for fiscal 2000 on operational research of human cooperative and coexisting (humanoid) robot system. Operational research of humanoid robot system; 2000 nendo ningen kyocho kyozongata robot system un'yo kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper reports the achievements in fiscal 2000 in the operational research of humanoid robot system. Carrying out the development smoothly and efficiently requires accumulation of the operational know-how in both of the periodical check and maintenance and the aspects of hard and software to maintain the functions and performances of the robot platform having been developed in the previous fiscal year. Checks were given on fitting of the fasteners and connectors, batteries, and sensors. Operations were confirmed and adjusted on the liquid crystal projector of the surrounded visual display system for remotely controlled operation, polarization filters, screens, reflector mirrors, and wide viewing angle cameras. Verifications were made on fitting of the arm operation force sensing and presenting system, checks on the mechanical components, and operation of the driving system, whereas no change has been found in the operation for the period of one year, and sufficient performance was identified for the remote robot operation. The virtual robot platform has presented no crash and impediments during erroneous use in the disks of the dynamics simulator and the distributed network processing system. (NEDO)

  12. FY 1998 Report on research and development project. Research and development of human-cooperative/coexisting robot systems; 1998 nendo ningen kyocho kyozongata robot system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This R and D project is aimed at development of the human-cooperative/coexisting robot systems with high safety and reliability, capable of performing complicated works cooperatively and in a coexisting manner with humans in human working and living spaces, in order to help improve safety and efficiency in various industrial areas, improve services and convenience in manufacturing and service areas, and create new industries. The trend surveys cover humanoid robot systems, remote control systems and simulators, and the application surveys cover services for humans, basic humanoids and entertainment communication. The 1998 R and D efforts include research and development, fabrication and surveys for the following themes; (1) fabrication of robot platforms for supporting manual works, (2) development of surrounded visual display systems, (3) development of robot arm manipulation and force displaying systems, (4) development of a dynamic simulator, (5) development of a distributed software platform, (6) researches and development of computation algorithm for kinematic chain dynamics, (7) development of motion teaching system for multi-functional robots, (8) investigation of trends in robotics technology, and (9) researches and surveys of robot application. (NEDO)

  13. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  14. A robot-assisted synthesis system applied to 11C-alkylations

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.; Eriksson, H.; Halldin, C.; Stone-Elander, S.

    1990-01-01

    A robot-based system for the production of radiopharmaceuticals has been developed, which consists of a 7-axis SCARA robot, supporting equipment, a synthesis module, and a PC-AT personal computer for system control. A Multifunction Editor (MFE) acts as the system controller and is a development tool as well. Robot movement can be controlled via keyboard, mouse, or remote control box, and procedures can be saved and edited for future use

  15. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  16. Mobile Robot Positioning by using Low-Cost Visual Tracking System

    Directory of Open Access Journals (Sweden)

    Ruangpayoongsak Niramon

    2017-01-01

    Full Text Available This paper presents an application of visual tracking system on mobile robot positioning. The proposed method is verified on a constructed low-cost tracking system consisting of 2 DOF pan-tilt unit, web camera and distance sensor. The motion of pan-tilt joints is realized and controlled by using LQR controller running on microcontroller. Without needs of camera calibration, robot trajectory is tracked by Kalman filter integrating distance information and joint positions. The experimental results demonstrate validity of the proposed positioning technique and the obtained mobile robot trajectory is benchmarked against laser rangefinder positioning. The implemented system can successfully track a mobile robot driving at 14 cm/s.

  17. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.

    Science.gov (United States)

    Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T

    2016-08-01

    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators.

    Science.gov (United States)

    Buzzi, Jacopo; Ferrigno, Giancarlo; Jansma, Joost M; De Momi, Elena

    2017-01-01

    Teleoperated robotic systems are widely spreading in multiple different fields, from hazardous environments exploration to surgery. In teleoperation, users directly manipulate a master device to achieve task execution at the slave robot side; this interaction is fundamental to guarantee both system stability and task execution performance. In this work, we propose a non-disruptive method to study the arm endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm to achieve stability and precision during the execution of different tasks with different master devices. Four users were asked to perform two planar trajectories following virtual tasks using both a serial and a parallel link master device. Users' arm kinematics and muscular activation were acquired and combined with a user-specific musculoskeletal model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point stiffness was derived. The proposed non-disruptive method is capable of estimating the arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained results are in accordance with the existing literature in human motor control and show, throughout the tested trajectory, a modulation of the arm endpoint stiffness that is affected by task characteristics and hand speed and acceleration.

  19. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Jacopo Buzzi

    2017-09-01

    Full Text Available Teleoperated robotic systems are widely spreading in multiple different fields, from hazardous environments exploration to surgery. In teleoperation, users directly manipulate a master device to achieve task execution at the slave robot side; this interaction is fundamental to guarantee both system stability and task execution performance. In this work, we propose a non-disruptive method to study the arm endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm to achieve stability and precision during the execution of different tasks with different master devices. Four users were asked to perform two planar trajectories following virtual tasks using both a serial and a parallel link master device. Users' arm kinematics and muscular activation were acquired and combined with a user-specific musculoskeletal model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point stiffness was derived. The proposed non-disruptive method is capable of estimating the arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained results are in accordance with the existing literature in human motor control and show, throughout the tested trajectory, a modulation of the arm endpoint stiffness that is affected by task characteristics and hand speed and acceleration.

  20. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  1. A robotic system to characterize soft tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Dwyer, S.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A robotic system for characterizing soft tailings deposits was discussed in this presentation. The system was developed to reduce variability in feedstocks and process performance as well as to improve the trafficability of composite tailings (CT). The method was designed to reliably sample different locations of a soft deposit. Sensors were used to determine water content, clay content, organic matter, and strength. The system included an autonomous rover with a sensor package and teleoperation capability. The system was also designed to be used without automatic controls. The wheeled mobile robot was used to conduct ground contact and soil measurements. The gas-powered robot included on-board microcontrollers and a host computer. The system also featured traction control and fault recovery sub-systems. Wheel contact was used to estimate soil parameters. It was concluded that further research is needed to improve traction control and soil parameter estimation testing capabilities. Overall system block diagrams were included. tabs., figs.

  2. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  3. System and method for seamless task-directed autonomy for robots

    Science.gov (United States)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas; Walton, Miles

    2012-09-18

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.

  4. File Managing and Program Execution in Web Operating Systems

    OpenAIRE

    Bravetti, Mario

    2010-01-01

    Web Operating Systems can be seen as an extension of traditional Operating Systems where the addresses used to manage files and execute programs (via the basic load/execution mechanism) are extended from local filesystem path-names to URLs. A first consequence is that, similarly as in traditional web technologies, executing a program at a given URL, can be done in two modalities: either the execution is performed client-side at the invoking machine (and relative URL addressing in the executed...

  5. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  6. Intelligent mobile robots

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoo, Makoto

    1984-01-01

    For the purpose of the application to remote working apparatuses in nuclear power plants and others, the software and moving mechanism of mobile robots that automatically accomplish the movement by only specifying the destination were manufactured for trial. The software has the function of searching a path to determine the quasi-shortest path and the function of controlling execution to control the action of the robots and guide to the destination. By taking heuristics into the method of searching a path and utilizing ultrasonic waves for the function of sight as they can easily detect distance though the information quantity is small, the execution was accelerated. By the simulation examination and the experiment using a mobile apparatus made for trial, it was confirmed that the route plan was able to be made almost in real time, and the appearance of an unknown obstacle was detected before collision and able to be reasonably avoided by the revision of the plan. An environment model, a route planner, the program for controlling execution, the makeup and control of moving function and the experiment on the movement are reported. The shortening of the processing time by dealing with unconfirmed echo and simplifying the writing in a map is a future problem. (Kako, I.)

  7. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  8. Application of da Vinci surgical robotic system in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    Chen Jiahai

    2018-01-01

    Full Text Available The development of minimally invasive surgery has brought a revolutionary change to surgery techniques, and endoscopic surgical robots, especially Da Vinci robotic surgical system, has further broaden the scope of minimally invasive surgery, which has been applied in a variety of surgical fields including hepatobiliary surgery. Today, the application of Da Vinci surgical robot can cover most of the operations in hepatobiliary surgery which has proved to be safe and practical. What’s more, many clinical studies in recent years have showed that Da Vinci surgical system is superior to traditional laparoscopy. This paper summarize the advantage and disadvantage of Da Vinci surgical system, and outlines the current status of and future perspectives on the robot-assisted hepatobiliary surgery based on the cases reports in recent years of the application of Da Vinci surgical robot.

  9. 2nd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter; Karray, Fakhri

    2014-01-01

    We are facing a new technological challenge on how to store and retrieve knowledge and manipulate intelligence for autonomous services by intelligent systems which should be capable of carrying out real world tasks autonomously. To address this issue, robot researchers have been developing intelligence technology (InT) for “robots that think” which is in the focus of this book. The book covers all aspects of intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving resear...

  10. A proposal toward a possibilistic multi-robot task allocation

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, J.

    2017-07-01

    One of the main problems to solve in multi-agent (or multi-robot) systems is to select the best robot or group of robots to carry out a specific task. This problem, referenced as Multi-Agent (robot) task allocation (MRTA), is still an open issue in real environments. Swarm intelligence methods provide very simple solutions for the MRTA problem. One of the most widely used swarm methods are the so-called Response Threshold algorithms, where the behavior of the systems is modeled as a Markov chain and the robots in each time step select the next task to execute according to a transition probability function. Among other factors, this probability depends on a stimulus (for example the distance between the robot and the task). This classical probabilistic approach presents a lot of disadvantages:the transition function must meet constraints of a probabilistic distribution, the system only convergences to a stationary asymptotically, and so on. In order to overcome these problems, a new theoretical framework based on fuzzy (possibilistic) Markov chains was proposed [2]. As was proved, the possibilistic Markov chains outperform the classical probabilistic when a Max-Min algebra is considered for matrix composition. For example, fuzzy Markov chains convergence to a stable state in a finite number of steps 10 times faster than its probability counter part. Moreover, they improve the predictions of the system under imprecise information. Firstly, this paper will review relevant work in MRTA, from theoretical and experimental point of view. Then it will be summarized the aforementioned recent advances given toward a new possibilistic swarm multi-robot task allocation framework. It will be seen how the possibilistic Markov chains behave when other algebras are considered for matrix composition [1] and how the possibility transition function impacts on the system's performance [3]. Finally, it will be proposed new future works in this field. (Author)

  11. A proposal toward a possibilistic multi-robot task allocation

    International Nuclear Information System (INIS)

    Guerrero, J.

    2017-01-01

    One of the main problems to solve in multi-agent (or multi-robot) systems is to select the best robot or group of robots to carry out a specific task. This problem, referenced as Multi-Agent (robot) task allocation (MRTA), is still an open issue in real environments. Swarm intelligence methods provide very simple solutions for the MRTA problem. One of the most widely used swarm methods are the so-called Response Threshold algorithms, where the behavior of the systems is modeled as a Markov chain and the robots in each time step select the next task to execute according to a transition probability function. Among other factors, this probability depends on a stimulus (for example the distance between the robot and the task). This classical probabilistic approach presents a lot of disadvantages:the transition function must meet constraints of a probabilistic distribution, the system only convergences to a stationary asymptotically, and so on. In order to overcome these problems, a new theoretical framework based on fuzzy (possibilistic) Markov chains was proposed [2]. As was proved, the possibilistic Markov chains outperform the classical probabilistic when a Max-Min algebra is considered for matrix composition. For example, fuzzy Markov chains convergence to a stable state in a finite number of steps 10 times faster than its probability counter part. Moreover, they improve the predictions of the system under imprecise information. Firstly, this paper will review relevant work in MRTA, from theoretical and experimental point of view. Then it will be summarized the aforementioned recent advances given toward a new possibilistic swarm multi-robot task allocation framework. It will be seen how the possibilistic Markov chains behave when other algebras are considered for matrix composition [1] and how the possibility transition function impacts on the system's performance [3]. Finally, it will be proposed new future works in this field. (Author)

  12. Analyses of robot systems using fault and event trees: case studies

    International Nuclear Information System (INIS)

    Khodabandehloo, Koorosh

    1996-01-01

    Safety in the use of robotics outside factories or processing plants has become a matter of great international concern. Domestic robots and those intended to assist nurses and surgeons in hospitals are examples of cases where safety and reliability are considered critical. The safe performance of robot systems depends on many factors, including the integrity of the robot's hardware and software, the way it communicates with sensory and other production equipment, the reliable function of the safety features present and the way the robot interacts with its environment. The use of systematic techniques such as Fault and Event Tree analysis to examine the safety and reliability of a given robotic system is presented. Considerable knowledge is needed before the application of such analysis techniques can be translated into safety specifications or indeed 'fail-safe' design features of robotic systems. The skill and understanding required for the formulation of such specifications is demonstrated here based on a number of case studies

  13. Robotics/Automated Systems Technicians.

    Science.gov (United States)

    Doty, Charles R.

    Major resources exist that can be used to develop or upgrade programs in community colleges and technical institutes that educate robotics/automated systems technicians. The first category of resources is Economic, Social, and Education Issues. The Office of Technology Assessment (OTA) report, "Automation and the Workplace," presents analyses of…

  14. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  15. Visual Detection and Tracking System for a Spherical Amphibious Robot

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-01-01

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134

  16. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  17. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  18. Laparoscopy-assisted Robotic Myomectomy Using the DA Vinci System

    Directory of Open Access Journals (Sweden)

    Shih-Peng Mao

    2007-06-01

    Conclusion: Minimally invasive surgery is the trend of the future. Robot-assisted laparoscopic surgery is a new technique for myomectomy. This robotic system provides a three-dimensional operative field and an easy-to-use control panel, which may be of great help when applying the suturing techniques and may shorten the learning curve. More experience with and long-term follow-up of robotic surgery may be warranted to further validate the role the robot-assisted approach in gynecologic surgery.

  19. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses.

    Science.gov (United States)

    Roldán, Juan Jesús; Garcia-Aunon, Pablo; Garzón, Mario; de León, Jorge; Del Cerro, Jaime; Barrientos, Antonio

    2016-07-01

    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments.

  20. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses

    Directory of Open Access Journals (Sweden)

    Juan Jesús Roldán

    2016-07-01

    Full Text Available The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments.

  1. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  2. SIMULATION OF ADAPTIVE BEHAVIOR IN THE CONTEXT OF SOLVING AN AUTONOMOUS ROBOTIC VEHICLE MOTION TASK ON TWO-DIMENSIONAL PLANE WITH OBSTACLES

    Directory of Open Access Journals (Sweden)

    R. A. Prakapovich

    2014-01-01

    Full Text Available An adaptive neurocontroller for autonomous robotic vehicle control, which is designed to generate control signals (according to preprogrammed motion algorithm and to develop individual reactions to some external impacts during functioning process, that allows the robot to adapt to external environment changes, is suggested. To debug and test the proposed neurocontroller a specially designed program, able to simulate the sensory and executive systems operation of the robotic vehicle, is used.

  3. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  4. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback

    Directory of Open Access Journals (Sweden)

    Cetin Mericli

    2011-06-01

    Full Text Available A robot can perform a given task through a policy that maps its sensed state to appropriate actions. We assume that a hand-coded controller can achieve such a mapping only for the basic cases of the task. Refining the controller becomes harder and gets more tedious and error prone as the complexity of the task increases. In this paper, we present a new learning from demonstration approach to improve the robot's performance through the use of corrective human feedback as a complement to an existing hand-coded algorithm. The human teacher observes the robot as it performs the task using the hand-coded algorithm and takes over the control to correct the behavior when the robot selects a wrong action to be executed. Corrections are captured as new state-action pairs and the default controller output is replaced by the demonstrated corrections during autonomous execution when the current state of the robot is decided to be similar to a previously corrected state in the correction database. The proposed approach is applied to a complex ball dribbling task performed against stationary defender robots in a robot soccer scenario, where physical Aldebaran Nao humanoid robots are used. The results of our experiments show an improvement in the robot's performance when the default hand-coded controller is augmented with corrective human demonstration.

  5. An empirical analysis of executive behaviour with hospital executive information systems in Taiwan.

    Science.gov (United States)

    Huang, Wei-Min

    2013-01-01

    Existing health information systems largely only support the daily operations of a medical centre, and are unable to generate the information required by executives for decision-making. Building on past research concerning information retrieval behaviour and learning through mental models, this study examines the use of information systems by hospital executives in medical centres. It uses a structural equation model to help find ways hospital executives might use information systems more effectively. The results show that computer self-efficacy directly affects the maintenance of mental models, and that system characteristics directly impact learning styles and information retrieval behaviour. Other results include the significant impact of perceived environmental uncertainty on scan searches; information retrieval behaviour and focused searches on mental models and perceived efficiency; scan searches on mental model building; learning styles and model building on perceived efficiency; and finally the impact of mental model maintenance on perceived efficiency and effectiveness.

  6. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  7. Declarative Rule-based Safety for Robotic Perception Systems

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs...... to be certified, but no specific standards exist for computer vision systems, and the concept of safe vision systems remains largely unexplored. In this paper we present a novel domain-specific language that allows the programmer to express image quality detection rules for enforcing safety constraints...

  8. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  9. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  10. Control of a high precision macro-micro robotic manipulator system

    International Nuclear Information System (INIS)

    Cho, Whang

    1997-01-01

    A controller for macro-micro robotic manipulator system in which kinematically independent two robotic sub-systems work together to improve the accuracy of the motion is proposed. A nonlinear feedback linearization scheme is employed as basic architecture for the controller and additional formulations about the controller structure are made to assure the robustness of the overall control action and to restrict the motion of micro sub-system close to its nominal position without causing saturation of joint associated with micro-robot. (author)

  11. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  12. Fiscal 1997 report on the results of the international standardization R and D. Robot control system; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Robot seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the robot control system was conducted in the following items: 1) integrated open control system, 2) remote control robot manipulation language, 3) human factor robot use built-in LAN system, 4) built-in actuator driver. In 1), there were some problems to be pointed out around the system, but the effectiveness was confirmed as system architecture of each verification item. In 2), development/design were made of RCML(R-Cube Manipulation Language) as a remote robot manipulation language, telecommunication protocol, and the experimental system, and the international standardization was targeted. In 3), the R and D was conducted of the realtime telecommunication protocol which clears the standards for the distributed control required for construction of human factor robot and the advanced realtime micro-controller, ULSI, which is the one that the protocol was made IC. In 4), an intelligent connector for built-in actuator was developed which enables saving of wiring in robot system and plug-in connection. 13 refs., 186 figs., 53 tabs.

  13. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  14. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  15. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  16. Use of robotic systems for radiochemical sample changing and for analytical sample preparation

    International Nuclear Information System (INIS)

    Delmastro, J.R.; Hartenstein, S.D.; Wade, M.A.

    1989-01-01

    Two uses of the Perkin-Elmer (PE) robotic system will be presented. In the first, a PE robot functions as an automatic sample changer for up to five low energy photon spectrometry (LEPS) detectors operated with a Nuclear Data ND 6700 system. The entire system, including the robot, is controlled by an IBM PC-AT using software written in compiled BASIC. Problems associated with the development of the system and modifications to the robot will be presented. In the second, an evaluation study was performed to assess the abilities of the PE robotic system for performing complex analytical sample preparation procedures. For this study, a robotic system based upon the PE robot and auxiliary devices was constructed and programmed to perform the preparation of final product samples (UO 3 ) for accountability and impurity specification analyses. These procedures require sample dissolution, dilution, and liquid-liquid extraction steps. The results of an in-depth evaluation of all system components will be presented

  17. Intelligent Vision System for Door Sensing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-08-01

    Full Text Available Wheeled Mobile Robots find numerous applications in the Indoor man made structured environments. In order to operate effectively, the robots must be capable of sensing its surroundings. Computer Vision is one of the prime research areas directed towards achieving these sensing capabilities. In this paper, we present a Door Sensing Mobile Robot capable of navigating in the indoor environment. A robust and inexpensive approach for recognition and classification of the door, based on monocular vision system helps the mobile robot in decision making. To prove the efficacy of the algorithm we have designed and developed a ‘Differentially’ Driven Mobile Robot. A wall following behavior using Ultra Sonic range sensors is employed by the mobile robot for navigation in the corridors.  Field Programmable Gate Arrays (FPGA have been used for the implementation of PD Controller for wall following and PID Controller to control the speed of the Geared DC Motor.

  18. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  19. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    Directory of Open Access Journals (Sweden)

    Pedro Deusdado

    2016-09-01

    Full Text Available This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional human-based sampling.

  20. Sediment Sampling in Estuarine Mudflats with an Aerial-Ground Robotic Team

    Science.gov (United States)

    Deusdado, Pedro; Guedes, Magno; Silva, André; Marques, Francisco; Pinto, Eduardo; Rodrigues, Paulo; Lourenço, André; Mendonça, Ricardo; Santana, Pedro; Corisco, José; Almeida, Susana Marta; Portugal, Luís; Caldeira, Raquel; Barata, José; Flores, Luis

    2016-01-01

    This paper presents a robotic team suited for bottom sediment sampling and retrieval in mudflats, targeting environmental monitoring tasks. The robotic team encompasses a four-wheel-steering ground vehicle, equipped with a drilling tool designed to be able to retain wet soil, and a multi-rotor aerial vehicle for dynamic aerial imagery acquisition. On-demand aerial imagery, properly fused on an aerial mosaic, is used by remote human operators for specifying the robotic mission and supervising its execution. This is crucial for the success of an environmental monitoring study, as often it depends on human expertise to ensure the statistical significance and accuracy of the sampling procedures. Although the literature is rich on environmental monitoring sampling procedures, in mudflats, there is a gap as regards including robotic elements. This paper closes this gap by also proposing a preliminary experimental protocol tailored to exploit the capabilities offered by the robotic system. Field trials in the south bank of the river Tagus’ estuary show the ability of the robotic system to successfully extract and transport bottom sediment samples for offline analysis. The results also show the efficiency of the extraction and the benefits when compared to (conventional) human-based sampling. PMID:27618060

  1. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  2. Development of a medical robot system for minimally invasive surgery.

    Science.gov (United States)

    Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang

    2012-03-01

    Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  4. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  5. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  6. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  7. Trends in control and decision-making for human-robot collaboration systems

    CERN Document Server

    Zhang, Fumin

    2017-01-01

    This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic ar...

  8. A multichannel-near-infrared-spectroscopy-triggered robotic hand rehabilitation system for stroke patients.

    Science.gov (United States)

    Lee, Jongseung; Mukae, Nobutaka; Arata, Jumpei; Iwata, Hiroyuki; Iramina, Keiji; Iihara, Koji; Hashizume, Makoto

    2017-07-01

    There is a demand for a new neurorehabilitation modality with a brain-computer interface for stroke patients with insufficient or no remaining hand motor function. We previously developed a robotic hand rehabilitation system triggered by multichannel near-infrared spectroscopy (NIRS) to address this demand. In a preliminary prototype system, a robotic hand orthosis, providing one degree-of-freedom motion for a hand's closing and opening, is triggered by a wireless command from a NIRS system, capturing a subject's motor cortex activation. To examine the feasibility of the prototype, we conducted a preliminary test involving six neurologically intact participants. The test comprised a series of evaluations for two aspects of neurorehabilitation training in a real-time manner: classification accuracy and execution time. The effects of classification-related factors, namely the algorithm, signal type, and number of NIRS channels, were investigated. In the comparison of algorithms, linear discrimination analysis performed better than the support vector machine in terms of both accuracy and training time. The oxyhemoglobin versus deoxyhemoglobin comparison revealed that the two concentrations almost equally contribute to the hand motion estimation. The relationship between the number of NIRS channels and accuracy indicated that a certain number of channels are needed and suggested a need for a method of selecting informative channels. The computation time of 5.84 ms was acceptable for our purpose. Overall, the preliminary prototype showed sufficient feasibility for further development and clinical testing with stroke patients.

  9. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  10. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  11. DOE/NE University Program in robotics for advanced reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Gonzalez, R.C.; Trivedi, M.M.; Wehe, D.K.

    1990-05-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of advanced robotic systems capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of economically performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. The approach to achieving the program objective is a transition from teleoperation to the capability of autonomous operation within three successive generations of robotic systems. The strategy adopted in order to achieve the program goals in an efficient and timely manner consists in utilizing, and advancing where required, state-of-the-art robotics technology through close interaction between the universities and the manufacturers and operators of nuclear power plants. There is a potentially broad range of applications for the robotic systems developed in the course of this project. Therefore, it is expected that efforts to obtain additional support from other agencies, e.g., DOD and NASA, will be successful. Areas of cooperation with other nations (e.g., Japan, France, Germany) are being explored. This Program features a unique teaming arrangement among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Odetics, Gulf State Utilities, Florida Power and Light Company, Remotec, and Telerobotics International

  12. The contaminant analysis automation robot implementation for the automated laboratory

    International Nuclear Information System (INIS)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-01-01

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLM when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation

  13. [RESEARCH PROGRESS OF PERIPHERAL NERVE SURGERY ASSISTED BY Da Vinci ROBOTIC SYSTEM].

    Science.gov (United States)

    Shen, Jie; Song, Diyu; Wang, Xiaoyu; Wang, Changjiang; Zhang, Shuming

    2016-02-01

    To summarize the research progress of peripheral nerve surgery assisted by Da Vinci robotic system. The recent domestic and international articles about peripheral nerve surgery assisted by Da Vinci robotic system were reviewed and summarized. Compared with conventional microsurgery, peripheral nerve surgery assisted by Da Vinci robotic system has distinctive advantages, such as elimination of physiological tremors and three-dimensional high-resolution vision. It is possible to perform robot assisted limb nerve surgery using either the traditional brachial plexus approach or the mini-invasive approach. The development of Da Vinci robotic system has revealed new perspectives in peripheral nerve surgery. But it has still been at the initial stage, more basic and clinical researches are still needed.

  14. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  15. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  16. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    OpenAIRE

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian...

  17. Robotic system construction with mechatronic components inverted pendulum: humanoid robot

    Science.gov (United States)

    Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan

    2017-03-01

    Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.

  18. Design of multifunction anti-terrorism robotic system based on police dog

    Science.gov (United States)

    You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie

    2007-11-01

    Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.

  19. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  20. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  1. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. A real time tracking vision system and its application to robotics

    International Nuclear Information System (INIS)

    Inoue, Hirochika

    1994-01-01

    Among various sensing channels the vision is most important for making robot intelligent. If provided with a high speed visual tracking capability, the robot-environment interaction becomes dynamic instead of static, and thus the potential repertoire of robot behavior becomes very rich. For this purpose we developed a real-time tracking vision system. The fundamental operation on which our system based is the calculation of correlation between local images. Use of special chip for correlation and the multi-processor configuration enable the robot to track more than hundreds cues in full video rate. In addition to the fundamental visual performance, applications for robot behavior control are also introduced. (author)

  3. A study on dynamically reconfigurable robotic systems, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Kawauchi, Yoshio; Buss, M.; Asama, Hajime.

    1990-01-01

    The dynamically reconfigurable robotic system (DRRS) is a new kind of robotic system which is able to reconfigurate itself to an optimal structure depending on the purpose and exvironment. To realize this concept, we proposed the CEBOT (cell-structured robot). Communication is needed in the CEBOT system as follows. When cells are separated, a communication master cell needs to know the other cell's function and position and determine the target cell for docking. Mobile cells should be able to coordinate with other mobile cell. When cells are docked, forming a cell structure/module, a master cell should control the bending joint cell and know which cells the construction is composed of. In this paper, we propose a communication protocol for both cases with optical sensor applicable to CEBOT. Some experimental results are shown by realizing the proposed communication method between cells. (author)

  4. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  5. Experiments on mobile robot stereo vision system calibration under hardware imperfection

    Directory of Open Access Journals (Sweden)

    Safin Ramil

    2018-01-01

    Full Text Available Calibration is essential for any robot vision system for achieving high accuracy in deriving objects metric information. One of typical requirements for a stereo vison system in order to obtain better calibration results is to guarantee that both cameras keep the same vertical level. However, cameras may be displaced due to severe conditions of a robot operating or some other circumstances. This paper presents our experimental approach to the problem of a mobile robot stereo vision system calibration under a hardware imperfection. In our experiments, we used crawler-type mobile robot «Servosila Engineer». Stereo system cameras of the robot were displaced relative to each other, causing loss of surrounding environment information. We implemented and verified checkerboard and circle grid based calibration methods. The two methods comparison demonstrated that a circle grid based calibration should be preferred over a classical checkerboard calibration approach.

  6. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  7. Ideas on a system design for end-user robots

    Science.gov (United States)

    Bonasso, R. P.; Slack, Marc G.

    1992-11-01

    Robots are being used successfully in factory automation; however, recently there has been some success in building robots which can operate in field environments, where the domain is less predictable. New perception and control techniques have been developed which allow a robot to accomplish its mission while dealing with natural changes in both land and underwater environments. Unfortunately, efforts in this area have resulted in many one-of-a-kind robots, limited to research laboratories or carefully delimited field task arenas. A user who would like to apply robotic technology to a particular field problem must basically start from scratch. The problem is that the robotic technology (i.e., the hardware and software) which might apply to the user's domain exists in a diverse array of formats and configurations. For end-user robots to become a reality, an effort to standardize some aspects of the robotic technology must be made, in much the same way that personal computer technology is becoming standardized. Presently, a person can buy a computer and then acquire hardware and software extensions which simply `plug in' and provide the user with the required utility without the user having to understand the inner workings of the pieces of the system. This technology even employs standardized interface specifications so the user is presented with a familiar interaction paradigm. This paper outlines some system requirements (hardware and software) and a preliminary design for end-user robots for field environments, drawing parallels to the trends in the personal computer market. The general conclusion is that the appropriate components as well as an integrating architecture are already available, making development of out-of-the- box, turnkey robots for a certain range of commonly required tasks a potential reality.

  8. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.

    Science.gov (United States)

    Hinaut, Xavier; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2014-01-01

    One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction.

  9. The development of robotic systems for hazardous environments

    International Nuclear Information System (INIS)

    Collis-Smith, J.A.; Schilling, R.

    1996-01-01

    The need for teleoperated and robotic systems is growing. This growth is driven by several factors such as - statutory requirements; risk reduction and economic pressures. Robotic Systems are needed to provide reliable, economic means to perform surveillance, quantitative inspection, repairs, upgrading and eventual dismantling for decommissioning tasks. The range of potential applications has widened and there is now significant technical cross-fertilisation between developments in diverse environments. The typical robotic system consists of the emplacement equipment, the dextrous arm, the tool and the controls. The control system provides the operator with an integrated interface between the principal components, so that the operator can concentrate fully at the high level on the specific task in hand, while the control system and its software performs all the detail functions within the subparts of the integrated system. This paper develops this underlying logic, and is illustrated by experience drawn from a variety of examples in different environments to show the present state of the art in GEC Alsthom and suggest the way ahead in the near-term future. (Author)

  10. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    Palmer, “Development of a navigation system for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME Int. Conf. on Mechatronic ...and Embedded Systems and Applications, Suzhou, China, 2012, pp. 257-262. [30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM...OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples

  11. Clustering execution in a processing system to increase power savings

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.; Vega, Augusto J.

    2018-04-03

    Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling the tasks.

  12. Clustering execution in a processing system to increase power savings

    Science.gov (United States)

    Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.; Vega, Augusto J.

    2018-03-20

    Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling the tasks.

  13. Effects of a robotic storyteller's moody gestures on storytelling perception

    NARCIS (Netherlands)

    Xu, J.; Broekens, J.; Hindriks, K.; Neerincx, M.A.

    2015-01-01

    A parameterized behavior model was developed for robots to show mood during task execution. In this study, we applied the model to the coverbal gestures of a robotic storyteller. This study investigated whether parameterized mood expression can 1) show mood that is changing over time; 2) reinforce

  14. When Workflow Management Systems and Logging Systems Meet: Analyzing Large-Scale Execution Traces

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, Daniel

    2008-07-31

    This poster shows the benefits of integrating a workflow management system with logging and log mining capabilities. By combing two existing, mature technologies: Pegasus-WMS and Netlogger, we are able to efficiently process execution logs of earthquake science workflows consisting of hundreds of thousands to one million tasks. In particular we show results of processing logs of CyberShake, a workflow application running on the TeraGrid. Client-side tools allow scientists to quickly gather statistics about a workflow run and find out which tasks executed, where they were executed, what was their runtime, etc. These statistics can be used to understand the performance characteristics of a workflow and help tune the execution parameters of the workflow management system. This poster shows the scalability of the system presenting results of uploading task execution records into the system and by showing results of querying the system for overall workflow performance information.

  15. Dynamic Arc Fitting Path Follower for Skid-Steered Mobile Robots

    Directory of Open Access Journals (Sweden)

    Peter Lepej

    2015-10-01

    Full Text Available Many applications, such as surveillance, inspection or search and rescue operations, can be performed with autonomous robots. Our aim is a control of modular autonomous systems in rescue robotics. One of the basic problems with autonomous robotics is the execution part where the control commands (translation and rotational velocities are produced for mobile bases. Therefore we have focused on this area because there is only a small amount of available path following software for skid-steered mobile robots. Our goal was to develop a velocity controller that could be used for multiple skid-steered mobile bases. We considered differential drive mobile bases such as tracked skid-steering mobile bases. Our approach is based on an arc fitting algorithm, which takes into account the robot constraints and kinematical model. It produces a continuous trajectory where fitting to the given path is adapted based on given parameters. Moreover, we have included orientation angle compensation while the mobile robot is moving and ground inclination compensation. Our rescue robot is described, together with the simulation setup and algorithm implementation. We compared our algorithm to the Hector-based software and curvature velocity approach. The results for the proposed algorithm are shown for the simulation results and the experiment.

  16. Sensor-guided parking system for a carlike robot

    Science.gov (United States)

    Jiang, Kaichum; Seneviratne, L. D.

    1998-07-01

    This paper presents an automated parking strategy for a car- like mobile robot. The study considers general parking manoeuvre cases for a rectangular robot, including parallel parking. The robot is constructed simulating a conventional car, which is subject to non-holonomic constraints and thus only has two degrees of freedom. The parking space is considered as rectangular, and detected by ultrasonic sensors mounted on the robot. A motion planning algorithm develops a collision-free path for parking, taking into account the non- holonomic constraints acting on the car-like robot. A research into general car maneuvers has been conducted and useful results have been achieved. The motion planning algorithm uses these results, combined with configuration space method, to produce a collision-free path for parallel parking, depending on the parking space detected. A control program in the form of a graphical user interface has been developed for users to operate the system with ease. The strategy is implemented on a modified B12 mobile robot. The strategy presented has the potential for application in automobiles.

  17. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  18. Virtual Reality Simulator Systems in Robotic Surgical Training.

    Science.gov (United States)

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  19. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  20. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  1. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  2. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  3. Exoskeletons, Robots and System Software: Tools for the Warfighter

    Science.gov (United States)

    2012-04-24

    Exoskeletons , Robots and System Software: Tools for the Warfighter? Paul Flanagan, Tuesday, April 24, 2012 11:15 am– 12:00 pm 1 “The views...Emerging technologies such as exoskeletons , robots , drones, and the underlying software are and will change the face of the battlefield. Warfighters will...global hub for educating, informing, and connecting Information Age leaders.” What is an exoskeleton ? An exoskeleton is a wearable robot suit that

  4. Executive Information Systems' Multidimensional Models

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Executive Information Systems are design to improve the quality of strategic level of management in organization through a new type of technology and several techniques for extracting, transforming, processing, integrating and presenting data in such a way that the organizational knowledge filters can easily associate with this data and turn it into information for the organization. These technologies are known as Business Intelligence Tools. But in order to build analytic reports for Executive Information Systems (EIS in an organization we need to design a multidimensional model based on the business model from the organization. This paper presents some multidimensional models that can be used in EIS development and propose a new model that is suitable for strategic business requests.

  5. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    Science.gov (United States)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  6. Robotic system for process sampling

    International Nuclear Information System (INIS)

    Dyches, G.M.

    1985-01-01

    A three-axis cartesian geometry robot for process sampling was developed at the Savannah River Laboratory (SRL) and implemented in one of the site radioisotope separations facilities. Use of the robot reduces personnel radiation exposure and contamination potential by routinely handling sample containers under operator control in a low-level radiation area. This robot represents the initial phase of a longer term development program to use robotics for further sample automation. Preliminary design of a second generation robot with additional capabilities is also described. 8 figs

  7. Enhancing the effectiveness of human-robot teaming with a closed-loop system.

    Science.gov (United States)

    Teo, Grace; Reinerman-Jones, Lauren; Matthews, Gerald; Szalma, James; Jentsch, Florian; Hancock, Peter

    2018-02-01

    With technological developments in robotics and their increasing deployment, human-robot teams are set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able to communicate implicitly, the present study implemented a closed-loop system. This system enabled the robot to provide adaptive aid without the need for explicit commands from the human teammate, through the use of multiple physiological workload measures. Such measures of workload vary in sensitivity and there is large inter-individual variability in physiological responses to imposed taskload. Workload models enacted via closed-loop system should accommodate such individual variability. The present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and workload. Results showed that adaptive robot aid driven by an individualized workload model for physiological response resulted in greater improvements in performance compared to aid that was simply imposed by the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The cortical activation pattern by a rehabilitation robotic hand : A functional NIRS study

    Directory of Open Access Journals (Sweden)

    Pyung Hun eChang

    2014-02-01

    Full Text Available Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS, we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin(HbO, deoxy-hemoglobin(HbR and total-hemoglobin(HbT in five regions of interest: the primary sensory-motor cortex (SM1, hand somatotopy of the contralateral SM1, supplementary motor area (SMA, premotor cortex (PMC, and prefrontal cortex (PFC. Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand(uncorrected, pConclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  9. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  10. Executive Schedule C System (ESCS)

    Data.gov (United States)

    Office of Personnel Management — Used to store information on Federal employees in the Senior Executive Service (SES) and appointed employees in the Schedule C System. Every four years, just after...

  11. Design on a Composite Mobile System for Exploration Robot

    Directory of Open Access Journals (Sweden)

    Weiyan Shang

    2016-01-01

    Full Text Available In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been studied. Firstly, a simplified dynamic model has been established, and then by affecting factors analysis on ride performance, an optimization model for suspension parameters has been presented. Using NSGA-II method, a set of nondominated solutions for suspension parameters has been gotten, and by weighing the importance of the objective function, an optimal solution has been selected to be applied on suspension design. As the wheel-tracked exploration robot has been designed and manufactured, the property test has been conducted. By testing on physical prototype, the robot’s ability to surmount complex terrain has been verified. Design of the wheel-tracked robot will provide a stable platform for field exploration tasks, and in addition, the certain configuration and suspension parameters optimization method will provide reference to other robot designs.

  12. The development of robot system for pressurizer maintenance in NPPs

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Chang Hoi; Jung, Seung Ho; Seo, Yong Chil; Lee, Young Kwang; Go, Byung Yung; Lee, Kwang Won; Lee, Sang Ill; Yun, Jong Yeon; Lee, Hyung Soon; Park, Mig Non; Park, Chang Woo; Cheol, Kwon

    1999-12-01

    The pressurizer that controls the pressure variation of primary coolant system, consists of a vessel, electric heaters and a spray, is one of the safety related equipment in nuclear power plants. Therefore it is required to inspect and maintain it regularly. Because the inside of pressurizer os contaminated by radioactivity, when inspection and repairing it, the radiation exposure of workers is inevitable. In this research two robot system has been developed for inspection and maintenance of the pressurizer for the water filled case and the water sunken case. The one robot system for the water filled case consists of two links, movable gripper using wire string, and support frame for the attachment of robot. The other robot is equipped propeller in order to navigate on the water. It also equipped high performance water resistance camera to make inspection possible. The developed robots are designed under several constraints such as its weight and collision with pressurizer wall. To verify the collision free robot link length and accessibility to the any desired rod heater it is simulated by 3-dimensional graphic simulation software(RobCard). For evaluation stress of the support frame finite element analysis is performed by using the ANSYS code. (author)

  13. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  14. Stair Climbing in a Quadruped Robot

    OpenAIRE

    Shen-Chiang Chen; Chih-Chung Ko; Cheng-Hsin Li; Pei-Chun Lin

    2012-01-01

    This paper reports the algorithm of trajectory planning and the strategy of four-leg coordination for quasi-static stair climbing in a quadruped robot. This development is based on the geometrical interactions between robot legs and the stair, starting from single-leg analysis, followed by two-leg collaboration, and then four-leg coordination. In addition, a brief study on the robot’s locomotion stability is also included. Finally, simulation and experimental testing were executed to evaluate...

  15. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Directory of Open Access Journals (Sweden)

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  16. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  17. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  18. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  19. Development and validation of a composite scoring system for robot-assisted surgical training--the Robotic Skills Assessment Score.

    Science.gov (United States)

    Chowriappa, Ashirwad J; Shi, Yi; Raza, Syed Johar; Ahmed, Kamran; Stegemann, Andrew; Wilding, Gregory; Kaouk, Jihad; Peabody, James O; Menon, Mani; Hassett, James M; Kesavadas, Thenkurussi; Guru, Khurshid A

    2013-12-01

    A standardized scoring system does not exist in virtual reality-based assessment metrics to describe safe and crucial surgical skills in robot-assisted surgery. This study aims to develop an assessment score along with its construct validation. All subjects performed key tasks on previously validated Fundamental Skills of Robotic Surgery curriculum, which were recorded, and metrics were stored. After an expert consensus for the purpose of content validation (Delphi), critical safety determining procedural steps were identified from the Fundamental Skills of Robotic Surgery curriculum and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop Robotic Skills Assessment Score (RSA-Score). Robotic Skills Assessment mainly focuses on safety in operative field, critical error, economy, bimanual dexterity, and time. Following, the RSA-Score was further evaluated for construct validation and feasibility. Spearman correlation tests performed between tasks using the RSA-Scores indicate no cross correlation. Wilcoxon rank sum tests were performed between the two groups. The proposed RSA-Score was evaluated on non-robotic surgeons (n = 15) and on expert-robotic surgeons (n = 12). The expert group demonstrated significantly better performance on all four tasks in comparison to the novice group. Validation of the RSA-Score in this study was carried out on the Robotic Surgical Simulator. The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical tents during robot-assisted surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Safeguards and security considerations for automated and robotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S.E.; Jaeger, C.D.

    1994-09-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A&R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S&S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S&S into the design of future A&R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S&S guidance and design considerations for automation and robotics.

  1. An approach to software quality assurance for robotic inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site

  2. Robot performing heavy gymnastics. Kikai taiso wo suru robot

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, S. (Hosei Univ., Tokyo (Japan). Faculty of Engineering)

    1991-11-01

    Methods of simulation of the motion of human bodies and the control of the motion of bobots are sdudied in order to realize robots to perform gymnastics on a horizontal bar. A model of the human body structure is presented by dividing the human body into 8 parts: right and left arms, the head, the trunk, the right and left thighs, and the right and left foot, and a system is constructed by combination of the links of the rigid partswith an assumption on each link for simplification. A method to enhance the swing motion is devised in order to produce a suspension motionaas a basic movement of horizontal bar gymnastics. The basic condition to control the horizontal bar gynnastics and the control system of an articulation angle are considered. Two algorithms are presented in order to enhance the swing motion and to maintain suspension swing: excitation of the swing by a vertical motion of the center of gravity and excitation by the use of natural frequency. Computer simulation of suspension swing is executed and the results are shown in a figure. A prototype robot to perform horizontal bar gymnastics is manufactured and performs suspension swing, starting of swing, kip motion and giant swing. The concept of optimization is not included concretely in the prototype. 22 refs., 8 figs.

  3. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  4. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  5. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.

    Science.gov (United States)

    Kronander, Klas; Billard, Aude

    2014-01-01

    Robot Learning from Demonstration (RLfD) has been identified as a key element for making robots useful in daily lives. A wide range of techniques has been proposed for deriving a task model from a set of demonstrations of the task. Most previous works use learning to model the kinematics of the task, and for autonomous execution the robot then relies on a stiff position controller. While many tasks can and have been learned this way, there are tasks in which controlling the position alone is insufficient to achieve the goals of the task. These are typically tasks that involve contact or require a specific response to physical perturbations. The question of how to adjust the compliance to suit the need of the task has not yet been fully treated in Robot Learning from Demonstration. In this paper, we address this issue and present interfaces that allow a human teacher to indicate compliance variations by physically interacting with the robot during task execution. We validate our approach in two different experiments on the 7 DoF Barrett WAM and KUKA LWR robot manipulators. Furthermore, we conduct a user study to evaluate the usability of our approach from a non-roboticists perspective.

  6. Industrial robots with sensors and object recognition systems

    International Nuclear Information System (INIS)

    Koehler, G.W.

    1978-01-01

    The previous development and the present status of industrial robots equipped with sensors and object recognition systems are described. This type of equipment allows flexible automation of many work stations in which industrial robots of the first generation, which are unable to react to changes in their respective environments automatically, apart from their being linked to other machines, could not be used because of the prevailing boundary conditions. A classification system facilitates an overview of the large number of technical solutions now available. The manifold possibilities of application of this equipment are demonstrated by a number of examples. As a result of the present state of development of the components required, and in view also of economic reasons, there is a trend towards special designs for a small number of specific purposes and towards stripped-down object recognition. systems with limited applications. A fitting description is offered of the term 'robot', which is now being used in various contexts, and an indication is made of the capabilities and components a machine to be called robot should have as a minimum. Finally, reference is made to some potential lines of development serving to reduce expediture and accelerate recognition processes. (orig.) [de

  7. Reaction Null Space of a multibody system with applications in robotics

    Directory of Open Access Journals (Sweden)

    D. N. Nenchev

    2013-02-01

    Full Text Available This paper provides an overview of implementation examples based on the Reaction Null Space formalism, developed initially to tackle the problem of satellite-base disturbance of a free-floating space robot, when the robot arm is activated. The method has been applied throughout the years to other unfixed-base systems, e.g. flexible-base and macro/mini robot systems, as well as to the balance control problem of humanoid robots. The paper also includes most recent results about complete dynamical decoupling of the end-link of a fixed-base robot, wherein the end-link is regarded as the unfixed-base. This interpretation is shown to be useful with regard to motion/force control scenarios. Respective implementation results are provided.

  8. Integrating Smart Resources in ROS-based systems to distribute services

    Directory of Open Access Journals (Sweden)

    Eduardo MUNERA

    2017-03-01

    Full Text Available Mobile robots need to manage a lot of sensors and actuators using micro-controllers.To do complexes tasks, a highly computation central unit is also needed. In many cases, a robot is a intelligent distributed system formed with a central unit, which manages and distributes several specific tasks to some micro-controller embedded systems onboard.Now these embedded systems are also evolving to more complex systems that are developed not only for executing simple tasks but offering some advanced algorithmsjust as complex data processing, adaptive execution, or fault-tolerance and alarm rising mechanisms. To manage these types of embedded systems a paradigm, calledSmart Resource has been developed. Smart Resources topology has been raised to manage resources which execution relies on a physical embedded hardware. TheseSmart Resources are defined as a list of distributed services that can configure its execution in order to accomplish a context and quality requirements. In order to provide a more general implementation Smart Resources are integrated into the RobotOperating System (ROS. Paper presents a solution based on the Turtlebot platformrunning ROS. The solution shows how robots can make use of all the functions andmechanisms provided by the ROS and the distribution, reliability and adaptability ofthe Smart Resources. In addition it is also addressed the flexibility and scalability ofimplementation by combining real and simulated devices into the same platform

  9. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  10. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  11. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Wei Zhouping; Wan Gang; Gardi, Lori; Mills, Gregory; Downey, Donal; Fenster, Aaron

    2004-01-01

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  12. Design on a Composite Mobile System for Exploration Robot

    OpenAIRE

    Shang, Weiyan; Yang, Canjun; Liu, Yunping; Wang, Junming

    2016-01-01

    In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS) has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been st...

  13. A Review on Sensor Network Issues and Robotics

    Directory of Open Access Journals (Sweden)

    Ji Hyoung Ryu

    2015-01-01

    Full Text Available The interaction of distributed robotics and wireless sensor networks has led to the creation of mobile sensor networks. There has been an increasing interest in building mobile sensor networks and they are the favored class of WSNs in which mobility plays a key role in the execution of an application. More and more researches focus on development of mobile wireless sensor networks (MWSNs due to its favorable advantages and applications. In WSNs robotics can play a crucial role, and integrating static nodes with mobile robots enhances the capabilities of both types of devices and enables new applications. In this paper we present an overview on mobile sensor networks in robotics and vice versa and robotic sensor network applications.

  14. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  15. The use of Fuzzy expert system in robots decision-making

    International Nuclear Information System (INIS)

    Jamaseb, Mehdi; Jafari, Shahram; Montaseri, Farshid; Dadgar, Masoud

    2014-01-01

    The main issue that is investigated in this paper, is a method for decision making of mobile robots in different conditions for this purpose, we have used expert system. In this way, that the conditions of the robot are analyzed by on expert person a special issue (like following a ball) using knowledge base and suitable decisions will be mode. Then, using this information fuzzy rules well be built, and using its rules, robots decisions can be implemented like an expert person. In this study, we have used delta3d base for implementing expert systems and CLIPS and also we have used NAO for simulation rcssserver3d robot and 3d football simulation have been used for implementing operation program

  16. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  17. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  18. Movement coordination in applied human-human and human-robot interaction

    DEFF Research Database (Denmark)

    Schubö, Anna; Vesper, Cordula; Wiesbeck, Mathey

    2007-01-01

    and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed......The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating...... coordination were affected. Implications for human-robot interaction are discussed....

  19. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  20. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  1. CLARAty: Challenges and Steps Toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2008-11-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  2. CLARAty: Challenges and Steps toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Issa A.D. Nesnas

    2006-03-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  3. Design and real-time control of a robotic system for fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  4. Modelling of cooperating robotized systems with the use of object-based approach

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  5. The role of robotic surgical system in the management of vascular disease.

    Science.gov (United States)

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Safeguards and security considerations for automated and robotic systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Jaeger, C.D.

    1994-01-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A ampersand R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S ampersand S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S ampersand S into the design of future A ampersand R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S ampersand S guidance and design considerations for automation and robotics

  7. Safeguards and security considerations for automated and robotic systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Jaeger, C.D.

    1994-01-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A ampersand R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S ampersand S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S ampersand S into the design of future A ampersand R systems. Towards this, we first examined existing A ampersand R systems from a security perspective to identify areas of concern and possible solutions to these problems. We then were able to develop generalized S ampersand S guidance and design considerations for automation and robotics

  8. Introducing geometric constraint expressions into robot constrained motion specification and control

    NARCIS (Netherlands)

    Borghesan, G.; Scioni, E.; Kheddar, A.; Bruyninckx, H.P.J.

    2016-01-01

    The problem of robotic task definition and execution was pioneered by Mason, who defined setpoint constraints where the position, velocity, and/or forces are expressed in one particular task frame for a 6-DOF robot. Later extensions generalized this approach to constraints in 1) multiple frames; 2)

  9. The development of an adaptive upper-limb stroke rehabilitation robotic system

    Science.gov (United States)

    2011-01-01

    Background Stroke is the primary cause of adult disability. To support this large population in recovery, robotic technologies are being developed to assist in the delivery of rehabilitation. This paper presents an automated system for a rehabilitation robotic device that guides stroke patients through an upper-limb reaching task. The system uses a decision theoretic model (a partially observable Markov decision process, or POMDP) as its primary engine for decision making. The POMDP allows the system to automatically modify exercise parameters to account for the specific needs and abilities of different individuals, and to use these parameters to take appropriate decisions about stroke rehabilitation exercises. Methods The performance of the system was evaluated by comparing the decisions made by the system with those of a human therapist. A single patient participant was paired up with a therapist participant for the duration of the study, for a total of six sessions. Each session was an hour long and occurred three times a week for two weeks. During each session, three steps were followed: (A) after the system made a decision, the therapist either agreed or disagreed with the decision made; (B) the researcher had the device execute the decision made by the therapist; (C) the patient then performed the reaching exercise. These parts were repeated in the order of A-B-C until the end of the session. Qualitative and quantitative question were asked at the end of each session and at the completion of the study for both participants. Results Overall, the therapist agreed with the system decisions approximately 65% of the time. In general, the therapist thought the system decisions were believable and could envision this system being used in both a clinical and home setting. The patient was satisfied with the system and would use this system as his/her primary method of rehabilitation. Conclusions The data collected in this study can only be used to provide insight into

  10. Delineated Analysis of Robotic Process Automation Tools

    OpenAIRE

    Ruchi Isaac; Riya Muni; Kenali Desai

    2017-01-01

    In this age and time when celerity is expected out of all the sectors of the country, the speed of execution of various processes and hence efficiency, becomes a prominent factor. To facilitate the speeding demands of these diverse platforms, Robotic Process Automation (RPA) is used. Robotic Process Automation can expedite back-office tasks in commercial industries, remote management tasks in IT industries and conservation of resources in multiple sectors. To implement RPA, many software ...

  11. Design and Evaluation of a DIY Construction System for Educational Robot Kits

    Science.gov (United States)

    Vandevelde, Cesar; Wyffels, Francis; Ciocci, Maria-Cristina; Vanderborght, Bram; Saldien, Jelle

    2016-01-01

    Building a robot from scratch in an educational context can be a challenging prospect. While a multitude of projects exist that simplify the electronics and software aspects of a robot, the same cannot be said for construction systems for robotics. In this paper, we present our efforts to create a low-cost do-it-yourself construction system for…

  12. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  13. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2010-12-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  14. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  15. The development of advanced robotic technology - A study on the development of Motion capturing system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Ki Ho; Lee, Yong Woo; Park, Soo Il; Choi, Jin Sung; Kim, Hae Dong; Park, Chan Yong [System Engineering Research Institute, Taejon= (Korea, Republic of)

    1996-07-01

    Robots are used to perform jobs where the performer are exposed to the radioactivity. Good human-robot-interface is required to operate the robots easily and smoothly. It is believed that virtual reality and 3D graphics technology will be the beat solution for the good human-robot-interface. Using 3D computer graphics, complex human motions can be captured and displayed on the screen. The captured motion data can be used as the input to= control the remote robots using virtual reality technologies. Thus good human-robot-interface can be constructed. The motion capturing system developed in this study are very convenient and easy to be used to operate the robot. And the required time to operate the robot with the developed system is much shorter than to operate the robots without our motion capturing system. Therefore, efficient usage of the robot and related facilities will prolong the life time of them and reduce the manpower of the operators. The 3D data produced by our system will be used to generate commands to control the robot. 6 refs., 60 figs. (author)

  16. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  17. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  18. Development of an integrated closed loop control system with virtual reality monitoring for Prototype Robotic Articulated System (PRAS)

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Dutta, Pramit; Gotewal, K.K.

    2015-01-01

    The Prototype Robotic Articulated System (PRAS) is a servo driven 4 degrees of freedom robotic arm capable of handling of upto 5 kg payload. A virtual reality based monitoring application has been developed in blender and was intergrated with the control system to read the joint values of the robotic arm at 10Hz and update the CAD model to visualize the robotic operations remotely. This paper presents the design details and implementation results of the integrated control system for PRAS

  19. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  20. A remote assessment system with a vision robot and wearable sensors.

    Science.gov (United States)

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  1. Development of the robot system to assist CT-guided brain surgery

    International Nuclear Information System (INIS)

    Koyama, H.; Funakubo, H.; Komeda, T.; Uchida, T.; Takakura, K.

    1999-01-01

    The robot technology was introduced into the stereotactic neurosurgery for application to biopsy, blind surgery, and functional neurosurgery. The authors have developed a newly designed the robot system to assist CT-guided brain surgery, designed to allow a biopsy needle to reach the targget such as a cerebral tumor within a brain automatically on the basis of the X,Y, and Z coordinates obtained by CT scanner. In this paper we describe construction of the robot, the control of the robot by CT image, robot simulation, and investigated a phantom experiment using CT image. (author)

  2. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  3. Development of robotic mobile platform with the universal chassis system

    Science.gov (United States)

    Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.

    2018-02-01

    The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.

  4. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  5. An expert system for automated robotic grasping

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1990-01-01

    Many US Department of Energy sites and facilities will be environmentally remediated during the next several decades. A number of the restoration activities (e.g., decontamination and decommissioning of inactive nuclear facilities) can only be carried out by remote means and will be manipulation-intensive tasks. Experience has shown that manipulation tasks are especially slow and fatiguing for the human operator of a remote manipulator. In this paper, the authors present a rule-based expert system for automated, dextrous robotic grasping. This system interprets the features of an object to generate hand shaping and wrist orientation for a robot hand and arm. The system can be used in several different ways to lessen the demands on the human operator of a remote manipulation system - either as a fully autonomous grasping system or one that generates grasping options for a human operator and then automatically carries out the selected option

  6. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  7. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    Science.gov (United States)

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  8. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.

    Science.gov (United States)

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  9. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  10. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  11. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  12. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Science.gov (United States)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  13. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    Science.gov (United States)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  14. Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System

    Science.gov (United States)

    Hu, Min

    2017-10-01

    In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.

  15. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  16. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  17. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Science.gov (United States)

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  18. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  19. Mobile robots and remote systems in nuclear applications

    International Nuclear Information System (INIS)

    Segovia de los Rios, J. A.; Benitez R, J. S.

    2010-01-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  20. The development of robotic system for the nuclear power plants - A study on the manipulation of teleoperation system using redundant robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung Oh; Cho, Hyung Seok; Jang, Pyung Hoon; Park, Ki Chul; Hyun, Jang Hwan; Kim, Joo Gon; Park, Young Joon; Hwang, Woong Tae; Jeon, Yong Soo; Lee, Joo Yeon; Ahn, Kyung Mo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    In this project the following 4 sub- projects have been studied for use in nuclear power plants. 1) Development of precision control method for the hydraulic and pneumatic actuators: The fuzzy gain tuner for the pneumatic servo position control system with the state feedback controller was designed= by using the professional knowledge. Through the experimental study, this control method was verified to obtain the optimal fain automatically. 2) Development of an universal master arm and force reflecting teleoperation system: An autonomous telerobot system with a vision based force reflection capability was developed. To effectly implement visual force feedback, 3 different control methods were also developed. 3) A study on the analysis and control of the redundant robot manipulator: An optimal joint-path of 8-DOF redundant KAEROT for the nozzle dam task was generated and its effectiveness and safety was verified by using graphic/animation tool. The proposed dynamic control algorithm for the redundant robot was applied to the experiment of planar 3- DOF redundant robot, showing good performance. 4) A study on the robot/user interface design: A set of final design and its console table was developed, which has metaphorical identity and user-friendly interface and a study mock-up was also developed to identify the possibility in a clear form. 33 refs., 3 tabs., 11 figs. (author)

  1. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  2. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  3. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  4. Design and evaluation of a motor imagery electroencephalogram-controlled robot system

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available Brain–computer interface provides a new communication channel to control external device by directly translating the brain activity into commands. In this article, as the foundation of electroencephalogram-based robot-assisted upper limb rehabilitation therapy, we report on designing a brain–computer interface–based online robot control system which is made up of electroencephalogram amplifier, acquisition and experimental platform, feature extraction algorithm based on discrete wavelet transform and autoregressive model, linear discriminant analysis classifier, robot control board, and Rhino XR-1 robot. The performance of the system has been tested by 30 participants, and satisfactory results are achieved with an average error rate of 8.5%. Moreover, the advantage of the feature extraction method was further validated by the Graz data set for brain–computer interface competition 2003, and an error rate of 10.0% was obtained. This method provides a useful way for the research of brain–computer interface system and lays a foundation for brain–computer interface–based robotic upper extremity rehabilitation therapy.

  5. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    Science.gov (United States)

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  7. Folding System for the Clothes by a Robot and Tools

    OpenAIRE

    大澤, 文明; 関, 啓明; 神谷, 好承

    2004-01-01

    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  8. Interacting With Robots to Investigate the Bases of Social Interaction.

    Science.gov (United States)

    Sciutti, Alessandra; Sandini, Giulio

    2017-12-01

    Humans show a great natural ability at interacting with each other. Such efficiency in joint actions depends on a synergy between planned collaboration and emergent coordination, a subconscious mechanism based on a tight link between action execution and perception. This link supports phenomena as mutual adaptation, synchronization, and anticipation, which cut drastically the delays in the interaction and the need of complex verbal instructions and result in the establishment of joint intentions, the backbone of social interaction. From a neurophysiological perspective, this is possible, because the same neural system supporting action execution is responsible of the understanding and the anticipation of the observed action of others. Defining which human motion features allow for such emergent coordination with another agent would be crucial to establish more natural and efficient interaction paradigms with artificial devices, ranging from assistive and rehabilitative technology to companion robots. However, investigating the behavioral and neural mechanisms supporting natural interaction poses substantial problems. In particular, the unconscious processes at the basis of emergent coordination (e.g., unintentional movements or gazing) are very difficult-if not impossible-to restrain or control in a quantitative way for a human agent. Moreover, during an interaction, participants influence each other continuously in a complex way, resulting in behaviors that go beyond experimental control. In this paper, we propose robotics technology as a potential solution to this methodological problem. Robots indeed can establish an interaction with a human partner, contingently reacting to his actions without losing the controllability of the experiment or the naturalness of the interactive scenario. A robot could represent an "interactive probe" to assess the sensory and motor mechanisms underlying human-human interaction. We discuss this proposal with examples from our

  9. An intention driven hand functions task training robotic system.

    Science.gov (United States)

    Tong, K Y; Ho, S K; Pang, P K; Hu, X L; Tam, W K; Fung, K L; Wei, X J; Chen, P N; Chen, M

    2010-01-01

    A novel design of a hand functions task training robotic system was developed for the stroke rehabilitation. It detects the intention of hand opening or hand closing from the stroke person using the electromyography (EMG) signals measured from the hemiplegic side. This training system consists of an embedded controller and a robotic hand module. Each hand robot has 5 individual finger assemblies capable to drive 2 degrees of freedom (DOFs) of each finger at the same time. Powered by the linear actuator, the finger assembly achieves 55 degree range of motion (ROM) at the metacarpophalangeal (MCP) joint and 65 degree range of motion (ROM) at the proximal interphalangeal (PIP) joint. Each finger assembly can also be adjusted to fit for different finger length. With this task training system, stroke subject can open and close their impaired hand using their own intention to carry out some of the daily living tasks.

  10. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    Science.gov (United States)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  11. Design and validation of a CT-guided robotic system for lung cancer brachytherapy.

    Science.gov (United States)

    Dou, Huaisu; Jiang, Shan; Yang, Zhiyong; Sun, Luqing; Ma, Xiaodong; Huo, Bin

    2017-09-01

    Currently, lung brachytherapy in clinical setting is a complex procedure. Operation accuracy depends on accurate positioning of the template; however, it is difficult to guarantee the positioning accuracy manually. Application of robotic-assisted systems can simplify the procedure and improve the manual positioning accuracy. Therefore, a novel CT-guided robotic system was developed to assist the lung cancer brachytherapy. A four degree-of-freedom (DOF) robot, controlled by a lung brachytherapy treatment planning system (TPS) software, was designed and manufactured to assist the template positioning. Target position of the template can be obtained from the treatment plan, thus the robot is driven to the target position automatically. The robotic system was validated in both the laboratory and the CT environment. In laboratory environment, a 3D laser tracker and an inertial measurement unit (IMU) were used to measure the mechanical accuracy in air, which includes positioning accuracy and position repeatability. Working reliability was also validated in this procedure by observing the response reliability and calculating the position repeatability. Imaging artifacts and accuracy of the robot registration were validated in the CT environment by using an artificial phantom with fiducial markers. CT images were obtained and used to test the image artifact and calculate the registration accuracy. Phantom experiments were conducted to test the accuracy of needle insertion by using a transparent hydrogel phantom with a high imitation artificial phantom. Also, the efficiency was validated in this procedure by comparing time costs in manual positioning with robotic positioning under the same experimental conditions. The robotic system achieved the positioning accuracy of 0.28 ± 0.25 mm and the position repeatability of 0.09 ± 0.11 mm. Experimental results showed that the robot was CT-compatible and responded reliably to the control commands. The mean registration accuracy

  12. Modelling of industrial robot in LabView Robotics

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  13. Service Robotics in Healthcare: A Perspective for Information Systems Researchers?

    OpenAIRE

    Garmann-Johnsen, Niels Frederik; Mettler, Tobias; Sprenger, Michaela

    2014-01-01

    Recent advances in electronics and telecommunication have paved the way for service robots to enter the clinical world. While service robotics has long been a core research theme in computer science and other engineering-related fields, it has attracted little interest of Information Systems (IS) researchers so far. We argue that service robotics represents an interesting area of investigation, especially for healthcare, since current research lacks a thorough examination of socio-technical p...

  14. System approach to automation and robotization of drivage

    Science.gov (United States)

    Zinov’ev, VV; Mayorov, AE; Starodubov, AN; Nikolaev, PI

    2018-03-01

    The authors consider the system approach to finding ways of no-man drilling and blasting in the face area by means of automation and robotization of operations with a view to reducing injuries in mines. The analysis is carried out in terms of the drilling and blasting technology applied in Makarevskoe Coal Field, Kuznetsk Coal Basin. Within the system-functional approach and using INDEFO procedure, the processes of drilling and blasthole charging are decomposed into related elementary operations. The automation and robotization methods to avoid the presence of miners in the face are found for each operation.

  15. A research review on clinical needs, technical requirements, and normativity in the design of surgical robots.

    Science.gov (United States)

    Díaz, Carlos Eduardo; Fernández, Roemi; Armada, Manuel; García, Felipe

    2017-12-01

    Nowadays robots play an important role in society, mainly due to the significant benefits they provide when utilized for assisting human beings in the execution of dangerous or repetitive tasks. Medicine is one of the fields in which robots are gaining greater use and development, especially those employed in minimally invasive surgery (MIS). However, due to the particular conditions of the human body where robots have to act, the design of these systems is complex, not only from a technical point of view, but also because the clinical needs and the normativity aspects are important considerations that have to be taken into account in order to achieve better performances and more secure systems for patients and surgeons. Thus, this paper explores the clinical needs and the technical requirements that will trace the roadmap for the next scientific and technological advances in the field of robotic surgery, the metrics that should be defined for safe technology development and the standards that are being elaborated for boosting the industry and facilitating systems integration. Copyright © 2017 John Wiley & Sons, Ltd.

  16. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  17. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-03-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  18. Graphical analysis of power systems for mobile robotics

    Science.gov (United States)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  19. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  20. The Development of Control System Design for 5 DOF Nuclear Malaysia Robot Arm v2

    International Nuclear Information System (INIS)

    Mohd Zaid Hassan; Anwar Abdul Rahman; Rosli Darmawan; Mohd Arif Hamzah

    2011-01-01

    This paper describes a general design and implementation approach used for programming and controlling robotic systems such as remotely operated robotic manipulator systems. A hierarchical approach to control system design is adopted. The hierarchical design is translated into a component-based software design. A low-cost robotic arm and controller system is presented. The controller is a modular model of the robotic arm with the same degrees of freedom whose joints are equipped with sensors. The system takes advantage of the low cost and wide availability of control components and uses a low-cost, easy-to-program microprocessor. Furthermore, it presents the design and the construction of electronic systems for the control of an articulated robot developed for research and development related with instrumentation and control. The system is simple but it is designed the motor to move the robot arm to proper angular position according to the input controller. Limitations of the micro controller are discussed, and suggestions for further development of the robot arm and control are made. (author)

  1. Dynamic Behavior Sequencing in a Hybrid Robot Architecture

    Science.gov (United States)

    2008-03-01

    robots to represent and execute procedures, scripts , and plans in dynamic environ- ments [24]. Ingrand et al. describe the PRS as the link between the...based language in a similar style to Java that follows a model-based programming approach. A model-based programming approach refers to embedded...refers to the angular orientation of the robot from its initial heading. Therefore, the θ parameter value of zero (0) indicates that the desired

  2. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Science.gov (United States)

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  3. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero

    2010-03-01

    Full Text Available In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites, a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  4. Defining Execution Viewpoints for a Large and Complex Software-Intensive System

    NARCIS (Netherlands)

    Callo Arias, Trosky B.; America, Pierre; Avgeriou, Paris

    2009-01-01

    An execution view is an important asset for developing large and complex systems. An execution view helps practitioners to describe, analyze, and communicate what a software system does at runtime and how it does it. In this paper, we present an approach to define execution viewpoints for an

  5. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  6. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  7. The Development of Radiation hardened tele-robot system - Development of artificial force reflection control for teleoperated mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Jang; Hong, Sun Gi; Kang, Young Hoon; Kim, Min Soeng [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    One of the most important issues in teleoperation is to provide the sense of telepresence so as to conduct the task more reliably. In particular, teleoperated mobile robots are needed to have some kinds of backup system when the operator is blind for remote situation owing to the failure of vision system. In the first year, the idea of artificial force reflection was researched to enhance the reliability of operation when the mobile robot travels on the plain ground. In the second year, we extend previous results to help the teleoperator even when the robot climbs stairs. Finally, we apply the developed control algorithms to real experiments. The artificial force reflection method has two modes; traveling on the plain ground and climbing stairs. When traveling on the plain ground, the force information is artificially generated by using the range data from the environment while generating the impulse force when climbing stairs. To verify the validity of our algorithm, we develop the simulator which consists of the joystick and the visual display system. Through some experiments using this system, we confirm the validity and effectiveness of our new idea of artificial force reflection in the teleoperated mobile robot. 11 refs., 30 figs. (Author)

  8. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    Science.gov (United States)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  9. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  10. The use of automation and robotic systems to establish and maintain lunar base operations

    Science.gov (United States)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  11. Proposed Methodology for Application of Human-like gradual Multi-Agent Q-Learning (HuMAQ) for Multi-robot Exploration

    International Nuclear Information System (INIS)

    Ray, Dip Narayan; Majumder, Somajyoti

    2014-01-01

    Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol

  12. Brain-machine interfaces for controlling lower-limb powered robotic systems

    Science.gov (United States)

    He, Yongtian; Eguren, David; Azorín, José M.; Grossman, Robert G.; Phat Luu, Trieu; Contreras-Vidal, Jose L.

    2018-04-01

    Objective. Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. Approach. To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. Main results. Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. Significance. We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the

  13. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  14. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  15. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  16. A Cross-Platform Tactile Capabilities Interface for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Jie eMa

    2016-04-01

    Full Text Available This article presents the core elements of a cross-platform tactile capabilities interface (TCI for humanoid arms. The aim of the interface is to reduce the cost of developing humanoid robot capabilities by supporting reuse through cross-platform deployment. The article presents a comparative analysis of existing robot middleware frameworks, as well as the technical details of the TCI framework that builds on the the existing YARP platform. The TCI framework currently includes robot arm actuators with robot skin sensors. It presents such hardware in a platform independent manner, making it possible to write robot control software that can be executed on different robots through the TCI frameworks. The TCI framework supports multiple humanoid platforms and this article also presents a case study of a cross-platform implementation of a set of tactile protective withdrawal reflexes that have been realised on both the Nao and iCub humanoid robot platforms using the same high-level source code.

  17. Remote measurements of radioactivity distribution with BROKK robotic system - 16147

    International Nuclear Information System (INIS)

    Ivanov, Oleg; Danilovich, Alexey; Stepanov, Vyacheslav; Smirnov, Sergey; Potapov, Victor

    2009-01-01

    Robotic system for the remote measurement of radioactivity in the reactor areas was developed. The BROKK robotic system replaces hand-held radiation measuring tools. The system consists of a collimated gamma detector, a standard gamma detector, color CCD video camera and searchlights, all mounted on a robotic platform (BROKK). The signals from the detectors are coupled with the video signals and are transferred to an operator's console via a radio channel or a cable. Operator works at a safe position. The video image of the object with imposed exposure dose rate from the detectors generates an image on the monitor screen, and the images are recorded for subsequent analysis. Preliminary work has started for the decommissioning of a research reactor at the RRC 'Kurchatov Institute'. Results of the remote radioactivity measurements with new system during radiation inspection waste storage of this reactor are presented and discussed. (authors)

  18. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  19. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  20. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)