WorldWideScience

Sample records for robotic surgical training

  1. [Simulation-based robot-assisted surgical training].

    Science.gov (United States)

    Kolontarev, K B; Govorov, A V; Rasner, P I; Sheptunov, S A; Prilepskaya, E A; Maltsev, E G; Pushkar, D Yu

    2015-12-01

    Since the first use of robotic surgical system in 2000, the robot-assisted technology has gained wide popularity throughout the world. Robot-assisted surgical training is a complex issue that requires significant efforts from students and teacher. During the last two decades, simulation-based training had received active development due to wide-spread occurrence and popularization of laparoscopic and robot-assisted surgical techniques. We performed a systematic review to identify the currently available simulators for robot-assisted surgery. We searched the Medline and Pubmed, English sources of literature data, using the following key words and phrases: "robotics", "robotic surgery", "computer assisted surgery", "simulation", "computer simulation", "virtual reality", "surgical training", and "surgical education". There were identified 565 publications, which meet the key words and phrases; 19 publications were selected for the final analysis. It was established that simulation-based training is the most promising teaching tool that can be used in the training of the next generation robotic surgeons. Today the use of simulators to train surgeons is validated. Price of devices is an obvious barrier for inclusion in the program for training of robotic surgeons, but the lack of this tool will result in a sharp increase in the duration of specialists training.

  2. Virtual Reality Simulator Systems in Robotic Surgical Training.

    Science.gov (United States)

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  3. Proficiency training on a virtual reality robotic surgical skills curriculum.

    Science.gov (United States)

    Bric, Justin; Connolly, Michael; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-12-01

    The clinical application of robotic surgery is increasing. The skills necessary to perform robotic surgery are unique from those required in open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (Fundamentals of Laparoscopic Surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool for robotic surgery. Our research group previously developed and validated a robotic training curriculum in a virtual reality (VR) simulator. We hypothesized that novice robotic surgeons could achieve proficiency levels defined by more experienced robotic surgeons on the VR robotic curriculum, and that this would result in improved performance on the actual daVinci Surgical System™. 25 medical students with no prior robotic surgery experience were recruited. Prior to VR training, subjects performed 2 FLS tasks 3 times each (Peg Transfer, Intracorporeal Knot Tying) using the daVinci Surgical System™ docked to a video trainer box. Task performance for the FLS tasks was scored objectively. Subjects then practiced on the VR simulator (daVinci Skills Simulator) until proficiency levels on all 5 tasks were achieved before completing a post-training assessment of the 2 FLS tasks on the daVinci Surgical System™ in the video trainer box. All subjects to complete the study (1 dropped out) reached proficiency levels on all VR tasks in an average of 71 (± 21.7) attempts, accumulating 164.3 (± 55.7) minutes of console training time. There was a significant improvement in performance on the robotic FLS tasks following completion of the VR training curriculum. Novice robotic surgeons are able to attain proficiency levels on a VR simulator. This leads to improved performance in the daVinci surgical platform on simulated tasks. Training to proficiency on a VR robotic surgery simulator is an efficient and viable method for acquiring robotic surgical skills.

  4. Robotic technologies in surgical oncology training and practice.

    Science.gov (United States)

    Orvieto, Marcelo A; Marchetti, Pablo; Castillo, Octavio A; Coelho, Rafael F; Chauhan, Sanket; Rocco, Bernardo; Ardila, Bobby; Mathe, Mary; Patel, Vipul R

    2011-09-01

    The modern-day surgeon is frequently exposed to new technologies and instrumentation. Robotic surgery (RS) has evolved as a minimally invasive technique aimed to improve clinical outcomes. RS has the potential to alleviate the inherent limitations of laparoscopic surgery such as two dimensional imaging, limited instrument movement and intrinsic human tremor. Since the first reported robot-assisted surgical procedure performed in 1985, the technology has dramatically evolved and currently multiple surgical specialties have incorporated RS into their daily clinical armamentarium. With this exponential growth, it should not come as a surprise the ever growing requirement for surgeons trained in RS as well as the interest from residents to receive robotic exposure during their training. For this reason, the establishment of set criteria for adequate and standardized training and credentialing of surgical residents, fellows and those trained surgeons wishing to perform RS has become a priority. In this rapidly evolving field, we herein review the past, present and future of robotic technologies and its penetration into different surgical specialties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Raven surgical robot training in preparation for da vinci.

    Science.gov (United States)

    Glassman, Deanna; White, Lee; Lewis, Andrew; King, Hawkeye; Clarke, Alicia; Glassman, Thomas; Comstock, Bryan; Hannaford, Blake; Lendvay, Thomas S

    2014-01-01

    The rapid adoption of robotic assisted surgery challenges the pace at which adequate robotic training can occur due to access limitations to the da Vinci robot. Thirty medical students completed a randomized controlled trial evaluating whether the Raven robot could be used as an alternative training tool for the Fundamentals of Laparoscopic Surgery (FLS) block transfer task on the da Vinci robot. Two groups, one trained on the da Vinci and one trained on the Raven, were tested on a criterion FLS block transfer task on the da Vinci. After robotic FLS block transfer proficiency training there was no statistically significant difference between path length (p=0.39) and economy of motion scores (p=0.06) between the two groups, but those trained on the da Vinci did have faster task times (p=0.01). These results provide evidence for the value of using the Raven robot for training prior to using the da Vinci surgical system for similar tasks.

  6. General surgery residents' perception of robot-assisted procedures during surgical training.

    Science.gov (United States)

    Farivar, Behzad S; Flannagan, Molly; Leitman, I Michael

    2015-01-01

    With the continued expansion of robotically assisted procedures, general surgery residents continue to receive more exposure to this new technology as part of their training. There are currently no guidelines or standardized training requirements for robot-assisted procedures during general surgical residency. The aim of this study was to assess the effect of this new technology on general surgery training from the residents' perspective. An anonymous, national, web-based survey was conducted on residents enrolled in general surgery training in 2013. The survey was sent to 240 Accreditation Council for Graduate Medical Education-approved general surgery training programs. Overall, 64% of the responding residents were men and had an average age of 29 years. Half of the responses were from postgraduate year 1 (PGY1) and PGY2 residents, and the remainder was from the PGY3 level and above. Overall, 50% of the responses were from university training programs, 32% from university-affiliated programs, and 18% from community-based programs. More than 96% of residents noted the availability of the surgical robot system at their training institution. Overall, 63% of residents indicated that they had participated in robotic surgical cases. Most responded that they had assisted in 10 or fewer robotic cases with the most frequent activities being assisting with robotic trocar placement and docking and undocking the robot. Only 18% reported experience with operating the robotic console. More senior residents (PGY3 and above) were involved in robotic cases compared with junior residents (78% vs 48%, p robotic case. Approximately 64% of residents reported that formal training in robotic surgery was important in residency training and 46% of residents indicated that robotic-assisted cases interfered with resident learning. Only 11% felt that robotic-assisted cases would replace conventional laparoscopic surgery in the future. This study illustrates that although the most residents

  7. Training in Robotic Surgery-an Overview.

    Science.gov (United States)

    Sridhar, Ashwin N; Briggs, Tim P; Kelly, John D; Nathan, Senthil

    2017-08-01

    There has been a rapid and widespread adoption of the robotic surgical system with a lag in the development of a comprehensive training and credentialing framework. A literature search on robotic surgical training techniques and benchmarks was conducted to provide an evidence-based road map for the development of a robotic surgical skills for the novice robotic surgeon. A structured training curriculum is suggested incorporating evidence-based training techniques and benchmarks for progress. This usually involves sequential progression from observation, case assisting, acquisition of basic robotic skills in the dry and wet lab setting along with achievement of individual and team-based non-technical skills, modular console training under supervision, and finally independent practice. Robotic surgical training must be based on demonstration of proficiency and safety in executing basic robotic skills and procedural tasks prior to independent practice.

  8. Surgical Residents are Excluded From Robot-assisted Surgery

    DEFF Research Database (Denmark)

    Broholm, Malene; Rosenberg, Jacob

    2015-01-01

    PURPOSE: Implementation of a robotic system may influence surgical training. The aim was to report the charge of the operating surgeon and the bedside assistant at robot-assisted procedures in urology, gynecology, and colorectal surgery. MATERIALS AND METHODS: A review of hospital charts from...... performed. In 10 (1.3%) of these procedures, a resident attended as bedside assistant and never as operating surgeon in the console. CONCLUSIONS: Our results demonstrate a severe problem with surgical education. Robot-assisted surgery is increasingly used; however, robotic surgical training during residency...... surgical procedures during a 1-year period from October 2013 to October 2014. All robot-assisted urologic, gynecologic, and colorectal procedures were identified. Charge of both operating surgeon in the console and bedside assistant were registered. RESULTS: A total of 774 robot-assisted procedures were...

  9. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model).

    Science.gov (United States)

    Whitehurst, Sabrina V; Lockrow, Ernest G; Lendvay, Thomas S; Propst, Anthony M; Dunlow, Susan G; Rosemeyer, Christopher J; Gobern, Joseph M; White, Lee W; Skinner, Anna; Buller, Jerome L

    2015-01-01

    To compare the efficacy of simulation-based training between the Mimic dV- Trainer and traditional dry lab da Vinci robot training. A prospective randomized study analyzing the performance of 20 robotics-naive participants. Participants were enrolled in an online da Vinci Intuitive Surgical didactic training module, followed by training in use of the da Vinci standard surgical robot. Spatial ability tests were performed as well. Participants were randomly assigned to 1 of 2 training conditions: performance of 3 Fundamentals of Laparoscopic Surgery dry lab tasks using the da Vinci or performance of 4 dV-Trainer tasks. Participants in both groups performed all tasks to empirically establish proficiency criterion. Participants then performed the transfer task, a cystotomy closure using the daVinci robot on a live animal (swine) model. The performance of robotic tasks was blindly assessed by a panel of experienced surgeons using objective tracking data and using the validated Global Evaluative Assessment of Robotic Surgery (GEARS), a structured assessment tool. No statistically significant difference in surgeon performance was found between the 2 training conditions, dV-Trainer and da Vinci robot. Analysis of a 95% confidence interval for the difference in means (-0.803 to 0.543) indicated that the 2 methods are unlikely to differ to an extent that would be clinically meaningful. Based on the results of this study, a curriculum on the dV- Trainer was shown to be comparable to traditional da Vinci robot training. Therefore, we have identified that training on a virtual reality system may be an alternative to live animal training for future robotic surgeons. Published by Elsevier Inc.

  10. Retention of fundamental surgical skills learned in robot-assisted surgery.

    Science.gov (United States)

    Suh, Irene H; Mukherjee, Mukul; Shah, Bhavin C; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-12-01

    Evaluation of the learning curve for robotic surgery has shown reduced errors and decreased task completion and training times compared with regular laparoscopic surgery. However, most training evaluations of robotic surgery have only addressed short-term retention after the completion of training. Our goal was to investigate the amount of surgical skills retained after 3 months of training with the da Vinci™ Surgical System. Seven medical students without any surgical experience were recruited. Participants were trained with a 4-day training program of robotic surgical skills and underwent a series of retention tests at 1 day, 1 week, 1 month, and 3 months post-training. Data analysis included time to task completion, speed, distance traveled, and movement curvature by the instrument tip. Performance of the participants was graded using the modified Objective Structured Assessment of Technical Skills (OSATS) for robotic surgery. Participants filled out a survey after each training session by answering a set of questions. Time to task completion and the movement curvature was decreased from pre- to post-training and the performance was retained at all the corresponding retention periods: 1 day, 1 week, 1 month, and 3 months. The modified OSATS showed improvement from pre-test to post-test and this improvement was maintained during all the retention periods. Participants increased in self-confidence and mastery in performing robotic surgical tasks after training. Our novel comprehensive training program improved robot-assisted surgical performance and learning. All trainees retained their fundamental surgical skills for 3 months after receiving the training program.

  11. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows.

    Science.gov (United States)

    Mirheydar, Hossein; Jones, Marklyn; Koeneman, Kenneth S; Sweet, Robert M

    2009-01-01

    Currently, robotic training for inexperienced, practicing surgeons is primarily done vis-à-vis industry and/or society-sponsored day or weekend courses, with limited proctorship opportunities. The objective of this study was to assess the impact of an extended-proctorship program at up to 32 months of follow-up. An extended-proctorship program for robotic-assisted laparoscopic radical prostatectomy was established at our institution. The curriculum consisted of 3 phases: (1) completing an Intuitive Surgical 2-day robotic training course with company representatives; (2) serving as assistant to a trained proctor on 5 to 6 cases; and (3) performing proctored cases up to 1 year until confidence was achieved. Participants were surveyed and asked to evaluate on a 5-point Likert scale their operative experience in robotics and satisfaction regarding their training. Nine of 9 participants are currently performing robotic-assisted laparoscopic radical prostatectomy (RALP) independently. Graduates of our program have performed 477 RALP cases. The mean number of cases performed within phase 3 was 20.1 (range, 5 to 40) prior to independent practice. The program received a rating of 4.2/5 for effectiveness in teaching robotic surgery skills. Our robotic program, with extended proctoring, has led to an outstanding take-rate for disseminating robotic skills in a metropolitan community.

  12. Mentoring console improves collaboration and teaching in surgical robotics.

    Science.gov (United States)

    Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R

    2006-10-01

    One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.

  13. Robotic surgical training.

    Science.gov (United States)

    Ben-Or, Sharon; Nifong, L Wiley; Chitwood, W Randolph

    2013-01-01

    In July 2000, the da Vinci Surgical System (Intuitive Surgical, Inc) received Food and Drug Administration approval for intracardiac applications, and the first mitral valve repair was done at the East Carolina Heart Institute in May 2000. The system is now approved and used in many surgical specialties. With this disruptive technology and accepted use, surgeons and hospitals are seeking the most efficacious training pathway leading to safe use and responsible credentialing.One of the most important issues related to safe use is assembling the appropriate team of professionals involved with patient care. Moreover, proper patient selection and setting obtainable goals are also important.Creation and maintenance of a successful program are discussed in the article focusing on realistic goals. This begins with a partnership between surgeon leaders, hospital administrators, and industry support. Through this partnership, an appropriate training pathway and clinical pathway for success can be outlined. A timeline can then be created with periods of data analysis and adjustments as necessary. A successful program is attainable by following this pathway and attending to every detail along the journey.

  14. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    Science.gov (United States)

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  16. Consistency of performance of robot-assisted surgical tasks in virtual reality.

    Science.gov (United States)

    Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N

    2009-01-01

    The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.

  17. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  18. Current state of virtual reality simulation in robotic surgery training: a review.

    Science.gov (United States)

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  19. Validation of a virtual reality-based robotic surgical skills curriculum.

    Science.gov (United States)

    Connolly, Michael; Seligman, Johnathan; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-05-01

    The clinical application of robotic-assisted surgery (RAS) is rapidly increasing. The da Vinci Surgical System™ is currently the only commercially available RAS system. The skills necessary to perform robotic surgery are unique from those required for open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (fundamentals of laparoscopic surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool specific for robotic surgery. Based on previously published data and expert opinion, we developed a robotic skills curriculum. We sought to evaluate this curriculum for evidence of construct validity (ability to discriminate between users of different skill levels). Four experienced surgeons (>20 RAS) and 20 novice surgeons (first-year medical students with no surgical or RAS experience) were evaluated. The curriculum comprised five tasks utilizing the da Vinci™ Skills Simulator (Pick and Place, Camera Targeting 2, Peg Board 2, Matchboard 2, and Suture Sponge 3). After an orientation to the robot and a period of acclimation in the simulator, all subjects completed three consecutive repetitions of each task. Computer-derived performance metrics included time, economy of motion, master work space, instrument collisions, excessive force, distance of instruments out of view, drops, missed targets, and overall scores (a composite of all metrics). Experienced surgeons significantly outperformed novice surgeons in most metrics. Statistically significant differences were detected for each task in regards to mean overall scores and mean time (seconds) to completion. The curriculum we propose is a valid method of assessing and distinguishing robotic surgical skill levels on the da Vinci Si™ Surgical System. Further study is needed to establish proficiency levels and to demonstrate that training on the simulator with the proposed curriculum leads to improved robotic

  20. Robotic laparoscopic surgery: cost and training.

    Science.gov (United States)

    Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H

    2009-06-01

    The advantages of minimally invasive surgery are well accepted. Shorter hospital stays, decreased postoperative pain, rapid return to preoperative activity, decreased postoperative ileus, and preserved immune function are among the benefits of the laparoscopic approach. However, the instruments of laparoscopy afford surgeons limited precision and poor ergonomics, and their use is associated with a significant learning curve and the amount of time and energy necessary to develop and maintain such advanced laparoscopic skills is not insignificant. The robotic surgery allows all laparoscopists to perform advanced laparoscopic procedures with greater ease. The potential advantages of surgical robotic systems include making advanced laparoscopic surgical procedures accessible to surgeons who do not have advanced video endoscopic training and broadening the scope of surgical procedures that can be performed using the laparoscopic method. The wristed instruments, x10 magnifications, tremor filtering, scaling of movements and three-dimensional view allow the urologist to perform the intricate dissection and anastomosis with high precision. The robot is not, however, without significant disadvantages as compared with traditional laparoscopy. These include greater expense and consumption of operating room resources such as space and the availability of skilled technical staff, complete elimination of tactile feedback, and more limited options for trocar placement. The current cost of the da Vinci system is $ 1.2 million and annual maintenance is $ 138000. Many studies suggest that depreciation and maintenance costs can be minimised if the number of robotic cases is increased. The high cost of purchasing and maintaining the instruments of the robotic system is one of its many disadvantages. The availability of the robotic systems to only a limited number of centres reduces surgical training opportunities. Hospital administrators and surgeons must define the reasons for

  1. Development and validation of a composite scoring system for robot-assisted surgical training--the Robotic Skills Assessment Score.

    Science.gov (United States)

    Chowriappa, Ashirwad J; Shi, Yi; Raza, Syed Johar; Ahmed, Kamran; Stegemann, Andrew; Wilding, Gregory; Kaouk, Jihad; Peabody, James O; Menon, Mani; Hassett, James M; Kesavadas, Thenkurussi; Guru, Khurshid A

    2013-12-01

    A standardized scoring system does not exist in virtual reality-based assessment metrics to describe safe and crucial surgical skills in robot-assisted surgery. This study aims to develop an assessment score along with its construct validation. All subjects performed key tasks on previously validated Fundamental Skills of Robotic Surgery curriculum, which were recorded, and metrics were stored. After an expert consensus for the purpose of content validation (Delphi), critical safety determining procedural steps were identified from the Fundamental Skills of Robotic Surgery curriculum and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop Robotic Skills Assessment Score (RSA-Score). Robotic Skills Assessment mainly focuses on safety in operative field, critical error, economy, bimanual dexterity, and time. Following, the RSA-Score was further evaluated for construct validation and feasibility. Spearman correlation tests performed between tasks using the RSA-Scores indicate no cross correlation. Wilcoxon rank sum tests were performed between the two groups. The proposed RSA-Score was evaluated on non-robotic surgeons (n = 15) and on expert-robotic surgeons (n = 12). The expert group demonstrated significantly better performance on all four tasks in comparison to the novice group. Validation of the RSA-Score in this study was carried out on the Robotic Surgical Simulator. The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical tents during robot-assisted surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The effect of music on robot-assisted laparoscopic surgical performance.

    Science.gov (United States)

    Siu, Ka-Chun; Suh, Irene H; Mukherjee, Mukul; Oleynikov, Dmitry; Stergiou, Nick

    2010-12-01

    Music is often played in the operating room to increase the surgeon's concentration and to mask noise. It could have a beneficial effect on surgical performance. Ten participants with limited experience with the da Vinci robotic surgical system were recruited to perform two surgical tasks: suture tying and mesh alignment when classical, jazz, hip-hop, and Jamaican music were presented. Kinematics of the instrument tips of the surgical robot and surface electromyography of the subjects were recorded. Results revealed that a significant music effect was found for both tasks with decreased time to task completion (P = .005) and total travel distance (P = .021) as well as reduced muscle activations ( P = .016) and increased median muscle frequency (P = .034). Subjects improved their performance significantly when they listened to either hip-hop or Jamaican music. In conclusion, music with high rhythmicity has a beneficial effect on robotic surgical performance. Musical environment may benefit surgical training and make acquisition of surgical skills more efficient.

  3. Review of emerging surgical robotic technology.

    Science.gov (United States)

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  4. Residency Training in Robotic General Surgery: A Survey of Program Directors.

    Science.gov (United States)

    George, Lea C; O'Neill, Rebecca; Merchant, Aziz M

    2018-01-01

    Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. 20 program directors were surveyed, a majority being from medium-sized programs (4-7 graduating residents per year). Most respondents (73.68%) had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%), with simulation training prior to console use (84.21%). About two-thirds of the respondents (63.16%) believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%). A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training.

  5. Robotic technology results in faster and more robust surgical skill acquisition than traditional laparoscopy.

    Science.gov (United States)

    Moore, Lee J; Wilson, Mark R; Waine, Elizabeth; Masters, Rich S W; McGrath, John S; Vine, Samuel J

    2015-03-01

    Technical surgical skills are said to be acquired quicker on a robotic rather than laparoscopic platform. However, research examining this proposition is scarce. Thus, this study aimed to compare the performance and learning curves of novices acquiring skills using a robotic or laparoscopic system, and to examine if any learning advantages were maintained over time and transferred to more difficult and stressful tasks. Forty novice participants were randomly assigned to either a robotic- or laparoscopic-trained group. Following one baseline trial on a ball pick-and-drop task, participants performed 50 learning trials. Participants then completed an immediate retention trial and a transfer trial on a two-instrument rope-threading task. One month later, participants performed a delayed retention trial and a stressful multi-tasking trial. The results revealed that the robotic-trained group completed the ball pick-and-drop task more quickly and accurately than the laparoscopic-trained group across baseline, immediate retention, and delayed retention trials. Furthermore, the robotic-trained group displayed a shorter learning curve for accuracy. The robotic-trained group also performed the more complex rope-threading and stressful multi-tasking transfer trials better. Finally, in the multi-tasking trial, the robotic-trained group made fewer tone counting errors. The results highlight the benefits of using robotic technology for the acquisition of technical surgical skills.

  6. Robotic surgery training with commercially available simulation systems in 2011: a current review and practice pattern survey from the society of urologic robotic surgeons.

    Science.gov (United States)

    Lallas, Costas D; Davis, John W

    2012-03-01

    Virtual reality (VR) simulation has the potential to standardize surgical training for robotic surgery. We sought to evaluate all commercially available VR robotic simulators. A MEDLINE(®) literature search was performed of all applicable keywords. Available VR simulators were evaluated with regard to face, content, and construct validation. Additionally, a survey was e-mailed to all members of the Endourological Society, querying the pervasiveness of VR simulators in robotic surgical training. Finally, each company was e-mailed to ask for a price quote for their respective system. There are four VR robotic surgical simulators currently available: RoSS™, dV-Trainer™, SEP Robot™, and da Vinci(®) Skills Simulator™. Each system is represented in the literature and all possess varying degrees of face, content, and construct validity. Although all systems have basic skill sets with performance analysis and metrics software, most do not contain procedural components. When evaluating the results of our survey, most respondents did not possess a VR simulator although almost all believed there to be great potential for these devices in robotic surgical training. With the exception of the SEP Robot, all VR simulators are similar in price. VR simulators have a definite role in the future of robotic surgical training. Although the simulators target technical components of training, their largest impact will be appreciated when incorporated into a comprehensive educational curriculum.

  7. Residency Training in Robotic General Surgery: A Survey of Program Directors

    Directory of Open Access Journals (Sweden)

    Lea C. George

    2018-01-01

    Full Text Available Objective. Robotic surgery continues to expand in minimally invasive surgery; however, the literature is insufficient to understand the current training process for general surgery residents. Therefore, the objectives of this study were to identify the current approach to and perspectives on robotic surgery training. Methods. An electronic survey was distributed to general surgery program directors identified by the Accreditation Council for Graduate Medical Education website. Multiple choice and open-ended questions regarding current practices and opinions on robotic surgery training in general surgery residency programs were used. Results. 20 program directors were surveyed, a majority being from medium-sized programs (4–7 graduating residents per year. Most respondents (73.68% had a formal robotic surgery curriculum at their institution, with 63.16% incorporating simulation training. Approximately half of the respondents believe that more time should be dedicated to robotic surgery training (52.63%, with simulation training prior to console use (84.21%. About two-thirds of the respondents (63.16% believe that a formal robotic surgery curriculum should be established as a part of general surgery residency, with more than half believing that exposure should occur in postgraduate year one (55%. Conclusion. A formal robotics curriculum with simulation training and early surgical exposure for general surgery residents should be given consideration in surgical residency training.

  8. From dV-Trainer to Real Robotic Console: The Limitations of Robotic Skill Training.

    Science.gov (United States)

    Yang, Kun; Zhen, Hang; Hubert, Nicolas; Perez, Manuela; Wang, Xing Huan; Hubert, Jacques

    To investigate operators' performance quality, mental stress, and ergonomic habits through a training curriculum on robotic simulators. Forty volunteers without robotic surgery experience were recruited to practice 2 exercises on a dV-Trainer (dVT) for 14 hours. The simulator software (M-score a ) provided an automatic evaluation of the overall score for the surgeons' performance. Each participant provided a subjective difficulty score (validity to be proven) for each exercise. Their ergonomic habits were evaluated based on the workspace range and armrest load-validated criteria for evaluating the proficiency of using the armrest. They then repeated the same tasks on a da Vinci Surgical Skill Simulator for a final-level test. Their final scores were compared with their initial scores and the scores of 5 experts on the da Vinci Surgical Skill Simulator. A total of 14 hours of training on the dVT significantly improved the surgeons' performance scores to the expert level with a significantly reduced workload, but their ergonomic score was still far from the expert level. Sufficient training on the dVT improves novices' performance, reduces psychological stress, and inculcates better ergonomic habits. Among the evaluated criteria, novices had the most difficulty in achieving expert levels of ergonomic skills. The training benefits of robotic surgery simulators should be determined with quantified variables. The detection of the limitations during robotic training curricula could guide the targeted training and improve the training effect. Copyright © 2017. Published by Elsevier Inc.

  9. Integrating surgical robots into the next medical toolkit.

    Science.gov (United States)

    Lai, Fuji; Entin, Eileen

    2006-01-01

    Surgical robots hold much promise for revolutionizing the field of surgery and improving surgical care. However, despite the potential advantages they offer, there are multiple barriers to adoption and integration into practice that may prevent these systems from realizing their full potential benefit. This study elucidated some of the most salient considerations that need to be addressed for integration of new technologies such as robotic systems into the operating room of the future as it evolves into a complex system of systems. We conducted in-depth interviews with operating room team members and other stakeholders to identify potential barriers in areas of workflow, teamwork, training, clinical acceptance, and human-system interaction. The findings of this study will inform an approach for the design and integration of robotics and related computer-assisted technologies into the next medical toolkit for "computer-enhanced surgery" to improve patient safety and healthcare quality.

  10. Objective assessment in residency-based training for transoral robotic surgery.

    Science.gov (United States)

    Curry, Martin; Malpani, Anand; Li, Ryan; Tantillo, Thomas; Jog, Amod; Blanco, Ray; Ha, Patrick K; Califano, Joseph; Kumar, Rajesh; Richmon, Jeremy

    2012-10-01

    To develop a robotic surgery training regimen integrating objective skill assessment for otolaryngology and head and neck surgery trainees consisting of training modules of increasing complexity leading up to procedure-specific training. In particular, we investigated applications of such a training approach for surgical extirpation of oropharyngeal tumors via a transoral approach using the da Vinci robotic system. Prospective blinded data collection and objective evaluation (Objective Structured Assessment of Technical Skills [OSATS]) of three distinct phases using the da Vinci robotic surgical system in an academic university medical engineering/computer science laboratory setting. Between September 2010 and July 2011, eight otolaryngology-head and neck surgery residents and four staff experts from an academic hospital participated in three distinct phases of robotic surgery training involving 1) robotic platform operational skills, 2) set up of the patient side system, and 3) a complete ex vivo surgical extirpation of an oropharyngeal tumor located in the base of tongue. Trainees performed multiple (four) approximately equally spaced training sessions in each stage of the training. In addition to trainees, baseline performance data were obtained for the experts. Each surgical stage was documented with motion and event data captured from the application programming interfaces of the da Vinci system, as well as separate video cameras as appropriate. All data were assessed using automated skill measures of task efficiency and correlated with structured assessment (OSATS and similar Likert scale) from three experts to assess expert and trainee differences and compute automated and expert assessed learning curves. Our data show that such training results in an improved didactic robotic knowledge base and improved clinical efficiency with respect to the set up and console manipulation. Experts (e.g., average OSATS, 25; standard deviation [SD], 3.1; module 1, suturing

  11. General surgery training and robotics: Are residents improving their skills?

    Science.gov (United States)

    Finnerty, Brendan M; Afaneh, Cheguevara; Aronova, Anna; Fahey, Thomas J; Zarnegar, Rasa

    2016-02-01

    While robotic-assisted operations have become more prevalent, many general surgery residencies do not have a formal robotic training curriculum. We sought to ascertain how well current general surgery training permits acquisition of robotic skills by comparing robotic simulation performance across various training levels. Thirty-six participants were categorized by level of surgical training: eight medical students (MS), ten junior residents (JR), ten mid-level residents (MLR), and eight senior residents (SR). Participants performed three simulation tasks on the da Vinci (®) Skills Simulator (MatchBoard, EnergyDissection, SutureSponge). Each task's scores (0-100) and cumulative scores (0-300) were compared between groups. There were no differences in sex, hand dominance, video gaming history, or prior robotic experience between groups; however, SR was the oldest (p Robotic skillsets acquired during general surgery residency show minimal improvement during the course of training, although laparoscopic experience is correlated with advanced robotic task performance. Changes in residency curricula or pursuit of fellowship training may be warranted for surgeons seeking proficiency.

  12. Automated surgical skill assessment in RMIS training.

    Science.gov (United States)

    Zia, Aneeq; Essa, Irfan

    2018-05-01

    Manual feedback in basic robot-assisted minimally invasive surgery (RMIS) training can consume a significant amount of time from expert surgeons' schedule and is prone to subjectivity. In this paper, we explore the usage of different holistic features for automated skill assessment using only robot kinematic data and propose a weighted feature fusion technique for improving score prediction performance. Moreover, we also propose a method for generating 'task highlights' which can give surgeons a more directed feedback regarding which segments had the most effect on the final skill score. We perform our experiments on the publicly available JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) and evaluate four different types of holistic features from robot kinematic data-sequential motion texture (SMT), discrete Fourier transform (DFT), discrete cosine transform (DCT) and approximate entropy (ApEn). The features are then used for skill classification and exact skill score prediction. Along with using these features individually, we also evaluate the performance using our proposed weighted combination technique. The task highlights are produced using DCT features. Our results demonstrate that these holistic features outperform all previous Hidden Markov Model (HMM)-based state-of-the-art methods for skill classification on the JIGSAWS dataset. Also, our proposed feature fusion strategy significantly improves performance for skill score predictions achieving up to 0.61 average spearman correlation coefficient. Moreover, we provide an analysis on how the proposed task highlights can relate to different surgical gestures within a task. Holistic features capturing global information from robot kinematic data can successfully be used for evaluating surgeon skill in basic surgical tasks on the da Vinci robot. Using the framework presented can potentially allow for real-time score feedback in RMIS training and help surgical trainees have more focused training.

  13. Robot-assisted laparoscopic skills development: formal versus informal training.

    Science.gov (United States)

    Benson, Aaron D; Kramer, Brandan A; Boehler, Margaret; Schwind, Cathy J; Schwartz, Bradley F

    2010-08-01

    The learning curve for robotic surgery is not completely defined, and ideal training components have not yet been identified. We attempted to determine whether skill development would be accelerated with formal, organized instruction in robotic surgical techniques versus informal practice alone. Forty-three medical students naive to robotic surgery were randomized into two groups and tested on three tasks using the robotic platform. Between the testing sessions, the students were given equally timed practice sessions. The formal training group participated in an organized, formal training session with instruction from an attending robotic surgeon, whereas the informal training group participated in an equally timed unstructured practice session with the robot. The results were compared based on technical score and time to completion of each task. There was no difference between groups in prepractice testing for any task. In postpractice testing, there was no difference between groups for the ring transfer tasks. However, for the suture placement and knot-tying task, the technical score of the formal training group was significantly better than that of the informal training group (p formal training may not be necessary for basic skills, formal instruction for more advanced skills, such as suture placement and knot tying, is important in developing skills needed for effective robotic surgery. These findings may be important in formulating potential skills labs or training courses for robotic surgery.

  14. Liability exposure for surgical robotics instructors.

    Science.gov (United States)

    Lee, Yu L; Kilic, Gokhan; Phelps, John Y

    2012-01-01

    Surgical robotics instructors provide an essential service in improving the competency of novice gynecologic surgeons learning robotic surgery and advancing surgical skills on behalf of patients. However, despite best intentions, robotics instructors and the gynecologists who use their services expose themselves to liability. The fear of litigation in the event of a surgical complication may reduce the availability and utility of robotics instructors. A better understanding of the principles of duty of care and the physician-patient relationship, and their potential applicability in a court of law likely will help to dismantle some concerns and uncertainties about liability. This commentary is not meant to discourage current and future surgical instructors but to raise awareness of liability issues among robotics instructors and their students and to recommend certain preventive measures to curb potential liability risks. Published by Elsevier Inc.

  15. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  16. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  17. Implementing a robotics curriculum at an academic general surgery training program: our initial experience.

    Science.gov (United States)

    Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R

    2016-09-01

    The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.

  18. Surgical Robotics Research in Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-02-29

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery

  19. Surgical Robotics Research in Cardiovascular Disease

    International Nuclear Information System (INIS)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    2008-01-01

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. The high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ( 31 P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these delivery devices

  20. Open core control software for surgical robots.

    Science.gov (United States)

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several

  1. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Directory of Open Access Journals (Sweden)

    Youri P. A. Tan

    2018-03-01

    Full Text Available Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  2. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Science.gov (United States)

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  3. Prior video game exposure does not enhance robotic surgical performance.

    Science.gov (United States)

    Harper, Jonathan D; Kaiser, Stefan; Ebrahimi, Kamyar; Lamberton, Gregory R; Hadley, H Roger; Ruckle, Herbert C; Baldwin, D Duane

    2007-10-01

    Prior research has demonstrated that counterintuitive laparoscopic surgical skills are enhanced by experience with video games. A similar relation with robotic surgical skills has not been tested. The purpose of this study was to determine whether prior video-game experience enhances the acquisition of robotic surgical skills. A series of 242 preclinical medical students completed a self-reported video-game questionnaire detailing the frequency, duration, and peak playing time. The 10 students with the highest and lowest video-game exposure completed a follow-up questionnaire further quantifying video game, sports, musical instrument, and craft and hobby exposure. Each subject viewed a training video demonstrating the use of the da Vinci surgical robot in tying knots, followed by 3 minutes of proctored practice time. Subjects then tied knots for 5 minutes while an independent blinded observer recorded the number of knots tied, missed knots, frayed sutures, broken sutures, and mechanical errors. The mean playing time for the 10 game players was 15,136 total hours (range 5,840-30,000 hours). Video-game players tied fewer knots than nonplayers (5.8 v 9.0; P = 0.04). Subjects who had played sports for at least 4 years had fewer mechanical errors (P = 0.04), broke fewer sutures (P = 0.01), and committed fewer total errors (P = 0.01). Similarly, those playing musical instruments longer than 5 years missed fewer knots (P = 0.05). In the extremes of video-game experience tested in this study, game playing was inversely correlated with the ability to learn robotic suturing. This study suggests that advanced surgical skills such as robotic suturing may be learned more quickly by athletes and musicians. Prior extensive video-game exposure had a negative impact on robotic performance.

  4. Evolving Educational Techniques in Surgical Training.

    Science.gov (United States)

    Evans, Charity H; Schenarts, Kimberly D

    2016-02-01

    Training competent and professional surgeons efficiently and effectively requires innovation and modernization of educational methods. Today's medical learner is quite adept at using multiple platforms to gain information, providing surgical educators with numerous innovative avenues to promote learning. With the growth of technology, and the restriction of work hours in surgical education, there has been an increase in use of simulation, including virtual reality, robotics, telemedicine, and gaming. The use of simulation has shifted the learning of basic surgical skills to the laboratory, reserving limited time in the operating room for the acquisition of complex surgical skills". Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Does previous open surgical experience have any influence on robotic surgery simulation exercises?

    Science.gov (United States)

    Cumpanas, Alin Adrian; Bardan, Razvan; Ferician, Ovidiu Catalin; Latcu, Silviu Constantin; Duta, Ciprian; Lazar, Fulger Octavian

    2017-12-01

    Within the last years, there has been a trend in many hospitals to switch their surgical activity from open/laparoscopic procedures to robotic surgery. Some open surgeons have been shifting their activity to robotic surgery. It is still unclear whether there is a transfer of open surgical skills to robotic ones. To evaluate whether such transfer of skills occurs and to identify which specific skills are more significantly transferred from the operative table to the console. Twenty-five volunteers were included in the study, divided into 2 groups: group A (15 participants) - medical students (without any surgical experience in open, laparoscopic or robotic surgery); and group B (10 participants) - surgeons with exclusively open surgical experience, without any previous laparoscopic or robotic experience. Participants were asked to complete 3 robotic simulator console exercises structured from the easiest one (Peg Board) to the toughest one (Sponge Suture). Overall scores for each exercise as well as specific metrics were compared between the two groups. There were no significant differences between overall scores of the two groups for the easiest task. Overall scores were better for group B as the exercises got more complex. For the intermediate and high-difficulty level exercises, most of the specific metrics were better for group B, with the exception of the working master space item. Our results suggest that the open surgical skills transfer to robotic skills, at least for the very beginning of the training process.

  6. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  7. The effect of a robot-assisted surgical system on the kinematics of user movements.

    Science.gov (United States)

    Nisky, Ilana; Hsieh, Michael H; Okamura, Allison M

    2013-01-01

    Teleoperated robot-assisted surgery (RAS) offers many advantages over traditional minimally invasive surgery. However, RAS has not yet realized its full potential, and it is not clear how to optimally train surgeons to use these systems. We hypothesize that the dynamics of the master manipulator impact the ability of users to make desired movements with the robot. We compared freehand and teleoperated movements of novices and experienced surgeons. To isolate the effects of dynamics from procedural knowledge, we chose simple movements rather than surgical tasks. We found statistically significant effects of teleoperation and user expertise in several aspects of motion, including target acquisition error, movement speed, and movement smoothness. Such quantitative assessment of human motor performance in RAS can impact the design of surgical robots, their control, and surgeon training methods, and eventually, improve patient outcomes.

  8. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  9. Current status of robotic simulators in acquisition of robotic surgical skills.

    Science.gov (United States)

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  10. [Robot-aided training in rehabilitation].

    Science.gov (United States)

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  11. Training in robotics: The learning curve and contemporary concepts in training.

    Science.gov (United States)

    Bach, Christian; Miernik, Arkadiusz; Schönthaler, Martin

    2014-03-01

    To define the learning curve of robot-assisted laparoscopic surgery for prostatectomy (RALP) and upper tract procedures, and show the differences between the classical approach to training and the new concept of parallel learning. This mini-review is based on the results of a Medline search using the keywords 'da Vinci', 'robot-assisted laparoscopic surgery', 'training', 'teaching' and 'learning curve'. For RALP and robot-assisted upper tract surgery, a learning curve of 8-150 procedures is quoted, with most articles proposing that 30-40 cases are needed to carry out the procedure safely. There is no consensus about which endpoints should be measured. In the traditional proctored training model, the surgeon learns the procedure linearly, following the sequential order of the surgical steps. A more recent approach is to specify the relative difficulty of each step and to train the surgeon simultaneously in several steps of equal difficulty. The entire procedure is only performed after all the steps are mastered in a timely manner. Recently, a 'warm-up' before robotic surgery has been shown to be beneficial for successful surgery in the operating room. There is no clear definition of the duration of the effective learning curve for RALP and robotic upper tract surgery. The concept of stepwise, parallel learning has the potential to accelerate the learning process and to make sure that initial cases are not too long. It can also be assumed that a preoperative 'warm up' could help significantly to improve the progress of the trainee.

  12. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.

    Science.gov (United States)

    van der Meijden, O A J; Schijven, M P

    2009-06-01

    Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisition.

  13. Application of da Vinci surgical robotic system in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    Chen Jiahai

    2018-01-01

    Full Text Available The development of minimally invasive surgery has brought a revolutionary change to surgery techniques, and endoscopic surgical robots, especially Da Vinci robotic surgical system, has further broaden the scope of minimally invasive surgery, which has been applied in a variety of surgical fields including hepatobiliary surgery. Today, the application of Da Vinci surgical robot can cover most of the operations in hepatobiliary surgery which has proved to be safe and practical. What’s more, many clinical studies in recent years have showed that Da Vinci surgical system is superior to traditional laparoscopy. This paper summarize the advantage and disadvantage of Da Vinci surgical system, and outlines the current status of and future perspectives on the robot-assisted hepatobiliary surgery based on the cases reports in recent years of the application of Da Vinci surgical robot.

  14. Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis.

    Science.gov (United States)

    Tiong, Ho Yee; Goh, Benjamin Yen Seow; Chiong, Edmund; Tan, Lincoln Guan Lim; Vathsala, Anatharaman

    2018-03-31

    Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics' approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60-70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann's solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the

  15. Frugal Design and Surgical Robotics

    OpenAIRE

    McKinley, Stephen Alan

    2016-01-01

    A new era of robotic surgery is poised to begin when critical patents held by Intuitive Surgical (IS) expire in 2016. IS market dominance for decades has led to an effective monopoly that will be challenged by several commercial enterprises working on next generation general robotic surgery systems. Robotic surgery has the potential to alleviate the skill-gap between experienced and inexperienced surgeons through the automation of sub-tasks within surgicalprocedures.The primary objective of...

  16. Human-robot skills transfer interfaces for a flexible surgical robot.

    Science.gov (United States)

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Current Capabilities and Development Potential in Surgical Robotics

    Directory of Open Access Journals (Sweden)

    Mathias Hoeckelmann

    2015-05-01

    Full Text Available Commercial surgical robots have been in clinical use since the mid-1990s, supporting surgeons in various tasks. In the past decades, many systems emerged as research platforms, and a few entered the global market. This paper summarizes the currently available surgical systems and research directions in the broader field of surgical robotics. The widely deployed teleoperated manipulators aim to enhance human cognitive and physical skills and provide smart tools for surgeons, while image-guided robotics focus on surpassing human limitations by introducing automated targeting and treatment delivery methods. Both concepts are discussed based on prototypes and commercial systems. Through concrete examples the possible future development paths of surgical robots are illustrated. While research efforts are taking different approaches to improve the capacity of such systems, the aim of this survey is to assess their maturity from the commercialization point of view.

  18. Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.

    Science.gov (United States)

    Zihni, Ahmed; Gerull, William D; Cavallo, Jaime A; Ge, Tianjia; Ray, Shuddhadeb; Chiu, Jason; Brunt, L Michael; Awad, Michael M

    2018-03-01

    Robotic platforms have the potential advantage of providing additional dexterity and precision to surgeons while performing complex laparoscopic tasks, especially for those in training. Few quantitative evaluations of surgical task performance comparing laparoscopic and robotic platforms among surgeons of varying experience levels have been done. We compared measures of quality and efficiency of Fundamentals of Laparoscopic Surgery task performance on these platforms in novices and experienced laparoscopic and robotic surgeons. Fourteen novices, 12 expert laparoscopic surgeons (>100 laparoscopic procedures performed, no robotics experience), and five expert robotic surgeons (>25 robotic procedures performed) performed three Fundamentals of Laparoscopic Surgery tasks on both laparoscopic and robotic platforms: peg transfer (PT), pattern cutting (PC), and intracorporeal suturing. All tasks were repeated three times by each subject on each platform in a randomized order. Mean completion times and mean errors per trial (EPT) were calculated for each task on both platforms. Results were compared using Student's t-test (P task performance was slower on the robotic platform compared with laparoscopy. In comparisons of expert laparoscopists performing tasks on the laparoscopic platform and expert robotic surgeons performing tasks on the robotic platform, expert robotic surgeons demonstrated fewer errors during the PC task (P = 0.009). Robotic assistance provided a reduction in errors at all experience levels for some laparoscopic tasks, but no benefit in the speed of task performance. Robotic assistance may provide some benefit in precision of surgical task performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  20. Pointing with a One-Eyed Cursor for Supervised Training in Minimally Invasive Robotic Surgery

    DEFF Research Database (Denmark)

    Kibsgaard, Martin; Kraus, Martin

    2016-01-01

    Pointing in the endoscopic view of a surgical robot is a natural and effcient way for instructors to communicate with trainees in robot-assisted minimally invasive surgery. However, pointing in a stereo-endoscopic view can be limited by problems such as video delay, double vision, arm fatigue......-day training units in robot- assisted minimally invasive surgery on anaesthetised pigs....

  1. Coordinated Multiple Cadaver Use for Minimally Invasive Surgical Training

    Science.gov (United States)

    Blaschko, Sarah D.; Brooks, H. Mark; Dhuy, S. Michael; Charest-Shell, Cynthia; Clayman, Ralph V.

    2007-01-01

    Background: The human cadaver remains the gold standard for anatomic training and is highly useful when incorporated into minimally invasive surgical training programs. However, this valuable resource is often not used to its full potential due to a lack of multidisciplinary cooperation. Herein, we propose the coordinated multiple use of individual cadavers to better utilize anatomical resources and potentiate the availability of cadaver training. Methods: Twenty-two postgraduate surgeons participated in a robot-assisted surgical training course that utilized shared cadavers. All participants completed a Likert 4-scale satisfaction questionnaire after their training session. Cadaveric tissue quality and the quality of the training session related to this material were assessed. Results: Nine participants rated the quality of the cadaveric tissue as excellent, 7 as good, 5 as unsatisfactory, and 1 as poor. Overall, 72% of participants who operated on a previously used cadaver were satisfied with their training experience and did not perceive the previous use deleterious to their training. Conclusion: The coordinated use of cadavers, which allows for multiple cadaver use for different teaching sessions, is an excellent training method that increases availability of human anatomical material for minimally invasive surgical training. PMID:18237501

  2. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation.

    Science.gov (United States)

    Wilson, Jason T; Gerber, Matthew J; Prince, Stephen W; Chen, Cheng-Wei; Schwartz, Steven D; Hubschman, Jean-Pierre; Tsao, Tsu-Chin

    2018-02-01

    Since the advent of robotic-assisted surgery, the value of using robotic systems to assist in surgical procedures has been repeatedly demonstrated. However, existing technologies are unable to perform complete, multi-step procedures from start to finish. Many intraocular surgical steps continue to be manually performed. An intraocular robotic interventional surgical system (IRISS) capable of performing various intraocular surgical procedures was designed, fabricated, and evaluated. Methods were developed to evaluate the performance of the remote centers of motion (RCMs) using a stereo-camera setup and to assess the accuracy and precision of positioning the tool tip using an optical coherence tomography (OCT) system. The IRISS can simultaneously manipulate multiple surgical instruments, change between mounted tools using an onboard tool-change mechanism, and visualize the otherwise invisible RCMs to facilitate alignment of the RCM to the surgical incision. The accuracy of positioning the tool tip was measured to be 0.205±0.003 mm. The IRISS was evaluated by trained surgeons in a remote surgical theatre using post-mortem pig eyes and shown to be effective in completing many key steps in a variety of intraocular surgical procedures as well as being capable of performing an entire cataract extraction from start to finish. The IRISS represents a necessary step towards fully automated intraocular surgery and demonstrated accurate and precise master-slave manipulation for cataract removal and-through visual feedback-retinal vein cannulation. Copyright © 2017 John Wiley & Sons, Ltd.

  3. A new training model for robot-assisted urethrovesical anastomosis and posterior muscle-fascial reconstruction: the Verona training technique.

    Science.gov (United States)

    Cacciamani, G; De Marco, V; Siracusano, S; De Marchi, D; Bizzotto, L; Cerruto, M A; Motton, G; Porcaro, A B; Artibani, W

    2017-06-01

    A training model is usually needed to teach robotic surgical technique successfully. In this way, an ideal training model should mimic as much as possible the "in vivo" procedure and allow several consecutive surgical simulations. The goal of this study was to create a "wet lab" model suitable for RARP training programs, providing the simulation of the posterior fascial reconstruction. The second aim was to compare the original "Venezuelan" chicken model described by Sotelo to our training model. Our training model consists of performing an anastomosis, reproducing the surgical procedure in "vivo" as in RARP, between proventriculus and the proximal portion of the esophagus. A posterior fascial reconstruction simulating Rocco's stitch is performed between the tissues located under the posterior surface of the esophagus and the tissue represented by the serosa of the proventriculus. From 2014 to 2015, during 6 different full-immersion training courses, thirty-four surgeons performed the urethrovesical anastomosis using our model and the Sotelo's one. After the training period, each surgeon was asked to fill out a non-validated questionnaire to perform an evaluation of the differences between the two training models. Our model was judged the best model, in terms of similarity with urethral tissue and similarity with the anatomic unit urethra-pelvic wall. Our training model as reported by all trainees is easily reproducible and anatomically comparable with the urethrovesical anastomosis as performed during radical prostatectomy in humans. It is suitable for performing posterior fascial reconstruction reported by Rocco. In this context, our surgical training model could be routinely proposed in all robotic training courses to develop specific expertise in urethrovesical anastomosis with the reproducibility of the Rocco stitch.

  4. Microsurgery robots: addressing the needs of high-precision surgical interventions.

    Science.gov (United States)

    Mattos, Leonardo S; Caldwell, Darwin G; Peretti, Giorgio; Mora, Francesco; Guastini, Luca; Cingolani, Roberto

    2016-01-01

    Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.

  5. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  6. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.

    Science.gov (United States)

    Gao, Yuanqian; Wang, Shuxin; Li, Jianmin; Li, Aimin; Liu, Hongbin; Xing, Yuan

    2017-12-01

    Robotic-assisted minimally invasive surgery changes the direct hand and eye coordination in traditional surgery to indirect instrument and camera coordination, which affects the ergonomics, operation performance, and safety. A camera, two instruments, and a target, as the descriptors, are used to construct the workspace correspondence and geometrical relationships in a surgical operation. A parametric model with a set of parameters is proposed to describe the hand-eye coordination of the surgical robot. From the results, optimal values and acceptable ranges of these parameters are identified from two tasks. A 90° viewing angle had the longest completion time; 60° instrument elevation angle and 0° deflection angle had better performance; there is no significant difference among manipulation angles and observing distances on task performance. This hand-eye coordination model provides evidence for robotic design, surgeon training, and robotic initialization to achieve dexterous and safe manipulation in surgery. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Training in urological robotic surgery. Future perspectives.

    Science.gov (United States)

    El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo

    2018-01-01

    As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.

  8. Can robotic surgery be done efficiently while training residents?

    Science.gov (United States)

    Honaker, Michael Drew; Paton, Beverly L; Stefanidis, Dimitrios; Schiffern, Lynnette M

    2015-01-01

    Robotic surgery is a rapidly growing area in surgery. In an era of emphasis on cost reduction, the question becomes how do you train residents in robotic surgery? The aim of this study was to determine if there was a difference in operative time and complications when comparing general surgery residents learning robotic cholecystectomies to those learning standard laparoscopic cholecystectomies. A retrospective analysis of adult patients undergoing robotic and laparoscopic cholecystectomy by surgical residents between March 2013 and February 2014 was conducted. Demographic data, operative factors, length of stay (LOS), and complications were examined. Univariate and multivariate analyses were performed. The significance was set at p robotic cholecystectomy group and 40 in the laparoscopic group). Age, diagnosis, and American Society of Anesthesiologists score were not significantly different between groups. There was only 1 complication in the standard laparoscopic group in which a patient had to be taken back to surgery because of an incarcerated port site. LOS was significantly higher in the standard laparoscopic group (mean = 2.28) than in the robotic group (mean = 0.56; p robotic group (mean = 97.00 minutes; p = 0.4455). When intraoperative cholangiogram was evaluated, OR time was shorter in the robotic group. Robotic training in general surgery residency does not amount to extra OR time. LOS in our study was significantly longer in the standard laparoscopic group. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  10. Construction of a Urologic Robotic Surgery Training Curriculum: How Many Simulator Sessions Are Required for Residents to Achieve Proficiency?

    Science.gov (United States)

    Wiener, Scott; Haddock, Peter; Shichman, Steven; Dorin, Ryan

    2015-11-01

    To define the time needed by urology residents to attain proficiency in computer-aided robotic surgery to aid in the refinement of a robotic surgery simulation curriculum. We undertook a retrospective review of robotic skills training data acquired during January 2012 to December 2014 from junior (postgraduate year [PGY] 2-3) and senior (PGY4-5) urology residents using the da Vinci Skills Simulator. We determined the number of training sessions attended and the level of proficiency achieved by junior and senior residents in attempting 11 basic or 6 advanced tasks, respectively. Junior residents successfully completed 9.9 ± 1.8 tasks, with 62.5% completing all 11 basic tasks. The maximal cumulative success rate of junior residents completing basic tasks was 89.8%, which was achieved within 7.0 ± 1.5 hours of training. Of senior residents, 75% successfully completed all six advanced tasks. Senior residents attended 6.3 ± 3.5 hours of training during which 5.1 ± 1.6 tasks were completed. The maximal cumulative success rate of senior residents completing advanced tasks was 85.4%. When designing and implementing an effective robotic surgical training curriculum, an allocation of 10 hours of training may be optimal to allow junior and senior residents to achieve an acceptable level of surgical proficiency in basic and advanced robotic surgical skills, respectively. These data help guide the design and scheduling of a residents training curriculum within the time constraints of a resident's workload.

  11. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  12. Towards Using a Generic Robot as Training Partner

    DEFF Research Database (Denmark)

    Sørensen, Anders Stengaard; Savarimuthu, Thiusius Rajeeth; Nielsen, Jacob

    2014-01-01

    In this paper, we demonstrate how a generic industrial robot can be used as a training partner, for upper limb training. The motion path and human/robot interaction of a non-generic upper-arm training robot is transferred to a generic industrial robot arm, and we demonstrate that the robot arm can...... implement the same type of interaction, but can expand the training regime to include both upper arm and shoulder training. We compare the generic robot to two affordable but custom-built training robots, and outline interesting directions for future work based on these training robots....

  13. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  14. Surgical Outcomes After Open, Laparoscopic, and Robotic Gastrectomy for Gastric Cancer.

    Science.gov (United States)

    Yang, Seung Yoon; Roh, Kun Ho; Kim, You-Na; Cho, Minah; Lim, Seung Hyun; Son, Taeil; Hyung, Woo Jin; Kim, Hyoung-Il

    2017-07-01

    In contrast to the significant advantages of laparoscopic versus open gastrectomy, robotic gastrectomy has shown little benefit over laparoscopic gastrectomy. This study aimed to compare multi-dimensional aspects of surgical outcomes after open, laparoscopic, and robotic gastrectomy. Data from 915 gastric cancer patients who underwent gastrectomy by one surgeon between March 2009 and May 2015 were retrospectively reviewed. Perioperative parameters were analyzed for short-term outcomes. Surgical success was defined as the absence of conversion to open surgery, major complications, readmission, positive resection margin, or fewer than 16 retrieved lymph nodes. This study investigated 241 patients undergoing open gastrectomy, 511 patients undergoing laparoscopic gastrectomy, and 173 patients undergoing robotic gastrectomy. For each approach, the respective incidences were as follows: conversion to open surgery (not applicable, 0.4%, and 0%; p = 0.444), in-hospital major complications (5.8, 2.7, and 1.2%; p = 0.020), delayed complications requiring readmission (2.9, 2.0, and 1.2%; p = 0.453), positive resection margin (1.7, 0, and 0%; p = 0.003), and inadequate number of retrieved lymph nodes (0.4, 4.1, and 1.7%; p = 0.010). Compared with open and laparoscopic surgery, robotic gastrectomy had the highest surgical success rate (90, 90.8, and 96.0%). Learning-curve analysis of success using cumulative sum plots showed success with the robotic approach from the start. Multivariate analyses identified age, sex, and gastrectomy extent as significant independent parameters affecting surgical success. Surgical approach was not a contributing factor. Open, laparoscopic, and robotic gastrectomy exhibited different incidences and causes of surgical failure. Robotic gastrectomy produced the best surgical outcomes, although the approach method itself was not an independent factor for success.

  15. Early experience with the da Vinci® surgical system robot in gynecological surgery at King Abdulaziz University Hospital

    Directory of Open Access Journals (Sweden)

    Sait KH

    2011-07-01

    Full Text Available Khalid H SaitObstetrics and Gynecology Department, Faculty of Medicine, Gynecology Oncology Unit, King Abdulaziz University Hospital, Jeddah, Saudi ArabiaBackground: The purpose of this study was to review our experience and the challenges of using the da Vinci® surgical system robot during gynecological surgery at King Abdulaziz University Hospital.Methods: A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution between January 2008 and December 2010. The patients were reviewed for indications, complications, length of hospital stay, and conversion rate, as well as console and docking times.Results: Over the three-year period, we operated on 35 patients with benign or malignant conditions using the robot for a total of 62 surgical procedures. The docking times averaged seven minutes. The mean console times for simple hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy were 125, 47, and 62 minutes, respectively. In four patients, laparoscopic procedures were converted to open procedures, giving a conversion rate of 6.5%. All of the conversions were among the first 15 procedures performed. The average hospital stay was 3 days. Complications occurred in five patients (14%, and none were directly related to the robotic system.Conclusion: Our early experience with the robot show that with proper training of the robotic team, technical difficulty with the robotic system is limited. There is definitely a learning curve that requires performance of gynecological surgical procedures using the robot.Keywords: da Vinci robot, gynecological surgery, laparoscopy

  16. Review of surgical robotics user interface: what is the best way to control robotic surgery?

    Science.gov (United States)

    Simorov, Anton; Otte, R Stephen; Kopietz, Courtni M; Oleynikov, Dmitry

    2012-08-01

    As surgical robots begin to occupy a larger place in operating rooms around the world, continued innovation is necessary to improve our outcomes. A comprehensive review of current surgical robotic user interfaces was performed to describe the modern surgical platforms, identify the benefits, and address the issues of feedback and limitations of visualization. Most robots currently used in surgery employ a master/slave relationship, with the surgeon seated at a work-console, manipulating the master system and visualizing the operation on a video screen. Although enormous strides have been made to advance current technology to the point of clinical use, limitations still exist. A lack of haptic feedback to the surgeon and the inability of the surgeon to be stationed at the operating table are the most notable examples. The future of robotic surgery sees a marked increase in the visualization technologies used in the operating room, as well as in the robots' abilities to convey haptic feedback to the surgeon. This will allow unparalleled sensation for the surgeon and almost eliminate inadvertent tissue contact and injury. A novel design for a user interface will allow the surgeon to have access to the patient bedside, remaining sterile throughout the procedure, employ a head-mounted three-dimensional visualization system, and allow the most intuitive master manipulation of the slave robot to date.

  17. Innovations in robotic surgery.

    Science.gov (United States)

    Gettman, Matthew; Rivera, Marcelino

    2016-05-01

    Developments in robotic surgery have continued to advance care throughout the field of urology. The purpose of this review is to evaluate innovations in robotic surgery over the past 18 months. The release of the da Vinci Xi system heralded an improvement on the Si system with improved docking, the ability to further manipulate robotic arms without clashing, and an autofocus universal endoscope. Robotic simulation continues to evolve with improvements in simulation training design to include augmented reality in robotic surgical education. Robotic-assisted laparoendoscopic single-site surgery continues to evolve with improvements on technique that allow for tackling previously complex pathologic surgical anatomy including urologic oncology and reconstruction. Last, innovations of new surgical platforms with robotic systems to improve surgeon ergonomics and efficiency in ureteral and renal surgery are being applied in the clinical setting. Urologic surgery continues to be at the forefront of the revolution of robotic surgery with advancements in not only existing technology but also creation of entirely novel surgical systems.

  18. Validation of ergonomic instructions in robot-assisted surgery simulator training.

    Science.gov (United States)

    Van't Hullenaar, C D P; Mertens, A C; Ruurda, J P; Broeders, I A M J

    2018-05-01

    Training in robot-assisted surgery focusses mainly on technical skills and instrument use. Training in optimal ergonomics during robotic surgery is often lacking, while improved ergonomics can be one of the key advantages of robot-assisted surgery. Therefore, the aim of this study was to assess whether a brief explanation on ergonomics of the console can improve body posture and performance. A comparative study was performed with 26 surgical interns and residents using the da Vinci skills simulator (Intuitive Surgical, Sunnyvale, CA). The intervention group received a compact instruction on ergonomic settings and coaching on clutch usage, while the control group received standard instructions for usage of the system. Participants performed two sets of five exercises. Analysis was performed on ergonomic score (RULA) and performance scores provided by the simulator. Mental and physical load scores (NASA-TLX and LED score) were also registered. The intervention group performed better in the clutch-oriented exercises, displaying less unnecessary movement and smaller deviation from the neutral position of the hands. The intervention group also scored significantly better on the RULA ergonomic score in both the exercises. No differences in overall performance scores and subjective scores were detected. The benefits of a brief instruction on ergonomics for novices are clear in this study. A single session of coaching and instruction leads to better ergonomic scores. The control group showed often inadequate ergonomic scores. No significant differences were found regarding physical discomfort, mental task load and overall performance scores.

  19. Hands-On Surgical Training Workshop: an Active Role-Playing Patient Education for Adolescents.

    Science.gov (United States)

    Wongkietkachorn, Apinut; Boonyawong, Pangpoom; Rhunsiri, Peera; Tantiphlachiva, Kasaya

    2017-09-01

    Most patient education involves passive learning. To improve patient education regarding surgery, an active learning workshop-based teaching method is proposed. The objective of this study was to assess level of patient surgical knowledge, achievement of workshop learning objectives, patient apprehension about future surgery, and participant workshop satisfaction after completing a surgical training workshop. A four-station workshop (surgical scrub, surgical suture, laparoscopic surgery, and robotic surgery) was developed to teach four important components of the surgical process. Healthy, surgery-naive adolescents were enrolled to attend this 1-h workshop-based training program. Training received by participants was technically and procedurally identical to training received by actual surgeons. Pre- and post-workshop questionnaires were used to assess learning outcomes. There were 1312 participants, with a mean age 15.9 ± 1.1 years and a gender breakdown of 303 males and 1009 females. For surgical knowledge, mean pre-workshop and post-workshop scores were 6.1 ± 1.5 and 7.5 ± 1.5 (out of 10 points), respectively (p education is an effective way to improve understanding of surgery-related processes. This teaching method may also decrease apprehension that patients or potential patients harbor regarding a future surgical procedure.

  20. Surgical bedside master console for neurosurgical robotic system.

    Science.gov (United States)

    Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto

    2013-01-01

    We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.

  1. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  2. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  3. Robotic partial nephrectomy for complex renal tumors: surgical technique.

    Science.gov (United States)

    Rogers, Craig G; Singh, Amar; Blatt, Adam M; Linehan, W Marston; Pinto, Peter A

    2008-03-01

    Laparoscopic partial nephrectomy requires advanced training to accomplish tumor resection and renal reconstruction while minimizing warm ischemia times. Complex renal tumors add an additional challenge to a minimally invasive approach to nephron-sparing surgery. We describe our technique, illustrated with video, of robotic partial nephrectomy for complex renal tumors, including hilar, endophytic, and multiple tumors. Robotic assistance was used to resect 14 tumors in eight patients (mean age: 50.3 yr; range: 30-68 yr). Three patients had hereditary kidney cancer. All patients had complex tumor features, including hilar tumors (n=5), endophytic tumors (n=4), and/or multiple tumors (n=3). Robotic partial nephrectomy procedures were performed successfully without complications. Hilar clamping was used with a mean warm ischemia time of 31 min (range: 24-45 min). Mean blood loss was 230 ml (range: 100-450 ml). Histopathology confirmed clear-cell renal cell carcinoma (n=3), hybrid oncocytic tumor (n=2), chromophobe renal cell carcinoma (n=2), and oncocytoma (n=1). All patients had negative surgical margins. Mean index tumor size was 3.6 cm (range: 2.6-6.4 cm). Mean hospital stay was 2.6 d. At 3-mo follow-up, no patients experienced a statistically significant change in serum creatinine or estimated glomerular filtration rate and there was no evidence of tumor recurrence. Robotic partial nephrectomy is safe and feasible for select patients with complex renal tumors, including hilar, endophytic, and multiple tumors. Robotic assistance may facilitate a minimally invasive, nephron-sparing approach for select patients with complex renal tumors who might otherwise require open surgery or total nephrectomy.

  4. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  5. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  6. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  7. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  8. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    Science.gov (United States)

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  9. Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire.

    Science.gov (United States)

    Lee, Chiwon; Park, Woo Jung; Kim, Myungjoon; Noh, Seungwoo; Yoon, Chiyul; Lee, Choonghee; Kim, Youdan; Kim, Hyeon Hoe; Kim, Hee Chan; Kim, Sungwan

    2014-09-05

    Although minimally invasive surgery (MIS) affords several advantages compared to conventional open surgery, robotic MIS systems still have many limitations. One of the limitations is the non-uniform gripping force due to mechanical strings of the existing systems. To overcome this limitation, a surgical instrument with a pneumatic gripping system consisting of a compressor, catheter balloon, micro motor, and other parts is developed. This study aims to implement a surgical instrument with a pneumatic gripping system and pitching/yawing joints using micro motors and without mechanical strings based on the surgical-operation-by-wire (SOBW) concept. A 6-axis external arm for increasing degrees of freedom (DOFs) is integrated with the surgical instrument using LabVIEW® for laparoscopic procedures. The gripping force is measured over a wide range of pressures and compared with the simulated ideal step function. Furthermore, a kinematic analysis is conducted. To validate and evaluate the system's clinical applicability, a simple peg task experiment and workspace identification experiment are performed with five novice volunteers using the fundamentals of laparoscopic surgery (FLS) board kit. The master interface of the proposed system employs the hands-on-throttle-and-stick (HOTAS) controller used in aerospace engineering. To develop an improved HOTAS (iHOTAS) controller, 6-axis force/torque sensor was integrated in the special housing. The mean gripping force (after 1,000 repetitions) at a pressure of 0.3 MPa was measured to be 5.8 N. The reaction time was found to be 0.4 s, which is almost real-time. All novice volunteers could complete the simple peg task within a mean time of 176 s, and none of them exceeded the 300 s cut-off time. The system's workspace was calculated to be 11,157.0 cm3. The proposed pneumatic gripping system provides a force consistent with that of other robotic MIS systems. It provides near real-time control. It is more durable than the

  10. Future of robotic surgery.

    Science.gov (United States)

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  11. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.

    Science.gov (United States)

    Tully, Stephen; Choset, Howie

    2016-02-01

    The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery. Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements. We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart. This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery. The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.

  12. The Impact of Training Residents on the Outcome of Robotic-Assisted Sacrocolpopexy

    Directory of Open Access Journals (Sweden)

    Mohamed A. Bedaiwy

    2012-01-01

    Full Text Available Objective. To evaluate the surgical outcomes of robotic-assisted sacrocolpopexy (RASCP before and after the incorporation of hands-on training for urology and gynecology residents. Study Design. Forty-one patients underwent RASCP between December 2008 and March 2010 with one surgeon. RASCP was performed in the context of surgical repair of complex pelvic organ prolapse and/or stress urinary incontinence. The first 20 cases (group I were performed exclusively by the attending surgeon. In the last 21 cases (group II, the urology resident performed a 50% or more of the RASCP while the gynecology resident performed the supracervical hysterectomy. The primary outcome measure was vaginal vault support at 24 weeks postoperatively based on pelvic organ prolapse quantification (POP-Q. Results. Mean ± SD operative time for the entire surgery including RASCP was 282.3±51.3 min and median EBL was 83.1±50.4 mL. Patient demographics and stage of disease did not differ between groups. Procedure time, PACU time, blood loss, and intraoperative complications were similar between groups. Follow-up POP-Q evaluations demonstrated significant correction of all points on vaginal examination for both groups (P<0.001. Conclusions. Incorporation of resident training during RASCP allows teaching of robotic surgery techniques in an effective manner without prolonging operative time or affecting the overall surgical outcome.

  13. The role of robotic surgical system in the management of vascular disease.

    Science.gov (United States)

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Nontechnical skill training and the use of scenarios in modern surgical education.

    Science.gov (United States)

    Brunckhorst, Oliver; Khan, Muhammad S; Dasgupta, Prokar; Ahmed, Kamran

    2017-07-01

    Nontechnical skills are being increasingly recognized as a core reason of surgical errors. Combined with the changing nature of surgical training, there has therefore been an increase in nontechnical skill research in the literature. This review therefore aims to: define nontechnical skillsets, assess current training methods, explore assessment modalities and suggest future research aims. The literature demonstrates an increasing understanding of the components of nontechnical skills within surgery. This has led to a greater availability of validated training methods for its training, including the use of didactic teaching, e-learning and simulation-based scenarios. In addition, there are now various extensively validated assessment tools for nontechnical skills including NOTSS, the Oxford NOTECHS and OTAS. Finally, there is now more focus on the development of tools which target individual nontechnical skill components and an attempt to understand which of these play a greater role in specific procedures such as laparoscopic or robotic surgery. Current evidence demonstrates various training methods and tools for the training of nontechnical skills. Future research is likely to focus increasingly on individual nontechnical skill components and procedure-specific skills.

  15. Estimating Tool-Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool.

    Science.gov (United States)

    Zhao, Baoliang; Nelson, Carl A

    2016-10-01

    Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool-tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool-tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool-tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool-tissue interaction forces in real time, thereby increasing surgical efficiency and safety.

  16. Evaluation of teleoperated surgical robots in an enclosed undersea environment.

    Science.gov (United States)

    Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J

    2009-05-01

    The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.

  17. Impact of robotic general surgery course on participants' surgical practice.

    Science.gov (United States)

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Hagen, Monika E; Morel, Philippe

    2013-06-01

    Courses, including lectures, live surgery, and hands-on session, are part of the recommended curriculum for robotic surgery. However, for general surgery, this approach is poorly reported. The study purpose was to evaluate the impact of robotic general surgery course on the practice of participants. Between 2007 and 2011, 101 participants attended the Geneva International Robotic Surgery Course, held at the University Hospital of Geneva, Switzerland. This 2-day course included theory lectures, dry lab, live surgery, and hands-on session on cadavers. After a mean of 30.1 months (range, 2-48), a retrospective review of the participants' surgical practice was performed using online research and surveys. Among the 101 participants, there was a majority of general (58.4 %) and colorectal surgeons (10.9 %). Other specialties included urologists (7.9 %), gynecologists (6.9 %), pediatric surgeons (2 %), surgical oncologists (1 %), engineers (6.9 %), and others (5.9 %). Data were fully recorded in 99 % of cases; 46 % of participants started to perform robotic procedures after the course, whereas only 6.9 % were already familiar with the system before the course. In addition, 53 % of the attendees worked at an institution where a robotic system was already available. All (100 %) of participants who started a robotic program after the course had an available robotic system at their institution. A course that includes lectures, live surgery, and hands-on session with cadavers is an effective educational method for spreading robotic skills. However, this is especially true for participants whose institution already has a robotic system available.

  18. Do Robotic Surgical Systems Improve Profit Margins? A Cross-Sectional Analysis of California Hospitals.

    Science.gov (United States)

    Shih, Ya-Chen Tina; Shen, Chan; Hu, Jim C

    2017-09-01

    The aim of this study was to examine the association between ownership of robotic surgical systems and hospital profit margins. This study used hospital annual utilization data, annual financial data, and discharge data for year 2011 from the California Office of Statewide Health Planning and Development. We first performed bivariate analysis to compare mean profit margin by hospital and market characteristics and to examine whether these characteristics differed between hospitals that had one or more robotic surgical systems in 2011 and those that did not. We applied the t test and the F test to compare mean profit margin between two groups and among three or more groups, respectively. We then conducted multilevel logistic regression to determine the association between ownership of robotic surgical systems and having a positive profit margin after controlling for other hospital and market characteristics and accounting for possible correlation among hospitals located within the same market. The study sample included 167 California hospitals with valid financial information. Hospitals with robotic surgical systems tended to report more favorable profit margins. However, multilevel logistic regression showed that this relationship (an association, not causality) became only marginally significant (odds ratio [OR] = 6.2; P = 0.053) after controlling for other hospital characteristics, such as ownership type, teaching status, bed size, and surgical volumes, and market characteristics, such as total number of robotic surgical systems owned by other hospitals in the same market area. As robotic surgical systems become widely disseminated, hospital decision makers should carefully evaluate the financial and clinical implications before making a capital investment in this technology. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Image-guided robotic surgery.

    Science.gov (United States)

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  20. Robotics Programs: Automation Training in Disguise.

    Science.gov (United States)

    Rehg, James A.

    1985-01-01

    Questions and answers from the book "Guidelines for Robotics Program Development" are presented, addressing some of the major issues confronted by the person setting the direction for a robotics training program. (CT)

  1. Validation of Robotic Surgery Simulator (RoSS).

    Science.gov (United States)

    Kesavadas, Thenkurussi; Stegemann, Andrew; Sathyaseelan, Gughan; Chowriappa, Ashirwad; Srimathveeravalli, Govindarajan; Seixas-Mikelus, Stéfanie; Chandrasekhar, Rameella; Wilding, Gregory; Guru, Khurshid

    2011-01-01

    Recent growth of daVinci Robotic Surgical System as a minimally invasive surgery tool has led to a call for better training of future surgeons. In this paper, a new virtual reality simulator, called RoSS is presented. Initial results from two studies - face and content validity, are very encouraging. 90% of the cohort of expert robotic surgeons felt that the simulator was excellent or somewhat close to the touch and feel of the daVinci console. Content validity of the simulator received 90% approval in some cases. These studies demonstrate that RoSS has the potential of becoming an important training tool for the daVinci surgical robot.

  2. A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Preclinical Application to ESD.

    Science.gov (United States)

    Zorn, Lucile; Nageotte, Florent; Zanne, Philippe; Legner, Andras; Dallemagne, Bernard; Marescaux, Jacques; de Mathelin, Michel

    2018-04-01

    Minimally invasive surgical interventions in the gastrointestinal tract, such as endoscopic submucosal dissection (ESD), are very difficult for surgeons when performed with standard flexible endoscopes. Robotic flexible systems have been identified as a solution to improve manipulation. However, only a few such systems have been brought to preclinical trials as of now. As a result, novel robotic tools are required. We developed a telemanipulated robotic device, called STRAS, which aims to assist surgeons during intraluminal surgical endoscopy. This is a modular system, based on a flexible endoscope and flexible instruments, which provides 10 degrees of freedom (DoFs). The modularity allows the user to easily set up the robot and to navigate toward the operating area. The robot can then be teleoperated using master interfaces specifically designed to intuitively control all available DoFs. STRAS capabilities have been tested in laboratory conditions and during preclinical experiments. We report 12 colorectal ESDs performed in pigs, in which large lesions were successfully removed. Dissection speeds are compared with those obtained in similar conditions with the manual Anubiscope platform from Karl Storz. We show significant improvements ( ). These experiments show that STRAS (v2) provides sufficient DoFs, workspace, and force to perform ESD, that it allows a single surgeon to perform all the surgical tasks and those performances are improved with respect to manual systems. The concepts developed for STRAS are validated and could bring new tools for surgeons to improve comfort, ease, and performances for intraluminal surgical endoscopy.

  3. [Robot-Assisted Laparoscopic Radical Prostatectomy for Patients with Prostatic Cancer and Factors Promoting Installation of the Robotic Surgical Equipment-Questionnaire Survey].

    Science.gov (United States)

    Tsukamoto, Taiji; Tanaka, Shigeru

    2015-08-01

    We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of hospitals was 63%, though it marginally varied according to type and area. The annual case load was determined based on the results of the questionnaire and other modalities. It increased from 3,518 in 2009 to 6,425 in 2013. The case load seemed to be concentrated in hospitals with robot equipment since the increase of their number was very minimal over the 5 years. The hospitals with the robot treated a larger number of newly diagnosed patients with the disease than before. Most of the patients were those having localized cancer that was indicated for radical surgery, suggesting again the concentration of the surgical case loads in the hospitals with robots. While most hospitals believed that installation of a robot was necessary as an option for treatment procedures, the future strategy of the hospital, and other reasons, the action of the hospital to gain prestige may be involved in the process of purchasing the equipment. In conclusion, robot-assisted laparoscopic radical prostatectomy has become popular as a surgical procedure for prostate cancer in our society. This may lead to a concentration of the surgical case load in a limited number of hospitals with robots. We also discuss the typical action of an acute-care hospital when it purchases expensive clinical medical equipment.

  4. Structured training on the da Vinci Skills Simulator leads to improvement in technical performance of robotic novices.

    Science.gov (United States)

    Walliczek-Dworschak, U; Mandapathil, M; Förtsch, A; Teymoortash, A; Dworschak, P; Werner, J A; Güldner, C

    2017-02-01

    The increasing use of minimally invasive techniques such as robotic-assisted devices raises the question of how to acquire robotic surgery skills. The da Vinci Skills Simulator has been demonstrated to be an effective training tool in previous reports. To date, little data are available on how to acquire proficiency through simulator training. We investigated the outcome of a structured training programme for robotic surgical skills by robotic novices. This prospective study was conducted from January to December 2013 using the da Vinci Skills Simulator. Twenty participants, all robotic novices, were enrolled in a 4-week training curriculum. After a brief introduction to the simulator system, three consecutive repetitions of five selected exercises (Match Board 1, 2, 3 and Ring and Rail 1, 2) were performed in a defined order on days 1, 8, 15 and 22. On day 22, one repetition of a previously unpractised more advanced module (Needle Targeting) was also performed. After completion of each study day, the overall performance, time to completion, economy in motion, instrument collisions, excessive instrument force, instruments out of view, master workspace range and number of drops were analysed. Comparing the first and final repetition, overall score and time needed to complete all exercises, economy of motion and instrument collisions were significantly improved in nearly all exercises. Regarding the new exercise, a positive training effect could be demonstrated. While its overall entry score was significantly higher, the time to completion and economy of motion were significantly lower than the scores on the first repetition of the previous 5 exercises. It could be shown that training on the da Vinci Skills Simulator led to an improvement in technical performance of robotic novices. With regard to a new exercise, the training had a positive effect on the technical performance. © 2016 John Wiley & Sons Ltd.

  5. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    Science.gov (United States)

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Real-Time Augmented Reality for Robotic-Assisted Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2015-01-01

    Training in robotic-assisted minimally invasive surgery is crucial, but the training with actual surgery robots is relatively expensive. Therefore, improving the efficiency of this training is of great interest in robotic surgical education. One of the current limitations of this training is the ......-dimensional computer graphics in real time. Our system makes it possible to easily deploy new user interfaces for robotic-assisted surgery training. The system has been positively evaluated by two experienced instructors in robot-assisted surgery....... is the limited visual communication between the instructor and the trainee. As the trainee's view is limited to that of the surgery robot's camera, even a simple task such as pointing is difficult. We present a compact system to overlay the video streams of the da Vinci surgery systems with interactive three...

  7. Visuospatial Aptitude Testing Differentially Predicts Simulated Surgical Skill.

    Science.gov (United States)

    Hinchcliff, Emily; Green, Isabel; Destephano, Christopher; Cox, Mary; Smink, Douglas; Kumar, Amanika; Hokenstad, Erik; Bengtson, Joan; Cohen, Sarah

    2018-02-05

    To determine if visuospatial perception (VSP) testing is correlated to simulated or intraoperative surgical performance as rated by the American College of Graduate Medical Education (ACGME) milestones. Classification II-2 SETTING: Two academic training institutions PARTICIPANTS: 41 residents, including 19 Brigham and Women's Hospital and 22 Mayo Clinic residents from three different specialties (OBGYN, general surgery, urology). Participants underwent three different tests: visuospatial perception testing (VSP), Fundamentals of Laparoscopic Surgery (FLS®) peg transfer, and DaVinci robotic simulation peg transfer. Surgical grading from the ACGME milestones tool was obtained for each participant. Demographic and subject background information was also collected including specialty, year of training, prior experience with simulated skills, and surgical interest. Standard statistical analysis using Student's t test were performed, and correlations were determined using adjusted linear regression models. In univariate analysis, BWH and Mayo training programs differed in both times and overall scores for both FLS® peg transfer and DaVinci robotic simulation peg transfer (p<0.05 for all). Additionally, type of residency training impacted time and overall score on robotic peg transfer. Familiarity with tasks correlated with higher score and faster task completion (p= 0.05 for all except VSP score). There was no difference in VSP scores by program, specialty, or year of training. In adjusted linear regression modeling, VSP testing was correlated only to robotic peg transfer skills (average time p=0.006, overall score p=0.001). Milestones did not correlate to either VSP or surgical simulation testing. VSP score was correlated with robotic simulation skills but not with FLS skills or ACGME milestones. This suggests that the ability of VSP score to predict competence differs between tasks. Therefore, further investigation is required into aptitude testing, especially prior

  8. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report.

    Science.gov (United States)

    Beutler, William J; Peppelman, Walter C; DiMarco, Luciano A

    2013-02-15

    Technique development to use the da Vince Robotic Surgical System for anterior lumbar interbody fusion at L5-S1 is detailed. A case report is also presented. To evaluate and develop the da Vinci robotic assisted laparoscopic anterior lumbar stand-alone interbody fusion procedure. Anterior lumbar interbody fusion is a common procedure associated with potential morbidity related to the surgical approach. The da Vinci robot provides intra-abdominal dissection and visualization advantages compared with the traditional open and laparoscopic approach. The surgical techniques for approach to the anterior lumbar spine using the da Vinci robot were developed and modified progressively beginning with operative models followed by placement of an interbody fusion cage in the living porcine model. Development continued to progress with placement of fusion cage in a human cadaver, completed first in the laboratory setting and then in the operating room. Finally, the first patient with fusion completed using the da Vinci robot-assisted approach is presented. The anterior transperitoneal approach to the lumbar spine is accomplished with enhanced visualization and dissection capability, with maintenance of pneumoperitoneum using the da Vinci robot. Blood loss is minimal. The visualization inside the disc space and surrounding structures was considered better than current open and laparoscopic techniques. The da Vinci robot Surgical System technique continues to develop and is now described for the transperitoneal approach to the anterior lumbar spine. 4.

  9. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.

    Science.gov (United States)

    Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco

    2012-01-01

    The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.

  10. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    Directory of Open Access Journals (Sweden)

    Xingguang Duan

    2018-01-01

    Full Text Available In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.

  11. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    Science.gov (United States)

    Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948

  12. Evolution of surgical skills training

    Science.gov (United States)

    Roberts, Kurt E; Bell, Robert L; Duffy, Andrew J

    2006-01-01

    Surgical training is changing: one hundred years of tradition is being challenged by legal and ethical concerns for patient safety, work hours restrictions, the cost of operating room time, and complications. Surgical simulation and skills training offers an opportunity to teach and practice advanced skills outside of the operating room environment before attempting them on living patients. Simulation training can be as straight forward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced, virtual reality simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. The Accreditation Council of Graduate Medical Education’s (ACGME) has mandated the development of novel methods of training and evaluation. Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and to credential surgeons as technically competent. Simulators in their current form have been demonstrated to improve the operating room performance of surgical residents. Development of standardized training curricula remains an urgent and important agenda, particularly for minimal invasive surgery. An innovative and progressive approach, borrowing experiences from the field of aviation, can provide the foundation for the next century of surgical training, ensuring the quality of the product. As the technology develops, the way we practice will continue to evolve, to the benefit of physicians and patients. PMID:16718842

  13. Low-Cost Simulation of Robotic Surgery

    DEFF Research Database (Denmark)

    Grande, Kasper; Jensen, Rasmus Steen; Kraus, Martin

    2013-01-01

    The high expenses associated with acquiring and maintaining robotic surgical equipment for minimally invasive surgery entail that training on this equipment is also expensive. Virtual reality (VR) training simulators can reduce this training time; however, the current simulators are also quite...

  14. Miniature surgical robots in the era of NOTES and LESS: dream or reality?

    Science.gov (United States)

    Zygomalas, Apollon; Kehagias, Ioannis; Giokas, Konstantinos; Koutsouris, Dimitrios

    2015-02-01

    Laparoscopy is an established method for the treatment of numerous surgical conditions. Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique that uses the natural orifices of the human body as entrances to the abdominal cavity. An alternative concept of minimally invasive approach to the abdominal cavity is to insert all the laparoscopic instruments through ports using a single small incision on the abdominal wall. A suggested name for this technique is laparoendoscopic single-site surgery (LESS). Considering the technical difficulties in NOTES and LESS and the progress in informatics and robotics, the use of robots seems ideal. The aim of this study is to investigate if there is at present, a realistic possibility of using miniature robots in NOTES or LESS in daily clinical practice. An up-to-date review on in vivo surgical miniature robots is made. A Web-based research of the English literature up to March 2013 using PubMed, Scopus, and Google Scholar as search engines was performed. The development of in vivo miniature robots for use in NOTES or LESS is a reality with great advancements, potential advantages, and possible application in minimally invasive surgery in the future. However, true totally NOTES or LESS procedures on humans using miniature robots either solely or as assistance, remain a dream at present. © The Author(s) 2014.

  15. Crowd-sourced assessment of technical skills: an adjunct to urology resident surgical simulation training.

    Science.gov (United States)

    Holst, Daniel; Kowalewski, Timothy M; White, Lee W; Brand, Timothy C; Harper, Jonathan D; Sorenson, Mathew D; Kirsch, Sarah; Lendvay, Thomas S

    2015-05-01

    Crowdsourcing is the practice of obtaining services from a large group of people, typically an online community. Validated methods of evaluating surgical video are time-intensive, expensive, and involve participation of multiple expert surgeons. We sought to obtain valid performance scores of urologic trainees and faculty on a dry-laboratory robotic surgery task module by using crowdsourcing through a web-based grading tool called Crowd Sourced Assessment of Technical Skill (CSATS). IRB approval was granted to test the technical skills grading accuracy of Amazon.com Mechanical Turk™ crowd-workers compared to three expert faculty surgeon graders. The two groups assessed dry-laboratory robotic surgical suturing performances of three urology residents (PGY-2, -4, -5) and two faculty using three performance domains from the validated Global Evaluative Assessment of Robotic Skills assessment tool. After an average of 2 hours 50 minutes, each of the five videos received 50 crowd-worker assessments. The inter-rater reliability (IRR) between the surgeons and crowd was 0.91 using Cronbach's alpha statistic (confidence intervals=0.20-0.92), indicating an agreement level between the two groups of "excellent." The crowds were able to discriminate the surgical level, and both the crowds and the expert faculty surgeon graders scored one senior trainee's performance above a faculty's performance. Surgery-naive crowd-workers can rapidly assess varying levels of surgical skill accurately relative to a panel of faculty raters. The crowds provided rapid feedback and were inexpensive. CSATS may be a valuable adjunct to surgical simulation training as requirements for more granular and iterative performance tracking of trainees become mandated and commonplace.

  16. Impact of robotic technique and surgical volume on the cost of radical prostatectomy.

    Science.gov (United States)

    Hyams, Elias S; Mullins, Jeffrey K; Pierorazio, Phillip M; Partin, Alan W; Allaf, Mohamad E; Matlaga, Brian R

    2013-03-01

    Our present understanding of the effect of robotic surgery and surgical volume on the cost of radical prostatectomy (RP) is limited. Given the increasing pressures placed on healthcare resource utilization, such determinations of healthcare value are becoming increasingly important. Therefore, we performed a study to define the effect of robotic technology and surgical volume on the cost of RP. The state of Maryland mandates that all acute-care hospitals report encounter-level and hospital discharge data to the Health Service Cost Review Commission (HSCRC). The HSCRC was queried for men undergoing RP between 2008 and 2011 (the period during which robot-assisted laparoscopic radical prostatectomy [RALRP] was coded separately). High-volume hospitals were defined as >60 cases per year, and high-volume surgeons were defined as >40 cases per year. Multivariate regression analysis was performed to evaluate whether robotic technique and high surgical volume impacted the cost of RP. There were 1499 patients who underwent RALRP and 2565 who underwent radical retropubic prostatectomy (RRP) during the study period. The total cost for RALRP was higher than for RRP ($14,000 vs 10,100; Probotic surgery has come to dominate the healthcare marketplace, strategies to increase the role of high-volume providers may be needed to improve the cost-effectiveness of prostate cancer surgical therapy.

  17. Active robotic training improves locomotor function in a stroke survivor

    Directory of Open Access Journals (Sweden)

    Krishnan Chandramouli

    2012-08-01

    Full Text Available Abstract Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training using a powered gait orthosis (Lokomat in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week. The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training. Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs. Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.

  18. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  19. [Simulation in surgical training].

    Science.gov (United States)

    Nabavi, A; Schipper, J

    2017-01-01

    Patient safety during operations hinges on the surgeon's skills and abilities. However, surgical training has come under a variety of restrictions. To acquire dexterity with decreasingly "simple" cases, within the legislative time constraints and increasing expectations for surgical results is the future challenge. Are there alternatives to traditional master-apprentice learning? A literature review and analysis of the development, implementation, and evaluation of surgical simulation are presented. Simulation, using a variety of methods, most important physical and virtual (computer-generated) models, provides a safe environment to practice basic and advanced skills without endangering patients. These environments have specific strengths and weaknesses. Simulations can only serve to decrease the slope of learning curves, but cannot be a substitute for the real situation. Thus, they have to be an integral part of a comprehensive training curriculum. Our surgical societies have to take up that challenge to ensure the training of future generations.

  20. Video games and surgical ability: a literature review.

    Science.gov (United States)

    Lynch, Jeremy; Aughwane, Paul; Hammond, Toby M

    2010-01-01

    Surgical training is rapidly evolving because of reduced training hours and the reduction of training opportunities due to patient safety concerns. There is a popular conception that video game usage might be linked to improved operating ability especially those techniques involving endoscopic modalities. If true this might suggest future directions for training. A search was made of the MEDLINE databases for the MeSH term, "Video Games," combined with the terms "Surgical Procedures, Operative," "Endoscopy," "Robotics," "Education," "Learning," "Simulators," "Computer Simulation," "Psychomotor Performance," and "Surgery, Computer-Assisted,"encompassing all journal articles before November 2009. References of articles were searched for further studies. Twelve relevant journal articles were discovered. Video game usage has been studied in relationship to laparoscopic, gastrointestinal endoscopic, endovascular, and robotic surgery. Video game users acquire endoscopic but not robotic techniques quicker, and training on video games appears to improve performance. Copyright (c) 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    Science.gov (United States)

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been

  2. Robotics as a new surgical minimally invasive approach to treatment of endometriosis: a systematic review.

    Science.gov (United States)

    Carvalho, Luiz; Abrão, Mauricio Simões; Deshpande, Abhishek; Falcone, Tommaso

    2012-06-01

    This systematic review evaluates the role of robotics in the surgical treatment of endometriosis. Electronic database searches were conducted in MEDLINE, Scopus, and ISI Web of Knowledge for relevant studies over the past 10 years. Four published articles were found that used robotic assisted laparoscopy to perform endometriosis surgery. All four studies used the da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA). Three studies were case reports, and one was a cohort study. Robotics appears to be as effective as conventional laparoscopy in the management of endometriosis. There were no reports of any major complications. Few studies have been published and show us that robotic endometriosis surgery is feasible even in severe endometriosis cases without conversion. There is a lack of long-term outcome papers in the literature. Randomized controlled trials are necessary. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery.

    Science.gov (United States)

    Mehrabi, A; Yetimoglu, C L; Nickkholgh, A; Kashfi, A; Kienle, P; Konstantinides, L; Ahmadi, M R; Fonouni, H; Schemmer, P; Friess, H; Gebhard, M M; Büchler, M W; Schmidt, J; Gutt, C N

    2006-09-01

    With the increasing use of the surgical robotic system in the clinical arena, appropriate training programs and assessment systems need to be established for mastery of this new technology. The authors aimed to design and evaluate a clinic-like training program for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Four trainees with different surgical levels of experience participated in this study using the da Vinci telemanipulator. Each participant started with an initial evaluation stage composed of standardized visceral and vascular operations (cholecystectomy, gastrotomy, anastomosis of the small intestine, and anastomosis of the aorta) in a porcine model. Then the participants went on to the training stage with the rat model, performing standardized visceral and vascular operations (gastrotomy, anastomosis of the large and small intestines, and anastomosis of the aorta) four times in four rats. The final evaluation stage was again identical to the initial stage. The operative times, the number of complications, and the performance quality of the participants were compared between the two evaluation stages to assess the impact of the training stage on the results. The operative times in the final evaluation stage were considerably shorter than in the initial evaluation stage and, except for cholecystectomies, all the differences reached statistical significance. Also, significantly fewer complications and improved quality for each operation in the final evaluation stage were documented, as compared with their counterparts in the initial evaluation stage. These improvements were recorded at each level of experience. The presented experimental small and large animal model is a standardized and reproducible training method for robotic surgery that allows evaluation of the surgical performance while shortening and optimizing the learning-curve.

  4. Robotic nurse duties in the urology operative room: 11 years of experience

    Directory of Open Access Journals (Sweden)

    Ali Abdel Raheem

    2017-04-01

    Full Text Available The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team “nurse coordinator, scrub-nurse and circulating-nurse” has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.

  5. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics

    Directory of Open Access Journals (Sweden)

    Morone G

    2017-05-01

    Full Text Available Giovanni Morone,1,2 Stefano Paolucci,1,2 Andrea Cherubini,3 Domenico De Angelis,1 Vincenzo Venturiero,1 Paola Coiro,1 Marco Iosa1,2 1Private Inpatient Unit, 2Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy; 3Department of Robotics, LIRMM UM-CNRS, Montpellier, France Abstract: In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. Keywords: exoskeleton, neurorehabilitation, robot-assisted walking training, wearable robot, activities of daily living, motor learning, plasticity

  6. Intraoperative navigation of an optically tracked surgical robot.

    Science.gov (United States)

    Cornellà, Jordi; Elle, Ole Jakob; Ali, Wajid; Samset, Eigil

    2008-01-01

    This paper presents an adaptive control scheme for improving the performance of a surgical robot when it executes tasks autonomously. A commercial tracking system is used to correlate the robot with the preoperative plan as well as to correct the position of the robot when errors between the real and planned positions are detected. Due to the noisy signals provided by the tracking system, a Kalman filter is proposed to smooth the variations and to increase the stability of the system. The efficiency of the approach has been validated using rigid and flexible endoscopic tools, obtaining in both cases that the target points can be reached with an error less than 1mm. These results make the approach suitable for a range of abdominal procedures, such as autonomous repositioning of endoscopic tools or probes for percutaneous procedures.

  7. Laparoscopy vs robotics in surgical management of endometrial cancer: comparison of intraoperative and postoperative complications.

    Science.gov (United States)

    Seror, Julien; Bats, Anne-Sophie; Huchon, Cyrille; Bensaïd, Chérazade; Douay-Hauser, Nathalie; Lécuru, Fabrice

    2014-01-01

    To compare the rates of intraoperative and postoperative complications of robotic surgery and laparoscopy in the surgical treatment of endometrial cancer. Unicentric retrospective study (Canadian Task Force classification II-2). Tertiary teaching hospital. The study was performed from January 2002 to December 2011 and included patients with endometrial cancer who underwent laparoscopic or robotically assisted laparoscopic surgical treatment. Data collected included preoperative data, tumor characteristics, intraoperative data (route of surgery, surgical procedures, and complications), and postoperative data (early and late complications according to the Clavien-Dindo classification, and length of hospital stay). Morbidity was compared between the 2 groups. The study included 146 patients, of whom 106 underwent laparoscopy and 40 underwent robotically assisted surgery. The 2 groups were comparable in terms of demographic and preoperative data. Intraoperative complications occurred in 9.4% of patients who underwent laparoscopy and in none who underwent robotically assisted surgery (p = .06). There was no difference between the 2 groups in terms of postoperative events. Robotically assisted surgery is not associated with a significant difference in intraoperative and postoperative complications, even when there were no intraoperative complications of robotically assisted surgery. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  8. Robot-Assisted Training Early After Cardiac Surgery.

    Science.gov (United States)

    Schoenrath, Felix; Markendorf, Susanne; Brauchlin, Andreas E; Seifert, Burkhardt; Wilhelm, Markus J; Czerny, Martin; Riener, Robert; Falk, Volkmar; Schmied, Christian M

    2015-07-01

    To assess feasibility and safety of a robot-assisted gait therapy with the Lokomat® system in patients early after open heart surgery. Within days after open heart surgery 10 patients were subjected to postoperative Lokomat® training (Intervention group, IG) whereas 20 patients served as controls undergoing standard postoperative physiotherapy (Control group, CG). All patients underwent six-minute walk test and evaluation of the muscular strength of the lower limbs by measuring quadriceps peak force. The primary safety end-point was freedom from any device-related wound healing disturbance. Patients underwent clinical follow-up after one month. Both training methods resulted in an improvement of walking distance (IG [median, interquartile range, p-value]: +119 m, 70-201 m, p = 0.005; CG: 105 m, 57-152.5m, p force (IG left: +5 N, 3.8 7 N, p = 0.005; IG right: +3.5 N, 1.5-8.8 N, p = 0.011; CG left: +5.5 N, 4-9 N, p training were comparable to early postoperative standard in hospital training (median changes in walking distance in percent, p = 0.81; median changes in quadriceps peak force in percent, left: p = 0.97, right p = 0.61). No deep sternal wound infection or any adverse event occurred in the robot-assisted training group. Robot-assisted gait therapy with the Lokomat® system is feasible and safe in patients early after median sternotomy. Results with robot-assisted training were comparable to standard in hospital training. An adapted and combined aerobic and resistance training intervention with augmented feedback may result in benefits in walking distance and lower limb muscle strength (ClinicalTrials.gov number, NCT 02146196). © 2015 Wiley Periodicals, Inc.

  9. Pioneer robot testing and training status

    International Nuclear Information System (INIS)

    Herndon, J.; Nosovsky, A.; Garin, E.; Goncharov, B.; Neretin, Y.

    2001-01-01

    The U. S. Department of Energy developed the Pioneer Robot and provided it to the Chornobyl Nuclear Power Plant (ChNPP) within the framework of international technical assistance. At the Pioneer Robot has been transferred to ChNPP ownership for broad use in ChNPP activities related to decommissioning and emergency response, as well as in Unit Shelter. Oak Ridge National Laboratory is working with ChNPP and SLIRT to test the Pioneer Robot operation in a broader scope, and to provide additional operational training

  10. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.

    Science.gov (United States)

    Fard, Mahtab J; Ameri, Sattar; Darin Ellis, R; Chinnam, Ratna B; Pandya, Abhilash K; Klein, Michael D

    2018-02-01

    Surgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot-assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise. Eight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise - novice and expert. Three classification methods - k-nearest neighbours, logistic regression and support vector machines - are applied. The result shows that the proposed framework can classify surgeons' expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task. This study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics.

    Science.gov (United States)

    Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco

    2017-01-01

    In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.

  12. Legal and ethical issues in robotic surgery.

    Science.gov (United States)

    Mavroforou, A; Michalodimitrakis, E; Hatzitheo-Filou, C; Giannoukas, A

    2010-02-01

    With the rapid introduction of revolutionary technologies in surgical practice, such as computer-enhanced robotic surgery, the complexity in various aspects, including medical, legal and ethical, will increase exponentially. Our aim was to highlight important legal and ethical implications emerged from the application of robotic surgery. Search of the pertinent medical and legal literature. Robotic surgery may open new avenues in the near future in surgical practice. However, in robotic surgery, special training and experience along with high quality assessment are required in order to provide normal conscientious care and state-of-the-art treatment. While the legal basis for professional liability remains exactly the same, litigation with the use of robotic surgery may be complex. In case of an undesirable outcome, in addition to physician and hospital, the manufacturer of the robotic system may be sued. In respect to ethical issues in robotic surgery, equipment safety and reliability, provision of adequate information, and maintenance of confidentiality are all of paramount importance. Also, the cost of robotic surgery and the lack of such systems in most of the public hospitals may restrict the majority from the benefits offered by the new technology. While surgical robotics will have a significant impact on surgical practice, it presents challenges so much in the realm of law and ethics as of medicine and health care.

  13. Mobile surgical skills education unit: a new concept in surgical training.

    Science.gov (United States)

    Shaikh, Faisal M; Hseino, Hazem; Hill, Arnold D K; Kavanagh, Eamon; Traynor, Oscar

    2011-08-01

    Basic surgical skills are an integral part of surgical training. Simulation-based surgical training offers an opportunity both to trainees and trainers to learn and teach surgical skills outside the operating room in a nonpatient, nonstressed environment. However, widespread adoption of simulation technology especially in medical education is prohibited by its inherent higher cost, limited space, and interruptions to clinical duties. Mobile skills laboratory has been proposed as a means to address some of these limitations. A new program is designed by the Royal College of Surgeons in Ireland (RCSI), in an approach to teach its postgraduate basic surgical trainees the necessary surgical skills, by making the use of mobile innovative simulation technology in their own hospital settings. In this article, authors describe the program and students response to the mobile surgical skills being delivered in the region of their training hospitals and by their own regional consultant trainers.

  14. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  15. Impact of Robotic Surgery on Decision Making: Perspectives of Surgical Teams.

    Science.gov (United States)

    Randell, Rebecca; Alvarado, Natasha; Honey, Stephanie; Greenhalgh, Joanne; Gardner, Peter; Gill, Arron; Jayne, David; Kotze, Alwyn; Pearman, Alan; Dowding, Dawn

    2015-01-01

    There has been rapid growth in the purchase of surgical robots in both North America and Europe in recent years. Whilst this technology promises many benefits for patients, the introduction of such a complex interactive system into healthcare practice often results in unintended consequences that are difficult to predict. Decision making by surgeons during an operation is affected by variables including tactile perception, visual perception, motor skill, and instrument complexity, all of which are changed by robotic surgery, yet the impact of robotic surgery on decision making has not been previously studied. Drawing on the approach of realist evaluation, we conducted a multi-site interview study across nine hospitals, interviewing 44 operating room personnel with experience of robotic surgery to gather their perspectives on how robotic surgery impacts surgeon decision making. The findings reveal both potential benefits and challenges of robotic surgery for decision making.

  16. Surgical simulation in orthopaedic skills training.

    Science.gov (United States)

    Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A

    2012-07-01

    Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.

  17. Surgical outcomes of robot-assisted rectal cancer surgery using the da Vinci Surgical System: a multi-center pilot Phase II study.

    Science.gov (United States)

    Tsukamoto, Shunsuke; Nishizawa, Yuji; Ochiai, Hiroki; Tsukada, Yuichiro; Sasaki, Takeshi; Shida, Dai; Ito, Masaaki; Kanemitsu, Yukihide

    2017-12-01

    We conducted a multi-center pilot Phase II study to examine the safety of robotic rectal cancer surgery performed using the da Vinci Surgical System during the introduction period of robotic rectal surgery at two institutes based on surgical outcomes. This study was conducted with a prospective, multi-center, single-arm, open-label design to assess the safety and feasibility of robotic surgery for rectal cancer (da Vinci Surgical System). The primary endpoint was the rate of adverse events during and after robotic surgery. The secondary endpoint was the completion rate of robotic surgery. Between April 2014 and July 2016, 50 patients were enrolled in this study. Of these, 10 (20%) had rectosigmoid cancer, 17 (34%) had upper rectal cancer, and 23 (46%) had lower rectal cancer; six underwent high anterior resection, 32 underwent low anterior resection, 11 underwent intersphincteric resection, and one underwent abdominoperineal resection. Pathological stages were Stage 0 in 1 patient, Stage I in 28 patients, Stage II in 7 patients and Stage III in 14 patients. Pathologically complete resection was achieved in all patients. There was no intraoperative organ damage or postoperative mortality. Eight (16%) patients developed complications of all grades, of which 2 (4%) were Grade 3 or higher, including anastomotic leakage (2%) and conversion to open surgery (2%). The present study demonstrates the feasibility and safety of robotic rectal cancer surgery, as reflected by low morbidity and low conversion rates, during the introduction period. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Module based training improves and sustains surgical skills

    DEFF Research Database (Denmark)

    Carlsen, C G; Lindorff-Larsen, K; Funch-Jensen, P

    2015-01-01

    PURPOSE: Traditional surgical training is challenged by factors such as patient safety issues, economic considerations and lack of exposure to surgical procedures due to short working hours. A module-based clinical training model promotes rapidly acquired and persistent surgical skills. METHODS...... hernia repair was preferable in both short and long-term compared with standard clinical training. The model will probably be applicable to other surgical training procedures....

  19. Peculiarities of domestic and foreign experience of teachers preparation to training robotics

    Directory of Open Access Journals (Sweden)

    Наталья Александровна Ионкина

    2018-12-01

    Full Text Available Robotics within the subject “Technology” is included in the curriculum of Russian schools. This fact transforms robotics from the subject of additional education into a full-fledged academic subject of the school curriculum. The introduction of robotics into the curriculum of Russian schools requires significant changes in the system of training teachers who will teach students this discipline. Training of teachers for the training of students in robotics is carried out, both in the framework of programs for the preparation of masters in pedagogical universities, and within the framework of various refresher courses. Different countries carry out such training in different ways. In some countries, the training of teachers of robotics is financed by the state, in others by private initiatives. The mission of most foreign educational organizations is to use the motivational effects of robotics to activate schoolchildren and involve them in STEM-education. Many manufacturing companies not only sell robotic equipment, but also prepare methodological and training materials for the implementation of STEM-education technology, as well as create electronic educational resources, training programs, online lessons, evaluation materials and much more. Teaching teachers and schoolchildren, while it is based on the equipment that produces such companies.

  20. Practice Makes Perfect: Correlations Between Prior Experience in High-level Athletics and Robotic Surgical Performance Do Not Persist After Task Repetition.

    Science.gov (United States)

    Shee, Kevin; Ghali, Fady M; Hyams, Elias S

    Robotic surgical skill development is central to training in urology as well as in other surgical disciplines. Here, we describe a pilot study assessing the relationships between robotic surgery simulator performance and 3 categories of activities, namely, videogames, musical instruments, and athletics. A questionnaire was administered to preclinical medical students for general demographic information and prior experiences in surgery, videogames, musical instruments, and athletics. For follow-up performance studies, we used the Matchboard Level 1 and 2 modules on the da Vinci Skills Simulator, and recorded overall score, time to complete, economy of motion, workspace range, instrument collisions, instruments out of view, and drops. Task 1 was run once, whereas task 2 was run 3 times. All performance studies on the da Vinci Surgical Skills Simulator took place in the Simulation Center at Dartmouth-Hitchcock Medical Center. All participants were medical students at the Geisel School of Medicine. After excluding students with prior hands-on experience in surgery, a total of 30 students completed the study. We found a significant correlation between athletic skill level and performance for both task 1 (p = 0.0002) and task 2 (p = 0.0009). No significant correlations were found for videogame or musical instrument skill level. Students with experience in certain athletics (e.g., volleyball, tennis, and baseball) tended to perform better than students with experience in other athletics (e.g., track and field). For task 2, which was run 3 times, this association did not persist after the third repetition due to significant improvements in students with low-level athletic skill (levels 0-2). Our study suggests that prior experience in high-level athletics, but not videogames or musical instruments, significantly influences surgical proficiency in robot-naive students. Furthermore, our study suggests that practice through task repetition can overcome initial differences

  1. Training robotic surgery in urology: experience and opinions of robot urologists

    NARCIS (Netherlands)

    Brinkman, W.M.; Schout, B.M.A.; Rietbergen, J.B.; de Vries, A.H.; van der Poel, H.G.; Koldewijn, E.L.; Witjes, JA; Van Merrienboer, J.J.G.

    2015-01-01

    Background: To answer the research questions: (a) what were the training pathways followed by the first generation of robot urologists; and (b) what are their opinions on the ideal training for the future generation? Methods: Data were gathered with a questionnaire and semi-structured interviews in

  2. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  3. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  4. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  5. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.

    Science.gov (United States)

    Lee, Gyusung I; Lee, Mija R

    2018-01-01

    While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.

  6. Force feedback facilitates multisensory integration during robotic tool use

    NARCIS (Netherlands)

    Sengül, A.; Rognini, G.; van Elk, M.; Aspell, J.E.; Bleuler, H.; Blanke, O.

    2013-01-01

    The present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal

  7. Next generation light robotic

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  8. Middle-Ear Microsurgery Simulation to Improve New Robotic Procedures

    Directory of Open Access Journals (Sweden)

    Guillaume Kazmitcheff

    2014-01-01

    Full Text Available Otological microsurgery is delicate and requires high dexterity in bad ergonomic conditions. To assist surgeons in these indications, a teleoperated system, called RobOtol, is developed. This robot enhances gesture accuracy and handiness and allows exploration of new procedures for middle ear surgery. To plan new procedures that exploit the capacities given by the robot, a surgical simulator is developed. The simulation reproduces with high fidelity the behavior of the anatomical structures and can also be used as a training tool for an easier control of the robot for surgeons. In the paper, we introduce the middle ear surgical simulation and then we perform virtually two challenging procedures with the robot. We show how interactive simulation can assist in analyzing the benefits of robotics in the case of complex manipulations or ergonomics studies and allow the development of innovative surgical procedures. New robot-based microsurgical procedures are investigated. The improvement offered by RobOtol is also evaluated and discussed.

  9. Development of safe mechanism for surgical robots using equilibrium point control method.

    Science.gov (United States)

    Park, Shinsuk; Lim, Hokjin; Kim, Byeong-sang; Song, Jae-bok

    2006-01-01

    This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs' equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.

  10. From Illusion to Reality: A Brief History of Robotic Surgery.

    Science.gov (United States)

    Marino, Marco Vito; Shabat, Galyna; Gulotta, Gaspare; Komorowski, Andrzej Lech

    2018-04-01

    Robotic surgery is currently employed for many surgical procedures, yielding interesting results. We performed an historical review of robots and robotic surgery evaluating some critical phases of its evolution, analyzing its impact on our life and the steps completed that gave the robotics its current popularity. The origins of robotics can be traced back to Greek mythology. Different aspects of robotics have been explored by some of the greatest inventors like Leonardo da Vinci, Pierre Jaquet-Droz, and Wolfgang Von-Kempelen. Advances in many fields of science made possible the development of advanced surgical robots. Over 3000 da Vinci robotic platforms are installed worldwide, and more than 200 000 robotic procedures are performed every year. Despite some potential adverse events, robotic technology seems safe and feasible. It is strictly linked to our life, leading surgeons to a new concept of surgery and training.

  11. Royal College surgical objectives of urologic training: A survey of faculty members from Canadian training programs

    Science.gov (United States)

    Zakaria, Ahmed S.; Haddad, Richard; Dragomir, Alice; Kassouf, Wassim; Andonian, Sero; Aprikian, Armen G.

    2014-01-01

    Introduction: According to the Royal College objectives of training in urology, urologic surgical procedures are divided as category A, B and C. We wanted to determine the level of proficiency required and achieved by urology training faculty for Royal College accreditation. Methods: We conducted a survey that was sent electronically to all Canadian urology training faculty. Questions focused on demographics (i.e., years of practice, geographic location, subspecialty, access to robotic surgery), operating room contact with residents, opinion on the level of proficiency required from a list of 54 surgical procedures, and whether their most recent graduates attained category A proficiency in these procedures. Results: The response rate was 43.7% (95/217). Among respondents, 92.6% were full timers, 21.1% practiced urology for less than 5 years and 3.2% for more than 30 years. Responses from Quebec and Ontario formed 69.4% (34.7% each). Of the respondents, 37.9% were uro-oncologists and 75.7% reported having access to robotic surgery. Sixty percent of faculty members operate with R5 residents between 2 to 5 days per month. When respondents were asked which categories should be listed as category A, only 8 procedures received 100% agreement. Also, results varied significantly when analyzed by sub-specialty. For example, almost 50% or more of uro-oncologists believed that radical cystectomy, anterior pelvic exenteration and extended pelvic lymphadenectomy should not be category A. The following procedures had significant disagreement suggesting the need for re-classification: glanular hypospadias repair, boari flap, entero-vesical and vesicovaginal fistulae repair. Overall, more than 80% of faculty reported that their recent graduating residents had achieved category A proficiency, in a subset of procedures. However, more than 50% of all faculty either disagreed or were ambivalent that all of their graduating residents were Category A proficient in several procedures

  12. Automation, robotics, and inflight training for manned Mars missions

    Science.gov (United States)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  13. Robotics in reproductive surgery: strengths and limitations.

    Science.gov (United States)

    Catenacci, M; Flyckt, R L; Falcone, T

    2011-09-01

    Minimally invasive surgical techniques are becoming increasingly common in gynecologic surgery. However, traditional laparoscopy can be challenging. A robotic surgical system gives several advantages over traditional laparoscopy and has been incorporated into reproductive gynecological surgeries. The objective of this article is to review recent publications on robotically-assisted laparoscopy for reproductive surgery. Recent clinical research supports robotic surgery as resulting in less post-operative pain, shorter hospital stays, faster return to normal activities, and decreased blood loss. Reproductive outcomes appear similar to alternative approaches. Drawbacks of robotic surgery include longer operating room times, the need for specialized training, and increased cost. Larger prospective studies comparing robotic approaches with laparoscopy and conventional open surgery have been initiated and information regarding long-term outcomes after robotic surgery will be important in determining the ultimate utility of these procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cognitive learning and its future in urology: surgical skills teaching and assessment.

    Science.gov (United States)

    Shafiei, Somayeh B; Hussein, Ahmed A; Guru, Khurshid A

    2017-07-01

    The aim of this study is to provide an overview of the current status of novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education. Kinematics of end-effector trajectories, as well as cognitive state features of surgeon trainees and mentors have recently been studied as modalities to objectively evaluate the expertise level of trainees and to shorten the learning process. Virtual reality and haptics also have shown promising in research results in improving the surgical learning process by providing feedback to the trainee. 'Cognitive training' is a novel approach to enhance training and surgical performance. The utility of cognitive training in improving motor skills in other fields, including sports and rehabilitation, is promising enough to justify its utilization to improve surgical performance. However, some surgical procedures, especially ones performed during human-robot interaction in robot-assisted surgery, are much more complicated than sport and rehabilitation. Cognitive training has shown promising results in surgical skills-acquisition in complicated environments such as surgery. However, these methods are mostly developed in research groups using limited individuals. Transferring this research into the clinical applications is a demanding challenge. The aim of this review is to provide an overview of the current status of these novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education.

  15. Crowdsourcing: a valid alternative to expert evaluation of robotic surgery skills.

    Science.gov (United States)

    Polin, Michael R; Siddiqui, Nazema Y; Comstock, Bryan A; Hesham, Helai; Brown, Casey; Lendvay, Thomas S; Martino, Martin A

    2016-11-01

    Robotic-assisted gynecologic surgery is common, but requires unique training. A validated assessment tool for evaluating trainees' robotic surgery skills is Robotic-Objective Structured Assessments of Technical Skills. We sought to assess whether crowdsourcing can be used as an alternative to expert surgical evaluators in scoring Robotic-Objective Structured Assessments of Technical Skills. The Robotic Training Network produced the Robotic-Objective Structured Assessments of Technical Skills, which evaluate trainees across 5 dry lab robotic surgical drills. Robotic-Objective Structured Assessments of Technical Skills were previously validated in a study of 105 participants, where dry lab surgical drills were recorded, de-identified, and scored by 3 expert surgeons using the Robotic-Objective Structured Assessments of Technical Skills checklist. Our methods-comparison study uses these previously obtained recordings and expert surgeon scores. Mean scores per participant from each drill were separated into quartiles. Crowdworkers were trained and calibrated on Robotic-Objective Structured Assessments of Technical Skills scoring using a representative recording of a skilled and novice surgeon. Following this, 3 recordings from each scoring quartile for each drill were randomly selected. Crowdworkers evaluated the randomly selected recordings using Robotic-Objective Structured Assessments of Technical Skills. Linear mixed effects models were used to derive mean crowdsourced ratings for each drill. Pearson correlation coefficients were calculated to assess the correlation between crowdsourced and expert surgeons' ratings. In all, 448 crowdworkers reviewed videos from 60 dry lab drills, and completed a total of 2517 Robotic-Objective Structured Assessments of Technical Skills assessments within 16 hours. Crowdsourced Robotic-Objective Structured Assessments of Technical Skills ratings were highly correlated with expert surgeon ratings across each of the 5 dry lab drills

  16. Ontogeny of a surgical technique: Robotic kidney transplantation with regional hypothermia.

    Science.gov (United States)

    Sood, Akshay; McCulloch, Peter; Dahm, Philipp; Ahlawat, Rajesh; Jeong, Wooju; Bhandari, Mahendra; Menon, Mani

    2016-01-01

    Innovation is a hallmark of surgical practice. It is generally accepted that a new procedure will undergo technical changes during its evolution; however, quantitative accounts of the process are limited. Multiple groups, including our own, have recently described a minimally-invasive approach to conventional kidney transplantation (KT) operation. Unique to our experience is a structured development of the technique within the confines of a safe surgical innovation framework - the IDEAL framework (idea, development, exploration, assessment, long-term monitoring; stages 0-4). We here provide a first-hand narrative of the progress of robotic KT operation from preclinical trial to clinical application. Overall, 54 patients underwent robotic KT with regional hypothermia successfully. Major technical changes including selection of optimal patient position (flank vs. lithotomy), robotic instrumentation, vascular occlusion method (bulldog vs. tourniquet) and suture material (prolene vs. GoreTex) occurred early during the procedure development (IDEAL stage 0, preclinical). Minor technical changes such as utilization of the aortic punch for arteriotomy (case 3), use of barbed suture during ureteroneocystostomy (case 6) and extraperitonealization of the graft kidney (case 6) that increased the efficiency and safety of the procedure continued throughout procedure development (IDEAL stages 1-2, clinical stages). We demonstrate that a surgical technique evolves continually; although, the majority of technical alterations occur early in the life-cycle of the procedure. Development of a new technique within the confines a structured surgical innovation framework allows for evidence based progression of the technique and may minimize the risk of harm to the patient. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  17. Modular Training for Robot-Assisted Radical Prostatectomy: Where to Begin?

    Science.gov (United States)

    Lovegrove, Catherine; Ahmed, Kamran; Novara, Giacomo; Guru, Khurshid; Mottrie, Alex; Challacombe, Ben; der Poel, Henk Van; Peabody, James; Dasgupta, Prokar

    Effective training is paramount for patient safety. Modular training entails advancing through surgical steps of increasing difficulty. This study aimed to construct a modular training pathway for use in robot-assisted radical prostatectomy (RARP). It aims to identify the sequence of procedural steps that are learnt before surgeons are able to perform a full procedure without an intervention from mentor. This is a multi-institutional, prospective, observational, longitudinal study. We used a validated training tool (RARP Score). Data regarding surgeons' stage of training and progress were collected for analysis. A modular training pathway was constructed with consensus on the level of difficulty and evaluation of individual steps. We identified and recorded the sequence of steps performed by fellows during their learning curves. We included 15 urology fellows from UK, Europe, and Australia. A total of 15 surgeons were assessed by mentors in 425 RARP cases over 8 months (range: 7-79) across 15 international centers. There were substantial differences in the sequence of RARP steps according to the chronology of the procedure, difficulty level, and the order in which surgeons actually learned steps. Steps were not attempted in chronological order. The greater the difficulty, the later the cohort first undertook the step (p = 0.021). The cohort undertook steps of difficulty level I at median case number 1. Steps of difficulty levels II, III, and IV showed more variation in median case number of the first attempt. We recommend that, in the operating theater, steps be learned in order of increasing difficulty. A new modular training route has been designed. This incorporates the steps of RARP with the following order of priority: difficulty level > median case number of first attempt > most frequently undertaken in surgical training. An evidence-based modular training pathway has been developed that facilitates a safe introduction to RARP for novice surgeons. Copyright

  18. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    Directory of Open Access Journals (Sweden)

    Shaoli Liu

    Full Text Available The "robotic-assisted liver tumor coagulation therapy" (RALTCT system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1 multiple needles are needed to destroy the entire tumor, (2 the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3 the placement of multiple needles should avoid interference with each other, (4 an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5 the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW, which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor

  19. Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    Science.gov (United States)

    Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong

    2016-01-01

    The "robotic-assisted liver tumor coagulation therapy" (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy

  20. [Short-term efficacy of da Vinci robotic surgical system on rectal cancer in 101 patients].

    Science.gov (United States)

    Zeng, Dong-Zhu; Shi, Yan; Lei, Xiao; Tang, Bo; Hao, Ying-Xue; Luo, Hua-Xing; Lan, Yuan-Zhi; Yu, Pei-Wu

    2013-05-01

    To investigate the feasibility and safety of da Vinci robotic surgical system in rectal cancer radical operation, and to summarize its short-term efficacy and clinical experience. Data of 101 cases undergoing da Vinci robotic surgical system for rectal cancer radical operation from March 2010 to September 2012 were retrospectively analyzed. Evaluation was focused on operative procedure, complication, recovery and pathology. All the 101 cases underwent operation successfully and safely without conversion to open procedure. Rectal cancer radical operation with da Vinci robotic surgical system included 73 low anterior resections and 28 abdominoperineal resections. The average operative time was (210.3±47.2) min. The average blood lose was (60.5±28.7) ml without transfusion. Lymphadenectomy harvest was 17.3±5.4. Passage of first flatus was (2.7±0.7) d. Distal margin was (5.3±2.3) cm without residual cancer cells. The complication rate was 6.9%, including anastomotic leakage(n=2), perineum incision infection(n=2), pulmonary infection (n=2), urinary retention (n=1). There was no postoperative death. The mean follow-up time was(12.9±8.0) months. No local recurrence was found except 2 cases with distant metastasis. Application of da Vinci robotic surgical system in rectal cancer radical operation is safe and patients recover quickly The short-term efficacy is satisfactory.

  1. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Jesús M. Gómez-de-Gabriel

    2015-10-01

    Full Text Available Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  2. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  3. Robotic simple prostatectomy: A consideration for large prostate adenomas

    Directory of Open Access Journals (Sweden)

    Joshua B. Nething

    2014-12-01

    Full Text Available Background: The management of benign prostatic hyperplasia (BPH has changed considerably over the last several decades. First line treatment of BPH and lower urinary tract symptoms (LUTS with medical therapy has created a population of men with much larger prostate glands, many of whom require surgical intervention. Patients with prostate glands greater than 80 to 100 grams may be better managed surgically with a retropubic prostatectomy. We explore our experience with robotic assisted simple prostatectomy and review the relevant literature. Database: The database reviewed includes our experience with seven patients undergoing robotic simple prostatectomy, and a comprehensive review of the previously published series of this procedure. In addition, the literature pertaining to a pure laparoscopic approach to simple prostatectomy is reviewed. Conclusion: Robotic experience and training has become a standard in resident training programs; while classic transurethral resection is being performed less for large prostate glands. The robotic approach to simple prostatectomy provides an excellent option for surgical treatment of very large prostate glands, providing patients acceptable results in terms of operative time, estimated blood loss, hospital stay and duration of Foley catheter.

  4. A Surgical Robot Teleoperation Framework for Providing Haptic Feedback Incorporating Virtual Envrioment-Based Guidance

    Directory of Open Access Journals (Sweden)

    Adnan Munawar

    2016-08-01

    Full Text Available In robot-assisted tele-operated laparoscopic surgeries, the patient side manipulators are controlled via the master manipulators that are controlled by the surgeon. The current generation of robots approved for laparoscopic surgery lack haptic feedback. In theory, haptic feedback would enhance the surgical procedures by enabling better coordination between the hand movements that are improved by the tactile sense of the operating environment. This research presents an overall control framework for a haptic feedback on existing robot platforms, and demonstrated on the daVinci Research Kit (dVRK system. The paper discusses the implementation of a flexible framework that incorporates a stiffness control with gravity compensation for the surgeons manipulator and a sensing and collision detection algorithm for calculating the interaction between the patients manipulators and the surgical area.

  5. Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots

    Science.gov (United States)

    Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.

    2009-01-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337

  6. Vision and task assistance using modular wireless in vivo surgical robots.

    Science.gov (United States)

    Platt, Stephen R; Hawks, Jeff A; Rentschler, Mark E

    2009-06-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by nonmedical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient.

  7. Raven-II: an open platform for surgical robotics research.

    Science.gov (United States)

    Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee

    2013-04-01

    The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.

  8. Cost-effective framework for basic surgical skills training.

    Science.gov (United States)

    Jiang, Deng-Jin; Wen, Chan; Yang, Ai-Jun; Zhu, Zhi-Li; Lei, Yan; Lan, Yang-Jun; Huang, Qing-Yuan; Hou, Xiao-Yu

    2013-06-01

    The importance of basic surgical skills is entirely agreed among surgical educators. However, restricted by ethical issues, finance etc, the basic surgical skills training is increasingly challenged. Increasing cost gives an impetus to the development of cost-effective training models to meet the trainees' acquisition of basic surgical skills. In this situation, a cost-effective training framework was formed in our department and introduced here. Each five students were assigned to a 'training unit'. The training was implemented weekly for 18 weeks. The framework consisted of an early, a transitional, an integrative stage and a surgical skills competition. Corresponding training modules were selected and assembled scientifically at each stage. The modules comprised campus intranet databases, sponge benchtop, nonliving animal tissue, local dissection specimens and simulating reality operations. The training outcomes used direct observation of procedural skills as an assessment tool. The training data of 50 trainees who were randomly selected in each year from 2006 to 2011 year, were retrospectively analysed. An excellent and good rate of the surgical skills is from 82 to 88%, but there is no significant difference among 6 years (P > 0.05). The skills scores of the contestants are markedly higher than those of non-contestants (P < 0.05). The average training cost per trainee is about $21.85-34.08. The present training framework is reliable, feasible, repeatable and cost-effective. The skills competition can promote to improve the surgical skills level of trainees. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  9. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial.

    Science.gov (United States)

    Chowriappa, Ashirwad; Raza, Syed Johar; Fazili, Anees; Field, Erinn; Malito, Chelsea; Samarasekera, Dinesh; Shi, Yi; Ahmed, Kamran; Wilding, Gregory; Kaouk, Jihad; Eun, Daniel D; Ghazi, Ahmed; Peabody, James O; Kesavadas, Thenkurussi; Mohler, James L; Guru, Khurshid A

    2015-02-01

    To validate robot-assisted surgery skills acquisition using an augmented reality (AR)-based module for urethrovesical anastomosis (UVA). Participants at three institutions were randomised to a Hands-on Surgical Training (HoST) technology group or a control group. The HoST group was given procedure-based training for UVA within the haptic-enabled AR-based HoST environment. The control group did not receive any training. After completing the task, the control group was offered to cross over to the HoST group (cross-over group). A questionnaire administered after HoST determined the feasibility and acceptability of the technology. Performance of UVA using an inanimate model on the daVinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA) was assessed using a UVA evaluation score and a Global Evaluative Assessment of Robotic Skills (GEARS) score. Participants completed the National Aeronautics and Space Administration Task Load Index (NASA TLX) questionnaire for cognitive assessment, as outcome measures. A Wilcoxon rank-sum test was used to compare outcomes among the groups (HoST group vs control group and control group vs cross-over group). A total of 52 individuals participated in the study. UVA evaluation scores showed significant differences in needle driving (3.0 vs 2.3; P = 0.042), needle positioning (3.0 vs 2.4; P = 0.033) and suture placement (3.4 vs 2.6; P = 0.014) in the HoST vs the control group. The HoST group obtained significantly higher scores (14.4 vs 11.9; P 0.012) on the GEARS. The NASA TLX indicated lower temporal demand and effort in the HoST group (5.9 vs 9.3; P = 0.001 and 5.8 vs 11.9; P = 0.035, respectively). In all, 70% of participants found that HoST was similar to the real surgical procedure, and 75% believed that HoST could improve confidence for carrying out the real intervention. Training in UVA in an AR environment improves technical skill acquisition with minimal cognitive demand. © 2014 The Authors. BJU International

  10. Robot-Assisted Training for People With Spinal Cord Injury: A Meta-Analysis.

    Science.gov (United States)

    Cheung, Eddy Y Y; Ng, Thomas K W; Yu, Kevin K K; Kwan, Rachel L C; Cheing, Gladys L Y

    2017-11-01

    To investigate the effects of robot-assisted training on the recovery of people with spinal cord injury (SCI). Randomized controlled trials (RCTs) or quasi-RCTs involving people with SCI that compared robot-assisted upper limbs or lower limbs training with a control of other treatment approach or no treatment. We included studies involving people with complete or incomplete SCIs. We searched MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials (Cochrane Library), and Embase to August 2016. Bibliographies of relevant articles on the effect of body-weight-supported treadmill training on subjects with SCI were screened to avoid missing relevant articles from the search of databases. All kinds of objective assessments concerning physical ability, mobility, and/or functional ability were included. Assessments could be clinical tests (ie, 6-minute walk test, FIM) or laboratory tests (ie, gait analysis). Subjective outcome measures were excluded from this review. Eleven RCT studies involving 443 subjects were included in the study. Meta-analysis was performed on the included studies. Walking independence (3.73; 95% confidence interval [CI], -4.92 to -2.53; P<.00001; I 2 =38%) and endurance (53.32m; 95% CI, -73.15 to -33.48; P<.00001; I 2 =0%) were found to have better improvement in robot-assisted training groups. Lower limb robot-assisted training was also found to be as effective as other types of body-weight-supported training. There is a lack of upper limb robot-assisted training studies; therefore, performing a meta-analysis was not possible. Robot-assisted training is an adjunct therapy for physical and functional recovery for patients with SCI. Future high-quality studies are warranted to investigate the effects of robot-assisted training on functional and cardiopulmonary recovery of patients with SCI. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Error reporting from the da Vinci surgical system in robotic surgery: A Canadian multispecialty experience at a single academic centre.

    Science.gov (United States)

    Rajih, Emad; Tholomier, Côme; Cormier, Beatrice; Samouëlian, Vanessa; Warkus, Thomas; Liberman, Moishe; Widmer, Hugues; Lattouf, Jean-Baptiste; Alenizi, Abdullah M; Meskawi, Malek; Valdivieso, Roger; Hueber, Pierre-Alain; Karakewicz, Pierre I; El-Hakim, Assaad; Zorn, Kevin C

    2017-05-01

    The goal of the study is to evaluate and report on the third-generation da Vinci surgical (Si) system malfunctions. A total of 1228 robotic surgeries were performed between January 2012 and December 2015 at our academic centre. All cases were performed by using a single, dual console, four-arm, da Vinci Si robot system. The three specialties included urology, gynecology, and thoracic surgery. Studied outcomes included the robotic surgical error types, immediate consequences, and operative side effects. Error rate trend with time was also examined. Overall robotic malfunctions were documented on the da Vinci Si systems event log in 4.97% (61/1228) of the cases. The most common error was related to pressure sensors in the robotic arms indicating out of limit output. This recoverable fault was noted in 2.04% (25/1228) of cases. Other errors included unrecoverable electronic communication-related in 1.06% (13/1228) of cases, failed encoder error in 0.57% (7/1228), illuminator-related in 0.33% (4/1228), faulty switch in 0.24% (3/1228), battery-related failures in 0.24% (3/1228), and software/hardware error in 0.08% (1/1228) of cases. Surgical delay was reported only in one patient. No conversion to either open or laparoscopic occurred secondary to robotic malfunctions. In 2015, the incidence of robotic error rose to 1.71% (21/1228) from 0.81% (10/1228) in 2014. Robotic malfunction is not infrequent in the current era of robotic surgery in various surgical subspecialties, but rarely consequential. Their seldom occurrence does not seem to affect patient safety or surgical outcome.

  12. Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework

    OpenAIRE

    Young, J.; Elhawary, H.; Popovic, A.

    2012-01-01

    We have integrated the Philips Research robot arm with the Johns Hopkins University cisst library, an open-source platform for computerassisted surgical intervention. The development of a Matlab to C++ wrapper to abstract away servo-level details facilitates the rapid development of a component-based framework with “plug and play” features. This allows the user to easily exchange the robot with an alternative manipulator while maintaining the same overall functionality.

  13. A review of training research and virtual reality simulators for the da Vinci surgical system.

    Science.gov (United States)

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  14. How to prepare the patient for robotic surgery: before and during the operation.

    Science.gov (United States)

    Lim, Peter C; Kang, Elizabeth

    2017-11-01

    Robotic surgery in the treatment of gynecologic diseases continues to evolve and has become accepted over the last decade. The advantages of robotic-assisted laparoscopic surgery over conventional laparoscopy are three-dimensional camera vision, superior precision and dexterity with EndoWristed instruments, elimination of operator tremor, and decreased surgeon fatigue. The drawbacks of the technology are bulkiness and lack of tactile feedback. As with other surgical platforms, the limitations of robotic surgery must be understood. Patient selection and the types of surgical procedures that can be performed through the robotic surgical platform are critical to the success of robotic surgery. First, patient selection and the indication for gynecologic disease should be considered. Discussion with the patient regarding the benefits and potential risks of robotic surgery and of complications and alternative treatments is mandatory, followed by patient's signature indicating informed consent. Appropriate preoperative evaluation-including laboratory and imaging tests-and bowel cleansing should be considered depending upon the type of robotic-assisted procedure. Unlike other surgical procedures, robotic surgery is equipment-intensive and requires an appropriate surgical suite to accommodate the patient side cart, the vision system, and the surgeon's console. Surgical personnel must be properly trained with the robotics technology. Several factors must be considered to perform a successful robotic-assisted surgery: the indication and type of surgical procedure, the surgical platform, patient position and the degree of Trendelenburg, proper port placement configuration, and appropriate instrumentation. These factors that must be considered so that patients can be appropriately prepared before and during the operation are described. Copyright © 2017. Published by Elsevier Ltd.

  15. Inducing self-selected human engagement in robotic locomotion training.

    Science.gov (United States)

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better

  16. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  17. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    2017-01-01

    Full Text Available Objective. This study aims to establish a steady-state visual evoked potential- (SSVEP- based passive training protocol on an ankle rehabilitation robot and validate its feasibility. Method. This paper combines SSVEP signals and the virtual reality circumstance through constructing information transmission loops between brains and ankle robots. The robot can judge motion intentions of subjects and trigger the training when subjects pay their attention on one of the four flickering circles. The virtual reality training circumstance provides real-time visual feedback of ankle rotation. Result. All five subjects succeeded in conducting ankle training based on the SSVEP-triggered training strategy following their motion intentions. The lowest success rate is 80%, and the highest one is 100%. The lowest information transfer rate (ITR is 11.5 bits/min when the biggest one of the robots for this proposed training is set as 24 bits/min. Conclusion. The proposed training strategy is feasible and promising to be combined with a robot for ankle rehabilitation. Future work will focus on adopting more advanced data process techniques to improve the reliability of intention detection and investigating how patients respond to such a training strategy.

  18. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  19. Principles and advantages of robotics in urologic surgery.

    Science.gov (United States)

    Renda, Antonio; Vallancien, Guy

    2003-04-01

    Although the available minimally invasive surgical techniques (ie, laparoscopy) have clear advantages, these procedures continue to cause problems for patients. Surgical tools are limited by set axes of movement, restricting the degree of freedom available to the surgeon. In addition, depth perception is lost with the use of two-dimensional viewing systems. As surgeons view a "virtual" target on a television screen, they are hampered by decreased sensory input and a concurrent loss of dexterity. The development of robotic assistance systems in recent years could be the key to overcoming these difficulties. Using robotic systems, surgeons can experience a more natural and ergonomic surgical "feel." Surgical assistance, dexterity and precision enhancement, systems networking, and image-guided therapy are among the benefits offered by surgical robots. In return, the surgeon gains a shorter learning curve, reduced fatigue, and the opportunity to perform complex procedures that would be difficult using conventional laparoscopy. With the development of image-guided technology, robotic systems will become useful tools for surgical training and simulation. Remote surgery is not a routine procedure, but several teams are working on this and experiencing good results. However, economic concerns are the major drawbacks of these systems; before remote surgery becomes routinely feasible, the clinical benefits must be balanced with high investment and running costs.

  20. Evaluation of robotic-assisted platysmaplasty procedures in a cadaveric model using the da Vinci Surgical System.

    Science.gov (United States)

    Taghizadeh, Farhan; Reiley, Carol; Mohr, Catherine; Paul, Malcolm

    2014-03-01

    We are evaluating the technical feasibility of robotic-assisted laparoscopic vertical-intermediate platysmaplasty in conjunction with an open rhytidectomy. In a cadaveric study, the da Vinci Surgical System was used to access certain angles in the lower neck that are difficult for traditional short incision, short flap procedures. Ergonomics, approach, and technical challenges were noted. To date, there are no published reports of robotic-assisted neck lifts, motivating us to assess its potential in this field of plastic surgery. Standard open technique short flap rhytidectomies with concurrent experimental robotic-assisted platysmaplasties (neck lifts) were performed on six cadavers with the da Vinci Si Surgical System(®) (Intuitive Surgical, Sunnyvale, CA, USA). The surgical procedures were performed on a diverse cadaver population from June 2011 to January 2012. The procedures included (1) submental incision and laser-assisted liposuction, (2) open rhytidectomy, and (3) robotic-assisted platysmaplasty using knot-free sutures. A variety of sutures and fat extraction techniques, coupled with 0° and 30° three-dimensional endoscopes, were utilized to optimize visualization of the platysma. An unaltered da Vinci Si Surgical System with currently available instruments was easily adaptable to neck lift surgery. Mid-neck platysma exposure was excellent, tissue handling was delicate and precise, and suturing was easily performed. Robotic-assisted surgery has the potential to improve outcomes in neck lifts by offering the ability to manipulate instruments with increased freedom of movement, scaled motion, tremor reduction, and stereoscopic three-dimensional visualization in the deep neck. Future clinical studies on live human patients can better assess subject and surgeon benefits arising from the use of the da Vinci system for neck lifts. Evidence obtained from multiple time series with or without the intervention, such as case studies. Dramatic results in

  1. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.

    Science.gov (United States)

    Eiammanussakul, Trinnachoke; Sangveraphunsiri, Viboon

    2018-01-01

    Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  2. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities

    Directory of Open Access Journals (Sweden)

    Trinnachoke Eiammanussakul

    2018-01-01

    Full Text Available Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  3. An intention driven hand functions task training robotic system.

    Science.gov (United States)

    Tong, K Y; Ho, S K; Pang, P K; Hu, X L; Tam, W K; Fung, K L; Wei, X J; Chen, P N; Chen, M

    2010-01-01

    A novel design of a hand functions task training robotic system was developed for the stroke rehabilitation. It detects the intention of hand opening or hand closing from the stroke person using the electromyography (EMG) signals measured from the hemiplegic side. This training system consists of an embedded controller and a robotic hand module. Each hand robot has 5 individual finger assemblies capable to drive 2 degrees of freedom (DOFs) of each finger at the same time. Powered by the linear actuator, the finger assembly achieves 55 degree range of motion (ROM) at the metacarpophalangeal (MCP) joint and 65 degree range of motion (ROM) at the proximal interphalangeal (PIP) joint. Each finger assembly can also be adjusted to fit for different finger length. With this task training system, stroke subject can open and close their impaired hand using their own intention to carry out some of the daily living tasks.

  4. A highly articulated robotic surgical system for minimally invasive surgery.

    Science.gov (United States)

    Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A

    2009-04-01

    We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.

  5. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    International Nuclear Information System (INIS)

    O'Malley, Bert W.; Weinstein, Gregory S.

    2007-01-01

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach was investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development

  6. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, M.; Yasunaga, T.; Konishi, K. [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Tanoue, K.; Ieiri, S. [Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Kishi, K. [Hitachi Ltd, Mechanical Engineering Research Laboratory, Hitachinaka-Shi, Ibaraki (Japan); Nakamoto, H. [Hitachi Medical Corporation, Application Development Office, Kashiwa-Shi, Chiba (Japan); Ikeda, D. [Mizuho Ikakogyo Co. Ltd, Tokyo (Japan); Sakuma, I. [The University of Tokyo, Graduate School of Engineering, Bunkyo-Ku, Tokyo (Japan); Fujie, M. [Waseda University, Graduate School of Science and Engineering, Shinjuku-Ku, Tokyo (Japan); Dohi, T. [The University of Tokyo, Graduate School of Information Science and Technology, Bunkyo-Ku, Tokyo (Japan)

    2008-04-15

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  7. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    International Nuclear Information System (INIS)

    Hashizume, M.; Yasunaga, T.; Konishi, K.; Tanoue, K.; Ieiri, S.; Kishi, K.; Nakamoto, H.; Ikeda, D.; Sakuma, I.; Fujie, M.; Dohi, T.

    2008-01-01

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  8. The cutting-edge training modalities and educational platforms for accredited surgical training: A systematic review.

    Science.gov (United States)

    Forgione, Antonello; Guraya, Salman Y

    2017-01-01

    Historically, operating room (OR) has always been considered as a stand-alone trusted platform for surgical education and training. However, concerns about financial constraints, quality control, and patient safety have urged the surgical educators to develop more cost-effective, surgical educational platforms that can be employed outside the OR. Furthermore, trained surgeons need to regularly update their surgical skills to keep abreast with the emerging surgical technologies. This research aimed to explore the value of currently available modern surgical tools that can be used outside the OR and also elaborates the existing laparoscopic surgical training programs in world-class centers across the globe with a view to formulate a blended and unified structured surgical training program. Several data sources were searched using MeSH terms "Laparoscopic surgery" and "Surgical training" and "Surgical curriculum" and "fundamentals of endoscopic surgery" and "fundamentals of laparoscopic surgery" and "Telementoring" and "Box trainer." The eligibility criteria used in data extraction searched for original and review articles and by excluding the editorial articles, short communications, conference proceedings, personal view, and commentaries. Data synthesis and data analysis were done by reviewing the initially retrieved 211 articles. Irrelevant and duplicate and redundant articles were excluded from the study. Finally, 12 articles were selected for this systematic review. Data results showed that a myriad of cutting-edge technical innovations have provided modern surgical training tools such as the simulation-based mechanical and virtual reality simulators, animal and cadaveric labs, telementoring, telerobotic-assisted surgery, and video games. Surgical simulators allow the trainees to acquire surgical skills in a tension-free environment without supervision or time constraints. The existing world-renowned surgical training centers employ various clusters of training

  9. Face and content validity of Xperience™ Team Trainer: bed-side assistant training simulator for robotic surgery.

    Science.gov (United States)

    Sessa, Luca; Perrenot, Cyril; Xu, Song; Hubert, Jacques; Bresler, Laurent; Brunaud, Laurent; Perez, Manuela

    2018-03-01

    In robotic surgery, the coordination between the console-side surgeon and bed-side assistant is crucial, more than in standard surgery or laparoscopy where the surgical team works in close contact. Xperience™ Team Trainer (XTT) is a new optional component for the dv-Trainer ® platform and simulates the patient-side working environment. We present preliminary results for face, content, and the workload imposed regarding the use of the XTT virtual reality platform for the psychomotor and communication skills training of the bed-side assistant in robot-assisted surgery. Participants were categorized into "Beginners" and "Experts". They tested a series of exercises (Pick & Place Laparoscopic Demo, Pick & Place 2 and Team Match Board 1) and completed face validity questionnaires. "Experts" assessed content validity on another questionnaire. All the participants completed a NASA Task Load Index questionnaire to assess the workload imposed by XTT. Twenty-one consenting participants were included (12 "Beginners" and 9 "Experts"). XTT was shown to possess face and content validity, as evidenced by the rankings given on the simulator's ease of use and realism parameters and on the simulator's usefulness for training. Eight out of nine "Experts" judged the visualization of metrics after the exercises useful. However, face validity has shown some weaknesses regarding interactions and instruments. Reasonable workload parameters were registered. XTT demonstrated excellent face and content validity with acceptable workload parameters. XTT could become a useful tool for robotic surgery team training.

  10. Training Revising Based Traversability Analysis of Complex Terrains for Mobile Robot

    Directory of Open Access Journals (Sweden)

    Rui Song

    2014-05-01

    Full Text Available Traversability analysis is one of the core issues in the autonomous navigation for mobile robots to identify the accessible area by the information of sensors on mobile robots. This paper proposed a model to analyze the traversability of complex terrains based on rough sets and training revising. The model described the traversability for mobile robots by traversability cost. Through the experiment, the paper gets the conclusion that traversability analysis model based on rough sets and training revising can be used where terrain features are rich and complex, can effectively handle the unstructured environment, and can provide reliable and effective decision rules in the autonomous navigation for mobile robots.

  11. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Training and learning robotic surgery, time for a more structured approach: a systematic review

    NARCIS (Netherlands)

    Schreuder, H. W. R.; Wolswijk, R.; Zweemer, R. P.; Schijven, M. P.; Verheijen, R. H. M.

    2012-01-01

    Background Robotic assisted laparoscopic surgery is growing rapidly and there is an increasing need for a structured approach to train future robotic surgeons. Objectives To review the literature on training and learning strategies for robotic assisted laparoscopic surgery. Search strategy A

  13. Surgical Safety Training of World Health Organization Initiatives.

    Science.gov (United States)

    Davis, Christopher R; Bates, Anthony S; Toll, Edward C; Cole, Matthew; Smith, Frank C T; Stark, Michael

    2014-01-01

    Undergraduate training in surgical safety is essential to maximize patient safety. This national review quantified undergraduate surgical safety training. Training of 2 international safety initiatives was quantified: (1) World Health Organization (WHO) "Guidelines for Safe Surgery" and (2) Department of Health (DoH) "Principles of the Productive Operating Theatre." Also, 13 additional safety skills were quantified. Data were analyzed using Mann-Whitney U tests. In all, 23 universities entered the study (71.9% response). Safety skills from WHO and DoH documents were formally taught in 4 UK medical schools (17.4%). Individual components of the documents were taught more frequently (47.6%). Half (50.9%) of the additional safety skills identified were taught. Surgical societies supplemented safety training, although the total amount of training provided was less than that in university curricula (P < .0001). Surgical safety training is inadequate in UK medical schools. To protect patients and maximize safety, a national undergraduate safety curriculum is recommended. © 2013 by the American College of Medical Quality.

  14. Technological advances in robotic-assisted laparoscopic surgery.

    Science.gov (United States)

    Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K

    2009-05-01

    In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.

  15. Incorporating simulation into gynecologic surgical training.

    Science.gov (United States)

    Wohlrab, Kyle; Jelovsek, J Eric; Myers, Deborah

    2017-11-01

    Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Robotic Whipple Procedure for Pancreatic Cancer: The Moffitt Cancer Center Pathway.

    Science.gov (United States)

    Rashid, Omar M; Mullinax, John E; Pimiento, Jose M; Meredith, Kenneth L; Malafa, Mokenge P

    2015-07-01

    Resection of malignancies in the head and uncinate process of the pancreas (Whipple procedure) using a robotic approach is emerging as a surgical option. Although several case series of the robotic Whipple procedure have been reported, detailed descriptions of operative techniques and a clear pathway for adopting this technology are lacking. We present a focused review of the procedure as it applies to pancreatic cancer and describe our clinical pathway for the robotic Whipple procedure used in pancreatic cancer and review the outcomes of our early experience. A systematic review of the literature is provided, focusing on the indications, variations in surgical techniques, complications, and oncological results of the robotic Whipple procedure. A clinical pathway has been defined for preoperative training of surgeons, the requirements for hospital privileges, patient selection, and surgical techniques for the robotic Whipple procedure. The robotic technique for managing malignant lesions of the pancreas head is safe when following well-established guidelines for adopting the technology. Preliminary data demonstrate that perioperative convalescence may exceed end points when compared with the open technique. The robotic Whipple procedure is a minimally invasive approach for select patients as part of multidisciplinary management of periampullary lesions in tertiary centers where clinicians have developed robotic surgical programs. Prospective trials are needed to define the short- and long-term benefits of the robotic Whipple procedure.

  17. The Settings, Pros and Cons of the New Surgical Robot da Vinci Xi System for Transoral Robotic Surgery (TORS): A Comparison With the Popular da Vinci Si System.

    Science.gov (United States)

    Kim, Da Hee; Kim, Hwan; Kwak, Sanghyun; Baek, Kwangha; Na, Gina; Kim, Ji Hoon; Kim, Se Heon

    2016-10-01

    The da Vinci system (da Vinci Surgical System; Intuitive Surgical Inc.) has rapidly developed in several years from the S system to the Si system and now the Xi System. To investigate the surgical feasibility and to provide workflow guidance for the newly released system, we used the new da Vinci Xi system for transoral robotic surgery (TORS) on a cadaveric specimen. Bilateral supraglottic partial laryngectomy, hypopharyngectomy, lateral oropharyngectomy, and base of the tongue resection were serially performed in search of the optimal procedures with the new system. The new surgical robotic system has been upgraded in all respects. The telescope and camera were incorporated into one system, with a digital end-mounted camera. Overhead boom rotation allows multiquadrant access without axis limitation, the arms are now thinner and longer with grabbing movements for easy adjustments. The patient clearance button dramatically reduces external collisions. The new surgical robotic system has been optimized for improved anatomic access, with better-equipped appurtenances. This cadaveric study of TORS offers guidance on the best protocol for surgical workflow with the new Xi system leading to improvements in the functional results of TORS.

  18. A new AS-display as part of the MIRO lightweight robot for surgical applications

    Science.gov (United States)

    Grossmann, Christoph M.

    2010-02-01

    The DLR MIRO is the second generation of versatile robot arms for surgical applications, developed at the Institute for Robotics and Mechatronics at Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Oberpfaffenhofen, Germany. With its low weight of 10 kg and dimensions similar to those of the human arm, the MIRO robot can assist the surgeon directly at the operating table where space is scarce. The planned scope of applications of this robot arm ranges from guiding a laser unit for the precise separation of bone tissue in orthopedics to positioning holes for bone screws, robot assisted endoscope guidance and on to the multi-robot concept for endoscopic minimally invasive surgery. A stereo-endoscope delivers two full HD video streams that can even be augmented with information, e.g vectors indicating the forces that act on the surgical tool at any given moment. SeeFront's new autostereoscopic 3D display SF 2223, being a part of the MIRO assembly, will let the surgeon view the stereo video stream in excellent quality, in real time and without the need for any viewing aids. The presentation is meant to provide an insight into the principles at the basis of the SeeFront 3D technology and how they allow the creation of autostereoscopic display solutions ranging from smallest "stamp-sized" displays to 30" desktop versions, which all provide comfortable freedom of movement for the viewer along with excellent 3D image quality.

  19. Surgical training in the Netherlands

    NARCIS (Netherlands)

    Borel-Rinkes, Inne H. M.; Gouma, Dirk J.; Hamming, Jaap F.

    2008-01-01

    Surgical training in the Netherlands has traditionally been characterized by learning on the job under the classic master-trainee doctrine. Over the past decades, it has become regionally organized with intensive structural training courses, and a peer-based quality control system. Recently, the

  20. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  1. Training with a balance exercise assist robot is more effective than conventional training for frail older adults.

    Science.gov (United States)

    Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi

    2017-11-01

    To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  2. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Gimigliano, Raffaele; Smania, Nicola

    2012-09-01

    Treadmill training (with or without robotic assistance) has been reported to improve balance skills in patients with Parkinson's disease (PD). However, its effectiveness on postural instability has been evaluated mainly in patients with mild to moderate PD (Hoehn & Yahr stage ≤3). Patients with more severe disease may benefit from robot-assisted gait training performed by the Gait-Trainer GT1, as a harness supports them with their feet placed on motor-driven footplates. The aim of this study was to determine whether robot-assisted gait training could have a positive influence on postural stability in patients with PD at Hoehn & Yahr stage 3-4. Thirty-four patients with PD at Hoehn & Yahr stage 3-4 were randomly assigned into two groups. All patients received twelve, 40-min treatment sessions, three days/week, for four consecutive weeks. The Robotic Training group (n = 17) underwent robot-assisted gait training, while the Physical Therapy group (n = 17) underwent a training program not specifically aimed at improving postural stability. Patients were evaluated before, immediately after and 1-month post-treatment. Primary outcomes were: Berg Balance scale; Nutt's rating. A significant improvement was found after treatment on the Berg Balance Scale and the Nutt's rating in favor of the Robotic Training group (Berg: 43.44 ± 2.73; Nutt: 1.38 ± 0.50) compared to the Physical Therapy group (Berg: 37.27 ± 5.68; Nutt: 2.07 ± 0.59). All improvements were maintained at the 1-month follow-up evaluation. Robot-assisted gait training may improve postural instability in patients with PD at Hoehn & Yahr stage 3-4. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Retention of robot-assisted surgical skills in urological surgeons acquired using Mimic dV-Trainer.

    Science.gov (United States)

    Teishima, Jun; Hattori, Minoru; Inoue, Shogo; Ikeda, Kenichiro; Hieda, Keisuke; Ohara, Shinya; Egi, Hiroyuki; Ohdan, Hideki; Matsubara, Akio

    2014-07-01

    We assess the retention of robot-assisted surgical skills among urologic surgeons. The robot-assisted surgery skills of 20 urologic surgeons were assessed using a Mimic dV-Trainer program (Mimic Technologies, Inc., Seattle, WA) consisting of 6 tasks. These 20 surgeons had no previous experience either using the Mimic dV-Trainer or acting as the main surgeon in robot-assisted surgery. The surgeons completed the program 4 times in a row; after 1 year, they completed it again for a fifth time. Performance scores were recorded using the Mimic dV-Trainer's built-in algorithm. For all 6 tasks, there were significant improvements to the scores in the fourth trials compared with those in the first trials. The scores in the fifth trials did not significantly decline compared with those in the fourth trials. There was no significant difference between the fifth trial scores of surgeons with laparoscopic surgery skills/experience and those without. Our results indicate that fundamental robot-assisted surgical skills can be retained in the long-term after they are acquired.

  4. Mental training in surgical education: a systematic review.

    Science.gov (United States)

    Davison, Sara; Raison, Nicholas; Khan, Muhammad S; Dasgupta, Prokar; Ahmed, Kamran

    2017-11-01

    Pressures on surgical education from restricted working hours and increasing scrutiny of outcomes have been compounded by the development of highly technical surgical procedures requiring additional specialist training. Mental training (MT), the act of performing motor tasks in the 'mind's eye', offers the potential for training outside the operating room. However, the technique is yet to be formally incorporated in surgical curricula. This study aims to review the available literature to determine the role of MT in surgical education. EMBASE and Medline databases were searched. The primary outcome measure was surgical proficiency following training. Secondary analyses examined training duration, forms of MT and trainees level of experience. Study quality was assessed using Consolidated Standards of Reporting Trials scores or Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. Fourteen trials with 618 participants met the inclusion criteria, of which 11 were randomized and three longitudinal. Ten studies found MT to be beneficial. Mental rehearsal was the most commonly used form of training. No significant correlation was found between the length of MT and outcomes. MT benefitted expert surgeons more than medical students or novice surgeons. The majority studies demonstrate MT to be beneficial in surgical education especially amongst more experienced surgeons within a well-structured MT programme. However, overall studies were low quality, lacked sufficient methodology and suffered from small sample sizes. For these reasons, further research is required to determine optimal role of MT as a supplementary educational tool within the surgical curriculum. © 2017 Royal Australasian College of Surgeons.

  5. Integration of a Robotic Arm with the Surgical Assistant Workstation Software Framework

    NARCIS (Netherlands)

    Young, J.; Elhawary, H.; Popovic, A.

    2012-01-01

    We have integrated the Philips Research robot arm with the Johns Hopkins University cisst library, an open-source platform for computerassisted surgical intervention. The development of a Matlab to C++ wrapper to abstract away servo-level details facilitates the rapid development of a

  6. New trends in medical and service robots challenges and solutions

    CERN Document Server

    Pisla, Doina; Bleuler, Hannes

    2014-01-01

    This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cogn...

  7. A novel 3D-printed hybrid simulation model for robotic-assisted kidney transplantation (RAKT).

    Science.gov (United States)

    Uwechue, Raphael; Gogalniceanu, Petrut; Kessaris, Nicos; Byrne, Nick; Chandak, Pankaj; Olsburgh, Jonathon; Ahmed, Kamran; Mamode, Nizam; Loukopoulos, Ioannis

    2018-01-27

    Robotic-assisted kidney transplantation (RAKT) offers key benefits for patients that have been demonstrated in several studies. A barrier to the wider uptake of RAKT is surgical skill acquisition. This is exacerbated by the challenges of modern surgery with reduced surgical training time, patient safety concerns and financial pressures. Simulation is a well-established method of developing surgical skill in a safe and controlled environment away from the patient. We have developed a 3D printed simulation model for the key step of the kidney transplant operation which is the vascular anastomosis. The model is anatomically accurate, based on the CT scans of patients and it incorporates deceased donor vascular tissue. Crucially, it was developed to be used in the robotic operating theatre with the operating robot to enhance its fidelity. It is portable and relatively inexpensive when compared with other forms of simulation such as virtual reality or animal lab training. It thus has the potential of being more accessible as a training tool for the safe acquisition of RAKT specific skills. We demonstrate this model here.

  8. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  9. The cutting-edge training modalities and educational platforms for accredited surgical training: A systematic review

    Directory of Open Access Journals (Sweden)

    Antonello Forgione

    2017-01-01

    Full Text Available Background: Historically, operating room (OR has always been considered as a stand-alone trusted platform for surgical education and training.However, concerns about financial constraints, quality control, and patient safety have urged the surgical educators to develop more cost-effective, surgical educational platforms that can be employed outside the OR. Furthermore, trained surgeons need to regularly update their surgical skills to keep abreast with the emerging surgical technologies. This research aimed to explore the value of currently available modern surgical tools that can be used outside the OR and also elaborates the existing laparoscopic surgical training programs in world-class centers across the globe with a view to formulate a blended and unified structured surgical training program. Materials and Methods: Several data sources were searched using MeSH terms “Laparoscopic surgery” and “Surgical training” and “Surgical curriculum” and “fundamentals of endoscopic surgery” and “fundamentals of laparoscopic surgery” and “Telementoring” and “Box trainer.” The eligibility criteria used in data extraction searched for original and review articles and by excluding the editorial articles, short communications, conference proceedings, personal view, and commentaries. Data synthesis and data analysis were done by reviewing the initially retrieved 211 articles. Irrelevant and duplicate and redundant articles were excluded from the study. Results: Finally, 12 articles were selected for this systematic review. Data results showed that a myriad of cutting-edge technical innovations have provided modern surgical training tools such as the simulation-based mechanical and virtual reality simulators, animal and cadaveric labs, telementoring, telerobotic-assisted surgery, and video games. Surgical simulators allow the trainees to acquire surgical skills in a tension-free environment without supervision or time constraints

  10. Surgical simulators in urological training--views of UK Training Programme Directors.

    Science.gov (United States)

    Forster, James A; Browning, Anthony J; Paul, Alan B; Biyani, C Shekhar

    2012-09-01

    What's known on the subject? and What does the study add? The role of surgical simulators is currently being debated in urological and other surgical specialties. Simulators are not presently implemented in the UK urology training curriculum. The availability of simulators and the opinions of Training Programme Directors' (TPD) on their role have not been described. In the present questionnaire-based survey, the trainees of most, but not all, UK TPDs had access to laparoscopic simulators, and that all responding TPDs thought that simulators improved laparoscopic training. We hope that the present study will be a positive step towards making an agreement to formally introduce simulators into the UK urology training curriculum. To discuss the current situation on the use of simulators in surgical training. To determine the views of UK Urology Training Programme Directors (TPDs) on the availability and use of simulators in Urology at present, and to discuss the role that simulators may have in future training. An online-questionnaire survey was distributed to all UK Urology TPDs. In all, 16 of 21 TPDs responded. All 16 thought that laparoscopic simulators improved the quality of laparoscopic training. The trainees of 13 TPDs had access to a laparoscopic simulator (either in their own hospital or another hospital in the deanery). Most TPDs thought that trainees should use simulators in their free time, in quiet time during work hours, or in teaching sessions (rather than incorporated into the weekly timetable). We feel that the current apprentice-style method of training in urological surgery is out-dated. We think that all TPDs and trainees should have access to a simulator, and that a formal competency based simulation training programme should be incorporated into the urology training curriculum, with trainees reaching a minimum proficiency on a simulator before undertaking surgical procedures. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  11. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    Science.gov (United States)

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].

    Science.gov (United States)

    Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio

    2015-01-01

    The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  13. Surgical education and training in an outer metropolitan hospital: a qualitative study of surgical trainers and trainees.

    Science.gov (United States)

    Nestel, Debra; Harlim, Jennifer; Bryant, Melanie; Rampersad, Rajay; Hunter-Smith, David; Spychal, Bob

    2017-08-01

    The landscape of surgical training is changing. The anticipated increase in the numbers of surgical trainees and the shift to competency-based surgical training places pressures on an already stretched health service. With these pressures in mind, we explored trainers' and trainees' experiences of surgical training in a less traditional rotation, an outer metropolitan hospital. We considered practice-based learning theories to make meaning of surgical training in this setting, in particular Actor-network theory. We adopted a qualitative approach and purposively sampled surgical trainers and trainees to participate in individual interviews and focus groups respectively. Transcripts were made and thematically analysed. Institutional human research ethics approval was obtained. Four surgical trainers and fourteen trainees participated. Almost without exception, participants' report training needs to be well met. Emergent inter-related themes were: learning as social activity; learning and programmatic factors; learning and physical infrastructure; and, learning and organizational structure. This outer metropolitan hospital is suited to the provision of surgical training with the current rotational system for trainees. The setting offers experiences that enable consolidation of learning providing a rich and varied overall surgical training program. Although relational elements of learning were paramount they occurred within a complex environment. Actor-network theory was used to give meaning to emergent themes acknowledging that actors (both people and objects) and their interactions combine to influence training quality, shifting the focus of responsibility for learning away from individuals to the complex interactions in which they work and learn.

  14. Advanced real-time multi-display educational system (ARMES): An innovative real-time audiovisual mentoring tool for complex robotic surgery.

    Science.gov (United States)

    Lee, Joong Ho; Tanaka, Eiji; Woo, Yanghee; Ali, Güner; Son, Taeil; Kim, Hyoung-Il; Hyung, Woo Jin

    2017-12-01

    The recent scientific and technologic advances have profoundly affected the training of surgeons worldwide. We describe a novel intraoperative real-time training module, the Advanced Robotic Multi-display Educational System (ARMES). We created a real-time training module, which can provide a standardized step by step guidance to robotic distal subtotal gastrectomy with D2 lymphadenectomy procedures, ARMES. The short video clips of 20 key steps in the standardized procedure for robotic gastrectomy were created and integrated with TilePro™ software to delivery on da Vinci Surgical Systems (Intuitive Surgical, Sunnyvale, CA). We successfully performed the robotic distal subtotal gastrectomy with D2 lymphadenectomy for patient with gastric cancer employing this new teaching method without any transfer errors or system failures. Using this technique, the total operative time was 197 min and blood loss was 50 mL and there were no intra- or post-operative complications. Our innovative real-time mentoring module, ARMES, enables standardized, systematic guidance during surgical procedures. © 2017 Wiley Periodicals, Inc.

  15. The role of student surgical interest groups and surgical Olympiads in anatomical and surgical undergraduate training in Russia.

    Science.gov (United States)

    Dydykin, Sergey; Kapitonova, Marina

    2015-01-01

    Traditional department-based surgical interest groups in Russian medical schools are useful tools for student-based selection of specialty training. They also form a nucleus for initiating research activities among undergraduate students. In Russia, the Departments of Topographical Anatomy and Operative Surgery play an important role in initiating student-led research and providing learners with advanced, practical surgical skills. In tandem with department-led activities, student surgical interest groups prepare learners through surgical competitions, known as "Surgical Olympiads," which have been conducted in many Russian centers on a regular basis since 1988. Surgical Olympiads stimulate student interest in the development of surgical skills before graduation and encourage students to choose surgery as their postgraduate specialty. Many of the participants in these surgical Olympiads have become highly qualified specialists in general surgery, orthopedic surgery, neurosurgery, urology, gynecology, and emergency medicine. The present article emphasizes the role of student interest groups and surgical Olympiads in clinical anatomical and surgical undergraduate training in Russia. © 2015 American Association of Anatomists.

  16. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.

    Science.gov (United States)

    Mouraviev, Vladimir; Klein, Martina; Schommer, Eric; Thiel, David D; Samavedi, Srinivas; Kumar, Anup; Leveillee, Raymond J; Thomas, Raju; Pow-Sang, Julio M; Su, Li-Ming; Mui, Engy; Smith, Roger; Patel, Vipul

    2016-03-01

    In pursuit of improving the quality of residents' education, the Southeastern Section of the American Urological Association (SES AUA) hosts an annual robotic training course for its residents. The workshop involves performing a robotic live porcine nephrectomy as well as virtual reality robotic training modules. The aim of this study was to evaluate workload levels of urology residents when performing a live porcine nephrectomy and the virtual reality robotic surgery training modules employed during this workshop. Twenty-one residents from 14 SES AUA programs participated in 2015. On the first-day residents were taught with didactic lectures by faculty. On the second day, trainees were divided into two groups. Half were asked to perform training modules of the Mimic da Vinci-Trainer (MdVT, Mimic Technologies, Inc., Seattle, WA, USA) for 4 h, while the other half performed nephrectomy procedures on a live porcine model using the da Vinci Si robot (Intuitive Surgical Inc., Sunnyvale, CA, USA). After the first 4 h the groups changed places for another 4-h session. All trainees were asked to complete the NASA-TLX 1-page questionnaire following both the MdVT simulation and live animal model sessions. A significant interface and TLX interaction was observed. The interface by TLX interaction was further analyzed to determine whether the scores of each of the six TLX scales varied across the two interfaces. The means of the TLX scores observed at the two interfaces were similar. The only significant difference was observed for frustration, which was significantly higher at the simulation than the animal model, t (20) = 4.12, p = 0.001. This could be due to trainees' familiarity with live anatomical structures over skill set simulations which remain a real challenge to novice surgeons. Another reason might be that the simulator provides performance metrics for specific performance traits as well as composite scores for entire exercises. Novice trainees experienced

  17. Application of da Vinci(®) Robot in simple or radical hysterectomy: Tips and tricks.

    Science.gov (United States)

    Iavazzo, Christos; Gkegkes, Ioannis D

    2016-01-01

    The first robotic simple hysterectomy was performed more than 10 years ago. These days, robotic-assisted hysterectomy is accepted as an alternative surgical approach and is applied both in benign and malignant surgical entities. The two important points that should be taken into account to optimize postoperative outcomes in the early period of a surgeon's training are how to achieve optimal oncological and functional results. Overcoming any technical challenge, as with any innovative surgical method, leads to an improved surgical operation timewise as well as for patients' safety. The standardization of the technique and recognition of critical anatomical landmarks are essential for optimal oncological and clinical outcomes on both simple and radical robotic-assisted hysterectomy. Based on our experience, our intention is to present user-friendly tips and tricks to optimize the application of a da Vinci® robot in simple or radical hysterectomies.

  18. Outcomes from the Delphi process of the Thoracic Robotic Curriculum Development Committee.

    Science.gov (United States)

    Veronesi, Giulia; Dorn, Patrick; Dunning, Joel; Cardillo, Giuseppe; Schmid, Ralph A; Collins, Justin; Baste, Jean-Marc; Limmer, Stefan; Shahin, Ghada M M; Egberts, Jan-Hendrik; Pardolesi, Alessandro; Meacci, Elisa; Stamenkovic, Sasha; Casali, Gianluca; Rueckert, Jens C; Taurchini, Mauro; Santelmo, Nicola; Melfi, Franca; Toker, Alper

    2018-06-01

    As the adoption of robotic procedures becomes more widespread, additional risk related to the learning curve can be expected. This article reports the results of a Delphi process to define procedures to optimize robotic training of thoracic surgeons and to promote safe performance of established robotic interventions as, for example, lung cancer and thymoma surgery. In June 2016, a working panel was spontaneously created by members of the European Society of Thoracic Surgeons (ESTS) and European Association for Cardio-Thoracic Surgery (EACTS) with a specialist interest in robotic thoracic surgery and/or surgical training. An e-consensus-finding exercise using the Delphi methodology was applied requiring 80% agreement to reach consensus on each question. Repeated iterations of anonymous voting continued over 3 rounds. Agreement was reached on many points: a standardized robotic training curriculum for robotic thoracic surgery should be divided into clearly defined sections as a staged learning pathway; the basic robotic curriculum should include a baseline evaluation, an e-learning module, a simulation-based training (including virtual reality simulation, Dry lab and Wet lab) and a robotic theatre (bedside) observation. Advanced robotic training should include e-learning on index procedures (right upper lobe) with video demonstration, access to video library of robotic procedures, simulation training, modular console training to index procedure, transition to full-procedure training with a proctor and final evaluation of the submitted video to certified independent examiners. Agreement was reached on a large number of questions to optimize and standardize training and education of thoracic surgeons in robotic activity. The production of the content of the learning material is ongoing.

  19. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  20. Rapid prototyping framework for robot-assisted training of autistic children

    NARCIS (Netherlands)

    Kim, Mingyu; Barakova, E.I.; Lourens, T.

    2014-01-01

    Research in uptake and actual use of robots in socially assistive tasks is rapidly growing. However, practical applications lack behind due to the enormous effort to create meaningful behaviours. This paper describes a rapid prototyping framework for robot-assisted training of children with Autism

  1. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.

    Science.gov (United States)

    Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan

    2018-05-15

    Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  2. The effects of the European Working Time Directive on surgical training: the basic surgical trainee's perspective.

    LENUS (Irish Health Repository)

    Kelly, B D

    2012-01-31

    BACKGROUND: On the 1 August 2009, the implementation of European Working Time Directive became European law and was implemented in Galway University Hospital (GUH). AIMS: The aim of the study is to ascertain the opinion of the 25 surgical SHOs in GUH on the effect of the implementation of an EWTD compliant roster had on the quality of their training. METHODS: A questionnaire was circulated to all 25 surgical SHOs. RESULTS: Twenty-two (88%) SHOs report a reduction in the quality of their training. 18 (72%) report a reduction in the development of their operative skills. The SHOs believed the EWTD Rotas would encourage Irish graduates to train abroad. CONCLUSIONS: Surgical training faces a challenge with the implementation of EWTD Rotas. Major changes need to be made to the surgical training structure to train surgeons to the highest standard and to retain Irish-trained surgeons in the Irish healthcare system.

  3. Development and validation of surgical training tool: cystectomy assessment and surgical evaluation (CASE) for robot-assisted radical cystectomy for men.

    Science.gov (United States)

    Hussein, Ahmed A; Sexton, Kevin J; May, Paul R; Meng, Maxwell V; Hosseini, Abolfazl; Eun, Daniel D; Daneshmand, Siamak; Bochner, Bernard H; Peabody, James O; Abaza, Ronney; Skinner, Eila C; Hautmann, Richard E; Guru, Khurshid A

    2018-04-13

    We aimed to develop a structured scoring tool: cystectomy assessment and surgical evaluation (CASE) that objectively measures and quantifies performance during robot-assisted radical cystectomy (RARC) for men. A multinational 10-surgeon expert panel collaborated towards development and validation of CASE. The critical steps of RARC in men were deconstructed into nine key domains, each assessed by five anchors. Content validation was done utilizing the Delphi methodology. Each anchor was assessed in terms of context, score concordance, and clarity. The content validity index (CVI) was calculated for each aspect. A CVI ≥ 0.75 represented consensus, and this statement was removed from the next round. This process was repeated until consensus was achieved for all statements. CASE was used to assess de-identified videos of RARC to determine reliability and construct validity. Linearly weighted percent agreement was used to assess inter-rater reliability (IRR). A logit model for odds ratio (OR) was used to assess construct validation. The expert panel reached consensus on CASE after four rounds. The final eight domains of the CASE included: pelvic lymph node dissection, development of the peri-ureteral space, lateral pelvic space, anterior rectal space, control of the vascular pedicle, anterior vesical space, control of the dorsal venous complex, and apical dissection. IRR > 0.6 was achieved for all eight domains. Experts outperformed trainees across all domains. We developed and validated a reliable structured, procedure-specific tool for objective evaluation of surgical performance during RARC. CASE may help differentiate novice from expert performances.

  4. Robotic-assisted partial nephrectomy: surgical technique using a 3-arm approach and sliding-clip renorrhaphy

    Directory of Open Access Journals (Sweden)

    Jose M. Cabello

    2009-04-01

    Full Text Available INTRODUCTION: For the treatment of renal tumors, minimally invasive nephron-sparing surgery has become increasingly performed due to proven efficiency and excellent functional and oncological outcomes. The introduction of robotics into urologic laparoscopic surgery has allowed surgeons to perform challenging procedures in a reliable and reproducible manner. We present our surgical technique for robotic assisted partial nephrectomy (RPN using a 3-arm approach, including a sliding-clip renorrhaphy. MATERIAL AND METHODS: Our RPN technique is presented which describes the trocar positioning, hilar dissection, tumor identification using intraoperative ultrasound for margin determination, selective vascular clamping, tumor resection, and reconstruction using a sliding-clip technique. CONCLUSION: RPN using a sliding-clip renorrhaphy is a valid and reproducible surgical technique that reduces the challenge of the procedure by taking advantage of the enhanced visualization and control afforded by the robot. The renorrhaphy described is performed under complete control of the console surgeon, and has demonstrated a reduction in the warm ischemia times in our series.

  5. Improving core surgical training in a major trauma centre.

    Science.gov (United States)

    Morris, Daniel L J; Bryson, David J; Ollivere, Ben J; Forward, Daren P

    2016-06-01

    English Major Trauma Centres (MTCs) were established in April 2012. Increased case volume and complexity has influenced trauma and orthopaedic (T&O) core surgical training in these centres. To determine if T&O core surgical training in MTCs meets Joint Committee on Surgical Training (JCST) quality indicators including performance of T&O operative procedures and consultant supervised session attendance. An audit cycle assessing the impact of a weekly departmental core surgical trainee rota. The rota included allocated timetabled sessions that optimised clinical and surgical learning opportunities. Intercollegiate Surgical Curriculum Programme (ISCP) records for T&O core surgical trainees at a single MTC were analysed for 8 months pre and post rota introduction. Outcome measures were electronic surgical logbook evidence of leading T&O operative procedures and consultant validated work-based assessments (WBAs). Nine core surgical trainees completed a 4 month MTC placement pre and post introduction of the core surgical trainee rota. Introduction of core surgical trainee rota significantly increased the mean number of T&O operative procedures led by a core surgical trainee during a 4 month MTC placement from 20.2 to 34.0 (pcore surgical trainee during a 4 month MTC placement was significantly increased (0.3 vs 2.4 [p=0.04]). Those of dynamic hip screw fixation (2.3 vs 3.6) and ankle fracture fixation (0.7 vs 1.6) were not. Introduction of a core surgical trainee rota significantly increased the mean number of consultant validated WBAs completed by a core surgical trainee during a 4 month MTC placement from 1.7 to 6.6 (pcore surgical trainee rota utilising a 'problem-based' model can significantly improve T&O core surgical training in MTCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Robot Guided 'Pen Skill' Training in Children with Motor Difficulties.

    Science.gov (United States)

    Shire, Katy A; Hill, Liam J B; Snapp-Childs, Winona; Bingham, Geoffrey P; Kountouriotis, Georgios K; Barber, Sally; Mon-Williams, Mark

    2016-01-01

    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of 'pen-skills', assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting.

  7. [Robotics in general surgery: personal experience, critical analysis and prospectives].

    Science.gov (United States)

    Fracastoro, Gerolamo; Borzellino, Giuseppe; Castelli, Annalisa; Fiorini, Paolo

    2005-01-01

    Today mini invasive surgery has the chance to be enhanced with sophisticated informative systems (Computer Assisted Surgery, CAS) like robotics, tele-mentoring and tele-presence. ZEUS and da Vinci, present in more than 120 Centres in the world, have been used in many fields of surgery and have been tested in some general surgical procedures. Since the end of 2003, we have performed 70 experimental procedures and 24 operations of general surgery with ZEUS robotic system, after having properly trained 3 surgeons and the operating room staff. Apart from the robot set-up, the mean operative time of the robotic operations was similar to the laparoscopic ones; no complications due to robotic technique occurred. The Authors report benefits and disadvantages related to robots' utilization, problems still to be solved and the possibility to make use of them with tele-surgery, training and virtual surgery.

  8. Full Robotic Colorectal Resections for Cancer Combined With Other Major Surgical Procedures: Early Experience With the da Vinci Xi.

    Science.gov (United States)

    Morelli, Luca; Di Franco, Gregorio; Guadagni, Simone; Palmeri, Matteo; Gianardi, Desirée; Bianchini, Matteo; Moglia, Andrea; Ferrari, Vincenzo; Caprili, Giovanni; D'Isidoro, Cristiano; Melfi, Franca; Di Candio, Giulio; Mosca, Franco

    2017-08-01

    The da Vinci Xi has been developed to overcome some of the limitations of the previous platform, thereby increasing the acceptance of its use in robotic multiorgan surgery. Between January 2015 and October 2015, 10 patients with synchronous tumors of the colorectum and others abdominal organs underwent robotic combined resections with the da Vinci Xi. Trocar positions respected the Universal Port Placement Guidelines provided by Intuitive Surgical for "left lower quadrant," with trocars centered on the umbilical area, or shifted 2 to 3 cm to the right or to the left, depending on the type of combined surgical procedure. All procedures were completed with the full robotic technique. Simultaneous procedures in same quadrant or left quadrant and pelvis, or left/right and upper, were performed with a single docking/single targeting approach; in cases of left/right quadrant or right quadrant/pelvis, we performed a dual-targeting operation. No external collisions or problems related to trocar positions were noted. No patient experienced postoperative surgical complications and the mean hospital stay was 6 days. The high success rate of full robotic colorectal resection combined with other surgical interventions for synchronous tumors, suggest the efficacy of the da Vinci Xi in this setting.

  9. Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients

    Science.gov (United States)

    2017-01-01

    Objective To determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients. Methods Subjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training. Results Both groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group. Conclusion There were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method. PMID:28971037

  10. Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients.

    Science.gov (United States)

    Lee, Kyeong Woo; Kim, Sang Beom; Lee, Jong Hwa; Lee, Sook Joung; Kim, Jin Wan

    2017-08-01

    To determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients. Subjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training. Both groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group. There were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method.

  11. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    Science.gov (United States)

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  12. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    Science.gov (United States)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  13. SAGES TAVAC safety and effectiveness analysis: da Vinci ® Surgical System (Intuitive Surgical, Sunnyvale, CA).

    Science.gov (United States)

    Tsuda, Shawn; Oleynikov, Dmitry; Gould, Jon; Azagury, Dan; Sandler, Bryan; Hutter, Matthew; Ross, Sharona; Haas, Eric; Brody, Fred; Satava, Richard

    2015-10-01

    The da Vinci(®) Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) is a computer-assisted (robotic) surgical system designed to enable and enhance minimally invasive surgery. The Food and Drug Administration (FDA) has cleared computer-assisted surgical systems for use by trained physicians in an operating room environment for laparoscopic surgical procedures in general, cardiac, colorectal, gynecologic, head and neck, thoracic and urologic surgical procedures. There are substantial numbers of peer-reviewed papers regarding the da Vinci(®) Surgical System, and a thoughtful assessment of evidence framed by clinical opinion is warranted. The SAGES da Vinci(®) TAVAC sub-committee performed a literature review of the da Vinci(®) Surgical System regarding gastrointestinal surgery. Conclusions by the sub-committee were vetted by the SAGES TAVAC Committee and SAGES Executive Board. Following revisions, the document was evaluated by the TAVAC Committee and Executive Board again for final approval. Several conclusions were drawn based on expert opinion organized by safety, efficacy, and cost for robotic foregut, bariatric, hepatobiliary/pancreatic, colorectal surgery, and single-incision cholecystectomy. Gastrointestinal surgery with the da Vinci(®) Surgical System is safe and comparable, but not superior to standard laparoscopic approaches. Although clinically acceptable, its use may be costly for select gastrointestinal procedures. Current data are limited to the da Vinci(®) Surgical System; further analyses are needed.

  14. The cutting-edge training modalities and educational platforms for accredited surgical training: A systematic review

    OpenAIRE

    Forgione, Antonello; Guraya, Salman Y.

    2017-01-01

    Background: Historically, operating room (OR) has always been considered as a stand-alone trusted platform for surgical education and training. However, concerns about financial constraints, quality control, and patient safety have urged the surgical educators to develop more cost-effective, surgical educational platforms that can be employed outside the OR. Furthermore, trained surgeons need to regularly update their surgical skills to keep abreast with the emerging surgical technologies. Th...

  15. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.

    Science.gov (United States)

    Dubin, Ariel K; Smith, Roger; Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia

    To answer the question of whether there is a difference between robotic virtual reality simulator performance assessment and validated human reviewers. Current surgical education relies heavily on simulation. Several assessment tools are available to the trainee, including the actual robotic simulator assessment metrics and the Global Evaluative Assessment of Robotic Skills (GEARS) metrics, both of which have been independently validated. GEARS is a rating scale through which human evaluators can score trainees' performances on 6 domains: depth perception, bimanual dexterity, efficiency, force sensitivity, autonomy, and robotic control. Each domain is scored on a 5-point Likert scale with anchors. We used 2 common robotic simulators, the dV-Trainer (dVT; Mimic Technologies Inc., Seattle, WA) and the da Vinci Skills Simulator (dVSS; Intuitive Surgical, Sunnyvale, CA), to compare the performance metrics of robotic surgical simulators with the GEARS for a basic robotic task on each simulator. A prospective single-blinded randomized study. A surgical education and training center. Surgeons and surgeons in training. Demographic information was collected including sex, age, level of training, specialty, and previous surgical and simulator experience. Subjects performed 2 trials of ring and rail 1 (RR1) on each of the 2 simulators (dVSS and dVT) after undergoing randomization and warm-up exercises. The second RR1 trial simulator performance was recorded, and the deidentified videos were sent to human reviewers using GEARS. Eight different simulator assessment metrics were identified and paired with a similar performance metric in the GEARS tool. The GEARS evaluation scores and simulator assessment scores were paired and a Spearman rho calculated for their level of correlation. Seventy-four subjects were enrolled in this randomized study with 9 subjects excluded for missing or incomplete data. There was a strong correlation between the GEARS score and the simulator metric

  16. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2015-09-01

    consideration would be the loss of revenue from physicians, nurses , and other medical professionals during training sessions. Supplies...occurs in postponing or rescheduling an operation because the robot is no longer operable. Inexperienced surgeons can also damage the surgical...and nursing in addition to physician training may decrease these times and costs. Upper Limit There are upper limits to the improvements that can

  17. Robot-Assisted Laparoscopic Radical Prostatectomy for Patients with Prostatic Cancer and Factors Promoting Installation of the Robotic Surgical Equipment-Questionnaire Survey

    OpenAIRE

    塚本, 泰司; 田中, 滋

    2015-01-01

    We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of ho...

  18. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Robot Guided 'Pen Skill' Training in Children with Motor Difficulties.

    Directory of Open Access Journals (Sweden)

    Katy A Shire

    Full Text Available Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of 'pen-skills', assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation in order to obtain clinically significant improvements in specific skills such as handwriting.

  20. Social Media in Surgical Training: Opportunities and Risks.

    Science.gov (United States)

    Ovaere, Sander; Zimmerman, David D E; Brady, Richard R

    2018-05-02

    Surgeon engagement with social media is growing rapidly. Innovative applications in diverse fields of health care are increasingly available. The aim of this review is to explore the current and future applications of social media in surgical training. In addition, risks and barriers of social media engagement are analyzed, and recommendations for professional social media use amongst trainers and trainees are suggested. The published, peer-reviewed literature on social media in medicine, surgery and surgical training was reviewed. MESH terms including "social media", "education", "surgical training" and "web applications" were used. Different social media surgical applications are already widely available but limited in use in the trainee's curriculum. E-learning modalities, podcasts, live surgery platforms and microblogs are used for teaching purposes. Social media enables global research collaboratives and can play a role in patient recruitment for clinical trials. The growing importance of networking is emphasized by the increased use of LinkedIn, Facebook, Sermo and other networking platforms. Risks of social media use, such as lack of peer review and the lack of source confirmation, must be considered. Governing surgeon's and trainee's associations should consider adopting and sharing their guidelines for standards of social media use. Surgical training is changing rapidly and as such, social media presents tremendous opportunities for teaching, training, research and networking. Awareness must be raised on the risks of social media use. Copyright © 2018 Association of Program Directors in Surgery. All rights reserved.

  1. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models.

    Science.gov (United States)

    Morita, Akio; Sora, Shigeo; Mitsuishi, Mamoru; Warisawa, Shinichi; Suruman, Katopo; Asai, Daisuke; Arata, Junpei; Baba, Shoichi; Takahashi, Hidechika; Mochizuki, Ryo; Kirino, Takaaki

    2005-08-01

    To enhance the surgeon's dexterity and maneuverability in the deep surgical field, the authors developed a master-slave microsurgical robotic system. This concept and the results of preliminary experiments are reported in this paper. The system has a master control unit, which conveys motion commands in six degrees of freedom (X, Y, and Z directions; rotation; tip flexion; and grasping) to two arms. The slave manipulator has a hanging base with an additional six degrees of freedom; it holds a motorized operating unit with two manipulators (5 mm in diameter, 18 cm in length). The accuracy of the prototype in both shallow and deep surgical fields was compared with routine freehand microsurgery. Closure of a partial arteriotomy and complete end-to-end anastomosis of the carotid artery (CA) in the deep operative field were performed in 20 Wistar rats. Three routine surgical procedures were also performed in cadavers. The accuracy of pointing with the nondominant hand in the deep surgical field was significantly improved through the use of robotics. The authors successfully closed the partial arteriotomy and completely anastomosed the rat CAs in the deep surgical field. The time needed for stitching was significantly shortened over the course of the first 10 rat experiments. The robotic instruments also moved satisfactorily in cadavers, but the manipulators still need to be smaller to fit into the narrow intracranial space. Computer-controlled surgical manipulation will be an important tool for neurosurgery, and preliminary experiments involving this robotic system demonstrate its promising maneuverability.

  2. Feasibility and acceptance of a robotic surgery ergonomic training program.

    Science.gov (United States)

    Franasiak, Jason; Craven, Renatta; Mosaly, Prithima; Gehrig, Paola A

    2014-01-01

    Assessment of ergonomic strain during robotic surgery indicates there is a need for intervention. However, limited data exist detailing the feasibility and acceptance of ergonomic training (ET) for robotic surgeons. This prospective, observational pilot study evaluates the implementation of an evidence-based ET module. A two-part survey was conducted. The first survey assessed robotic strain using the Nordic Musculoskeletal Questionnaire (NMQ). Participants were given the option to participate in either an online or an in-person ET session. The ET was derived from Occupational Safety and Health Administration guidelines and developed by a human factors engineer experienced with health care ergonomics. After ET, a follow-up survey including the NMQ and an assessment of the ET were completed. The survey was sent to 67 robotic surgeons. Forty-two (62.7%) responded, including 18 residents, 8 fellows, and 16 attending physicians. Forty-five percent experienced strain resulting from performing robotic surgery and 26.3% reported persistent strain. Only 16.6% of surgeons reported prior ET in robotic surgery. Thirty-five (78%) surgeons elected to have in-person ET, which was successfully arranged for 32 surgeons (91.4%). Thirty-seven surgeons (88.1%) completed the follow-up survey. All surgeons participating in the in-person ET found it helpful and felt formal ET should be standard, 88% changed their practice as a result of the training, and 74% of those reporting strain noticed a decrease after their ET. Thus, at a high-volume robotics center, evidence-based ET was easily implemented, well-received, changed some surgeons' practice, and decreased self-reported strain related to robotic surgery.

  3. Excised Abdominoplasty Material as a Systematic Plastic Surgical Training Model

    Directory of Open Access Journals (Sweden)

    M. Erol Demirseren

    2012-01-01

    Full Text Available Achieving a level of technical skill and confidence in surgical operations is the main goal of plastic surgical training. Operating rooms were accepted as the practical teaching venues of the traditional apprenticeship model. However, increased patient population, time, and ethical and legal considerations made preoperation room practical work a must for plastic surgical training. There are several plastic surgical teaching models and simulators which are very useful in preoperation room practical training and the evaluation of plastic surgery residents. The full thickness skin with its vascular network excised in abdominoplasty procedures is an easily obtainable real human tissue which could be used as a training model in plastic surgery.

  4. Usability Assessment of Two Different Control Modes for the Master Console of a Laparoscopic Surgical Robot

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2012-01-01

    Full Text Available The objective of this study is to evaluate potential interface control modes for a compact four-degree-of-freedom (4-DOF surgical robot. The goal is to improve robot usability by incorporating a sophisticated haptics-capable interface. Two control modes were developed using a commercially available haptic joystick: (1 a virtually point-constrained interface providing an analog for constrained laparoscopic motion (3-DOF rotation and 1-DOF translation, and (2 an unconstrained Cartesian input interface mapping more directly to the surgical tool tip motions. Subjects (n = 5 successfully performed tissue identification and manipulation tasks in an animal model in point-constrained and unconstrained control modes, respectively, with speed roughly equal to that achieved in similar manual procedures, and without a steep learning curve. The robot control was evaluated through bench-top tests and a subsequent qualitative questionnaire (n = 15. The results suggest that the unconstrained control mode was preferred for both camera guidance and tool manipulations.

  5. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  6. Robotic surgery update.

    Science.gov (United States)

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  7. Medical Officers in Sierra Leone: Surgical Training Opportunities, Challenges and Aspirations.

    Science.gov (United States)

    Wilks, Lucy; Leather, Andrew; George, Peter Matthew; Kamara, Thaim Bay

    2018-02-05

    The critical shortage of human resources for healthcare falls most heavily on sub-Saharan nations such as Sierra Leone, where such workforce deficits have grave impacts on its burden of surgical disease. An important aspect in retention and development of the workforce is training. This study focuses on postgraduate surgical training (formal and short course) and perceptions of opportunities, challenges and aspirations, in a country where more than half of surgical procedures are performed by medical officers. The study presents findings from 12 in-depth semi-structured interviews conducted with medical officers by the primary investigator in Sierra Leone between April and June 2017. Each interview was transcribed alongside an introspective reflexive journal to acknowledge and account for researcher biases. Two interviewees had accessed postgraduate surgical training and 10 (83%) had accessed short course surgically relevant training. The number of short courses accessed grew higher the more recently the medical officers had graduated. Supervision, short length and international standards were the most appreciated aspects of short training courses. Some medical officers perceived the formal postgraduate surgical training programme to be ill-equipped, doubting its credibility. This demotivated some from applying. Training is an essential aspect of developing an adequate surgical workforce. Faith must be restored in the capabilities of Sierra Leone's Ministry of Health and Sanitation to provide adequate and sustainable training. This study advocates for the use of short courses to restore this faith and the expansion of postgraduate surgical training to the districts through developing a regional teaching complex to provide short courses and eventually formal postgraduate training in the future. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Science.gov (United States)

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of

  9. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Directory of Open Access Journals (Sweden)

    Frisoli Antonio

    2012-06-01

    Full Text Available Abstract This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points, Modified Ashworth scale (MA, 0–60 pts and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement and position of target to be reached (ipsilateral, central and contralateral peripersonal space. These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved

  10. Using dummies for surgical skills training

    DEFF Research Database (Denmark)

    Langebæk, Rikke

    2011-01-01

    Effective acquisition of a skill requires practise. Therefore it is of great importance to provide veterinary students with opportunities to practice their surgical skills before carrying out surgical procedures on live patients. Some veterinary schools let students perform entire surgical...... procedures on research animals, in order to learn the basic skills along the way. From an ethical point of view it is questionable however to use live research animals for the sole purpose of practising surgery, and also, research animals are very costly. It is therefore necessary to identify alternative...... teaching methods for veterinary surgical training. At the Department of Small Animal Clinical Sciences, Faculty of Life Sciences, a number of low fidelity, stuffed toy animal dummies was developed for the Surgical Skills Lab in order to teach 4th year students the basic surgical skills. In the Surgical...

  11. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  12. The impact of robotic surgery in urology.

    Science.gov (United States)

    Giedelman, C A; Abdul-Muhsin, H; Schatloff, O; Palmer, K; Lee, L; Sanchez-Salas, R; Cathelineau, X; Dávila, H; Cavelier, L; Rueda, M; Patel, V

    2013-01-01

    More than a decade ago, robotic surgery was introduced into urology. Since then, the urological community started to look at surgery from a different angle. The present, the future hopes, and the way we looked at our past experience have all changed. Between 2000 and 2011, the published literature was reviewed using the National Library of Medicine database and the following key words: robotic surgery, robot-assisted, and radical prostatectomy. Special emphasis was given to the impact of the robotic surgery in urology. We analyzed the most representative series (finished learning curve) in each one of the robotic approaches regarding perioperative morbidity and oncological outcomes. This article looks into the impact of robotics in urology, starting from its background applications before urology, the way it was introduced into urology, its first steps, current status, and future expectations. By narrating this journey, we tried to highlight important modifications that helped robotic surgery make its way to its position today. We looked as well into the dramatic changes that robotic surgery introduced to the field of surgical training and its consequence on its learning curve. Basic surgical principles still apply in Robotics: experience counts, and prolonged practice provides knowledge and skills. In this way, the potential advantages delivered by technology will be better exploited, and this will be reflected in better outcomes for patients. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  13. An over-view of robot assisted surgery curricula and the status of their validation.

    Science.gov (United States)

    Fisher, Rebecca A; Dasgupta, Prokar; Mottrie, Alex; Volpe, Alessandro; Khan, Mohammed S; Challacombe, Ben; Ahmed, Kamran

    2015-01-01

    Robotic surgery is a rapidly expanding field. Thus far training for robotic techniques has been unstructured and the requirements are variable across various regions. Several projects are currently underway to develop a robotic surgery curriculum and are in various stages of validation. We aimed to outline the structures of available curricula, their process of development, validation status and current utilization. We undertook a literature review of papers including the MeSH terms "Robotics" and "Education". When we had an overview of curricula in development, we searched recent conference abstracts to gain up to date information. The main curricula are the FRS, the FSRS, the Canadian BSTC and the ERUS initiative. They are in various stages of validation and offer a mixture of theoretical and practical training, using both physical and simulated models. Whilst the FSRS is based on tasks on the RoSS virtual reality simulator, FRS and BSTC are designed for use on simulators and the robot itself. The ERUS curricula benefits from a combination of dry lab, wet lab and virtual reality components, which may allow skills to be more transferable to the OR as tasks are completed in several formats. Finally, the ERUS curricula includes the OR modular training programme as table assistant and console surgeon. Curricula are a crucial step in global standardisation of training and certification of surgeons for robotic surgical procedures. Many curricula are in early stages of development and more work is needed in development and validation of these programmes before training can be standardised. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. In Silico Investigation of a Surgical Interface for Remote Control of Modular Miniature Robots in Minimally Invasive Surgery

    Directory of Open Access Journals (Sweden)

    Apollon Zygomalas

    2014-01-01

    Full Text Available Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES and laparoendoscopic single site (LESS surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.

  15. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed

    Directory of Open Access Journals (Sweden)

    Benitez Raul

    2007-03-01

    Full Text Available Abstract Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist

  16. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.

    Science.gov (United States)

    Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J

    2007-03-28

    A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a

  17. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training.

    Science.gov (United States)

    Gallagher, Anthony G; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P; Moses, Gerald; Smith, C Daniel; Satava, Richard M

    2005-02-01

    To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills.

  18. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients.

    Science.gov (United States)

    Daunoraviciene, Kristina; Adomaviciene, Ausra; Grigonyte, Agne; Griškevičius, Julius; Juocevicius, Alvydas

    2018-05-18

    The study aims to determine the effectiveness of robot-assisted training in the recovery of stroke-affected arms using an exoskeleton robot Armeo Spring. To identify the effect of robot training on functional recovery of the arm. A total of 34 stroke patients were divided into either an experimental group (EG; n= 17) or a control group (n= 17). EG was also trained to use the Armeo Spring during occupational therapy. Both groups were clinically assessed before and after treatment. Statistical comparison methods (i.e. one-tailed t-tests for differences between two independent means and the simplest test) were conducted to compare motor recovery using robot-assisted training or conventional therapy. Patients assigned to the EG showed a statistically significant improvement in upper extremity motor function when compared to the CG by FIM (Peffect in the EG and CG was meaningful for shoulder and elbow kinematic parameters. The findings show the benefits of robot therapy in two areas of functional recovery. Task-oriented robotic training in rehabilitation setting facilitates recovery not only of the motor function of the paretic arm but also of the cognitive abilities in stroke patients.

  19. Progress in virtual reality simulators for surgical training and certification.

    Science.gov (United States)

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  20. Cognitive training: How can it be adapted for surgical education?

    Science.gov (United States)

    Wallace, Lauren; Raison, Nicholas; Ghumman, Faisal; Moran, Aidan; Dasgupta, Prokar; Ahmed, Kamran

    2017-08-01

    There is a need for new approaches to surgical training in order to cope with the increasing time pressures, ethical constraints, and legal limitations being placed on trainees. One of the most interesting of these new approaches is "cognitive training" or the use of psychological processes to enhance performance of skilled behaviour. Its ability to effectively improve motor skills in sport has raised the question as to whether it could also be used to improve surgical performance. The aim of this review is to provide an overview of the current evidence on the use of cognitive training within surgery, and evaluate the potential role it can play in surgical education. Scientific database searches were conducted to identify studies that investigated the use of cognitive training in surgery. The key studies were selected and grouped according to the type of cognitive training they examined. Available research demonstrated that cognitive training interventions resulted in greater performance benefits when compared to control training. In particular, cognitive training was found to improve surgical motor skills, as well as a number of non-technical outcomes. Unfortunately, key limitations restricting the generalizability of these findings include small sample size and conceptual issues arising from differing definitions of the term 'cognitive training'. When used appropriately, cognitive training can be a highly effective supplementary training tool in the development of technical skills in surgery. Although further studies are needed to refine our understanding, cognitive training should certainly play an important role in future surgical education. Copyright © 2016 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  1. Retention of laparoscopic and robotic skills among medical students: a randomized controlled trial.

    Science.gov (United States)

    Orlando, Megan S; Thomaier, Lauren; Abernethy, Melinda G; Chen, Chi Chiung Grace

    2017-08-01

    Although simulation training beneficially contributes to traditional surgical training, there are less objective data on simulation skills retention. To investigate the retention of laparoscopic and robotic skills after simulation training. We present the second stage of a randomized single-blinded controlled trial in which 40 simulation-naïve medical students were randomly assigned to practice peg transfer tasks on either laparoscopic (N = 20, Fundamentals of Laparoscopic Surgery, Venture Technologies Inc., Waltham, MA) or robotic (N = 20, dV-Trainer, Mimic, Seattle, WA) platforms. In the first stage, two expert surgeons evaluated participants on both tasks before (Stage 1: Baseline) and immediately after training (Stage 1: Post-training) using a modified validated global rating scale of laparoscopic and robotic operative performance. In Stage 2, participants were evaluated on both tasks 11-20 weeks after training. Of the 40 students who participated in Stage 1, 23 (11 laparoscopic and 12 robotic) underwent repeat evaluation. During Stage 2, there were no significant differences between groups in objective or subjective measures for the laparoscopic task. Laparoscopic-trained participants' performances on the laparoscopic task were improved during Stage 2 compared to baseline measured by time to task completion, but not by the modified global rating scale. During the robotic task, the robotic-trained group demonstrated superior economy of motion (p = .017), Tissue Handling (p = .020), and fewer errors (p = .018) compared to the laparoscopic-trained group. Robotic skills acquisition from baseline with no significant deterioration as measured by modified global rating scale scores was observed among robotic-trained participants during Stage 2. Robotic skills acquired through simulation appear to be better maintained than laparoscopic simulation skills. This study is registered on ClinicalTrials.gov (NCT02370407).

  2. Wire in the Cable-Driven System of Surgical Robot

    Science.gov (United States)

    Wang, X. F.; Lv, N.; Mu, H. Z.; Xue, L. J.

    2017-07-01

    During the evolution of the surgical robot, cable plays an important role. It translates motion and force precisely from surgeon’s hand to the tool’s tips. In the paper, the vertical wires, the composition of cable, are mathematically modeled from a geometric point of view. The cable structure and tension are analyzed according to the characteristics of wire screw twist. The structural equations of the wires in different positions are derived for both non-bent cable and bent cable, respectively. The bending moment formula of bent cable is also obtained. This will help researchers find suitable cable and design more matched pulley.

  3. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial.

    Science.gov (United States)

    Rowe, Justin B; Chan, Vicky; Ingemanson, Morgan L; Cramer, Steven C; Wolbrecht, Eric T; Reinkensmeyer, David J

    2017-08-01

    Robots that physically assist movement are increasingly used in rehabilitation therapy after stroke, yet some studies suggest robotic assistance discourages effort and reduces motor learning. To determine the therapeutic effects of high and low levels of robotic assistance during finger training. We designed a protocol that varied the amount of robotic assistance while controlling the number, amplitude, and exerted effort of training movements. Participants (n = 30) with a chronic stroke and moderate hemiparesis (average Box and Blocks Test 32 ± 18 and upper extremity Fugl-Meyer score 46 ± 12) actively moved their index and middle fingers to targets to play a musical game similar to GuitarHero 3 h/wk for 3 weeks. The participants were randomized to receive high assistance (causing 82% success at hitting targets) or low assistance (55% success). Participants performed ~8000 movements during 9 training sessions. Both groups improved significantly at the 1-month follow-up on functional and impairment-based motor outcomes, on depression scores, and on self-efficacy of hand function, with no difference between groups in the primary endpoint (change in Box and Blocks). High assistance boosted motivation, as well as secondary motor outcomes (Fugl-Meyer and Lateral Pinch Strength)-particularly for individuals with more severe finger motor deficits. Individuals with impaired finger proprioception at baseline benefited less from the training. Robot-assisted training can promote key psychological outcomes known to modulate motor learning and retention. Furthermore, the therapeutic effectiveness of robotic assistance appears to derive at least in part from proprioceptive stimulation, consistent with a Hebbian plasticity model.

  4. Locomotion training of legged robots using hybrid machine learning techniques

    Science.gov (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  5. Medical robots in cardiac surgery - application and perspectives.

    Science.gov (United States)

    Kroczek, Karolina; Kroczek, Piotr; Nawrat, Zbigniew

    2017-03-01

    Medical robots offer new standards and opportunities for treatment. This paper presents a review of the literature and market information on the current situation and future perspectives for the applications of robots in cardiac surgery. Currently in the United States, only 10% of thoracic surgical procedures are conducted using robots, while globally this value remains below 1%. Cardiac and thoracic surgeons use robotic surgical systems increasingly often. The goal is to perform more than one hundred thousand minimally invasive robotic surgical procedures every year. A surgical robot can be used by surgical teams on a rotational basis. The market of surgical robots used for cardiovascular and lung surgery was worth 72.2 million dollars in 2014 and is anticipated to reach 2.2 billion dollars by 2021. The analysis shows that Poland should have more than 30 surgical robots. Moreover, Polish medical teams are ready for the introduction of several robots into the field of cardiac surgery. We hope that this market will accommodate the Polish Robin Heart robots as well.

  6. Multimedia-based training on Internet platforms improves surgical performance: a randomized controlled trial.

    Science.gov (United States)

    Pape-Koehler, Carolina; Immenroth, Marc; Sauerland, Stefan; Lefering, Rolf; Lindlohr, Cornelia; Toaspern, Jens; Heiss, Markus

    2013-05-01

    Surgical procedures are complex motion sequences that require a high level of preparation, training, and concentration. In recent years, Internet platforms providing surgical content have been established. Used as a surgical training method, the effect of multimedia-based training on practical surgical skills has not yet been evaluated. This study aimed to evaluate the effect of multimedia-based training on surgical performance. A 2 × 2 factorial, randomized controlled trial with a pre- and posttest design was used to test the effect of multimedia-based training in addition to or without practical training on 70 participants in four groups defined by the intervention used: multimedia-based training, practical training, and combination training (multimedia-based training + practical training) or no training (control group). The pre- and posttest consisted of a laparoscopic cholecystectomy in a Pelvi-Trainer and was video recorded, encoded, and saved on DVDs. These were evaluated by blinded raters using a modified objective structured assessment of technical skills (OSATS). The main evaluation criterion was the difference in OSATS score between the pre- and posttest (ΔOSATS) results in terms of a task-specific checklist (procedural steps scored as correct or incorrect). The groups were homogeneous in terms of demographic parameters, surgical experience, and pretest OSATS scores. The ΔOSATS results were highest in the multimedia-based training group (4.7 ± 3.3; p Multimedia-based training improved surgical performance significantly and thus could be considered a reasonable tool for inclusion in surgical curricula.

  7. Surgical and procedural skills training at medical school - a national review.

    Science.gov (United States)

    Davis, Christopher R; Toll, Edward C; Bates, Anthony S; Cole, Matthew D; Smith, Frank C T

    2014-01-01

    This national study quantifies procedural and surgical skills training at medical schools in the United Kingdom (UK), a stipulated requirement of all graduates by the General Medical Council (GMC). A questionnaire recorded basic procedural and surgical skills training provided by medical schools and surgical societies in the UK. Skills were extracted from (1) GMC Tomorrows Doctors and (2) The Royal College of Surgeons Intercollegiate Basic Surgical Skills (BSS) course. Data from medical school curricula and extra-curricular student surgical societies were compared against the national GMC guidelines and BSS course content. Data were analysed using Mann-Whitney U tests. Representatives from 23 medical schools completed the survey (71.9% response). Thirty one skills extracted from the BSS course were split into 5 categories, with skills content cross referenced against GMC documentation. Training of surgical skills by medical schools was as follows: Gowning and gloving (72.8%), handling instruments (29.4%), knot tying (17.4%), suturing (24.7%), other surgical techniques (4.3%). Surgical societies provided significantly more training of knot tying (64.4%, P = 0.0013) and suturing (64.5%, P = 0.0325) than medical schools. Medical schools provide minimal basic surgical skills training, partially supplemented by extracurricular student surgical societies. Our findings suggest senior medical students do not possess simple surgical and procedural skills. Newly qualified doctors are at risk of being unable to safely perform practical procedures, contradicting GMC Guidelines. We propose a National Undergraduate Curriculum in Surgery and Surgical Skills to equip newly qualified doctors with basic procedural skills to maximise patient safety. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  9. The use of robotics in surgery: a review.

    Science.gov (United States)

    Hussain, A; Malik, A; Halim, M U; Ali, A M

    2014-11-01

    There is an ever-increasing drive to improve surgical patient outcomes. Given the benefits which robotics has bestowed upon a wide range of industries, from vehicle manufacturing to space exploration, robots have been highlighted by many as essential for continued improvements in surgery. The goal of this review is to outline the history of robotic surgery, and detail the key studies which have investigated its effects on surgical outcomes. Issues of cost-effectiveness and patient acceptability will also be discussed. Robotic surgery has been shown to shorten hospital stays, decrease complication rates and allow surgeons to perform finer tasks, when compared to the traditional laparoscopic and open approaches. These benefits, however, must be balanced against increased intraoperative times, vast financial costs and the increased training burden associated with robotic techniques. The outcome of such a cost-benefit analysis appears to vary depending on the procedure being conducted; indeed the strongest evidence in favour of its use comes from the fields of urology and gynaecology. It is hoped that with the large-scale, randomised, prospective clinical trials underway, and an ever-expanding research base, many of the outstanding questions surrounding robotic surgery will be answered in the near future. © 2014 John Wiley & Sons Ltd.

  10. Robotics in Gynecology: Why is this Technology Worth pursuing?

    Directory of Open Access Journals (Sweden)

    Rodrigo Ayala-Yáñez

    2013-01-01

    Full Text Available Robotic laparoscopy in gynecology, which started in 2005 when the Da Vinci Surgical System (Intuitive Surgical Inc was approved by the US Food and Drug Administration for use in gynecologic procedures, represents today a modern, safe, and precise approach to pathology in this field. Since then, a great deal of experience has accumulated, and it has been shown that there is almost no gynecological surgery that cannot be approached with this technology, namely hysterectomy, myomectomy, sacrocolpopexia, and surgery for the treatment of endometriosis. Albeit no advantages have been observed over conventional laparoscopy and some open surgical procedures, robotics do seem to be advantageous in highly complicated procedures when extensive dissection and proper anatomy reestablishment is required, as in the case of oncologic surgery. There is no doubt that implementation of better logistics in finance, training, design, and application will exert a positive effect upon robotics expansion in gynecological medicine. Contrary to expectations, we estimate that a special impact is to be seen in emerging countries where novel technologies have resulted in benefits in the organization of health care systems.

  11. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  12. Virtual reality training for surgical trainees in laparoscopic surgery.

    Science.gov (United States)

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared

  13. Robotics in General Surgery

    OpenAIRE

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  14. Implementation and Validation of Artificial Intelligence Techniques for Robotic Surgery

    OpenAIRE

    Aarshay Jain; Deepansh Jagotra; Vijayant Agarwal

    2014-01-01

    The primary focus of this study is implementation of Artificial Intelligence (AI) technique for developing an inverse kinematics solution for the Raven-IITM surgical research robot [1]. First, the kinematic model of the Raven-IITM robot was analysed along with the proposed analytical solution [2] for inverse kinematics problem. Next, The Artificial Neural Network (ANN) techniques was implemented. The training data for the same was careful selected by keeping manipulability constraints in mind...

  15. Current status of validation for robotic surgery simulators - a systematic review.

    Science.gov (United States)

    Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran

    2013-02-01

    To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU

  16. Performances on simulator and da Vinci robot on subjects with and without surgical background.

    Science.gov (United States)

    Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca

    2017-08-17

    To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p poor for the untrained groups (5 (3.5, 9)), without statistically significant difference (p < .05). This study showed, for subjects new to laparoscopy and robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.

  17. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study.

    Science.gov (United States)

    González-Sánchez, Manuel; González-Poveda, Ivan; Mera-Velasco, Santiago; Cuesta-Vargas, Antonio I

    2017-03-01

    The aim of the present study was to analyse the fatigue experienced by surgeons during and after performing robotic and laparoscopic surgery and to analyse muscle function, self-perceived fatigue and postural balance. Cross-sectional study considering two surgical protocols (laparoscopic and robotic) with two different roles (chief and assistant surgeon). Fatigue was recorded in two ways: pre- and post-surgery using questionnaires [Profile of Mood States (POMS), Quick Questionnaire Piper Fatigue Scale and Visual Analogue Scale (VAS)-related fatigue] and parametrising functional tests [handgrip and single-leg balance test (SLBT)] and during the intervention by measuring the muscle activation of eight different muscles via surface electromyography and kinematic measurement (using inertial sensors). Each surgery profile intervention (robotic/laparoscopy-chief/assistant surgeon) was measured three times, totalling 12 measured surgery interventions. The minimal duration of surgery was 180 min. Pre- and post-surgery, all questionnaires showed that the magnitude of change was higher for the chief surgeon compared with the assistant surgeon, with differences of between 10 % POMS and 16.25 % VAS (robotic protocol) and between 3.1 % POMS and 12.5 % VAS (laparoscopic protocol). In the inter-profile comparison, the chief surgeon (robotic protocol) showed a lower balance capacity during the SLBT after surgery. During the intervention, the kinematic variables showed significant differences between the chief and assistant surgeon in the robotic protocol, but not in the laparoscopic protocol. Regarding muscle activation, there was not enough muscle activity to generate fatigue. Prolonged surgery increased fatigue in the surgeon; however, the magnitude of fatigue differed between surgical profiles. The surgeon who experienced the greatest fatigue was the chief surgeon in the robotic protocol.

  18. Effects of Robot Assisted Gait Training in Progressive Supranuclear Palsy (PSP: a preliminary report.

    Directory of Open Access Journals (Sweden)

    Patrizio eSale

    2014-04-01

    Full Text Available Background and Purpose: Progressive supranuclear palsy (PSP is a rare neurodegenerative disease clinically characterized by prominent axial extrapyramidal motor symptoms with frequent falls. Over the last years the introduction of robotic technologies to recover lower limb function has been greatly employed in the rehabilitative practice. This observational trial is aimed at investigating the feasibility, the effectiveness and the efficacy of end-effector robot training in people with PSP.Method: Pilot observational trial.Participants: Five cognitively intact participants with PSP and gait disorders.Interventions: Patients were submitted to a rehabilitative program of robot-assisted walking sessions for 45 minutes, 5 times a week for 4 weeks.Main outcome measures: The spatiotemporal parameters at the beginning (T0 and at the end of treatment (T1 were recorded by a gait analysis laboratory.Results: Robot training was feasible, acceptable and safe and all participants completed the prescribed training sessions. All patients showed an improvement in the gait index (Mean velocity, Cadence, Step length and Step width (T0 versus T1.Conclusions: Robot training is a feasible and safe form of rehabilitation for cognitively intact people with PSP. This innovative approach can contribute to improve lower limb motor recovery. The focus on gait recovery is another quality that makes this research important for clinical practice. On the whole, the simplicity of treatment, the lack of side effects and the positive results in the patients support the recommendation to extend the trials of this treatment. Further investigation regarding the effectiveness of robot training in time is necessary.Trial registration: ClinicalTrials.gov NCT01668407.

  19. Urologic robotic surgery in Korea: past and present.

    Science.gov (United States)

    Seo, Ill Young

    2015-08-01

    Since 2005 when the da Vinci surgical system was approved as a medical device by the Korean Ministry of Health and Welfare, 51 systems have been installed in 40 institutions as of May 2015. Although robotic surgery is not covered by the national health insurance service in Korea, it has been used in several urologic fields as a less invasive surgery. Since the first robotic-assisted laparoscopic radical prostatectomy in 2005, partial nephrectomy, radical cystectomy, pyeloplasty, and other urologic surgeries have been performed. The following should be considered to extend the indications for robotic surgery: training systems including accreditation, operative outcomes from follow-up results, and cost-effectiveness. In this review, the history and current status of robotic surgeries in Korea are presented.

  20. Design optimization on the drive train of a light-weight robotic arm

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Hansen, Michael Rygaard

    2011-01-01

    A drive train optimization method for design of light-weight robots is proposed. Optimal selections of motors and gearboxes from a limited catalog of commercially available components are done simultaneously for all joints of a robotic arm. Characteristics of the motor and gearbox, including gear...... ratio, gear inertia, motor inertia, and gear efficiency, are considered in the drive train modeling. A co-simulation method is developed for dynamic simulation of the arm. A design example is included to demonstrate the proposed design optimization method....

  1. A young surgeon's perspective on alternate surgical training pathways.

    Science.gov (United States)

    Sutherland, Michael J

    2007-02-01

    Most residents in training today are in focused on their training, and the thoughts of changing the structure of residencies and fellowships is something that they are ambivalent about or have never heard anything about. The small minority who are vocal on these issues represent an activist group supporting change. This group is very vocal and raises many of the excellent questions we have examined. In discussion with residents, some feel that shortened training will help with the financial issues facing residents. However, many people today add additional years to their training with research years or "super" fellowships. The residents demonstrate that they want to get the skill sets that they desire despite the added length of training. This is unlikely to change even if the minimum number of years of training changes with the evolution of tracked training programs. Medical students, in the Resident and Associate Society of the American College of Surgeons survey, did not indicate that shortened training would have an affect on decision to pursue or not pursue a surgical career. If the focus of these changes is to encourage medical students to pursue a residency in surgical specialties, we may need to look at other options to increase medical student interest. Medical students indicated that lifestyle issues, types of clinical problems, stress-related concerns, and interactions with the surgical faculty were far more important in their decision to enter a surgical specialty than work hours or duration of training. If we are to make a difference in the quality and quantity of applicants for surgical residencies, then changes in the structure of residencies do not seem to be the most effective way to accomplish this. We should possibly focus more on faculty and medical student interaction and the development of positive role models for medical students to see surgeons with attractive practices that minimize some of the traditionally perceived negative stereotypes

  2. Structural brain changes after traditional and robot-assisted multi-domain cognitive training in community-dwelling healthy elderly.

    Directory of Open Access Journals (Sweden)

    Geon Ha Kim

    Full Text Available The purpose of this study was to investigate if multi-domain cognitive training, especially robot-assisted training, alters cortical thickness in the brains of elderly participants. A controlled trial was conducted with 85 volunteers without cognitive impairment who were 60 years old or older. Participants were first randomized into two groups. One group consisted of 48 participants who would receive cognitive training and 37 who would not receive training. The cognitive training group was randomly divided into two groups, 24 who received traditional cognitive training and 24 who received robot-assisted cognitive training. The training for both groups consisted of daily 90-min-session, five days a week for a total of 12 weeks. The primary outcome was the changes in cortical thickness. When compared to the control group, both groups who underwent cognitive training demonstrated attenuation of age related cortical thinning in the frontotemporal association cortices. When the robot and the traditional interventions were directly compared, the robot group showed less cortical thinning in the anterior cingulate cortices. Our results suggest that cognitive training can mitigate age-associated structural brain changes in the elderly.ClnicalTrials.gov NCT01596205.

  3. Modeling and Simulation to Muscle Strength Training of Lower Limbs Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-01-01

    Full Text Available Considering the issues of lower limb rehabilitation robots with single control strategies and poor training types, a training method for improving muscle strength was put forward in this paper. Patients’ muscle strength could be achieved by targeted exercises at the end of rehabilitation. This approach could be realized through programming wires’ force. On the one hand, each wires force was measured by tension sensor and force closed loop control was established to control the value of wires’ force which was acted on trainees. On the other hand, the direction of output force was changed by detecting the trainees’ state of motion and the way of putting load to patient was achieved. Finally, the target of enhancing patients’ muscle strength was realized. Dynamic model was built by means of mechanism and training types of robots. Force closed loop control strategy was established based on training pattern. In view of the characteristics of the redundance and economy of wire control, the process for simple wire's load changes was discussed. In order to confirm the characteristics of robot control system, the controller was simulated in Matlab/Simulink. It was verified that command signal could be traced by control system availably and the load during muscle training would be provided effectively.

  4. Robotic aortic surgery.

    Science.gov (United States)

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  5. Does training of fellows affect peri-operative outcomes of robot-assisted partial nephrectomy?

    Science.gov (United States)

    Khene, Zine-Eddine; Peyronnet, Benoit; Bosquet, Elise; Pradère, Benjamin; Robert, Corentin; Fardoun, Tarek; Kammerer-Jacquet, Solène-Florence; Verhoest, Grégory; Rioux-Leclercq, Nathalie; Mathieu, Romain; Bensalah, Karim

    2017-10-01

    To evaluate the impact of fellows' involvement on the peri-operative outcomes of robot-assisted partial nephrectomy (RAPN). We analysed 216 patients who underwent RAPN for a small renal tumour. We stratified our cohort into two groups according to the involvement of a fellow surgeon during the procedure: expert surgeon operating alone (expert group) and fellow operating under the supervision of the expert surgeon (fellow group). Peri-operative data were compared between the two groups. Linear and logistic regression analyses were performed to assess the impact of fellows' involvement on peri-operative and postoperative outcomes. Trifecta and margins ischaemia complications (MIC) score achievement rates were used to assess the quality of surgery in both the expert and fellow groups. Trifecta was defined as a combination of warm ischaemia time negative surgical margins and no peri-operative complications. MIC score was defined as negative surgical margins, ischaemia time Training fellows to perform RAPN is associated with longer operating time and WIT but does not appear to compromise other peri-operative outcomes. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  6. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.

    Science.gov (United States)

    Mehrholz, J; Harvey, L A; Thomas, S; Elsner, B

    2017-08-01

    Systematic review about randomised trials comparing different training strategies to improve gait in people with spinal cord injuries (SCI). The aim of this systematic review was to compare the effectiveness of body-weight-supported treadmill training (BWSTT) and robotic-assisted gait training with overground gait training and other forms of physiotherapy in people with traumatic SCI. Systematic review conducted by researchers from Germany and Australia. An extensive search was conducted for randomised controlled trials involving people with traumatic SCI that compared either BWSTT or robotic-assisted gait training with overground gait training and other forms of physiotherapy. The two outcomes of interest were walking speed (m s -1 ) and walking distance (m). BWSTT and robotic-assisted gait training were analysed separately, and data were pooled across trials to derive mean between-group differences using a random-effects model. Thirteen randomised controlled trials involving 586 people were identified. Ten trials involving 462 participants compared BWSTT to overground gait training and other forms of physiotherapy, but only nine trials provided useable data. The pooled mean (95% confidence interval (CI)) between-group differences for walking speed and walking distance were -0.03 m s -1 (-0.10 to 0.04) and -7 m (-45 to 31), respectively, favouring overground gait training. Five trials involving 344 participants compared robotic-assisted gait training to overground gait training and other forms of physiotherapy but only three provided useable data. The pooled mean (95% CI) between-group differences for walking speed and walking distance were -0.04 m s -1 (95% CI -0.21 to 0.13) and -6 m (95% CI -86 to 74), respectively, favouring overground gait training. BWSTT and robotic-assisted gait training do not increase walking speed more than overground gait training and other forms of physiotherapy do, but their effects on walking distance are not clear.

  7. Robotic transverse colectomy for mid-transverse colon cancer: surgical techniques and oncologic outcomes.

    Science.gov (United States)

    Jung, Kyung Uk; Park, Yoonah; Lee, Kang Young; Sohn, Seung-Kook

    2015-06-01

    Robot-assisted surgery for colon cancer has been reported in many studies, most of which worked on right and/or sigmoid colectomy. The aim of this study was to report our experience of robotic transverse colectomy with an intracorporeal anastomosis, provide details of the surgical technique, and present the theoretical benefits of the procedure. This is a retrospective review of prospectively collected data of robotic surgery for colorectal cancer performed by a single surgeon between May 2007 and February 2011. Out of 162 consecutive cases, we identified three robotic transverse colectomies, using a hand-sewn intracorporeal anastomosis. Two males and one female underwent transverse colectomies for malignant or premalignant disease. The mean docking time, time spent using the robot, and total operative time were 5, 268, and 307 min, respectively. There were no conversions to open or conventional laparoscopic technique. The mean length of specimen and number of lymph nodes retrieved were 14.1 cm and 6.7, respectively. One patient suffered from a wound seroma and recovered with conservative management. The mean hospital stay was 8.7 days. After a median follow-up of 72 months, there were no local or systemic recurrences. Robotic transverse colectomy seems to be a safe and feasible technique. It may minimize the necessity of mobilizing both colonic flexures, with facilitated intracorporeal hand-sewn anastomosis. However, further prospective studies with a larger number of patients are required to draw firm conclusions.

  8. Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency.

    Science.gov (United States)

    Hogg, Melissa E; Tam, Vernissia; Zenati, Mazen; Novak, Stephanie; Miller, Jennifer; Zureikat, Amer H; Zeh, Herbert J

    Hepatobiliary surgery is a highly complex, low-volume specialty with long learning curves necessary to achieve optimal outcomes. This creates significant challenges in both training and measuring surgical proficiency. We hypothesize that a virtual reality curriculum with mastery-based simulation is a valid tool to train fellows toward operative proficiency. This study evaluates the content and predictive validity of robotic simulation curriculum as a first step toward developing a comprehensive, proficiency-based pathway. A mastery-based simulation curriculum was performed in a virtual reality environment. A pretest/posttest experimental design used both virtual reality and inanimate environments to evaluate improvement. Participants self-reported previous robotic experience and assessed the curriculum by rating modules based on difficulty and utility. This study was conducted at the University of Pittsburgh Medical Center (Pittsburgh, PA), a tertiary care academic teaching hospital. A total of 17 surgical oncology fellows enrolled in the curriculum, 16 (94%) completed. Of 16 fellows who completed the curriculum, 4 fellows (25%) achieved mastery on all 24 modules; on average, fellows mastered 86% of the modules. Following curriculum completion, individual test scores improved (p < 0.0001). An average of 2.4 attempts was necessary to master each module (range: 1-17). Median time spent completing the curriculum was 4.2 hours (range: 1.1-6.6). Total 8 (50%) fellows continued practicing modules beyond mastery. Survey results show that "needle driving" and "endowrist 2" modules were perceived as most difficult although "needle driving" modules were most useful. Overall, 15 (94%) fellows perceived improvement in robotic skills after completing the curriculum. In a cohort of board-certified general surgeons who are novices in robotic surgery, a mastery-based simulation curriculum demonstrated internal validity with overall score improvement. Time to complete the

  9. [Implementation of a robotic video-assisted thoracic surgical program].

    Science.gov (United States)

    Baste, J-M; Riviera, C; Nouhaud, F-X; Rinieri, P; Melki, J; Peillon, C

    2016-03-01

    Recent publications from North America have shown the benefits of robot-assisted thoracic surgery. We report here the process of setting up such a program in a French university centre and early results in a unit with an average treatment volume. Retrospective review of a single institution database. The program was launched after a 6-month preparation period. From January 2012 to January 2013, totally endoscopic, full robot-assisted procedures were performed on 30 patients (17 males). Median age was 54 [Q1-Q3, 48-63] years and ASA score 2 [1,2]. Operative procedures included thymectomy (9 ; 30%), lobectomy with nodes resection (11 ; 38%), segmentectomy (4 ; 14%), lymphadenectomy (3 ; 10%), Bronchogenic cyst (2, 5%) and posterior mediastinal mass resection (1 ; 3%). No conversion was required. Median blood loss was 50mL [10-100]. Median operating time was 135 min (105-165) including 30 min [20-40] for docking, 90min for robot-assisted operating [70-120] and 15 min [10-15] for lesion extraction. CO2 insufflation was used in 28 cases (93%). Hospital stay was 4 days [4-6] with 6 minor complications (20%) (Grade 1 according to the Clavien-Dindo classification). After a median 4 months follow-up [2-7], all patients were alive and demonstrated a good quality of life. This series suggests that full robotic thoracic procedures are safe and effective treatment for various pathologies, with low morbidity and without a significant learning curve, even in a lower volume centre. This technology should accompany the development of minimally invasive thoracic surgery. The importance of robotic training should be emphasized to optimize procedures and costs. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. Pregnancy and Motherhood During Surgical Training.

    Science.gov (United States)

    Rangel, Erika L; Smink, Douglas S; Castillo-Angeles, Manuel; Kwakye, Gifty; Changala, Marguerite; Haider, Adil H; Doherty, Gerard M

    2018-03-21

    Although family priorities influence specialty selection and resident attrition, few studies describe resident perspectives on pregnancy during surgical training. To directly assess the resident experience of childbearing during training. A self-administered 74-question survey was electronically distributed in January 2017 to members of the Association of Women Surgeons, to members of the Association of Program Directors in Surgery listserv, and through targeted social media platforms. Surgeons who had 1 or more pregnancies during an Accreditation Council for Graduate Medical Education-accredited US general surgery residency program and completed training in 2007 or later were included. Important themes were identified using focus groups of surgeons who had undergone pregnancy during training in the past 7 years. Additional topics were identified through MEDLINE searches performed from January 2000 to July 2016 combining the keywords pregnancy, resident, attrition, and parenting in any specialty. Descriptive data on perceptions of work schedule during pregnancy, maternity leave policies, lactation and childcare support, and career satisfaction after childbirth. This study included 347 female surgeons (mean [SD] age, 30.5 [2.7] years) with 452 pregnancies. A total of 297 women (85.6%) worked an unmodified schedule until birth, and 220 (63.6%) were concerned that their work schedule adversely affected their health or the health of their unborn child. Residency program maternity leave policies were reported by 121 participants (34.9%). A total of 251 women (78.4%) received maternity leave of 6 weeks or less, and 250 (72.0%) perceived the duration of leave to be inadequate. The American Board of Surgery leave policy was cited as a major barrier to the desired length of leave by 268 of 326 respondents (82.2%). Breastfeeding was important to 329 (95.6%), but 200 (58.1%) stopped earlier than they wished because of poor access to lactation facilities and challenges leaving

  11. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.

    Science.gov (United States)

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean

    2015-02-01

    Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices 20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that

  12. First 101 Robotic General Surgery Cases in a Community Hospital

    Science.gov (United States)

    Robertson, Jarrod C.; Alrajhi, Sharifah

    2016-01-01

    Background and Objectives: The general surgeon's robotic learning curve may improve if the experience is classified into categories based on the complexity of the procedures in a small community hospital. The intraoperative time should decrease and the incidence of complications should be comparable to conventional laparoscopy. The learning curve of a single robotic general surgeon in a small community hospital using the da Vinci S platform was analyzed. Methods: Measured parameters were operative time, console time, conversion rates, complications, surgical site infections (SSIs), surgical site occurrences (SSOs), length of stay, and patient demographics. Results: Between March 2014 and August 2015, 101 robotic general surgery cases were performed by a single surgeon in a 266-bed community hospital, including laparoscopic cholecystectomies, inguinal hernia repairs; ventral, incisional, and umbilical hernia repairs; and colorectal, foregut, bariatric, and miscellaneous procedures. Ninety-nine of the cases were completed robotically. Seven patients were readmitted within 30 days. There were 8 complications (7.92%). There were no mortalities and all complications were resolved with good outcomes. The mean operative time was 233.0 minutes. The mean console operative time was 117.6 minutes. Conclusion: A robotic general surgery program can be safely implemented in a small community hospital with extensive training of the surgical team through basic robotic skills courses as well as supplemental educational experiences. Although the use of the robotic platform in general surgery could be limited to complex procedures such as foregut and colorectal surgery, it can also be safely used in a large variety of operations with results similar to those of conventional laparoscopy. PMID:27667913

  13. Establishment of Next-Generation Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Neurosurgical laboratory-based cadaveric training is essential for the development and refinement of technical skills before their use on a living patient. Recent biotechnological advances including 3-dimensional (3D) microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. Until recently, few means have allowed surgeons to obtain integrated surgical and technological training in an operating room setting. We report on a new model, currently in use at our institution, for technologically integrated surgical training and innovation using a next-generation microneurosurgery skull base laboratory designed to recreate the setting of a working operating room. Each workstation is equipped with a 3D surgical microscope, 3D endoscope, surgical drills, operating table with a Mayfield head holder, and a complete set of microsurgical tools. The laboratory also houses a neuronavigation system, a surgical robotic, a surgical planning system, 3D visualization, virtual reality, and computerized simulation for training of surgical procedures and visuospatial skills. In addition, the laboratory is equipped with neurophysiological monitoring equipment in order to conduct research into human factors in surgery and the respective roles of workload and fatigue on surgeons' performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Robot Assisted Surgical Ward Rounds: Virtually Always There

    Directory of Open Access Journals (Sweden)

    Stefanie M. Croghan

    2018-05-01

    Full Text Available Background:  While an explosion in technological sophistication has revolutionized surgery within the operating theatre, delivery of surgical ward-based care has seen little innovation.  Use of telepresence allowing off-site clinicians communicate with patients has been largely restricted to outpatient settings or use of complex, expensive, static devices.  We designed a prospective study to ascertain feasibility and face validity of a remotely controlled mobile audiovisual drone (LUCY to access inpatients.  This device is, uniquely, lightweight, freely mobile and emulates ‘human’ interaction by swiveling and adjusting height to patients’ eye-level.     Methods: Robot-assisted ward rounds(RASWR were conducted over 3 months. A remotely located consultant surgeon communicated with patients/bedside teams via encrypted audiovisual telepresence robot (DoubleRoboticstm, California USA.  Likert-scale satisfaction questionnaires, incorporating free-text sections for mixed-methods data collection, were disseminated to patient and staff volunteers following RASWRs.  The same cohort completed a linked questionnaire following conventional (gold-standard rounds, acting as control group. Data were paired, and non-parametric analysis performed.     Results: RASWRs are feasible (>90% completed without technical difficulty. The RASWR(n=52 observations demonstrated face validity with strong correlations (r>0.7; Spearman, p-value <0.05 between robotic and conventional ward rounds among patients and staff on core themes, including dignity/confidentiality/communication/satisfaction with management plan. Patients (96.08%, n=25 agreed RASWR were a satisfactory alternative when consultant physical presence was not possible. There was acceptance of nursing/NCHD cohort (100% (n=11 willing to regularly partake in RASWR.    Conclusion: RASWRs receive high levels of patient and staff acceptance, and offer a valid alternative to conventional ward rounds

  15. Robot Assisted Surgical Ward Rounds: Virtually Always There.

    Science.gov (United States)

    Croghan, Stefanie M; Carroll, Paul; Reade, Sarah; Gillis, Amy E; Ridgway, Paul F

    2018-05-02

     While an explosion in technological sophistication has revolutionized surgery within the operating theatre, delivery of surgical ward-based care has seen little innovation.  Use of telepresence allowing off-site clinicians communicate with patients has been largely restricted to outpatient settings or use of complex, expensive, static devices.  We designed a prospective study to ascertain feasibility and face validity of a remotely controlled mobile audiovisual drone (LUCY) to access inpatients.  This device is, uniquely, lightweight, freely mobile and emulates 'human' interaction by swiveling and adjusting height to patients' eye-level.   METHODS: Robot-assisted ward rounds(RASWR) were conducted over 3 months. A remotely located consultant surgeon communicated with patients/bedside teams via encrypted audiovisual telepresence robot (DoubleRoboticstm, California USA).  Likert-scale satisfaction questionnaires, incorporating free-text sections for mixed-methods data collection, were disseminated to patient and staff volunteers following RASWRs.  The same cohort completed a linked questionnaire following conventional (gold-standard) rounds, acting as control group. Data were paired, and non-parametric analysis performed.  RESULTS: RASWRs are feasible (>90% completed without technical difficulty). The RASWR(n=52 observations) demonstrated face validity with strong correlations (r>0.7; Spearman, p-value <0.05) between robotic and conventional ward rounds among patients and staff on core themes, including dignity/confidentiality/communication/satisfaction with management plan. Patients (96.08%, n=25) agreed RASWR were a satisfactory alternative when consultant physical presence was not possible. There was acceptance of nursing/NCHD cohort (100% (n=11) willing to regularly partake in RASWR).  CONCLUSION: RASWRs receive high levels of patient and staff acceptance, and offer a valid alternative to conventional ward rounds when a consultant cannot be

  16. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score.

    Science.gov (United States)

    Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M

    2016-01-01

    The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.

  17. Social Intelligence for a Robot Engaging People in Cognitive Training Activities

    Directory of Open Access Journals (Sweden)

    Jeanie Chan

    2012-10-01

    Full Text Available Current research supports the use of cognitive training interventions to improve the brain functioning of both adults and children. Our work focuses on exploring the potential use of robot assistants to allow for these interventions to become more accessible. Namely, we aim to develop an intelligent, socially assistive robot that can engage individuals in person-centred cognitively stimulating activities. In this paper, we present the design of a novel control architecture for the robot Brian 2.0, which enables the robot to be a social motivator by providing assistance, encouragement and celebration during an activity. A hierarchical reinforcement learning approach is used in the architecture to allow the robot to: 1 learn appropriate assistive behaviours based on the structure of the activity, and 2 personalize an interaction based on user states. Experiments show that the control architecture is effective in determining the robot's optimal assistive behaviours during a memory game interaction.

  18. Output control of da Vinci surgical system's surgical graspers.

    Science.gov (United States)

    Johnson, Paul J; Schmidt, David E; Duvvuri, Umamaheswar

    2014-01-01

    The number of robot-assisted surgeries performed with the da Vinci surgical system has increased significantly over the past decade. The articulating movements of the robotic surgical grasper are controlled by grip controls at the master console. The user interface has been implicated as one contributing factor in surgical grasping errors. The goal of our study was to characterize and evaluate the user interface of the da Vinci surgical system in controlling surgical graspers. An angular manipulator with force sensors was used to increment the grip control angle as grasper output angles were measured. Input force at the grip control was simultaneously measured throughout the range of motion. Pressure film was used to assess the maximum grasping force achievable with the endoscopic grasping tool. The da Vinci robot's grip control angular input has a nonproportional relationship with the grasper instrument output. The grip control mechanism presents an intrinsic resistant force to the surgeon's fingertips and provides no haptic feedback. The da Vinci Maryland graspers are capable of applying up to 5.1 MPa of local pressure. The angular and force input at the grip control of the da Vinci robot's surgical graspers is nonproportional to the grasper instrument's output. Understanding the true relationship of the grip control input to grasper instrument output may help surgeons understand how to better control the surgical graspers and promote fewer grasping errors. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cognitive training for technical and non-technical skills in robotic surgery: a randomised controlled trial.

    Science.gov (United States)

    Raison, Nicholas; Ahmed, Kamran; Abe, Takashige; Brunckhorst, Oliver; Novara, Giacomo; Buffi, Nicolò; McIlhenny, Craig; van der Poel, Henk; van Hemelrijck, Mieke; Gavazzi, Andrea; Dasgupta, Prokar

    2018-05-07

    To investigate the effectiveness of motor imagery (MI) for technical skill and non-technical skill (NTS) training in minimally invasive surgery (MIS). A single-blind, parallel-group randomised controlled trial was conducted at the Vattikuti Institute of Robotic Surgery, King's College London. Novice surgeons were recruited by open invitation in 2015. After basic robotic skills training, participants underwent simple randomisation to either MI training or standard training. All participants completed a robotic urethrovesical anastomosis task within a simulated operating room. In addition to the technical task, participants were required to manage three scripted NTS scenarios. Assessment was performed by five blinded expert surgeons and a NTS expert using validated tools for evaluating technical skills [Global Evaluative Assessment of Robotic Skills (GEARS)] and NTS [Non-Technical Skills for Surgeons (NOTSS)]. Quality of MI was assessed using a revised Movement Imagery Questionnaire (MIQ). In all, 33 participants underwent MI training and 29 underwent standard training. Interrater reliability was high, Krippendorff's α = 0.85. After MI training, the mean (sd) GEARS score was significantly higher than after standard training, at 13.1 (3.25) vs 11.4 (2.97) (P = 0.03). There was no difference in mean NOTSS scores, at 25.8 vs 26.4 (P = 0.77). MI training was successful with significantly higher imagery scores than standard training (mean MIQ score 5.1 vs 4.5, P = 0.04). Motor imagery is an effective training tool for improving technical skill in MIS even in novice participants. No beneficial effect for NTS was found. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  20. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  1. Stereoscopic Augmented Reality System for Supervised Training on Minimal Invasive Surgery Robots

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Thøgersen, Mikkel; Galsgaard, Bo

    2014-01-01

    the need for efficient training. When training with the robot, the communication between the trainer and the trainee is limited, since the trainee often cannot see the trainer. To overcome this issue, this paper proposes an Augmented Reality (AR) system where the trainer is controlling two virtual robotic...... arms. These arms are virtually superimposed on the video feed to the trainee, and can therefore be used to demonstrate and perform various tasks for the trainee. Furthermore, the trainer is presented with a 3D image through a stereoscopic display. Because of the added depth perception, this enables...... the procedure, and thereby enhances the training experience. The virtual overlay was also found to work as a good and illustrative approach for enhanced communication. However, the delay of the prototype made it difficult to use for actual training....

  2. Surgical simulators in cataract surgery training.

    Science.gov (United States)

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  3. Robotic Laparoendoscopic Single-site Retroperitioneal Renal Surgery: Initial Investigation of a Purpose-built Single-port Surgical System.

    Science.gov (United States)

    Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H

    2017-04-01

    Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small

  4. Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Allard, Margaret; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-12-01

    Death and paralysis are significant risks of modern surgeries, caused by injury to blood vessels and nerves hidden by bone and other tissue. We propose an approach to surgical guidance that relies on photoacoustic (PA) imaging to determine the separation between these critical anatomical features and to assess the extent of safety zones during surgical procedures. Images were acquired as an optical fiber was swept across vessel-mimicking targets, in the absence and presence of teleoperation with a research da Vinci Surgical System. Vessel separation distances were measured directly from PA images. Vessel positions were additionally recorded based on the fiber position (calculated from the da Vinci robot kinematics) that corresponded to an observed PA signal, and these recordings were used to indirectly measure vessel separation distances. Amplitude- and coherence-based beamforming were used to estimate vessel separations, resulting in 0.52- to 0.56-mm mean absolute errors, 0.66- to 0.71-mm root-mean-square errors, and 65% to 68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Similar accuracy was achieved in the presence of up to 4.5-mm-thick ex vivo tissue. Results indicate that PA image-based measurements of the separation among anatomical landmarks could be a viable method for real-time path planning in multiple interventional PA applications.

  5. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.

    Science.gov (United States)

    Galvez, Jose A; Budovitch, Amy; Harkema, Susan J; Reinkensmeyer, David J

    2011-01-01

    Robotic devices are being developed to automate repetitive aspects of walking retraining after neurological injuries, in part because they might improve the consistency and quality of training. However, it is unclear how inconsistent manual training actually is or whether stepping quality depends strongly on the trainers' manual skill. The objective of this study was to quantify trainer variability of manual skill during step training using body-weight support on a treadmill and assess factors of trainer skill. We attached a sensorized orthosis to one leg of each patient with spinal cord injury and measured the shank kinematics and forces exerted by different trainers during six training sessions. An expert trainer rated the trainers' skill level based on videotape recordings. Between-trainer force variability was substantial, about two times greater than within-trainer variability. Trainer skill rating correlated strongly with two gait features: better knee extension during stance and fewer episodes of toe dragging. Better knee extension correlated directly with larger knee horizontal assistance force, but better toe clearance did not correlate with larger ankle push-up force; rather, it correlated with better knee and hip extension. These results are useful to inform robotic gait-training design.

  6. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  7. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    Science.gov (United States)

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the

  8. Robotics and general surgery.

    Science.gov (United States)

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  9. Computational surgery and dual training computing, robotics and imaging

    CERN Document Server

    Bass, Barbara; Berceli, Scott; Collet, Christophe; Cerveri, Pietro

    2014-01-01

    This critical volume focuses on the use of medical imaging, medical robotics, simulation, and information technology in surgery. It offers a road map for computational surgery success,  discusses the computer-assisted management of disease and surgery, and provides a rational for image processing and diagnostic. This book also presents some advances on image-driven intervention and robotics, as well as evaluates models and simulations for a broad spectrum of cancers as well as cardiovascular, neurological, and bone diseases. Training and performance analysis in surgery assisted by robotic systems is also covered. This book also: ·         Provides a comprehensive overview of the use of computational surgery and disease management ·         Discusses the design and use of medical robotic tools for orthopedic surgery, endoscopic surgery, and prostate surgery ·         Provides practical examples and case studies in the areas of image processing, virtual surgery, and simulation traini...

  10. Effort, performance, and motivation: insights from robot-assisted training of human golf putting and rat grip strength.

    Science.gov (United States)

    Duarte, Jaime E; Gebrekristos, Berkenesh; Perez, Sergi; Rowe, Justin B; Sharp, Kelli; Reinkensmeyer, David J

    2013-06-01

    Robotic devices can modulate success rates and required effort levels during motor training, but it is unclear how this affects performance gains and motivation. Here we present results from training unimpaired humans in a virtual golf-putting task, and training spinal cord injured (SCI) rats in a grip strength task using robotically modulated success rates and effort levels. Robotic assistance in golf practice increased trainees feelings of competence, and, paradoxically, increased their sense effort, even though it had mixed effects on learning. Reducing effort during a grip strength training task led rats with SCI to practice the task more frequently. However, the more frequent practice of these rats did not cause them to exceed the strength gains achieved by rats that exercised less often at higher required effort levels. These results show that increasing success and decreasing effort with robots increases motivation, but has mixed effects on performance gains.

  11. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design

    OpenAIRE

    Jose A. Galvez, PhD; Amy Budovitch, PT; Susan J. Harkema, PhD; David J. Reinkensmeyer, PhD

    2011-01-01

    Robotic devices are being developed to automate repetitive aspects of walking retraining after neurological injuries, in part because they might improve the consistency and quality of training. However, it is unclear how inconsistent manual training actually is or whether stepping quality depends strongly on the trainers' manual skill. The objective of this study was to quantify trainer variability of manual skill during step training using body-weight support on a treadmill and assess factor...

  12. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke.

    Science.gov (United States)

    Reinkensmeyer, David J; Wolbrecht, Eric T; Chan, Vicky; Chou, Cathy; Cramer, Steven C; Bobrow, James E

    2012-11-01

    Robot-assisted movement training can help individuals with stroke reduce arm and hand impairment, but robot therapy is typically only about as effective as conventional therapy. Refining the way that robots assist during training may make them more effective than conventional therapy. Here, the authors measured the therapeutic effect of a robot that required individuals with a stroke to achieve virtual tasks in three dimensions against gravity. The robot continuously estimated how much assistance patients needed to perform the tasks and provided slightly less assistance than needed to reduce patient slacking. Individuals with a chronic stroke (n = 26; baseline upper limb Fugl-Meyer score, 23 ± 8) were randomized into two groups and underwent 24 one-hour training sessions over 2 mos. One group received the assist-as-needed robot training and the other received conventional tabletop therapy with the supervision of a physical therapist. Training helped both groups significantly reduce their motor impairment, as measured by the primary outcome measure, the Fugl-Meyer score, but the improvement was small (3.0 ± 4.9 points for robot therapy vs. 0.9 ± 1.7 for conventional therapy). There was a trend for greater reduction for the robot-trained group (P = 0.07). The robot group largely sustained this gain at the 3-mo follow-up. The robot-trained group also experienced significant improvements in Box and Blocks score and hand grip strength, whereas the control group did not, but these improvements were not sustained at follow-up. In addition, the robot-trained group showed a trend toward greater improvement in sensory function, as measured by the Nottingham Sensory Test (P = 0.06). These results suggest that in patients with chronic stroke and moderate-severe deficits, assisting in three-dimensional virtual tasks with an assist-as-needed controller may make robotic training more effective than conventional tabletop training.

  13. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2017-01-01

    Full Text Available Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient’s functional ability by training the normal movement pattern.

  14. Robotic assisted surgery in pediatric gynecology: promising innovation in mini invasive surgical procedures.

    Science.gov (United States)

    Nakib, Ghassan; Calcaterra, Valeria; Scorletti, Federico; Romano, Piero; Goruppi, Ilaria; Mencherini, Simonetta; Avolio, Luigi; Pelizzo, Gloria

    2013-02-01

    Robotic assisted surgery is not yet widely applied in the pediatric field. We report our initial experience regarding the feasibility, safety, benefits, and limitations of robot-assisted surgery in pediatric gynecological patients. Descriptive, retrospective report of experience with pediatric gynecological patients over a period of 12 months. Department of Pediatric Surgery, IRCCS Policlinico San Matteo Foundation. Children and adolescents, with a surgical diagnosis of ovarian and/or tubal lesions. Robot assembly time and operative time, days of hospitalization, time to cessation of pain medication, complication rate, conversion rate to laparoscopic procedure and trocar insertion strategy. Six children and adolescents (2.4-15 yrs), weighing 12-55 kg, underwent robotic assisted surgery for adnexal pathologies: 2 for ovarian cystectomy, 2 for oophorectomy, 1 for right oophorectomy and left salpingo-oophorectomy for gonadal disgenesis, 1 for exploration for suspected pelvic malformation. Mean operative time was 117.5 ± 34.9 minutes. Conversion to laparatomy was not necessary in any of the cases. No intra- or postoperative complications occurred. Initial results indicate that robotic assisted surgery is safely applicable in the pediatric gynecological population, although it is still premature to conclude that it provides better clinical outcomes than traditional laparoscopic surgery. Randomized, prospective, comparative studies will help characterize the advantages and disadvantages of this new technology in pediatric patients. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  15. Transitioning from video-assisted thoracic surgical lobectomy to robotics for lung cancer: are there outcomes advantages?

    Science.gov (United States)

    Lee, Benjamin E; Korst, Robert J; Kletsman, Elaine; Rutledge, John R

    2014-02-01

    To determine if there are advantages to transitioning to robotics by a surgeon who is already proficient in performing video-assisted thoracic surgical (VATS) lobectomy. A single surgeon proficient in VATS lobectomy initiated a robotic lobectomy program, and a retrospective review was conducted of his patients undergoing minimally invasive lobectomy (robotics or VATS) for lung cancer between 2011 and 2012. Data collected included patient/tumor characteristics, morbidity, mortality, operative times, and length of hospital stay. Over a 24-month period, a total of 69 patients underwent minimally invasive lobectomy (35 robotic, 34 VATS). Patients in each group were similar in age and clinical stage. Robotic upper lobectomy operative times were longer than VATS (172 vs 134 minutes; P = .001), with no significant difference in lower lobectomies noted (140 vs 123 minutes; P = .1). Median length of stay was 3 days in both groups, and the median number of lymph nodes harvested was 18 (robotic) versus 16 (VATS; P = .42). Morbidity and mortality for robotic versus VATS were 11% versus 18% (P = .46) and 0% versus 3% (P = .49), respectively. There does not seem to be a significant advantage for an established VATS lobectomy surgeon to transition to robotics based on clinical outcomes. The learning curve for robotic upper lobectomies seems to be more significant than that for lower lobectomies. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  16. Current robotic curricula for surgery residents: A need for additional cognitive and psychomotor focus.

    Science.gov (United States)

    Green, Courtney A; Chern, Hueylan; O'Sullivan, Patricia S

    2018-02-01

    Current robot surgery curricula developed by industry were designed for expert surgeons. We sought to identify the robotic curricula that currently exist in general surgery residencies and describe their components. We identified 12 residency programs with robotic curricula. Using a structured coding form to identify themes including sequence, duration, emphasis and assessment, we generated a descriptive summary. Curricula followed a similar sequence: learners started with online modules and simulation exercises, followed by bedside experience during R2-R3 training years, and then operative opportunities on the console in the final years of training. Consistent portions of the curricula reflect a device-dependent training paradigm; they defined the sequence of instruction. Most curricula lacked specifics on duration and content of training activities. None clearly described cognitive or psychomotor skills needed by residents and none required a proficiency assessment before graduation. Resident-specific robotic curricula remain grounded in initial industrial efforts to train experienced surgeons, are non-specific regarding the type and nature of hands on experience, and do not include discussion of operative technique and surgical concepts. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco

    2016-01-01

    Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210

  18. Robot-assisted laparoscopic versus open partial nephrectomy in patients with chronic kidney disease: A propensity score-matched comparative analysis of surgical outcomes.

    Science.gov (United States)

    Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iizuka, Junpei; Omae, Kenji; Kobayashi, Hirohito; Yoshida, Kazuhiko; Tanabe, Kazunari

    2017-07-01

    To compare surgical outcomes between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy in patients with chronic kidney disease. Of 550 patients who underwent partial nephrectomy between 2012 and 2015, 163 patients with T1-2 renal tumors who had an estimated glomerular filtration rate between 30 and 60 mL/min/1.73 m 2 , and underwent robot-assisted laparoscopic partial nephrectomy or open partial nephrectomy were retrospectively analyzed. To minimize selection bias between the two surgical methods, patient variables were adjusted by 1:1 propensity score matching. The present study included 75 patients undergoing robot-assisted laparoscopic partial nephrectomy and 88 undergoing open partial nephrectomy. After propensity score matching, 40 patients were included in each operative group. The mean preoperative estimated glomerular filtration rate was 49 mL/min/1.73 m 2 . The mean ischemia time was 21 min in robot-assisted laparoscopic partial nephrectomy (warm ischemia) and 35 min in open partial nephrectomy (cold ischemia). Preservation of the estimated glomerular filtration rate 3-6 months postoperatively was not significantly different between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy (92% vs 91%, P = 0.9348). Estimated blood loss was significantly lower in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (104 vs 185 mL, P = 0.0025). The postoperative length of hospital stay was shorter in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (P negative surgical margin status were not significantly different between the two groups. In our experience, robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy provide similar outcomes in terms of functional preservation and perioperative complications among patients with chronic kidney disease. However, a lower estimated blood loss and

  19. Surgical simulation: Current practices and future perspectives for technical skills training.

    Science.gov (United States)

    Bjerrum, Flemming; Thomsen, Ann Sofia Skou; Nayahangan, Leizl Joy; Konge, Lars

    2018-06-17

    Simulation-based training (SBT) has become a standard component of modern surgical education, yet successful implementation of evidence-based training programs remains challenging. In this narrative review, we use Kern's framework for curriculum development to describe where we are now and what lies ahead for SBT within surgery with a focus on technical skills in operative procedures. Despite principles for optimal SBT (proficiency-based, distributed, and deliberate practice) having been identified, massed training with fixed time intervals or a fixed number of repetitions is still being extensively used, and simulators are generally underutilized. SBT should be part of surgical training curricula, including theoretical, technical, and non-technical skills, and be based on relevant needs assessments. Furthermore, training should follow evidence-based theoretical principles for optimal training, and the effect of training needs to be evaluated using relevant outcomes. There is a larger, still unrealized potential of surgical SBT, which may be realized in the near future as simulator technologies evolve, more evidence-based training programs are implemented, and cost-effectiveness and impact on patient safety is clearly demonstrated.

  20. Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying.

    Science.gov (United States)

    Knoll, Alois; Mayer, Hermann; Staub, Christoph; Bauernschmitt, Robert

    2012-12-01

    Transferring non-trivial human manipulation skills to robot systems is a challenging task. There have been a number of attempts to design research systems for skill transfer, but the level of the complexity of the actual skills transferable to the robot was rather limited, and delicate operations requiring a high dexterity and long action sequences with many sub-operations were impossible to transfer. A novel approach to human-machine skill transfer for multi-arm robot systems is presented. The methodology capitalizes on the metaphor of 'scaffolded learning', which has gained widespread acceptance in psychology. The main idea is to formalize the superior knowledge of a teacher in a certain way to generate support for a trainee. In our case, the scaffolding is constituted by abstract patterns, which facilitate the structuring and segmentation of information during 'learning by demonstration'. The actual skill generalization is then based on simulating fluid dynamics. The approach has been successfully evaluated in the medical domain for the delicate task of automated knot-tying for suturing with standard surgical instruments and a realistic minimally invasive robotic surgery system. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  2. Selection for Surgical Training: An Evidence-Based Review.

    Science.gov (United States)

    Schaverien, Mark V

    2016-01-01

    The predictive relationship between candidate selection criteria for surgical training programs and future performance during and at the completion of training has been investigated for several surgical specialties, however there is no interspecialty agreement regarding which selection criteria should be used. Better understanding the predictive reliability between factors at selection and future performance may help to optimize the process and lead to greater standardization of the surgical selection process. PubMed and Ovid MEDLINE databases were searched. Over 560 potentially relevant publications were identified using the search strategy and screened using the Cochrane Collaboration Data Extraction and Assessment Template. 57 studies met the inclusion criteria. Several selection criteria used in the traditional selection demonstrated inconsistent correlation with subsequent performance during and at the end of surgical training. The following selection criteria, however, demonstrated good predictive relationships with subsequent resident performance: USMLE examination scores, Letters of Recommendation (LOR) including the Medical Student Performance Evaluation (MSPE), academic performance during clinical clerkships, the interview process, displaying excellence in extracurricular activities, and the use of unadjusted rank lists. This systematic review supports that the current selection process needs to be further evaluated and improved. Multicenter studies using standardized outcome measures of success are now required to improve the reliability of the selection process to select the best trainees. Published by Elsevier Inc.

  3. Current surgical treatment option, utilizing robot-assisted laparoscopic surgery in obese women with endometrial cancer: Farghalys technique

    International Nuclear Information System (INIS)

    Farghaly, S.A.

    2013-01-01

    Background: Endometrial cancer is the most prevalent cancer of the female genital tract in North America. Minimally invasive laparoscopic-assisted surgery and panniculectomy in obese women with endometrial cancer are associated with an improved lymph node count, and lower rate of incisional complications than laparotomy. Methods: Technique for robot-assisted laparoscopic surgery for obese women with endometrial cancer is detailed. Results: Robot-assisted laparoscopic surgical staging, pelvic and para-aortic lymphadenectomy and panniculectomy allow us to avoid the use of postoperative pelvic radiation which is recommended in women with histopathology high-risk findings: deep myometrial invasion or high grade histology. The procedure has the advantage of three-dimensional vision, ergonomic, intuitive control, and wristed instrument that approximate the motion of the human hand. Conclusion: Robot-assisted laparoscopic surgical staging, and panniculectomy in these patients are a safe, and effective alternative to laparoscopic, and laparotomy surgery. It is an ideal tool for performing the complex oncologic procedures encountered in endometrial cancer staging that requires delicate retroperitoneal, pelvic and para-aortic lymph node dissection, while maintaining the principles of oncologic surgery but in a minimally invasive fashion.

  4. Supply and demand mismatch for flexible (part-time) surgical training in Australasia.

    Science.gov (United States)

    McDonald, Rachel E; Jeeves, Amy E; Vasey, Carolyn E; Wright, Deborah M; O'Grady, Gregory

    2013-05-06

    To define current patterns of flexible (part-time) surgical training in Australasia, determine supply and demand for part-time positions, and identify work-related factors motivating interest in flexible training. All Royal Australasian College of Surgeons trainees (n = 1191) were surveyed in 2010. Questions assessed demographic characteristics and working patterns, interest in flexible training, work-related fatigue and work-life balance preferences. Interest in part-time training, and work-related factors motivating this interest. Of the 1191 trainees, 659 responded (response rate, 55.3%). Respondents were representative of all trainees in terms of specialty and sex. The median age of respondents was 32 2013s, and 187 (28.4%) were female. Most of the 659 respondents (627, 95.1%) were in full-time clinical training; only two (0.3%) were in part-time clinical training, and 30 (4.6%) were not in active clinical training. An interest in part-time training was reported by 208 respondents (31.6%; 54.3% of women v 25.9% of men; P work and limited their social or family life, and that they had insufficient time in life for things outside surgical training, including study or research (P flexible surgical training and the number of trainees currently in part-time training positions in Australia and New Zealand. Efforts are needed to facilitate part-time surgical training.

  5. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  6. Surgical Engineering in Cranio-Maxillofacial Surgery: A Literature Review

    Directory of Open Access Journals (Sweden)

    Raphael Olszewski

    2012-01-01

    Full Text Available A systematic review of the literature concerning surgical engineering in cranio-maxillofacial surgery was performed. APubMed search yielded 1721 papers published between 1999 and 2011. Based on the inclusion/exclusion criteria, 1428 articles were excluded after review of titles and abstracts. Atotal of 292 articles were finally selected covering the following topics: finite element analysis (n = 18, computer-assisted surgery (n = 111, rapid prototyping models (n = 41, preoperative training simulators (n = 4, surgical guides (n = 23, image-guided navigation (n = 58, augmented reality (n = 2, video tracking (n = 1, distraction osteogenesis (n = 19, robotics (n = 8, and minimal invasive surgery (n = 7. The results show that surgical engineering plays a pivotal role in the development and improvement of cranio-maxillofacial surgery. Some technologies, such as computer-assisted surgery, image-guided navigation, and three-dimensional rapid prototyping models, have reached maturity and allow for multiple clinical applications, while augmented reality, robotics, and endoscopy still need to be improved.

  7. Evaluation of Augmented Reality Feedback in Surgical Training Environment.

    Science.gov (United States)

    Zahiri, Mohsen; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun

    2018-02-01

    Providing computer-based laparoscopic surgical training has several advantages that enhance the training process. Self-evaluation and real-time performance feedback are 2 of these advantages, which avoid dependency of trainees on expert feedback. The goal of this study was to investigate the use of a visual time indicator as real-time feedback correlated with the laparoscopic surgical training. Twenty novices participated in this study working with (and without) different presentations of time indicators. They performed a standard peg transfer task, and their completion times and muscle activity were recorded and compared. Also of interest was whether the use of this type of feedback induced any side effect in terms of motivation or muscle fatigue. Of the 20 participants, 15 (75%) preferred using a time indicator in the training process rather than having no feedback. However, time to task completion showed no significant difference in performance with the time indicator; furthermore, no significant differences in muscle activity or muscle fatigue were detected with/without time feedback. The absence of significant difference between task performance with/without time feedback shows that using visual real-time feedback can be included in surgical training based on user preference. Trainees may benefit from this type of feedback in the form of increased motivation. The extent to which this can influence training frequency leading to performance improvement is a question for further study.

  8. The first cut is the deepest: basic surgical training in ophthalmology.

    Science.gov (United States)

    Gibson, A; Boulton, M G; Watson, M P; Moseley, M J; Murray, P I; Fielder, A R

    2005-12-01

    To examine the basic surgical training received by Senior House Officers (SHOs) in ophthalmology and the influence on training of sociodemographic and organisational factors. Cross-sectional survey of SHOs in recognised UK surgical training posts asking about laboratory training and facilities, surgical experience, demographic details, with the opportunity to add comments. A total of 314/466 (67%) questionnaires were returned. In all, 67% had attended a basic surgical course, 40% had access to wet labs and 39% had spent time in a wet lab in the previous 6 months. The mean number of part phakoemulsification (phako) procedures performed per week was 0.79; the mean number of full phakos performed per week was 0.74. The number of part phakos performed was negatively correlated, and the number of full phakos completed was positively correlated, with length of time as an SHO. Respondents who had larger operating lists performed more full phakos per week (Pwomen were less likely to have access to a wet lab (P=0.013), had completed fewer full phakos per week (P=0.003), and were less likely to have completed 50 full phakos (P=0003). SHOs' comments revealed concerns about their limited 'hands on' experience. There are significant shortcomings in the basic surgical training SHOs receive, particularly in relation to wet lab experience and opportunities to perform full intraocular procedures. SHOs themselves perceive their training as inadequate. Women are disadvantaged in both laboratory and patient-based training, but minority ethnic groups and those who qualified overseas are not.

  9. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    Science.gov (United States)

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  10. Development of a precision multimodal surgical navigation system for lung robotic segmentectomy.

    Science.gov (United States)

    Baste, Jean Marc; Soldea, Valentin; Lachkar, Samy; Rinieri, Philippe; Sarsam, Mathieu; Bottet, Benjamin; Peillon, Christophe

    2018-04-01

    Minimally invasive sublobar anatomical resection is becoming more and more popular to manage early lung lesions. Robotic-assisted thoracic surgery (RATS) is unique in comparison with other minimally invasive techniques. Indeed, RATS is able to better integrate multiple streams of information including advanced imaging techniques, in an immersive experience at the level of the robotic console. Our aim was to describe three-dimensional (3D) imaging throughout the surgical procedure from preoperative planning to intraoperative assistance and complementary investigations such as radial endobronchial ultrasound (R-EBUS) and virtual bronchoscopy for pleural dye marking. All cases were operated using the DaVinci System TM . Modelisation was provided by Visible Patient™ (Strasbourg, France). Image integration in the operative field was achieved using the Tile Pro multi display input of the DaVinci console. Our experience was based on 114 robotic segmentectomies performed between January 2012 and October 2017. The clinical value of 3D imaging integration was evaluated in 2014 in a pilot study. Progressively, we have reached the conclusion that the use of such an anatomic model improves the safety and reliability of procedures. The multimodal system including 3D imaging has been used in more than 40 patients so far and demonstrated a perfect operative anatomic accuracy. Currently, we are developing an original virtual reality experience by exploring 3D imaging models at the robotic console level. The act of operating is being transformed and the surgeon now oversees a complex system that improves decision making.

  11. Face, content, and construct validity of four, inanimate training exercises using the da Vinci ® Si surgical system configured with Single-Site ™ instrumentation.

    Science.gov (United States)

    Jarc, Anthony M; Curet, Myriam

    2015-08-01

    Validated training exercises are essential tools for surgeons as they develop technical skills to use robot-assisted minimally invasive surgical systems. The purpose of this study was to show face, content, and construct validity of four, inanimate training exercises using the da Vinci (®) Si surgical system configured with Single-Site (™) instrumentation. New (N = 21) and experienced (N = 6) surgeons participated in the study. New surgeons (11 Gynecology [GYN] and 10 General Surgery [GEN]) had not completed any da Vinci Single-Site cases but may have completed multiport cases using the da Vinci system. They participated in this study prior to attending a certification course focused on da Vinci Single-Site instrumentation. Experienced surgeons (5 GYN and 1 GEN) had completed at least 25 da Vinci Single-Site cases. The surgeons completed four inanimate training exercises and then rated them with a questionnaire. Raw metrics and overall normalized scores were computed using both video recordings and kinematic data collected from the surgical system. The experienced surgeons significantly outperformed new surgeons for many raw metrics and the overall normalized scores derived from video review (p da Vinci Single-Site surgery and actually testing the technical skills used during da Vinci Single-Site surgery. In summary, the four training exercises showed face, content, and construct validity. Improved overall scores could be developed using additional metrics not included in this study. The results suggest that the training exercises could be used in an overall training curriculum aimed at developing proficiency in technical skills for surgeons new to da Vinci Single-Site instrumentation.

  12. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  13. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke rehabilitation. It detects and recognizes the user's motion intent based on electromyography (EMG) signals, and then helps the user to accomplish hand motions in real time. The hand exoskeleton can perform six kinds of motions, including the whole hand closing/opening, tripod pinch/opening, and the "gun" sign/opening. A 52-year-old woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in robot-assisted hand training. Though she was unable to move her fingers on her right hand before the training, EMG activities could be detected on her right forearm. In each visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of Fugl-Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 1 to Stage 2 in Chedoke-McMaster assessment. The results demonstrate the feasibility of robot-assisted training driven by myoelectric pattern recognition after stroke.

  14. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  15. Robotics and the spine: a review of current and ongoing applications.

    Science.gov (United States)

    Shweikeh, Faris; Amadio, Jordan P; Arnell, Monica; Barnard, Zachary R; Kim, Terrence T; Johnson, J Patrick; Drazin, Doniel

    2014-03-01

    Robotics in the operating room has shown great use and versatility in multiple surgical fields. Robot-assisted spine surgery has gained significant favor over its relatively short existence, due to its intuitive promise of higher surgical accuracy and better outcomes with fewer complications. Here, the authors analyze the existing literature on this growing technology in the era of minimally invasive spine surgery. In an attempt to provide the most recent, up-to-date review of the current literature on robotic spine surgery, a search of the existing literature was conducted to obtain all relevant studies on robotics as it relates to its application in spine surgery and other interventions. In all, 45 articles were included in the analysis. The authors discuss the current status of this technology and its potential in multiple arenas of spinal interventions, mainly spine surgery and spine biomechanics testing. There are numerous potential advantages and limitations to robotic spine surgery, as suggested in published case reports and in retrospective and prospective studies. Randomized controlled trials are few in number and show conflicting results regarding accuracy. The present limitations may be surmountable with future technological improvements, greater surgeon experience, reduced cost, improved operating room dynamics, and more training of surgical team members. Given the promise of robotics for improvements in spine surgery and spine biomechanics testing, more studies are needed to further explore the applicability of this technology in the spinal operating room. Due to the significant cost of the robotic equipment, studies are needed to substantiate that the increased equipment costs will result in significant benefits that will justify the expense.

  16. Perceptions of gender-based discrimination during surgical training and practice

    OpenAIRE

    Bruce, Adrienne N.; Battista, Alexis; Plankey, Michael W.; Johnson, Lynt B.; Marshall, M. Blair

    2015-01-01

    Background: Women represent 15% of practicing general surgeons. Gender-based discrimination has been implicated as discouraging women from surgery. We sought to determine women’s perceptions of gender-based discrimination in the surgical training and working environment.Methods: Following IRB approval, we fielded a pilot survey measuring perceptions and impact of gender-based discrimination in medical school, residency training, and surgical practice. It was sent electronically to 1,065 indiv...

  17. [Clinical application of Da Vinci surgical system in China].

    Science.gov (United States)

    Jin, Zhenyu

    2014-01-01

    Da Vinci robotic surgical system leads the development of minimally invasive surgical techniques. By using Da Vinci surgical robot for minimally invasive surgery, it brings a lot of advantages to the surgeons. Since 2008, Da Vinci surgeries have been performed in 14 hospitals in domestic cities such as Beijing and Shanghai. Until the end of 2012, 3 551 cases of Da Vinci robotic surgery have been performed, covering various procedures of various surgical departments including the department of general surgery, urology, cardiovascular surgery, thoracic surgery, gynecology, and etc. Robotic surgical technique has made remarkable achievements.

  18. The effects of fatigue on robotic surgical skill training in Urology residents.

    Science.gov (United States)

    Mark, James R; Kelly, Douglas C; Trabulsi, Edouard J; Shenot, Patrick J; Lallas, Costas D

    2014-09-01

    This study reports on the effect of fatigue on Urology residents using the daVinci surgical skills simulator (dVSS). Seven Urology residents performed a series of selected exercises on the dVSS while pre-call and post-call. Prior to dVSS performance a survey of subjective fatigue was taken and residents were tested with the Epworth Sleepiness Scale (ESS). Using the metrics available in the dVSS software, the performance of each resident was evaluated. The Urology residents slept an average of 4.07 h (range 2.5-6 h) while on call compared to an average of 5.43 h while not on call (range 3-7 h, p = 0.08). Post-call residents were significantly more likely to be identified as fatigued by the Epworth Sleepiness Score than pre-call residents (p = 0.01). Significant differences were observed in fatigued residents performing the exercises, Tubes and Match Board 2 (p = 0.05, 0.02). Additionally, there were significant differences in the total number of critical errors during the training session (9.29 vs. 3.14, p = 0.04). Fatigue in post-call Urology residents leads to poorer performance on the dVSS simulator. The dVSS may become a useful instrument in the education of fatigued residents and a tool to identify fatigue in trainees.

  19. Single-site robotic cholecystectomy and robotics training: should we start in the junior years?

    Science.gov (United States)

    Ayabe, Reed I; Parrish, Aaron B; Dauphine, Christine E; Hari, Danielle M; Ozao-Choy, Junko J

    2018-04-01

    It has become increasingly important to expose surgical residents to robotic surgery as its applications continue to expand. Single-site robotic cholecystectomy (SSRC) is an excellent introductory case to robotics. Resident involvement in SSRC is known to be feasible. Here, we sought to determine whether it is safe to introduce SSRC to junior residents. A total of 98 SSRC cases were performed by general surgery residents between August 2015 and August 2016. Cases were divided into groups based on resident level: second- and third-years (juniors) versus fourth- and fifth-years (seniors). Patient age, gender, race, body mass index, and comorbidities were recorded. The number of prior laparoscopic cholecystectomies completed by participating residents was noted. Outcomes including operative time, console time, rate of conversion to open cholecystectomy, and complication rate were compared between groups. Juniors performed 54 SSRC cases, whereas seniors performed 44. There were no significant differences in patient age, gender, race, body mass index, or comorbidities between the two groups. Juniors had less experience with laparoscopic cholecystectomy. There was no significant difference in mean operative time (92.7 min versus 98.0 min, P = 0.254), console time (48.7 min versus 50.8 min, P = 0.639), or complication rate (3.7% versus 2.3%, P = 0.68) between juniors and seniors. SSRC is an excellent way to introduce general surgery residents to robotics. This study shows that with attending supervision, SSRC is feasible and safe for both junior and senior residents with very low complication rates and no adverse effect on operative time. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Graphical user interface for a robotic workstation in a surgical environment.

    Science.gov (United States)

    Bielski, A; Lohmann, C P; Maier, M; Zapp, D; Nasseri, M A

    2016-08-01

    Surgery using a robotic system has proven to have significant potential but is still a highly challenging task for the surgeon. An eye surgery assistant has been developed to eliminate the problem of tremor caused by human motions endangering the outcome of ophthalmic surgery. In order to exploit the full potential of the robot and improve the workflow of the surgeon, providing the ability to change control parameters live in the system as well as the ability to connect additional ancillary systems is necessary. Additionally the surgeon should always be able to get an overview over the status of all systems with a quick glance. Therefore a workstation has been built. The contribution of this paper is the design and the implementation of an intuitive graphical user interface for this workstation. The interface has been designed with feedback from surgeons and technical staff in order to ensure its usability in a surgical environment. Furthermore, the system was designed with the intent of supporting additional systems with minimal additional effort.

  1. Robotic Hand-Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report.

    Science.gov (United States)

    Lu, Zhiyuan; Tong, Kai-Yu; Shin, Henry; Stampas, Argyrios; Zhou, Ping

    2017-10-01

    A 51-year-old man with an incomplete C6 spinal cord injury sustained 26 yrs ago attended twenty 2-hr visits over 10 wks for robot-assisted hand training driven by myoelectric pattern recognition. In each visit, his right hand was assisted to perform motions by an exoskeleton robot, while the robot was triggered by his own motion intentions. The hand robot was designed for this study, which can perform six kinds of motions, including hand closing/opening; thumb, index finger, and middle finger closing/opening; and middle, ring, and little fingers closing/opening. After the training, his grip force increased from 13.5 to 19.6 kg, his pinch force remained the same (5.0 kg), his score of Box and Block test increased from 32 to 39, and his score from the Graded Redefined Assessment of Strength, Sensibility, and Prehension test Part 4.B increased from 22 to 24. He accomplished the tasks in the Graded Redefined Assessment of Strength, Sensibility, and Prehension test Part 4.B 28.8% faster on average. The results demonstrate the feasibility and effectiveness of robot-assisted training driven by myoelectric pattern recognition after spinal cord injury.

  2. Surgical telepresence: the usability of a robotic communication platform

    Directory of Open Access Journals (Sweden)

    Marttos Antonio

    2012-08-01

    Full Text Available Abstract Introduction The benefits of telepresence in trauma and acute surgical care exist, yet its use in a live, operating room (OR setting with real surgical cases remains limited. Methods We tested the use of a robotic telepresence system in the OR of a busy, level 1 trauma center. After each case, both the local and remote physicians completed questionnaires regarding the use of the system using a five point Likert scale. For trauma cases, physicians were asked to grade injury severity according to the American Association for the Surgery of Trauma (AAST Scaling System. Results We collected prospective, observational data on 50 emergent and elective cases. 64% of cases were emergency surgery on trauma patients, almost evenly distributed between penetrating (49% and blunt injuries (51%. 40% of non-trauma cases were hernia-related. A varied distribution of injuries was observed to the abdomen, chest, extremities, small bowel, kidneys, spleen, and colon. Physicians gave the system high ratings for its audio and visual capabilities, but identified internet connectivity and crowding in the operating room as potential challenges. The loccal clinician classified injuries according to the AAST injury grading system in 63% (n=22 of trauma cases, compared to 54% (n=19 of cases by the remote physicians. The remote physician cited obstruction of view as the main reason for the discrepancy. 94% of remote physicians and 74% of local physicians felt comfortable communicating via the telepresence system. For 90% of cases, both the remote and local physicians strongly agreed that a telepresence system for consultations in the OR is more effective than a telephone conversation. Conclusions A telepresence system was tested on a variety of surgical cases and demonstrated that it can be an appropriate solution for use in the operating room. Future research should determine its impact on processes of care and surgical outcomes.

  3. Leaving surgical training: some of the reasons are in surgery.

    Science.gov (United States)

    Forel, Deanne; Vandepeer, Meegan; Duncan, Joanna; Tivey, David R; Tobin, Stephen A

    2018-05-01

    In 2014, the Royal Australasian College of Surgeons identified, through internal analysis, a considerable attrition rate within its Surgical Education and Training programme. Within the attrition cohort, choosing to leave accounted for the majority. Women were significantly over-represented. It was considered important to study these 'leavers' if possible. An external group with medical education expertise were engaged to do this, a report that is now published and titled 'A study exploring the reasons for and experiences of leaving surgical training'. During this time, the Royal Australasian College of Surgeons came under serious external review, leading to the development of the Action Plan on Discrimination, Bullying and Sexual Harassment in the Practice of Surgery, known as the Building Respect, Improving Patient Safety (BRIPS) action plan. The 'Leaving Training Report', which involved nearly one-half of all voluntary 'leavers', identified three major themes that were pertinent to leaving surgical training. Of these, one was about surgery itself: the complexity, the technical, decision-making and lifestyle demands, the emotional aspects of dealing with seriously sick patients and the personal toll of all of this. This narrative literature review investigates these aspects of surgical education from the trainees' perspective. © 2018 Royal Australasian College of Surgeons.

  4. Can surgical simulation be used to train detection and classification of neural networks?

    Science.gov (United States)

    Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail

    2017-10-01

    Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.

  5. The future of innovation and training in surgical oncology.

    Science.gov (United States)

    Kim, Michael J; Monson, John R T

    2011-09-01

    This article addresses the current paradigms of surgical oncology training and the directions in which the training process may evolve over the course of the next decade. In doing so, the potential influences upon this evolution are discussed along with potential barriers associated with each of these factors. In particular, the topics include issues of specialty training with regard to new technologies and procedures, involvement of the surgeon as part of the multi-disciplinary team of oncologists, and the very real issue of burnout and career satisfaction associated with the profession of surgical oncology. Changes to the training of tomorrow's cancer surgeons will need to involve each one of these factors in a comprehensive and efficient manner, in order to ensure the continued strength and growth of the field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Roldán, Giovana Femat; Sánchez-Villavicencio, Israel; Palafox, Lorena; Leder, Ronald; Sucar, Luis Enrique; Hernández-Franco, Jorge

    2016-01-01

    Evidence of superiority of robot training for the hand over classical therapies in stroke patients remains controversial. During the subacute stage, hand training is likely to be the most useful. To establish whether robot active assisted therapies provides any additional motor recovery for the hand when administered during the subacute stage (robot based therapies for hand recovery will show significant differences at subacute stages. A randomized clinical trial. A between subjects randomized controlled trial was carried out on subacute stroke patients (n = 17) comparing robot active assisted therapy (RT) with a classical occupational therapy (OT). Both groups received 40 sessions ensuring at least 300 repetitions per session. Treatment duration was (mean ± std) 2.18 ± 1.25 months for the control group and 2.44 ± 0.88 months for the study group. The primary outcome was motor dexterity changes assessed with the Fugl-Meyer (FMA) and the Motricity Index (MI). Both groups (OT: n = 8; RT: n = 9) exhibited significant improvements over time (Non-parametric Cliff's delta-within effect sizes: dwOT-FMA = 0.5, dwOT-MI = 0.5, dwRT-FMA = 1, dwRT-MI = 1). Regarding differences between the therapies; the Fugl-Meyer score indicated a significant advantage for the hand training with the robot (FMA hand: WRS: W = 8, p hand prehension for RT with respect to OT but failed to reach significance (MI prehension: W = 17.5, p = 0.080). No harm occurred. Robotic therapies may be useful during the subacute stages of stroke - both endpoints (FM hand and MI prehension) showed the expected trend with bigger effect size for the robotic intervention. Additional benefit of the robotic therapy over the control therapy was only significant when the difference was measured with FM, demanding further investigation with larger samples. Implications of this study are important for decision making during therapy administration and resource allocation. Copyright © 2016 Hanley

  7. "Run-through" training at specialist training year 1 and uncoupled core surgical training for oral and maxillofacial surgery in the United Kingdom: a snapshot survey.

    Science.gov (United States)

    Garg, M; Collyer, J; Dhariwal, D

    2018-05-01

    Training in oral and maxillofacial surgery (OMFS) in the UK has undergone considerable changes during the last 10years, and "core" surgical training has replaced "basic" surgical training. In 2014 a pilot "run-through" training programme from specialist training year one (ST1)-ST7 was introduced to facilitate early entry into the speciality. Run-through training guarantees that a trainee, after a single competitive selection process and satisfactory progress, will be given training that covers the entire curriculum of the speciality, whereas uncoupled training requires a second stage of competitive recruitment after the first one (for OMFS only) or two years of "core" training to progress to higher specialty training. The first two years of run-through training (ST1-ST2) are the same as for core surgical training. Dual-qualified maxillofacial aspirants and those in their second degree course are curious to know whether they should go for the uncoupled core surgical training or the run-through programme in OMFS. The General Medical Council (GMC) has now agreed that run-through training can be rolled out nationally in OMFS. To assess the two pathways we used an online questionnaire to gain feedback about the experience from all OMFS ST3 and run-through trainees (ST3/ST4) in 2016-2017. We identified and contacted 21 trainees, and 17 responded, including seven run-through trainees. Eleven, including five of the run-through trainees, recommended the run-through training programme in OMFS. Six of the seven run-through trainees had studied dentistry first. The overall mean quality of training was rated as 5.5 on a scale 0-10 by the 17 respondents. This survey gives valuable feedback from the current higher surgical trainees in OMFS, which will be useful to the GMC, Health Education England, OMFS Specialist Advisory Committee, and those seeking to enter higher surgical training in OMFS. Copyright © 2018 The British Association of Oral and Maxillofacial Surgeons. Published

  8. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.

    Science.gov (United States)

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2014-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject's kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

  9. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke

    Directory of Open Access Journals (Sweden)

    Dalia eDe Santis

    2015-01-01

    Full Text Available Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved 7 chronic hemiparetic subjects over three weeks. The protocol included evaluation sessions, that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their

  10. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology.

    Science.gov (United States)

    Dulan, Genevieve; Rege, Robert V; Hogg, Deborah C; Gilberg-Fisher, Kristine K; Tesfay, Seifu T; Scott, Daniel J

    2012-04-01

    The authors previously developed a comprehensive, proficiency-based robotic training curriculum that aimed to address 23 unique skills identified via task deconstruction of robotic operations. The purpose of this study was to determine the content and face validity of this curriculum. Expert robotic surgeons (n = 12) rated each deconstructed skill regarding relevance to robotic operations, were oriented to the curricular components, performed 3 to 5 repetitions on the 9 exercises, and rated each exercise. In terms of content validity, experts rated all 23 deconstructed skills as highly relevant (4.5 on a 5-point scale). Ratings for the 9 inanimate exercises indicated moderate to thorough measurement of designated skills. For face validity, experts indicated that each exercise effectively measured relevant skills (100% agreement) and was highly effective for training and assessment (4.5 on a 5-point scale). These data indicate that the 23 deconstructed skills accurately represent the appropriate content for robotic skills training and strongly support content and face validity for this curriculum. Copyright © 2012. Published by Elsevier Inc.

  11. An Evaluation of the Role of Simulation Training for Teaching Surgical Skills in Sub-Saharan Africa.

    Science.gov (United States)

    Campain, Nicholas J; Kailavasan, Mithun; Chalwe, Mumba; Gobeze, Aberra A; Teferi, Getaneh; Lane, Robert; Biyani, Chandra Shekhar

    2018-04-01

    An estimated 5 billion people worldwide lack access to any surgical care, whilst surgical conditions account for 11-30% of the global burden of disease. Maximizing the effectiveness of surgical training is imperative to improve access to safe and essential surgical care on a global scale. Innovative methods of surgical training have been used in sub-Saharan Africa to attempt to improve the efficiency of training healthcare workers in surgery. Simulation training may have an important role in up-scaling and improving the efficiency of surgical training and has been widely used in SSA. Though not intended to be a systematic review, the role of simulation for teaching surgical skills in Sub-Saharan Africa was reviewed to assess the evidence for use and outcomes. A systematic search strategy was used to retrieve relevant studies from electronic databases PubMed, Ovid, Medline for pertinent articles published until August 2016. Studies that reported the use of simulation-based training for surgery in Africa were included. In all, 19 articles were included. A variety of innovative surgical training methods using simulation techniques were identified. Few studies reported any outcome data. Compared to the volume of surgical training initiatives that are known to take place in SSA, there is very limited good quality published evidence for the use of simulation training in this context. Simulation training presents an excellent modality to enhance and improve both volume and access to high quality surgical skills training, alongside other learning domains. There is a desperate need to meticulously evaluate the appropriateness and effectiveness of simulation training in SSA, where simulation training could have a large potential beneficial impact. Training programs should attempt to assess and report learner outcomes.

  12. Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-03-01

    Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.

  13. Quiet eye training improves surgical knot tying more than traditional technical training: a randomized controlled study.

    Science.gov (United States)

    Causer, Joe; Harvey, Adrian; Snelgrove, Ryan; Arsenault, Gina; Vickers, Joan N

    2014-08-01

    We examined the effectiveness of technical training (TT) and quiet eye training (QE) on the performance of one-handed square knot tying in surgical residents. Twenty surgical residents were randomly assigned to the 2 groups and completed pretest, training, retention, and transfer tests. Participants wore a mobile eye tracker that simultaneously recorded their gaze and hand movements. Dependent variables were knot tying performance (%), QE duration (%), number of fixations, total movement time (s), and hand movement phase time (s). The QE training group had significantly higher performance scores, a longer QE duration, fewer fixations, faster total knot tying times, and faster movement phase times compared with the TT group. The QE group maintained performance in the transfer test, whereas the TT group significantly decreased performance from retention to transfer. QE training significantly improved learning, retention, and transfer of surgical knot tying compared with a traditional technical approach. Both performance effectiveness (performance outcome) and movement efficiency (hand movement times) were improved using QE modeling, instruction, and feedback. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The European Working Time Directive and the effects on training of surgical specialists (doctors in training): a position paper of the surgical disciplines of the countries of the EU.

    Science.gov (United States)

    Benes, V

    2006-11-01

    Legislation launched with the EWTD was born as a "Protection of the clinical personnel against overwork for the benefit of Patients" (consumer protection and safety). It appeared that this legislation is in direct and severe conflict with former EU legislation to train competent surgical specialists. First experiences with the EWTD show far reaching and serious consequences on the training of surgical specialists as well as on medical care. There will be a reduction of about 30-35% of clinical and operative experience acquired during the usual 6 yrs of training, with many other negative aspects (see p. 7). All measures proposed so far to overcome the ensuing problems are unworkable. The training of competent surgical specialists as required by the Directive 93/16 EEC is no longer possible and serious problems with safe patient care will occur in the short term, if no political actions are taken. The surgical specialties, represented in the UEMS, provide a proposal for a working hour model consisting of 48 hrs working time (incl. service duties) plus additional 12 hrs reserved and protected for teaching and training. This model would adhere to the EWTD on the one hand, yet maintain the desired standard of training. This proposed exemption from the EWTD would be limited to the time of specialist training. We ask the responsible politicians to find a solution rapidly to prevent serious negative consequences. This motion is supported by the surgical specialties (neurosurgery, general surgery, orthopaedic surgery, paediatric surgery, cardio-thoracic surgery, vascular surgery, oto-rhino-laryngology, list not complete) of the member states of the EU, representing more than 80,000 surgical specialists.

  15. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  16. Development and validation of a tool for non-technical skills evaluation in robotic surgery-the ICARS system.

    Science.gov (United States)

    Raison, Nicholas; Wood, Thomas; Brunckhorst, Oliver; Abe, Takashige; Ross, Talisa; Challacombe, Ben; Khan, Mohammed Shamim; Novara, Giacomo; Buffi, Nicolo; Van Der Poel, Henk; McIlhenny, Craig; Dasgupta, Prokar; Ahmed, Kamran

    2017-12-01

    Non-technical skills (NTS) are being increasingly recognised as vital for safe surgical practice. Numerous NTS rating systems have been developed to support effective training and assessment. Yet despite the additional challenges posed by robotic surgery, no NTS rating systems have been developed for this unique surgical environment. This study reports the development and validation of the first NTS behavioural rating system for robotic surgery. A comprehensive index of all relevant NTS behaviours in robotic surgery was developed through observation of robotic theatre and interviews with robotic surgeons. Using a Delphi methodology, a panel of 16 expert surgeons was consulted to identify behaviours important to NTS assessment. These behaviours were organised into an appropriate assessment template. Experts were consulted on the feasibility, applicability and educational impact of ICARS. An observational trial was used to validate ICARS. 73 novice, intermediate and expert robotic surgeons completed a urethrovesical anastomosis within a simulated operating room. NTS were tested using four scripted scenarios of increasing difficulty. Performances were video recorded. Robotic and NTS experts assessed the videos post hoc using ICARS and the standard behavioural rating system, NOn-Technical Skills for Surgeons (NOTSS). 28 key non-technical behaviours were identified by the expert panel. The finalised behavioural rating system was organised into four principle domains and seven categories. Expert opinion strongly supported its implementation. ICARS was found to be equivalent to NOTSS on Bland-Altman analysis and accurately differentiated between novice, intermediate and expert participants, p = 0.01. Moderate agreement was found between raters, Krippendorff's alpha = 0.4. The internal structure of ICARS was shown to be consistent and reliable (median Cronbach alpha = 0.92, range 0.85-0.94). ICARS is the first NTS behavioural rating system developed for robotic

  17. European Surgical Education and Training in Gynecologic Oncology: The impact of an Accredited Fellowship.

    Science.gov (United States)

    Chiva, Luis M; Mínguez, Jose; Querleu, Denis; Cibula, David; du Bois, Andreas

    2017-05-01

    The aim of this study was to understand the current situation of surgical education and training in Europe among members of the European Society of Gynecological Oncology (ESGO) and its impact on the daily surgical practice of those that have completed an accredited fellowship in gynecologic oncology. A questionnaire addressing topics of interest in surgical training was designed and sent to ESGO members with surgical experience in gynecologic oncology. The survey was completely confidentially and could be completed in less than 5 minutes. Responses from 349 members from 42 European countries were obtained, which was 38% of the potential target population. The respondents were divided into 2 groups depending on whether they had undergone an official accreditation process. Two thirds of respondents said they had received a good surgical education. However, accredited gynecologists felt that global surgical training was significantly better. Surgical self-confidence among accredited specialists was significantly higher regarding most surgical oncological procedures than it was among their peers without such accreditation. However, the rate of self-assurance in ultraradical operations, and bowel and urinary reconstruction was quite low in both groups. There was a general request for standardizing surgical education across the ESGO area. Respondents demanded further training in laparoscopy, ultraradical procedures, bowel and urinary reconstruction, and postoperative management of complications. Furthermore, they requested the creation of fellowship programs in places where they are not now accredited and the promotion of rotations and exchange in centers of excellence. Finally, respondents want supporting training in disadvantaged countries of the ESGO area. Specialists in gynecologic oncology that have obtained a formal accreditation received a significantly better surgical education than those that have not. The ESGO responders recognize that their society should

  18. Robotics & artificial intelligence : The future of surgeons & surgery

    Directory of Open Access Journals (Sweden)

    K I Mathai

    2016-01-01

    Robots have evolved as dextrous, fatigue and tremor free surgical tools. The data crunching capability of computers is improving in speed and in capability for machine learning. Human surgical maturity on the other hand is attained and matures through phases of information assimilation, knowledge consolidation and attainment of surgical wisdom. Human surgeons at the helm will, in this decade harness robotic capabilities and information template paradigms to fine tune many procedures and to augment surgical reach. Quantum leaps and paradigm shifts towards robotic surgical autonomy may be neither desirable nor practical.

  19. Robot-assisted radical prostatectomy: Multiparametric MR imaging-directed intraoperative frozen-section analysis to reduce the rate of positive surgical margins.

    Science.gov (United States)

    Petralia, Giuseppe; Musi, Gennaro; Padhani, Anwar R; Summers, Paul; Renne, Giuseppe; Alessi, Sarah; Raimondi, Sara; Matei, Deliu V; Renne, Salvatore L; Jereczek-Fossa, Barbara A; De Cobelli, Ottavio; Bellomi, Massimo

    2015-02-01

    To investigate whether use of multiparametric magnetic resonance (MR) imaging-directed intraoperative frozen-section (IFS) analysis during nerve-sparing robot-assisted radical prostatectomy reduces the rate of positive surgical margins. This retrospective analysis of prospectively acquired data was approved by an institutional ethics committee, and the requirement for informed consent was waived. Data were reviewed for 134 patients who underwent preoperative multiparametric MR imaging (T2 weighted, diffusion weighted, and dynamic contrast-material enhanced) and nerve-sparing robot-assisted radical prostatectomy, during which IFS analysis was used, and secondary resections were performed when IFS results were positive for cancer. Control patients (n = 134) matched for age, prostate-specific antigen level, and stage were selected from a pool of 322 patients who underwent nerve-sparing robot-assisted radical prostatectomy without multiparametric MR imaging and IFS analysis. Rates of positive surgical margins were compared by means of the McNemar test, and a multivariate conditional logistic regression model was used to estimate the odds ratio of positive surgical margins for patients who underwent MR imaging and IFS analysis compared with control subjects. Eighteen patients who underwent MR imaging and IFS analysis underwent secondary resections, and 13 of these patients were found to have negative surgical margins at final pathologic examination. Positive surgical margins were found less frequently in the patients who underwent MR imaging and IFS analysis than in control patients (7.5% vs 18.7%, P = .01). When the differences in risk factors are taken into account, patients who underwent MR imaging and IFS had one-seventh the risk of having positive surgical margins relative to control patients (adjusted odds ratio: 0.15; 95% confidence interval: 0.04, 0.61). The significantly lower rate of positive surgical margins compared with that in control patients provides

  20. Assessment methods in surgical training in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Evgenios Evgeniou

    2013-02-01

    Full Text Available A career in surgery in the United Kingdom demands a commitment to a long journey of assessment. The assessment methods used must ensure that the appropriate candidates are selected into a programme of study or a job and must guarantee public safety by regulating the progression of surgical trainees and the certification of trained surgeons. This review attempts to analyse the psychometric properties of various assessment methods used in the selection of candidates to medical school, job selection, progression in training, and certification. Validity is an indicator of how well an assessment measures what it is designed to measure. Reliability informs us whether a test is consistent in its outcome by measuring the reproducibility and discriminating ability of the test. In the long journey of assessment in surgical training, the same assessment formats are frequently being used for selection into a programme of study, job selection, progression, and certification. Although similar assessment methods are being used for different purposes in surgical training, the psychometric properties of these assessment methods have not been examined separately for each purpose. Because of the significance of these assessments for trainees and patients, their reliability and validity should be examined thoroughly in every context where the assessment method is being used.

  1. Robotics Offer Newfound Surgical Capabilities

    Science.gov (United States)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  2. Best practices across surgical specialties relating to simulation-based training.

    Science.gov (United States)

    Gardner, Aimee K; Scott, Daniel J; Pedowitz, Robert A; Sweet, Robert M; Feins, Richard H; Deutsch, Ellen S; Sachdeva, Ajit K

    2015-11-01

    Simulation-based training is playing an increasingly important role in surgery. However, there is insufficient discussion among the surgical specialties regarding how simulation may best be leveraged for training. There is much to be learned from one another as we all strive to meet new requirements within the context of Undergraduate Medical Education, Graduate Medical Education, and Continuing Medical Education. To address this need, a panel was convened at the 6th Annual Meeting of the Consortium of the American College of Surgeons-Accredited Education Institutes consisting of key leaders in the field of simulation from 4 surgical subspecialties, namely, general surgery, orthopedic surgery, cardiothoracic surgery, urology, and otolaryngology. An overview of how the 5 surgical specialties are using simulation-based training to meet a wide array of educational needs for all levels of learners is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Advances in Robotic-Assisted Radical Prostatectomy over Time

    Directory of Open Access Journals (Sweden)

    Emma F. P. Jacobs

    2013-01-01

    Full Text Available Since the introduction of robot-assisted radical prostatectomy (RALP, robotics has become increasingly more commonplace in the armamentarium of the urologic surgeon. Robotic utilization has exploded across surgical disciplines well beyond the fields of urology and prostate surgery. The literature detailing technical steps, comparison of large surgical series, and even robotically focused randomized control trials are available for review. RALP, the first robot-assisted surgical procedure to achieve widespread use, has recently become the primary approach for the surgical management of localized prostate cancer. As a result, surgeons are constantly trying to refine and improve upon current technical aspects of the operation. Recent areas of published modifications include bladder neck anastomosis and reconstruction, bladder drainage, nerve sparing approaches and techniques, and perioperative and postoperative management including penile rehabilitation. In this review, we summarize recent advances in perioperative management and surgical technique for RALP.

  5. [da Vinci surgical system].

    Science.gov (United States)

    Watanabe, Gou; Ishikawa, Norihiro

    2014-07-01

    The da Vinci surgical system was developed by Intuitive Surgical Inc. in the United States as an endoscopic surgical device to assist remote control surgeries. In 1998, the Da Vinci system was first used for cardiothoracic procedures. Currently a combination of robot-assisted internal thoracic artery harvest together with coronary artery bypass grafting (CABG) through a mini-incision (ThoraCAB) or totally endoscopic procedures including anastomoses under robotic assistance (TECAB) are being conducted for the treatment of coronary artery diseases. With the recent advances in catheter interventions, hybrid procedures combining catheter intervention with ThoraCAB or TECAB are anticipated in the future.On the other hand, with the decrease in number of coronary artery bypass surgeries, the share of valvular surgeries is expected to increase in the future. Among them, mitral valvuloplasty for mitral regurgitation is anticipated to be conducted mainly by low-invasive procedures, represented by minimally invasive cardiac surgery( MICS) and robot-assisted surgery. Apart from the intrinsic good surgical view, robotic-assisted systems offer additional advantages of the availability of an amplified view and the easy to observe the mitral valve in the physiological position. Thus, robotic surgical surgeries that make complicated procedures easier are expected to accomplish further developments in the future. Furthermore, while the number of surgeries for atrial septal defects has decreased dramatically following the widespread use of Amplatzer septal occluder, robotic surgery may become a good indication for cases in which the Amplatzer device is not indicated. In Japan, clinical trial of the da Vinci robotic system for heart surgeries has been completed. Statutory approval of the da Vinci system for mitral regurgitation and atrial septal defects is anticipated in the next few years.

  6. Image-guided neurosurgery. Global concept of a surgical tele-assistance using obstacle detection robotics

    International Nuclear Information System (INIS)

    Desgeorges, M.; Bellegou, N.; Faillot, Th.; Cordoliani, Y.S.; Dutertre, G.; Blondet, E.; Soultrait, F. de; Boissy, J.M.

    2000-01-01

    Surgical tele-assistance significantly increases accuracy of surgical gestures, especially in the case of brain tumor neurosurgery. The robotic device is tele-operated through a microscope and the surgeon's gestures are guided by real-time overlaying of the X-ray imagery in the microscope. During the device's progression inside the brain, the focus is ensured by the microscope auto-focus feature. The surgeon can thus constantly check his position on the field workstation. Obstacles to avoid or dangerous areas can be previewed in the operation field. This system is routinely used for 5 years in the neurosurgery division of the Val de Grace hospital. More than 400 brain surgery operations have been done using it. An adaptation is used for rachis surgery. Other military hospitals begin to be equipped with similar systems. It will be possible to link them for data transfer. When it will be operational, such a network it will show what could be, in the future, a medical/surgical remote-assistance system designed to take care of wounded/critical conditions people, including assistance to surgical gestures. (authors)

  7. Perceptions, training experiences, and preferences of surgical residents toward laparoscopic simulation training: a resident survey.

    Science.gov (United States)

    Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J

    2014-01-01

    Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The

  8. A New Robotic Platform for Endoscopic Skill Training

    Directory of Open Access Journals (Sweden)

    Mirella Mogiatti

    2014-02-01

    Full Text Available Background: Applications of Minimally Invasive Surgery (MIS techniques are quickly extending. Therefore, also surgical education is changing rapidly, although several factors, including budget constraints and medico-legal concerns, still limit opportunities for pediatric trainees. New training devices, such as low fidelity bench trainers and virtual reality simulators, offer new ways for surgical training. Moreover, there is considerable interest in the development of haptic simulators for MIS even though the importance of force feedback remains poorly understood. Methods: In this report, we present the LapLab (Laparoscopic Laboratory device, an innovative laparoscopic training solution developed at the University of Bologna. Results: LapLab is a haptic simulator for MIS designed to improve and test the skill of surgeons. Moreover, it also allows to test in safe conditions (i.e. by means of realistic simulations new kinds of MIS instruments. Conclusions: Actually the LapLab simulation system has matured from a technological point of view, but still it represents just a starting point for a new generation of simulation systems able to give a real contribute to the education and training of the surgeons of tomorrow.

  9. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  10. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.

    Science.gov (United States)

    Bouchard, Amy E; Corriveau, Hélène; Milot, Marie-Hélène

    2015-01-01

    With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training-haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors' movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects' timing errors were decreased and increased, respectively, based on the subjects' timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing.

  11. Surgical Residency Training in Developing Countries: West African College of Surgeons as a Case Study.

    Science.gov (United States)

    Ajao, Oluwole Gbolagunte; Alao, Adekola

    2016-01-01

    In 1904, William Halsted introduced the present model of surgical residency program which has been adopted worldwide. In some developing countries, where surgical residency training programs are new, some colleges have introduced innovations to the Halsted's original concept of surgical residency training. These include 1) primary examination, 2) rural surgical posting, and 3) submission of dissertation for final certification. Our information was gathered from the publications on West African College of Surgeons' (WACS) curriculum of the medical schools, faculty papers of medical schools, and findings from committees of medical schools. Verbal information was also gathered via interviews from members of the WACS. Additionally, our personal experience as members and examiners of the college are included herein. We then noted the differences between surgical residency training programs in the developed countries and that of developing countries. The innovations introduced into the residency training programs in the developing countries are mainly due to the emphasis placed on paper qualifications and degrees instead of performance. We conclude that the innovations introduced into surgical residency training programs in developing countries are the result of the misconception of what surgical residency training programs entail. Published by Elsevier Inc.

  12. An advanced simulator for orthopedic surgical training.

    Science.gov (United States)

    Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel

    2018-02-01

    The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.

  13. Application of the "see one, do one, teach one" concept in surgical training.

    Science.gov (United States)

    Kotsis, Sandra V; Chung, Kevin C

    2013-05-01

    The traditional method of teaching in surgery is known as "see one, do one, teach one." However, many have argued that this method is no longer applicable, mainly because of concerns for patient safety. The purpose of this article is to show that the basis of the traditional teaching method is still valid in surgical training if it is combined with various adult learning principles. The authors reviewed literature regarding the history of the formation of the surgical residency program, adult learning principles, mentoring, and medical simulation. The authors provide examples for how these learning techniques can be incorporated into a surgical resident training program. The surgical residency program created by Dr. William Halsted remained virtually unchanged until recently with reductions in resident work hours and changes to a competency-based training system. Such changes have reduced the teaching time between attending physicians and residents. Learning principles such as experience, observation, thinking, and action and deliberate practice can be used to train residents. Mentoring is also an important aspect in teaching surgical technique. The authors review the different types of simulators-standardized patients, virtual reality applications, and high-fidelity mannequin simulators-and the advantages and disadvantages of using them. The traditional teaching method of "see one, do one, teach one" in surgical residency programs is simple but still applicable. It needs to evolve with current changes in the medical system to adequately train surgical residents and also provide patients with safe, evidence-based care.

  14. Gastrointestinal robot-assisted surgery. A current perspective.

    Science.gov (United States)

    Lunca, Sorinel; Bouras, George; Stanescu, Alexandru Calin

    2005-12-01

    Minimally invasive techniques have revolutionized operative surgery. Computer aided surgery and robotic surgical systems strive to improve further on currently available minimally invasive surgery and open new horizons. Only several centers are currently using surgical robots and publishing data. In gastrointestinal surgery, robotic surgery is applied to a wide range of procedures, but is still in its infancy. Cholecystectomy, Nissen fundoplication and Heller myotomy are among the most frequently performed operations. The ZEUS (Computer Motion, Goleta, CA) and the da Vinci (Intuitive Surgical, Mountain View, CA) surgical systems are today the most advanced robotic systems used in gastrointestinal surgery. Most studies reported that robotic gastrointestinal surgery is feasible and safe, provides improved dexterity, better visualization, reduced fatigue and high levels of precision when compared to conventional laparoscopic surgery. Its main drawbacks are the absence of force feedback and extremely high costs. At this moment there are no reports to clearly demonstrate the superiority of robotics over conventional laparoscopic surgery. Further research and more prospective randomized trials are needed to better define the optimal application of this new technology in gastrointestinal surgery.

  15. Robotic surgery in urological oncology: patient care or market share?

    Science.gov (United States)

    Kaye, Deborah R; Mullins, Jeffrey K; Carter, H Ballentine; Bivalacqua, Trinity J

    2015-01-01

    Surgical robotic use has grown exponentially in spite of limited or uncertain benefits and large costs. In certain situations, adoption of robotic technology provides value to patients and society. In other cases, however, the robot provides little or no increase in surgical quality, with increased expense, and, therefore, does not add value to health care. The surgical robot is expensive to purchase, maintain and operate, and can contribute to increased consumerism in relation to surgical procedures, and increased reliance on the technology, thus driving future increases in health-care expenditure. Given the current need for budget constraints, the cost-effectiveness of specific procedures must be evaluated. The surgical robot should be used when cost-effective, but traditional open and laparoscopic techniques also need to be continually fostered.

  16. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study.

    Science.gov (United States)

    Łyp, Marek; Stanisławska, Iwona; Witek, Bożena; Olszewska-Żaczek, Ewelina; Czarny-Działak, Małgorzata; Kaczor, Ryszard

    2018-02-13

    This study deals with the use of a robot-assisted body-weight-supported treadmill training in multiple sclerosis (MS) patients with gait dysfunction. Twenty MS patients (10 men and 10 women) of the mean of 46.3 ± 8.5 years were assigned to a six-week-long training period with the use of robot-assisted treadmill training of increasing intensity of the Lokomat type. The outcome measure consisted of the difference in motion-dependent torque of lower extremity joint muscles after training compared with baseline before training. We found that the training uniformly and significantly augmented the torque of both extensors and flexors of the hip and knee joints. The muscle power in the lower limbs of SM patients was improved, leading to corrective changes of disordered walking movements, which enabled the patients to walk with less effort and less assistance of care givers. The torque augmentation could have its role in affecting the function of the lower extremity muscle groups during walking. The results of this pilot study suggest that the robot-assisted body-weight-supported treadmill training may be a potential adjunct measure in the rehabilitation paradigm of 'gait reeducation' in peripheral neuropathies.

  17. Arthroscopic Shoulder Surgical Simulation Training Curriculum: Transfer Reliability and Maintenance of Skill Over Time.

    Science.gov (United States)

    Dunn, John C; Belmont, Philip J; Lanzi, Joseph; Martin, Kevin; Bader, Julia; Owens, Brett; Waterman, Brian R

    2015-01-01

    Surgical education is evolving as work hour constraints limit the exposure of residents to the operating room. Potential consequences may include erosion of resident education and decreased quality of patient care. Surgical simulation training has become a focus of study in an effort to counter these challenges. Previous studies have validated the use of arthroscopic surgical simulation programs both in vitro and in vivo. However, no study has examined if the gains made by residents after a simulation program are retained after a period away from training. In all, 17 orthopedic surgery residents were randomized into simulation or standard practice groups. All subjects were oriented to the arthroscopic simulator, a 14-point anatomic checklist, and Arthroscopic Surgery Skill Evaluation Tool (ASSET). The experimental group received 1 hour of simulation training whereas the control group had no additional training. All subjects performed a recorded, diagnostic arthroscopy intraoperatively. These videos were scored by 2 blinded, fellowship-trained orthopedic surgeons and outcome measures were compared within and between the groups. After 1 year in which neither group had exposure to surgical simulation training, all residents were retested intraoperatively and scored in the exact same fashion. Individual surgical case logs were reviewed and surgical case volume was documented. There was no difference between the 2 groups after initial simulation testing and there was no correlation between case volume and initial scores. After training, the simulation group improved as compared with baseline in mean ASSET (p = 0.023) and mean time to completion (p = 0.01). After 1 year, there was no difference between the groups in any outcome measurements. Although individual technical skills can be cultivated with surgical simulation training, these advancements can be lost without continued education. It is imperative that residency programs implement a simulation curriculum and

  18. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.

    Science.gov (United States)

    Moglia, Andrea; Ferrari, Vincenzo; Morelli, Luca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2016-06-01

    No single large published randomized controlled trial (RCT) has confirmed the efficacy of virtual simulators in the acquisition of skills to the standard required for safe clinical robotic surgery. This remains the main obstacle for the adoption of these virtual simulators in surgical residency curricula. To evaluate the level of evidence in published studies on the efficacy of training on virtual simulators for robotic surgery. In April 2015 a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, the Clinical Trials Database (US) and the Meta Register of Controlled Trials. All publications were scrutinized for relevance to the review and for assessment of the levels of evidence provided using the classification developed by the Oxford Centre for Evidence-Based Medicine. The publications included in the review consisted of one RCT and 28 cohort studies on validity, and seven RCTs and two cohort studies on skills transfer from virtual simulators to robot-assisted surgery. Simulators were rated good for realism (face validity) and for usefulness as a training tool (content validity). However, the studies included used various simulation training methodologies, limiting the assessment of construct validity. The review confirms the absence of any consensus on which tasks and metrics are the most effective for the da Vinci Skills Simulator and dV-Trainer, the most widely investigated systems. Although there is consensus for the RoSS simulator, this is based on only two studies on construct validity involving four exercises. One study on initial evaluation of an augmented reality module for partial nephrectomy using the dV-Trainer reported high correlation (r=0.8) between in vivo porcine nephrectomy and a virtual renorrhaphy task according to the overall Global Evaluation Assessment of Robotic Surgery (GEARS) score. In one RCT on skills transfer, the experimental group outperformed the control group, with a significant difference in overall

  19. Development and validation of trauma surgical skills metrics: Preliminary assessment of performance after training.

    Science.gov (United States)

    Shackelford, Stacy; Garofalo, Evan; Shalin, Valerie; Pugh, Kristy; Chen, Hegang; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin F

    2015-07-01

    Maintaining trauma-specific surgical skills is an ongoing challenge for surgical training programs. An objective assessment of surgical skills is needed. We hypothesized that a validated surgical performance assessment tool could detect differences following a training intervention. We developed surgical performance assessment metrics based on discussion with expert trauma surgeons, video review of 10 experts and 10 novice surgeons performing three vascular exposure procedures and lower extremity fasciotomy on cadavers, and validated the metrics with interrater reliability testing by five reviewers blinded to level of expertise and a consensus conference. We tested these performance metrics in 12 surgical residents (Year 3-7) before and 2 weeks after vascular exposure skills training in the Advanced Surgical Skills for Exposure in Trauma (ASSET) course. Performance was assessed in three areas as follows: knowledge (anatomic, management), procedure steps, and technical skills. Time to completion of procedures was recorded, and these metrics were combined into a single performance score, the Trauma Readiness Index (TRI). Wilcoxon matched-pairs signed-ranks test compared pretraining/posttraining effects. Mean time to complete procedures decreased by 4.3 minutes (from 13.4 minutes to 9.1 minutes). The performance component most improved by the 1-day skills training was procedure steps, completion of which increased by 21%. Technical skill scores improved by 12%. Overall knowledge improved by 3%, with 18% improvement in anatomic knowledge. TRI increased significantly from 50% to 64% with ASSET training. Interrater reliability of the surgical performance assessment metrics was validated with single intraclass correlation coefficient of 0.7 to 0.98. A trauma-relevant surgical performance assessment detected improvements in specific procedure steps and anatomic knowledge taught during a 1-day course, quantified by the TRI. ASSET training reduced time to complete vascular

  20. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  1. Visual Measurement of Suture Strain for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    John Martell

    2011-01-01

    Full Text Available Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  2. Cost analysis of robotic versus laparoscopic general surgery procedures.

    Science.gov (United States)

    Higgins, Rana M; Frelich, Matthew J; Bosler, Matthew E; Gould, Jon C

    2017-01-01

    Robotic surgical systems have been used at a rapidly increasing rate in general surgery. Many of these procedures have been performed laparoscopically for years. In a surgical encounter, a significant portion of the total costs is associated with consumable supplies. Our hospital system has invested in a software program that can track the costs of consumable surgical supplies. We sought to determine the differences in cost of consumables with elective laparoscopic and robotic procedures for our health care organization. De-identified procedural cost and equipment utilization data were collected from the Surgical Profitability Compass Procedure Cost Manager System (The Advisory Board Company, Washington, DC) for our health care system for laparoscopic and robotic cholecystectomy, fundoplication, and inguinal hernia between the years 2013 and 2015. Outcomes were length of stay, case duration, and supply cost. Statistical analysis was performed using a t-test for continuous variables, and statistical significance was defined as p robotic procedures. Length of stay did not differ for fundoplication or cholecystectomy. Length of stay was greater for robotic inguinal hernia repair. Case duration was similar for cholecystectomy (84.3 robotic and 75.5 min laparoscopic, p = 0.08), but significantly longer for robotic fundoplication (197.2 robotic and 162.1 min laparoscopic, p = 0.01) and inguinal hernia repair (124.0 robotic and 84.4 min laparoscopic, p = ≪0.01). We found a significantly increased cost of general surgery procedures for our health care system when cases commonly performed laparoscopically are instead performed robotically. Our analysis is limited by the fact that we only included costs associated with consumable surgical supplies. The initial acquisition cost (over $1 million for robotic surgical system), depreciation, and service contract for the robotic and laparoscopic systems were not included in this analysis.

  3. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    2018-01-01

    Full Text Available Objective. This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. Method. English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of “Ankle∗” AND “Robot∗” AND “Effect∗ OR Improv∗ OR Increas∗.” Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. Result. A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF training. Conclusion. Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.

  4. A review of the available urology skills training curricula and their validation.

    Science.gov (United States)

    Shepherd, William; Arora, Karan Singh; Abboudi, Hamid; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran

    2014-01-01

    The transforming field of urological surgery continues to demand development of novel training devices and curricula for its trainees. Contemporary trainees have to balance workplace demands while overcoming the cognitive barriers of acquiring skills in rapidly multiplying and advancing surgical techniques. This article provides a brief review of the process involved in developing a surgical curriculum and the current status of real and simulation-based curricula in the 4 subgroups of urological surgical practice: open, laparoscopic, endoscopic, and robotic. An informal literature review was conducted to provide a snapshot into the variety of simulation training tools available for technical and nontechnical urological surgical skills within all subgroups of urological surgery using the following keywords: "urology, surgery, training, curriculum, validation, non-technical skills, technical skills, LESS, robotic, laparoscopy, animal models." Validated training tools explored in research were tabulated and summarized. A total of 20 studies exploring validated training tools were identified. Huge variation was noticed in the types of validity sought by researchers and suboptimal incorporation of these tools into curricula was noted across the subgroups of urological surgery. The following key recommendations emerge from the review: adoption of simulation-based curricula in training; better integration of dedicated training time in simulated environments within a trainee's working hours; better incentivization for educators and assessors to improvise, research, and deliver teaching using the technologies available; and continued emphasis on developing nontechnical skills in tandem with technical operative skills. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  5. Technical review of the da Vinci surgical telemanipulator.

    Science.gov (United States)

    Freschi, C; Ferrari, V; Melfi, F; Ferrari, M; Mosca, F; Cuschieri, A

    2013-12-01

    The da Vinci robotic surgical telemanipulator has been utilized in several surgical specialties for varied procedures, and the users' experiences have been widely published. To date, no detailed system technical analyses have been performed. A detailed review was performed of all publications and patents about the technical aspects of the da Vinci robotic system. Published technical literature on the da Vinci system highlight strengths and weaknesses of the robot design. While the system facilitates complex surgical operations and has a low malfunction rate, the lack of haptic (especially tactile) feedback and collisions between the robotic arms remain the major limitations of the system. Accurate, preplanned positioning of access ports is essential. Knowledge of the technical aspects of the da Vinci robot is important for optimal use. We confirmed the excellent system functionality and ease of use for surgeons without an engineering background. Research and development of the surgical robot has been predominant in the literature. Future trends address robot miniaturization and intelligent control design. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Novel robotic systems and future directions

    Directory of Open Access Journals (Sweden)

    Ki Don Chang

    2018-01-01

    Full Text Available Robot-assistance is increasingly used in surgical practice. We performed a nonsystematic literature review using PubMed/MEDLINE and Google for robotic surgical systems and compiled information on their current status. We also used this information to predict future about the direction of robotic systems based on various robotic systems currently being developed. Currently, various modifications are being made in the consoles, robotic arms, cameras, handles and instruments, and other specific functions (haptic feedback and eye tracking that make up the robotic surgery system. In addition, research for automated surgery is actively being carried out. The development of future robots will be directed to decrease the number of incisions and improve precision. With the advent of artificial intelligence, a more practical form of robotic surgery system can be introduced and will ultimately lead to the development of automated robotic surgery system.

  7. Robotic technology in surgery: current status in 2008.

    Science.gov (United States)

    Murphy, Declan G; Hall, Rohan; Tong, Raymond; Goel, Rajiv; Costello, Anthony J

    2008-12-01

    There is increasing patient and surgeon interest in robotic-assisted surgery, particularly with the proliferation of da Vinci surgical systems (Intuitive Surgical, Sunnyvale, CA, USA) throughout the world. There is much debate over the usefulness and cost-effectiveness of these systems. The currently available robotic surgical technology is described. Published data relating to the da Vinci system are reviewed and the current status of surgical robotics within Australia and New Zealand is assessed. The first da Vinci system in Australia and New Zealand was installed in 2003. Four systems had been installed by 2006 and seven systems are currently in use. Most of these are based in private hospitals. Technical advantages of this system include 3-D vision, enhanced dexterity and improved ergonomics when compared with standard laparoscopic surgery. Most procedures currently carried out are urological, with cardiac, gynaecological and general surgeons also using this system. The number of patients undergoing robotic-assisted surgery in Australia and New Zealand has increased fivefold in the past 4 years. The most common procedure carried out is robotic-assisted laparoscopic radical prostatectomy. Published data suggest that robotic-assisted surgery is feasible and safe although the installation and recurring costs remain high. There is increasing acceptance of robotic-assisted surgery, especially for urological procedures. The da Vinci surgical system is becoming more widely available in Australia and New Zealand. Other surgical specialties will probably use this technology. Significant costs are associated with robotic technology and it is not yet widely available to public patients.

  8. Multidisciplinary crisis simulations: the way forward for training surgical teams.

    Science.gov (United States)

    Undre, Shabnam; Koutantji, Maria; Sevdalis, Nick; Gautama, Sanjay; Selvapatt, Nowlan; Williams, Samantha; Sains, Parvinderpal; McCulloch, Peter; Darzi, Ara; Vincent, Charles

    2007-09-01

    High-reliability organizations have stressed the importance of non-technical skills for safety and of regularly providing such training to their teams. Recently safety skills training has been applied in the practice of medicine. In this study, we developed and piloted a module using multidisciplinary crisis scenarios in a simulated operating theatre to train entire surgical teams. Twenty teams participated (n = 80); each consisted of a trainee surgeon, anesthetist, operating department practitioner (ODP), and scrub nurse. Crisis scenarios such as difficult intubation, hemorrhage, or cardiac arrest were simulated. Technical and non-technical skills (leadership, communication, team skills, decision making, and vigilance), were assessed by clinical experts and by two psychologists using relevant technical and human factors rating scales. Participants received technical and non-technical feedback, and the whole team received feedback on teamwork. Trainees assessed the training favorably. For technical skills there were no differences between surgical trainees' assessment scores and the assessment scores of the trainers. However, nurses overrated their technical skill. Regarding non-technical skills, leadership and decision making were scored lower than the other three non-technical skills (communication, team skills, and vigilance). Surgeons scored lower than nurses on communication and teamwork skills. Surgeons and anesthetists scored lower than nurses on leadership. Multidisciplinary simulation-based team training is feasible and well received by surgical teams. Non-technical skills can be assessed alongside technical skills, and differences in performance indicate where there is a need for further training. Future work should focus on developing team performance measures for training and on the development and evaluation of systematic training for technical and non-technical skills to enhance team performance and safety in surgery.

  9. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.

    Science.gov (United States)

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi

    2017-08-01

    Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.

  10. Robotic-assisted surgery in ophthalmology.

    Science.gov (United States)

    de Smet, Marc D; Naus, Gerrit J L; Faridpooya, Koorosh; Mura, Marco

    2018-05-01

    Provide an overview of the current landscape of robotics in ophthalmology, including the pros and cons of system designs, the clinical development path, and the likely future direction of the field. Robots designed for eye surgery should meet certain basic requirements. Three designs are currently being developed: smart surgical tools such as the steady hand, comanipulation devices and telemanipulators using either a fixed or virtual remote center of motion. Successful human intraocular surgery is being performed using the Preceyes surgical system. Another telemanipulation robot, the da Vinci Surgical System, has been used to perform a pterygium repair in humans and was successful in ex-vivo corneal surgery despite its nonophthalmic design. Apart from Preceyes' BV research platform, none of the currently eye-specific systems has reached a commercial stage. Systems are likely to evolve from robotic assistance during specific procedural steps to semiautonomous surgery, as smart sensors are introduced to enhance the basic functionalities of robotic systems. Robotics is still in its infancy in ophthalmology but is rapidly reaching a stage wherein it will be introduced into everyday ophthalmic practice. It will most likely be introduced first for demanding vitreo-retinal procedures, followed by anterior segment applications.

  11. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    Science.gov (United States)

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  12. Optimal design of a novel remote center-of-motion mechanism for minimally invasive surgical robot

    Science.gov (United States)

    Sun, Jingyuan; Yan, Zhiyuan; Du, Zhijiang

    2017-06-01

    Surgical robot with a remote center-of-motion (RCM) plays an important role in minimally invasive surgery (MIS) field. To make the mechanism has high flexibility and meet the demand of movements during processing of operation, an optimized RCM mechanism is proposed in this paper. Then, the kinematic performance and workspace are analyzed. Finally, a new optimization objective function is built by using the condition number index and the workspace index.

  13. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Fiaschi, Antonio; Santilli, Valter; Smania, Nicola

    2012-05-01

    . Gait impairment is a common cause of disability in Parkinson disease (PD). Electromechanical devices to assist stepping have been suggested as a potential intervention. . To evaluate whether a rehabilitation program of robot-assisted gait training (RAGT) is more effective than conventional physiotherapy to improve walking. . A total of 41 patients with PD were randomly assigned to 45-minute treatment sessions (12 in all), 3 days a week, for 4 consecutive weeks of either robotic stepper training (RST; n = 21) using the Gait Trainer or physiotherapy (PT; n = 20) with active joint mobilization and a modest amount of conventional gait training. Participants were evaluated before, immediately after, and 1 month after treatment. Primary outcomes were 10-m walking speed and distance walked in 6 minutes. . Baseline measures revealed no statistical differences between groups, but the PT group walked 0.12 m/s slower; 5 patients withdrew. A statistically significant improvement was found in favor of the RST group (walking speed 1.22 ± 0.19 m/s [P = .035]; distance 366.06 ± 78.54 m [P < .001]) compared with the PT group (0.98 ± 0.32 m/s; 280.11 ± 106.61 m). The RAGT mean speed increased by 0.13 m/s, which is probably not clinically important. Improvements were maintained 1 month later. . RAGT may improve aspects of walking ability in patients with PD. Future trials should compare robotic assistive training with treadmill or equal amounts of overground walking practice.

  14. Adaptive training of neural networks for control of autonomous mobile robots

    NARCIS (Netherlands)

    Steur, E.; Vromen, T.; Nijmeijer, H.; Fossen, T.I.; Nijmeijer, H.; Pettersen, K.Y.

    2017-01-01

    We present an adaptive training procedure for a spiking neural network, which is used for control of a mobile robot. Because of manufacturing tolerances, any hardware implementation of a spiking neural network has non-identical nodes, which limit the performance of the controller. The adaptive

  15. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F

    2014-09-01

    BACKGROUND. Modular lower extremity robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually guided and visually evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. To assess the feasibility and efficacy of daily anklebot training during early subacute hospitalization poststroke. Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (n = 18) or passive manual stretching (n = 16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an "assist-as-needed" approach during >200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Both groups walked faster at discharge; however, the robot group improved more in percentage change of temporal symmetry (P = .032) and also of step length symmetry (P = .038), with longer nonparetic step lengths in the robot (133%) versus stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (P ≤ .001) and mean (P ≤ .01) angular speeds, and increased movement smoothness (P ≤ .01). There were no adverse events. Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early subacute hospitalization is well tolerated and improves ankle motor control and gait patterning. © The Author(s) 2014.

  16. Robotics in Colorectal Surgery

    Science.gov (United States)

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  17. Individualized robot-assisted training for MS- and stroke patients in I-TRAVLE

    Directory of Open Access Journals (Sweden)

    Bastiaens Hanne

    2011-12-01

    Full Text Available Persons with central nervous deficits, such as MS and stroke patients, can benefit a lot from suitable training approaches that enhance their ability to perform activities in daily life. Personalized training, in accordance with the individual capabilities of the patient is a key issue in this context. We propose several techniques for individualization, including adaptive training games. Evaluations with patients and therapists reveal appreciation for the resulting Individualized, Technology-supported and RobotAssisted Virtual Learning Environments (I-TRAVLE system.

  18. Robotics in general thoracic surgery procedures.

    Science.gov (United States)

    Latif, M Jawad; Park, Bernard J

    2017-01-01

    The use of robotic technology in general thoracic surgical practice continues to expand across various institutions and at this point many major common thoracic surgical procedures have been successfully performed by general thoracic surgeons using the robotic technology. These procedures include lung resections, excision of mediastinal masses, esophagectomy and reconstruction for malignant and benign esophageal pathologies. The success of robotic technology can be attributed to highly magnified 3-D visualization, dexterity afforded by 7 degrees of freedom that allow difficult dissections in narrow fields and the ease of reproducibility once the initial set up and instruments become familiar to the surgeon. As the application of robotic technology trickle downs from major academic centers to community hospitals, it becomes imperative that its role, limitations, learning curve and financial impact are understood by the novice robotic surgeon. In this article, we share our experience as it relates to the setup, common pitfalls and long term results for more commonly performed robotic assisted lung and thymic resections using the 4 arm da Vinci Xi robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) to help guide those who are interested in adopting this technology.

  19. Pancreatic enucleation using the da Vinci robotic surgical system: a report of 26 cases.

    Science.gov (United States)

    Shi, Yusheng; Peng, Chenghong; Shen, Baiyong; Deng, Xiaxing; Jin, Jiabin; Wu, Zhichong; Zhan, Qian; Li, Hongwei

    2016-12-01

    As a tissue-sparing procedure, pancreatic enucleation has become an alternative for benign or borderline pancreatic tumours; it has been proved to be safe and feasible. To date, a large sample size of robotic pancreatic enucleation has not been reported. This study aimed to discuss the clinical evaluation and postoperative complications after robotic pancreatic enucleation and compare it with open surgery. Patients who underwent robotic or open pancreatic enucleation during December 2010-December 2014 at Shanghai Ruijin Hospital, affiliated with the Shanghai Jiaotong University School of Medicine in China, were included. Clinical data were collected and analysed. Patients were divided into an open group and a robotic group: 26 patients underwent robotic pancreatic enucleation, of whom 13 patients were female. The mean age was 51.7 years, the operation time was 125.7 ± 58.8 min, blood loss was 49.4 ± 33.4 ml and mean tumour size was 18.8 ± 7.9 mm; 17 patients underwent open pancreatic enucleation, of whom 11 were female. The mean age was 54.6 ± 17.2 min, blood loss was 198.5 ± 70.7 ml and mean tumour size was 3.5 ± 1.9 cm. Pathology included insulinomas, intrapancreatic mucinous neoplasmas (IPMNs), pancreatic neuro-endocrine tumours (PNETs), solid pseudopapillary tumours (SPTs) and serous cystadenomas (SCAs). Robotic pancreatic enucleations were associated with less trauma, shorter operation time, less blood loss and faster wound recovery compared with open pancreatic enucleation. Pancreatic fistulas (PFs) were the main complication that occurred in the robotic group; infection also occurred in the open group. All patients recovered after effective drainage and the use of somatostatin. The mean follow-up time was 25 months. No recurrence was discovered, and one patient in the open group suffered endocrine insufficiency. Robotic pancreatic enucleation is a safe and effective surgical procedure for pancreatic benign and borderline tumours. It produces less

  20. Robotics in Orthopedics: A Brave New World.

    Science.gov (United States)

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.

    Science.gov (United States)

    Milot, Marie-Hélène; Spencer, Steven J; Chan, Vicky; Allington, James P; Klein, Julius; Chou, Cathy; Bobrow, James E; Cramer, Steven C; Reinkensmeyer, David J

    2013-12-19

    To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton ("BONES") that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only useful for impairment reduction. The pilot results presented here also suggest that multijoint functional robotic training is not decisively superior to single joint robotic training. This challenges the idea that

  2. Supply versus demand: a review of application trends to Canadian surgical training programs.

    Science.gov (United States)

    Austin, Ryan E; Wanzel, Kyle R

    2015-04-01

    Despite increases in medical school enrolment, applications to surgical residency programs in Canada have been in decline over the past decade, with an increasing number of unmatched surgical residency positions. We examined the current status of surgical residency in Canada and analyzed application trends (2002–2013) for surgical training programs across Canada. Our findings suggest that most undergraduate medical schools across Canada are having difficulty fostering interest in surgical careers. We propose that a lack of adequate early exposure to the surgical specialties during undergraduate training is a critical factor. Moving forward, we must examine how the best-performing institutions and surgical programs have maintained interest in pursuing surgical careers and adapt our recruitment methods to both maintain and grow future interest. As Mary Engelbreit said, "If you don't like something, change it; if you can't change it, change the way you think about it."

  3. Surgical skills simulation in trauma and orthopaedic training.

    Science.gov (United States)

    Stirling, Euan R B; Lewis, Thomas L; Ferran, Nicholas A

    2014-12-19

    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in order to compensate for the reduction in 'hands-on' experience. Simulation training provides the opportunity to develop surgical skills in a controlled environment whilst minimising risks to patient safety, operating theatre usage and financial expenditure. Many options for simulation exist within orthopaedics from cadaveric or prosthetic models, to arthroscopic simulators, to advanced virtual reality and three-dimensional software tools. There are limitations to this form of training, but it has significant potential for trainees to achieve competence in procedures prior to real-life practice. The evidence for its direct transferability to operating theatre performance is limited but there are clear benefits such as increasing trainee confidence and familiarity with equipment. With progressively improving methods of simulation available, it is likely to become more important in the ongoing and future training and assessment of orthopaedic surgeons.

  4. "You gotta try it all": Parents' Experiences with Robotic Gait Training for their Children with Cerebral Palsy.

    Science.gov (United States)

    Beveridge, Briony; Feltracco, Deanna; Struyf, Jillian; Strauss, Emily; Dang, Saniya; Phelan, Shanon; Wright, F Virginia; Gibson, Barbara E

    2015-01-01

    Innovative robotic technologies hold strong promise for improving walking abilities of children with cerebral palsy (CP), but may create expectations for parents pursuing the "newest thing" in treatment. The aim of this qualitative study was to explore parents' values about walking in relation to their experiences with robotic gait training for their children. Semi-structured interviews were conducted with parents of five ambulatory children with CP participating in a randomized trial investigating robotic gait training effectiveness. Parents valued walking, especially "correct" walking, as a key component of their children's present and future well-being. They continually sought the "next best thing" in therapy and viewed the robotic gait trainer as a potentially revolutionary technology despite mixed experiences. The results can help inform rehabilitation therapists' knowledge of parents' values and perspectives, and guide effective collaborations toward meeting the therapeutic needs of children with CP.

  5. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.

    Science.gov (United States)

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan

    2011-01-01

    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients. © 2011 IEEE

  6. Robotic-assisted transperitoneal nephron-sparing surgery for small renal masses with associated surgical procedures: surgical technique and preliminary experience.

    Science.gov (United States)

    Ceccarelli, Graziano; Codacci-Pisanelli, Massimo; Patriti, Alberto; Ceribelli, Cecilia; Biancafarina, Alessia; Casciola, Luciano

    2013-09-01

    Small renal masses (T1a) are commonly diagnosed incidentally and can be treated with nephron-sparing surgery, preserving renal function and obtaining the same oncological results as radical surgery. Bigger lesions (T1b) may be treated in particular situations with a conservative approach too. We present our surgical technique based on robotic assistance for nephron-sparing surgery. We retrospectively analysed our series of 32 consecutive patients (two with 2 tumours and one with 4 bilateral tumours), for a total of 37 robotic nephron-sparing surgery (RNSS) performed between June 2008 and July 2012 by a single surgeon (G.C.). The technique differs depending on tumour site and size. The mean tumour size was 3.6 cm; according to the R.E.N.A.L. Nephrometry Score 9 procedures were considered of low, 14 of moderate and 9 of hight complexity with no conversion in open surgery. Vascular clamping was performed in 22 cases with a mean warm ischemia time of 21.5 min and the mean total procedure time was 149.2 min. Mean estimated blood loss was 187.1 ml. Mean hospital stay was 4.4 days. Histopathological evaluation confirmed 19 cases of clear cell carcinoma (all the multiple tumours were of this nature), 3 chromophobe tumours, 1 collecting duct carcinoma, 5 oncocytomas, 1 leiomyoma, 1 cavernous haemangioma and 2 benign cysts. Associated surgical procedures were performed in 10 cases (4 cholecystectomies, 3 important lyses of peritoneal adhesions, 1 adnexectomy, 1 right hemicolectomy, 1 hepatic resection). The mean follow-up time was 28.1 months ± 12.3 (range 6-54). Intraoperative complications were 3 cases of important bleeding not requiring conversion to open or transfusions. Regarding post-operative complications, there were a bowel occlusion, 1 pleural effusion, 2 pararenal hematoma, 3 asymptomatic DVT (deep vein thrombosis) and 1 transient increase in creatinine level. There was no evidence of tumour recurrence in the follow-up. RNSS is a safe and feasible technique

  7. Lower Limb Voluntary Movement Improvement Following a Robot-Assisted Locomotor Training in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mirbagheri Mehdi

    2011-12-01

    Full Text Available Individuals with spinal cord injury (SCI suffer from severe impairments in voluntary movements. Literature reports a reduction in major kinematic and kinetic parameters of lower limbs’ joints. A body weight support treadmill training with robotic assistance has been widely used to improve lower-extremity function and locomotion in persons with SCI. Our objective was to explore the effects of 4-weeks robot-assisted locomotor training on voluntary movement of the ankle musculature in patients with incomplete SCI. In particular, we aimed to characterize the therapeutic effects of Lokomat training on kinematic measures (range of motion, velocity, smoothness during a dorsiflexion movement. We hypothesized that training would improve these measures. Preliminary results show an improvement of kinematic parameters during ankle dorsiflexion voluntary movement after a 4-weeks training in the major part of our participants. Complementary investigations are in progress to confirm these results and understand underlying mechanisms associated with the recovery.

  8. The learning effect of intraoperative video-enhanced surgical procedure training.

    Science.gov (United States)

    van Det, M J; Meijerink, W J H J; Hoff, C; Middel, L J; Koopal, S A; Pierie, J P E N

    2011-07-01

    The transition from basic skills training in a skills lab to procedure training in the operating theater using the traditional master-apprentice model (MAM) lacks uniformity and efficiency. When the supervising surgeon performs parts of a procedure, training opportunities are lost. To minimize this intervention by the supervisor and maximize the actual operating time for the trainee, we created a new training method called INtraoperative Video-Enhanced Surgical Training (INVEST). Ten surgical residents were trained in laparoscopic cholecystectomy either by the MAM or with INVEST. Each trainee performed six cholecystectomies that were objectively evaluated on an Objective Structured Assessment of Technical Skills (OSATS) global rating scale. Absolute and relative improvements during the training curriculum were compared between the groups. A questionnaire evaluated the trainee's opinion on this new training method. Skill improvement on the OSATS global rating scale was significantly greater for the trainees in the INVEST curriculum compared to the MAM, with mean absolute improvement 32.6 versus 14.0 points and mean relative improvement 59.1 versus 34.6% (P=0.02). INVEST significantly enhances technical and procedural skill development during the early learning curve for laparoscopic cholecystectomy. Trainees were positive about the content and the idea of the curriculum.

  9. The Pareto Analysis for Establishing Content Criteria in Surgical Training

    NARCIS (Netherlands)

    Kramp, Kelvin H.; van Det, Marc J.; Veeger, Nic J. G. M.; Pierie, Jean-Pierre E. N.

    2016-01-01

    INTRODUCTION: Current surgical training is still highly dependent on expensive operating room (OR) experience. Although there have been many attempts to transfer more training to the skills laboratory, little research is focused on which technical behaviors can lead to the highest profit when they

  10. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit.

    Science.gov (United States)

    Arain, Nabeel A; Dulan, Genevieve; Hogg, Deborah C; Rege, Robert V; Powers, Cathryn E; Tesfay, Seifu T; Hynan, Linda S; Scott, Daniel J

    2012-10-01

    We previously developed a comprehensive proficiency-based robotic training curriculum demonstrating construct, content, and face validity. This study aimed to assess reliability, feasibility, and educational benefit associated with curricular implementation. Over an 11-month period, 55 residents, fellows, and faculty (robotic novices) from general surgery, urology, and gynecology were enrolled in a 2-month curriculum: online didactics, half-day hands-on tutorial, and self-practice using nine inanimate exercises. Each trainee completed a questionnaire and performed a single proctored repetition of each task before (pretest) and after (post-test) training. Tasks were scored for time and errors using modified FLS metrics. For inter-rater reliability (IRR), three trainees were scored by two raters and analyzed using intraclass correlation coefficients (ICC). Data from eight experts were analyzed using ICC and Cronbach's α to determine test-retest reliability and internal consistency, respectively. Educational benefit was assessed by comparing baseline (pretest) and final (post-test) trainee performance; comparisons used Wilcoxon signed-rank test. Of the 55 trainees that pretested, 53 (96 %) completed all curricular components in 9-17 h and reached proficiency after completing an average of 72 ± 28 repetitions over 5 ± 1 h. Trainees indicated minimal prior robotic experience and "poor comfort" with robotic skills at baseline (1.8 ± 0.9) compared to final testing (3.1 ± 0.8, p reliability was 0.91 (p training for all nine tasks and according to composite scores (548 ± 176 vs. 914 ± 81, p reliability measures, demonstrated feasibility for a large cohort of trainees, and yielded significant educational benefit. Further studies and adoption of this curriculum are encouraged.

  11. Safety and feasibility of the robotic platform in the management of surgical sequelae of chronic pancreatitis.

    Science.gov (United States)

    Hamad, Ahmad; Zenati, Mazen S; Nguyen, Trang K; Hogg, Melissa E; Zeh, Herbert J; Zureikat, Amer H

    2018-02-01

    The application of minimally invasive surgery to chronic pancreatitis (CP) procedures is uncommon. Our objective was to report the safety and feasibility of the robotic approach in the treatment of surgical sequelae of CP, and provide insights into the technique, tricks, and pitfalls associated with the application of robotics to this challenging disease entity. A retrospective review of a prospectively maintained database of patients undergoing robotic-assisted resections and/or drainage procedures for CP at the University of Pittsburgh between May 2009 and January 2017 was performed. A video of a robotic Frey procedure is also shown. Of 812 robotic pancreatic resections and reconstructions 39 were for CP indications. These included 11 total pancreatectomies [with and without auto islet transplantation], 8 Puestow procedures, 4 Frey procedures, 6 pancreaticoduodenectomies, and 10 distal pancreatectomies. Median age was 49, and 41% of the patients were female. The most common etiology for CP was idiopathic pancreatitis (n = 16, 46%). Median operative time was 324 min with a median estimated blood loss of 250 ml. None of the patients required conversion to laparotomy. A Clavien III-IV complication rate was experienced by 5 (13%) patients, including one reoperation. Excluding the eleven patients who underwent TP, rate of clinically relevant postoperative pancreatic fistula was 7% (Grade B = 2, Grade C = 0). No 30 or 90 day mortalities were recorded. The median length of hospital stay was 7 days. Use of the robotic platform is safe and feasible when tackling complex pancreatic resections for sequelae of chronic pancreatitis.

  12. The evolution of robotic general surgery.

    Science.gov (United States)

    Wilson, E B

    2009-01-01

    Surgical robotics in general surgery has a relatively short but very interesting evolution. Just as minimally invasive and laparoscopic techniques have radically changed general surgery and fractionated it into subspecialization, robotic technology is likely to repeat the process of fractionation even further. Though it appears that robotics is growing more quickly in other specialties, the changes digital platforms are causing in the general surgical arena are likely to permanently alter general surgery. This review examines the evolution of robotics in minimally invasive general surgery looking forward to a time where robotics platforms will be fundamental to elective general surgery. Learning curves and adoption techniques are explored. Foregut, hepatobiliary, endocrine, colorectal, and bariatric surgery will be examined as growth areas for robotics, as well as revealing the current uses of this technology.

  13. [Robotic splenectomy--a personal view].

    Science.gov (United States)

    Vasilescu, C

    2010-01-01

    Until now 40 robotic splenectomies were performed in our department, the first case being done on February 25, 2008. Our data show that robotic splenectomy with the DaVinci surgical system is technically feasible and safe, with good results and without complications. The main advantages are a better tridimensional view and an increased versatility of the surgical instruments. The DaVinci system allows an accurate dissection around the splenic hilum and preservation of the splenic remnant vessels in partial splenectomy. Robotic splenectomy will probably not replace the laparoscopic splenectomy for the most common indications like ITP, hemolytic anemia. It may be a very useful surgical tool in difficult splenectomy: partial splenectomy, splenectomy in liver cirrhosis, splenic tumors or malignant hemopathies. In these cases the robotic approach may shorten the operative time, decrease the blood loss and the risk of remorrhagic complications during surgery and even make possible a minimally invasive splenectomy very difficult to be performed by classical laparoscopy.

  14. A Review of Empathy, Its Importance, and Its Teaching in Surgical Training.

    Science.gov (United States)

    Han, Jing L; Pappas, Theodore N

    There has been much discussion in the medical literature about the importance of empathy and physician communication style in medical practice. Empathy has been shown to have a very real positive effect on patient outcomes. Most of the existing literature speaks to its role in medical education, with relatively little empiric study about empathy in the surgical setting. Review of empathy and its importance as it pertains to the surgeon-patient relationship and improving patient outcomes, and the need for increased education in empathy during surgical training. The published, peer-reviewed literature on patient-physician and patient-surgeon communication, medical student and resident education in empathy, and empathy research was reviewed. PubMed was queried for MESH terms including "empathy," "training," "education," "surgery," "resident," and "communication." There is evidence of a decline in empathy that begins during the clinical years of medical school, which continues throughout residency training. Surgeons are particularly susceptible to this decline as by-product of the nature of their work, and the current lack of formalised training in empathic patient communication poses a unique problem to surgical residents. The literature suggests that empathy training is warranted and should be incorporated into surgical residencies through didactics, role-playing and simulations, and apprenticeship to empathic attending role models. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Lost opportunity cost of surgical training in the Australian private sector.

    Science.gov (United States)

    Aitken, R James

    2012-03-01

    To meet Australia's future demands, surgical training in the private sector will be required. The aim of this study was to estimate the time and lost opportunity cost of training in the private sector. A literature search identified studies that compared the operation time required by a supervised trainee with a consultant. This time was costed using a business model. In 22 studies (34 operations), the median operation duration of a supervised trainee was 34% longer than the consultant. To complete a private training list in the same time as a consultant list, one major case would have to be dropped. A consultant's average lost opportunity cost was $1186 per list ($106,698 per year). Training in rooms and administration requirements increased this to $155,618 per year. To train 400 trainees in the private sector to college standards would require 54,000 training lists per year. The consultants' national lost opportunity cost would be $137 million per year. The average lost hospital case payment was $5894 per list, or $330 million per year nationally. The total lost opportunity cost of surgical training in the private sector would be about $467 million per year. When trainee salaries, other specialties and indirect expenses are included, the total cost will be substantially greater. It is unlikely that surgeons or hospitals will be prepared to absorb these costs. There needs to be a public debate about the funding implications of surgical training in the private sector. © 2012 The Author. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  16. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  17. Surgery with cooperative robots.

    Science.gov (United States)

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  18. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.

    Science.gov (United States)

    Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G

    2017-07-01

    The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.

  19. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system.

    Science.gov (United States)

    Maurice, Matthew J; Kaouk, Jihad H

    2017-12-01

    To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  20. Training situational awareness to reduce surgical errors in the operating room

    NARCIS (Netherlands)

    Graafland, M.; Schraagen, J.M.C.; Boermeester, M.A.; Bemelman, W.A.; Schijven, M.P.

    2015-01-01

    Background: Surgical errors result from faulty decision-making, misperceptions and the application of suboptimal problem-solving strategies, just as often as they result from technical failure. To date, surgical training curricula have focused mainly on the acquisition of technical skills. The aim

  1. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study.

    Science.gov (United States)

    Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas

    2017-12-01

    So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.

  2. A Perspective on Robotic Assistance for Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Nathan A. Netravali

    2013-01-01

    Full Text Available Knee arthroplasty is used to treat patients with degenerative joint disease of the knee to reduce pain and restore the function of the joint. Although patient outcomes are generally quite good, there are still a number of patients that are dissatisfied with their procedures. Aside from implant design which has largely become standard, surgical technique is one of the main factors that determine clinical results. Therefore, a lot of effort has gone into improving surgical technique including the use of computer-aided surgery. The latest generation of orthopedic surgical tools involves the use of robotics to enhance the surgeons’ abilities to install implants more precisely and consistently. This review presents an evolution of robot-assisted surgical systems for knee replacement with an emphasis on the clinical results available in the literature. Ever since various robotic-assistance systems were developed and used clinically worldwide, studies have demonstrated that these systems are as safe as and more accurate than conventional methods of manual implantation. Robotic surgical assistance will likely result in improved surgical technique and improved clinical results.

  3. Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy.

    Science.gov (United States)

    Gala, Rajiv B; Margulies, Rebecca; Steinberg, Adam; Murphy, Miles; Lukban, James; Jeppson, Peter; Aschkenazi, Sarit; Olivera, Cedric; South, Mary; Lowenstein, Lior; Schaffer, Joseph; Balk, Ethan M; Sung, Vivian

    2014-01-01

    The Society of Gynecologic Surgeons Systematic Review Group performed a systematic review of both randomized and observational studies to compare robotic vs nonrobotic surgical approaches (laparoscopic, abdominal, and vaginal) for treatment of both benign and malignant gynecologic indications to compare surgical and patient-centered outcomes, costs, and adverse events associated with the various surgical approaches. MEDLINE and the Cochrane Central Register of Controlled Trials were searched from inception to May 15, 2012, for English-language studies with terms related to robotic surgery and gynecology. Studies of any design that included at least 30 women who had undergone robotic-assisted laparoscopic gynecologic surgery were included for review. The literature yielded 1213 citations, of which 97 full-text articles were reviewed. Forty-four studies (30 comparative and 14 noncomparative) met eligibility criteria. Study data were extracted into structured electronic forms and reconciled by a second, independent reviewer. Our analysis revealed that, compared with open surgery, robotic surgery consistently confers shorter hospital stay. The proficiency plateau seems to be lower for robotic surgery than for conventional laparoscopy. Of the various gynecologic applications, there seems to be evidence that renders robotic techniques advantageous over traditional open surgery for management of endometrial cancer. However, insofar as superiority, conflicting data are obtained when comparing robotics vs laparoscopic techniques. Therefore, the specific method of minimally invasive surgery, whether conventional laparoscopy or robotic surgery, should be tailored to patient selection, surgeon ability, and equipment availability. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  4. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    Science.gov (United States)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  5. Surgical treatment of an acquired posterior urethral diverticulum with cystoscopy assisted robotic technique.

    Science.gov (United States)

    Guneri, Cagri; Kirac, Mustafa; Biri, Hasan

    2017-03-01

    A 42-year-old man with a history of recurrent urethral stenosis, recurrent urinary tract infection and macroscopic hematuria has referred to our clinic. He underwent several internal urethrotomies and currently using clean intermittent self-catheterization. During the internal urethrotomy, we noted a large posterior urethral diverticulum (UD) between verumontanum and bladder neck. His obstructive symptoms were resolved after the catheter removal. But perineal discomfort, urgency and dysuria were prolonged about 3-4 weeks. Urinalysis and urine culture confirmed recurrent urinary tract infections. Due to this conditions and symptoms, we planned a surgical approach which was planned as transperitoneal robotic-assisted laparoscopic approach. This technique is still applied for the diverticulectomy of the bladder. In addition to this we utilized the cystoscopy equipments for assistance. During this process, cystoscope was placed in the UD to help the identification of UD from adjacent tissues like seminal vesicles by its movement and translumination. Operating time was 185 min. On the post-operative third day he was discharged. Foley catheter was removed after 2 weeks. Urination was quite satisfactory. His perineal discomfort was resolved. The pathology report confirmed epidermoid (tailgut) cyst of the prostate. Urethrogram showed no radiologic signs of UD after 4 weeks. Irritative and obstructive symptoms were completely resolved after 3 months. No urinary incontinence, erectile dysfunction or retrograde ejaculation was noted. While posterior UD is an extremely rare situation, surgical treatment of posterior UD remains uncertain. To our knowledge, no above-mentioned cystoscopy assisted robotic technique for the treatment was described in the literature.

  6. Toward the art of robotic-assisted vitreoretinal surgery

    Directory of Open Access Journals (Sweden)

    Amir Molaei

    2017-01-01

    Full Text Available New technological progress in robotics has brought many beneficial clinical applications. Currently, computer integrated robotic surgery has gained clinical acceptance for several surgical procedures. Robotically assisted eye surgery is envisaged as a promising solution to overcome the shortcomings inherent to conventional surgical procedures as in vitreoretinal surgeries. Robotics by its high precision and fine mechanical control can improve dexterity, cancel tremor, and allow highly precise remote surgical capability, delicate vitreoretinal manipulation capabilities. Combined with magnified three-dimensional imaging of the surgical site, it can enhance surgical precision. Tele-manipulation can provide the ability for tele-surgery or haptic feedback of forces generated by the manipulation of intraocular tissues. It presents new solutions for some sight-threatening conditions such as retinal vein cannulation where, due to physiological limitations of the surgeon's hand, the procedure cannot be adequately performed. In this paper, we provide an overview of the research and advances in robotically assisted vitreoretinal eye surgery. Additionally the barriers to the integration of this method in the field of ocular surgery are summarized. Finally, we discuss the possible applications of the method in the area of vitreoretinal surgery.

  7. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    Science.gov (United States)

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p training may accelerate motor learning for restoring mobility.

  8. How to get the best from robotic thoracic surgery.

    Science.gov (United States)

    Ricciardi, Sara; Zirafa, Carmelina Cristina; Davini, Federico; Melfi, Franca

    2018-04-01

    The application of Robotic technology in thoracic surgery has become widespread in the last decades. Thanks to its advanced features, the robotic system allows to perform a broad range of complex operations safely and in a comfortable way, with valuable advantages related to low invasiveness. Regarding lung tumours, several studies have shown the benefits of robotic surgery including lower blood loss and improved lymph node removal when compared with other minimally invasive techniques. Moreover, the robotic instruments allow to reach deep and narrow spaces permitting safe and precise removal of tumours located in remote areas, such as retrosternal and posterior mediastinal spaces with outstanding postoperative and oncological results. One controversial finding about the application of robotic system is its high capital and running costs. For this reason, a limited number of centres worldwide are able to employ this groundbreaking technology and there are limited possibilities for the trainees to acquire the necessary skills in robotic surgery. Therefore, a training programme based on three steps of learning, associated with a solid surgical background and a consistent operating activity, are required to obtain effective results. Putting this highest technological innovation in the hand of expert surgeons we can assure safe and effective procedures getting the best from robotic thoracic surgery.

  9. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries.

    Science.gov (United States)

    Lee, Gyusung I; Lee, Mija R; Clanton, Tameka; Clanton, Tamera; Sutton, Erica; Park, Adrian E; Marohn, Michael R

    2014-02-01

    We conducted this study to investigate how physical and cognitive ergonomic workloads would differ between robotic and laparoscopic surgeries and whether any ergonomic differences would be related to surgeons' robotic surgery skill level. Our hypothesis is that the unique features in robotic surgery will demonstrate skill-related results both in substantially less physical and cognitive workload and uncompromised task performance. Thirteen MIS surgeons were recruited for this institutional review board-approved study and divided into three groups based on their robotic surgery experiences: laparoscopy experts with no robotic experience, novices with no or little robotic experience, and robotic experts. Each participant performed six surgical training tasks using traditional laparoscopy and robotic surgery. Physical workload was assessed by using surface electromyography from eight muscles (biceps, triceps, deltoid, trapezius, flexor carpi ulnaris, extensor digitorum, thenar compartment, and erector spinae). Mental workload assessment was conducted using the NASA-TLX. The cumulative muscular workload (CMW) from the biceps and the flexor carpi ulnaris with robotic surgery was significantly lower than with laparoscopy (p NASA-TLX analysis showed that both robotic surgery novices and experts expressed lower global workloads with robotic surgery than with laparoscopy, whereas LEs showed higher global workload with robotic surgery (p > 0.05). Robotic surgery experts and novices had significantly higher performance scores with robotic surgery than with laparoscopy (p < 0.05). This study demonstrated that the physical and cognitive ergonomics with robotic surgery were significantly less challenging. Additionally, several ergonomic components were skill-related. Robotic experts could benefit the most from the ergonomic advantages in robotic surgery. These results emphasize the need for well-structured training and well-defined ergonomics guidelines to maximize the

  10. Modular Ankle Robotics Training in Early Sub-Acute Stroke: A Randomized Controlled Pilot Study

    Science.gov (United States)

    Forrester, Larry W.; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F.

    2014-01-01

    Background Modular lower extremity (LE) robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually-guided and visually-evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. Objective Assess the feasibility and efficacy of daily anklebot training during early sub-acute hospitalization post-stroke. Methods Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (N=18) or passive manual stretching (N=16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an “assist-as-needed” approach during > 200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Results Both groups walked faster at discharge, however the robot group improved more in percent change of temporal symmetry (p=0.032) and also of step length symmetry (p=0.038), with longer nonparetic step lengths in the robot (133%) vs. stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (p≤ 0.001) and mean (p≤ 0.01) angular speeds, and increased movement smoothness (p≤ 0.01). There were no adverse events. Conclusion Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early sub-acute hospitalization is well tolerated and improves ankle motor control and gait patterning. PMID:24515923

  11. ORIGINAL ARTICLES Ethics and surgical training in ancient India ...

    African Journals Online (AJOL)

    2008-03-01

    Mar 1, 2008 ... Ancient India's contributions to ethics and surgical training ... business of health care becomes increasingly venal. Doctors are better informed .... 'Friendship, sympathy towards the sick, interest in cases .... Textbook of Surgery.

  12. Surgical specialty procedures in rural surgery practices: implications for rural surgery training.

    Science.gov (United States)

    Sticca, Robert P; Mullin, Brady C; Harris, Joel D; Hosford, Clint C

    2012-12-01

    Specialty procedures constitute one eighth of rural surgery practice. Currently, general surgeons intending to practice in rural hospitals may not get adequate training for specialty procedures, which they will be expected to perform. Better definition of these procedures will help guide rural surgery training. Current Procedural Terminology codes for all surgical procedures for 81% of North Dakota and South Dakota rural surgeons were entered into the Dakota Database for Rural Surgery. Specialty procedures were analyzed and compared with the Surgical Council on Resident Education curriculum to determine whether general surgery training is adequate preparation for rural surgery practice. The Dakota Database for Rural Surgery included 46,052 procedures, of which 5,666 (12.3%) were specialty procedures. Highest volume specialty categories included vascular, obstetrics and gynecology, orthopedics, cardiothoracic, urology, and otolaryngology. Common procedures in cardiothoracic and vascular surgery are taught in general surgical residency, while common procedures in obstetrics and gynecology, orthopedics, urology, and otolaryngology are usually not taught in general surgery training. Optimal training for rural surgery practice should include experience in specialty procedures in obstetrics and gynecology, orthopedics, urology, and otolaryngology. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Evaluating Robotic Surgical Skills Performance Under Distractive Environment Using Objective and Subjective Measures.

    Science.gov (United States)

    Suh, Irene H; LaGrange, Chad A; Oleynikov, Dmitry; Siu, Ka-Chun

    2016-02-01

    Distractions are recognized as a significant factor affecting performance in safety critical domains. Although operating rooms are generally full of distractions, the effect of distractions on robot-assisted surgical (RAS) performance is unclear. Our aim was to investigate the effect of distractions on RAS performance using both objective and subjective measures. Fifteen participants performed a knot-tying task using the da Vinci Surgical System and were exposed to 3 distractions: (1) passive distraction entailed listening to noise with a constant heart rate, (2) active distraction included listening to noise and acknowledging a change of random heart rate from 60 to 120 bpm, and (3) interactive distraction consisted of answering math questions. The objective kinematics of the surgical instrument tips were used to evaluate performance. Electromyography (EMG) of the forearm and hand muscles of the participants were collected. The median EMG frequency (EMG(fmed)) and the EMG envelope (EMG(env)) were analyzed. NASA Task Load Index and Fundamentals of Laparoscopic Surgery score were used to evaluate the subjective performance. One-way repeated analysis of variance was applied to examine the effects of distraction on skills performance. Spearman's correlations were conducted to compare objective and subjective measures. Significant distraction effect was found for all objective kinematics measures (P < .05). There were significant distraction effects for EMG measures (EMG(env), P < .004; EMG(fmed), P = .031). Significant distraction effects were also found for subjective measurements. Distraction impairs surgical skills performance and increases muscle work. Understanding how the surgeons cope with distractions is important in developing surgical education. © The Author(s) 2015.

  14. Kinematic design considerations for minimally invasive surgical robots: an overview.

    Science.gov (United States)

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  15. [Comparison of robotic surgery documentary in gynecological cancer].

    Science.gov (United States)

    Vargas-Hernández, Víctor Manuel

    2012-01-01

    Robotic surgery is a surgical technique recently introduced, with major expansion and acceptance among the medical community is currently performed in over 1,000 hospitals around the world and in the management of gynecological cancer are being developed comprehensive programs for implementation. The objectives of this paper are to review the scientific literature on robotic surgery and its application in gynecological cancer to verify its safety, feasibility and efficacy when compared with laparoscopic surgery or surgery classical major surgical complications, infections are more common in traditional radical surgery compared with laparoscopic or robotic surgery and with these new techniques surgical and staying hospital are lesser than the former however, the disadvantages are the limited number of robot systems, their high cost and applies only in specialized centers that have with equipment and skilled surgeons. In conclusion robotic surgery represents a major scientific breakthrough and surgical management of gynecological cancer with better results to other types of conventional surgery and is likely in the coming years is become its worldwide.

  16. Systematic review of serious games for medical education and surgical skills training

    NARCIS (Netherlands)

    Graafland, M.; Schraagen, J.M.C.; Schijven, M.P.

    2012-01-01

    Background: The application of digital games for training medical professionals is on the rise. So-called ‘serious’ games form training tools that provide a challenging simulated environment, ideal for future surgical training. Ultimately, serious games are directed at reducing medical error and

  17. Effect of Process Changes in Surgical Training on Quantitative Outcomes From Surgery Residency Programs.

    Science.gov (United States)

    Dietl, Charles A; Russell, John C

    2016-01-01

    The purpose of this article is to review the literature on process changes in surgical training programs and to evaluate their effect on the Accreditation Council of Graduate Medical Education (ACGME) Core Competencies, American Board of Surgery In-Training Examination (ABSITE) scores, and American Board of Surgery (ABS) certification. A literature search was obtained from MEDLINE via PubMed.gov, ScienceDirect.com, Google Scholar on all peer-reviewed studies published since 2003 using the following search queries: surgery residency training, surgical education, competency-based surgical education, ACGME core competencies, ABSITE scores, and ABS pass rate. Our initial search list included 990 articles on surgery residency training models, 539 on competency-based surgical education, 78 on ABSITE scores, and 33 on ABS pass rate. Overall, 31 articles met inclusion criteria based on their effect on ACGME Core Competencies, ABSITE scores, and ABS certification. Systematic review showed that 5/31, 19/31, and 6/31 articles on process changes in surgical training programs had a positive effect on patient care, medical knowledge, and ABSITE scores, respectively. ABS certification was not analyzed. The other ACGME core competencies were addressed in only 6 studies. Several publications on process changes in surgical training programs have shown a positive effect on patient care, medical knowledge, and ABSITE scores. However, the effect on ABS certification, and other quantitative outcomes from residency programs, have not been addressed. Studies on education strategies showing evidence that residency program objectives are being achieved are still needed. This article addresses the 6 ACGME Core Competencies. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Robotic liver surgery

    Science.gov (United States)

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  19. Getting started with robotics in general surgery with cholecystectomy: the Canadian experience

    Science.gov (United States)

    Jayaraman, Shiva; Davies, Ward; Schlachta, Christopher M.

    2009-01-01

    Background The value of robotics in general surgery may be for advanced minimally invasive procedures. Unlike other specialties, formal fellowship training opportunities for robotic general surgery are few. As a result, most surgeons currently develop robotic skills in practice. Our goal was to determine whether robotic cholecystectomy is a safe and effective bridge to advanced robotics in general surgery. Methods Before performing advanced robotic procedures, 2 surgeons completed the Intuitive Surgical da Vinci training course and agreed to work together on all procedures. Clinical surgery began with da Vinci cholecystectomy with a plan to begin advanced procedures after at least 10 cholecystectomies. We performed a retrospective review of our pilot series of robotic cholecystectomies and compared them with contemporaneous laparoscopic controls. The primary outcome was safety, and the secondary outcome was learning curve. Results There were 16 procedures in the robotics arm and 20 in the laparoscopic arm. Two complications (da Vinci port-site hernia, transient elevation of liver enzymes) occurred in the robotic arm, whereas only 1 laparoscopic patient (slow to awaken from anesthetic) experienced a complication. None was significant. The mean time required to perform robotic cholecystectomy was significantly longer than laparoscopic surgery (91 v. 41 min, p robotic procedures (14 v. 11 min, p = 0.015). We observed a trend showing longer mean anesthesia time for robotic procedures (23 v. 15 min). Regarding learning curve, the mean operative time needed for the first 3 robotic procedures was longer than for the last 3 (101 v. 80 min); however, this difference was not significant. Since this experience, the team has confidently gone on to perform robotic biliary, pancreatic, gastresophageal, intestinal and colorectal operations. Conclusion Robotic cholecystectomy can be performed reliably; however, owing to the significant increase in operating room resources, it

  20. Getting started with robotics in general surgery with cholecystectomy: the Canadian experience.

    Science.gov (United States)

    Jayaraman, Shiva; Davies, Ward; Schlachta, Christopher M

    2009-10-01

    The value of robotics in general surgery may be for advanced minimally invasive procedures. Unlike other specialties, formal fellowship training opportunities for robotic general surgery are few. As a result, most surgeons currently develop robotic skills in practice. Our goal was to determine whether robotic cholecystectomy is a safe and effective bridge to advanced robotics in general surgery. Before performing advanced robotic procedures, 2 surgeons completed the Intuitive Surgical da Vinci training course and agreed to work together on all procedures. Clinical surgery began with da Vinci cholecystectomy with a plan to begin advanced procedures after at least 10 cholecystectomies. We performed a retrospective review of our pilot series of robotic cholecystectomies and compared them with contemporaneous laparoscopic controls. The primary outcome was safety, and the secondary outcome was learning curve. There were 16 procedures in the robotics arm and 20 in the laparoscopic arm. Two complications (da Vinci port-site hernia, transient elevation of liver enzymes) occurred in the robotic arm, whereas only 1 laparoscopic patient (slow to awaken from anesthetic) experienced a complication. None was significant. The mean time required to perform robotic cholecystectomy was significantly longer than laparoscopic surgery (91 v. 41 min, p robotic procedures (14 v. 11 min, p = 0.015). We observed a trend showing longer mean anesthesia time for robotic procedures (23 v. 15 min). Regarding learning curve, the mean operative time needed for the first 3 robotic procedures was longer than for the last 3 (101 v. 80 min); however, this difference was not significant. Since this experience, the team has confidently gone on to perform robotic biliary, pancreatic, gastresophageal, intestinal and colorectal operations. Robotic cholecystectomy can be performed reliably; however, owing to the significant increase in operating room resources, it cannot be justified for routine use. Our

  1. [Robotics in pediatric surgery].

    Science.gov (United States)

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  2. Advancements in robotic-assisted thoracic surgery.

    Science.gov (United States)

    Steenwyk, Brad; Lyerly, Ralph

    2012-12-01

    Advancements in robotic-assisted thoracic surgery present potential advantages for patients as well as new challenges for the anesthesia and surgery teams. This article describes the major aspects of the surgical approach for the most commonly performed robotic-assisted thoracic surgical procedures as well as the pertinent preoperative, intraoperative, and postoperative anesthetic concerns. Copyright © 2012. Published by Elsevier Inc.

  3. Implementation of full patient simulation training in surgical residency.

    Science.gov (United States)

    Fernandez, Gladys L; Lee, Patrick C; Page, David W; D'Amour, Elizabeth M; Wait, Richard B; Seymour, Neal E

    2010-01-01

    Simulated patient care has gained acceptance as a medical education tool but is underused in surgical training. To improve resident clinical management in critical situations relevant to the surgical patient, high-fidelity full patient simulation training was instituted at Baystate Medical Center in 2005 and developed during successive years. We define surgical patient simulation as clinical management performed in a high fidelity environment using a manikin simulator. This technique is intended to be specifically modeled experiential learning related to the knowledge, skills, and behaviors that are fundamental to patient care. We report 3 academic years' use of a patient simulation curriculum. Learners were PGY 1-3 residents; 26 simulated patient care experiences were developed based on (1) designation as a critical management problem that would otherwise be difficult to practice, (2) ability to represent the specific problem in simulation, (3) relevance to the American Board of Surgery (ABS) certifying examination, and/or (4) relevance to institutional quality or morbidity and mortality reports. Although training started in 2005, data are drawn from the period of systematic and mandatory training spanning from July 2006 to June 2009. Training occurred during 1-hour sessions using a computer-driven manikin simulator (METI, Sarasota, Florida). Educational content was provided either before or during presimulation briefing sessions. Scenario areas included shock states, trauma and critical care case management, preoperative processes, and postoperative conditions and complications. All sessions were followed by facilitated debriefing. Likert scale-based multi-item assessments of core competency in medical knowledge, patient care, diagnosis, management, communication, and professionalism were used to generate a performance score for each resident for each simulation (percentage of best possible score). Performance was compared across PGYs by repeated

  4. Chest drainage teaching and training for medical students. Use of a surgical ex vivo pig model.

    Science.gov (United States)

    Tube, Milton Ignacio Carvalho; Netto, Fernando Antonio Campelo Spencer; Costa, Elaine; Lafayette, Daniell de Siqueira Araújo; Lima, George Augusto da Fonseca Carvalho Antunes; Menezes, Jamile Isabela Santos de; Aires, Vinicius Gueiros Buenos; Ferraz, Álvaro Antônio Bandeira; Campos, Josemberg Marins; Moraes, Fernando Ribeiro de

    2016-05-01

    Implement a constructivist approach in thoracic drainage training in surgical ex vivo pig models, to compare the acquisition of homogeneous surgical skills between medical students. Experimental study, prospective, transversal, analytical, controlled, three steps. Selection, training, evaluation. a) students without training in thoracic drainage; b) without exposure to constructivist methodology. 2) EXCLUSION CRITERIA: a) students developed surgical skills; b) a history of allergy. (N = 312). Two groups participated in the study: A and B. Lecture equal for both groups. Differentiated teaching: group A, descriptive and informative method; group B, learning method based on problems. A surgical ex vivo pig model for training the chest drain was created. Were applied pre and post-test, test goal-discursive and OSATS scale. Theoretical averages: Group A = 9.5 ± 0.5; Group B = 8.8 ± 1.1 (p = 0.006). Medium Practices: Group A = 22.8 ± 1.8; Group B = 23.0 ± 2.8 (p <0.001). Through the constructivist methodology implemented in the thoracic drainage training in surgical ex vivo pig models, has proven the acquisition of surgical skills homogeneous compared among medical students.

  5. Tips on Establishing a Robotics Program in an Academic Setting

    Directory of Open Access Journals (Sweden)

    William D. Steers

    2006-01-01

    Full Text Available Over the past 5 years, robotic-assisted laparoscopic surgery has gone from being a novelty to an accepted approach for intra-abdominal and pelvic surgery. Driving this trend has been the large number of robotic-assisted laparoscopic prostatectomies performed throughout the U.S. Nearly a quarter of the prostatectomies done for prostate cancer in the U.S. in 2006 will use robotic assistance, yet reports fail to confirm cost effectiveness. The most important predictor of a successful program is a champion at the institution. Studies have demonstrated safety and immediate benefits with regard to reduced surgical morbidity such as pain, loss of work, quality of life, and blood loss for a variety of surgeries patients. Specific to prostatectomy for cancer, long-term data on biochemical (PSA failures and cancer cures, as well as validated secondary outcomes for continence and potency, are still unavailable. Benefits accrue for the surgeon as well with improved ergonomics and potential extension of a surgical career. Yet, enthusiasm for robotics must be tempered by this lack of data and economic limitations. However, if a thoughtful and thorough process in initiating a robotic program is undertaken, the risks to the institution can be minimized. With proper training, the risk to the patient is reduced and with due diligence with regard to market and operative resources, the risk to the surgeon can be eliminated. This report reviews the steps to assess, plan, initiate, and maintain a robotics program at an academic institution with the hope that other programs can benefit from lessons acquired by early adopters of this expensive technology.

  6. Adoption of robotics in a general surgery residency program: at what cost?

    Science.gov (United States)

    Mehaffey, J Hunter; Michaels, Alex D; Mullen, Matthew G; Yount, Kenan W; Meneveau, Max O; Smith, Philip W; Friel, Charles M; Schirmer, Bruce D

    2017-06-01

    Robotic technology is increasingly being utilized by general surgeons. However, the impact of introducing robotics to surgical residency has not been examined. This study aims to assess the financial costs and training impact of introducing robotics at an academic general surgery residency program. All patients who underwent laparoscopic or robotic cholecystectomy, ventral hernia repair (VHR), and inguinal hernia repair (IHR) at our institution from 2011-2015 were identified. The effect of robotic surgery on laparoscopic case volume was assessed with linear regression analysis. Resident participation, operative time, hospital costs, and patient charges were also evaluated. We identified 2260 laparoscopic and 139 robotic operations. As the volume of robotic cases increased, the number of laparoscopic cases steadily decreased. Residents participated in all laparoscopic cases and 70% of robotic cases but operated from the robot console in only 21% of cases. Mean operative time was increased for robotic cholecystectomy (+22%), IHR (+55%), and VHR (+61%). Financial analysis revealed higher median hospital costs per case for robotic cholecystectomy (+$411), IHR (+$887), and VHR (+$1124) as well as substantial associated fixed costs. Introduction of robotic surgery had considerable negative impact on laparoscopic case volume and significantly decreased resident participation. Increased operative time and hospital costs are substantial. An institution must be cognizant of these effects when considering implementing robotics in departments with a general surgery residency program. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Robotic general surgery: current practice, evidence, and perspective.

    Science.gov (United States)

    Jung, M; Morel, P; Buehler, L; Buchs, N C; Hagen, M E

    2015-04-01

    Robotic technology commenced to be adopted for the field of general surgery in the 1990s. Since then, the da Vinci surgical system (Intuitive Surgical Inc, Sunnyvale, CA, USA) has remained by far the most commonly used system in this domain. The da Vinci surgical system is a master-slave machine that offers three-dimensional vision, articulated instruments with seven degrees of freedom, and additional software features such as motion scaling and tremor filtration. The specific design allows hand-eye alignment with intuitive control of the minimally invasive instruments. As such, robotic surgery appears technologically superior when compared with laparoscopy by overcoming some of the technical limitations that are imposed on the surgeon by the conventional approach. This article reviews the current literature and the perspective of robotic general surgery. While robotics has been applied to a wide range of general surgery procedures, its precise role in this field remains a subject of further research. Until now, only limited clinical evidence that could establish the use of robotics as the gold standard for procedures of general surgery has been created. While surgical robotics is still in its infancy with multiple novel systems currently under development and clinical trials in progress, the opportunities for this technology appear endless, and robotics should have a lasting impact to the field of general surgery.

  8. Application of robotics in general surgery: initial experience.

    Science.gov (United States)

    Nguyen, Ninh T; Hinojosa, Marcelo W; Finley, David; Stevens, Melinda; Paya, Mahbod

    2004-10-01

    Robotic surgery was recently approved for clinical use in general abdominal surgery. The aim of this study was to review our experience with the da Vinci surgical system during laparoscopic general surgical procedures. Eighteen patients underwent robotically assisted laparoscopic abdominal surgery between June 2002 and March 2003. Main outcome measures were operative time, room setup time, robotic arm-positioning and surgical time, blood loss, conversion to laparoscopy, length of stay, and morbidity. The types of robotically assisted laparoscopic procedures were excision of gastric leiomyoma (n = 1), Heller myotomy (n = 1), cholecystectomy (n = 2), gastric banding (n = 2), Nissen fundoplication (n = 4), and gastric bypass (n = 8). The mean room setup time was 63 +/- 14 minutes, and the mean robotic arm-positioning time was 16 +/- 7 minutes. Conversion to laparoscopy occurred in two (11%) of 18 cases because of equipment difficulty (n = 1) and technical difficulty (n = 1). Estimated blood loss was 91 +/- 71 mL. The mean operative time was 156 +/- 42 minutes, and the robotic operative time was 27% of the total operative time. The mean length of hospital stay was 2.2 +/- 1.5 days. There was one postoperative wound infection and one anastomotic stricture. Robotically assisted laparoscopic abdominal surgery is feasible and safe; however, the theoretical advantages of the da Vinci surgical system were not clinically apparent.

  9. Higher surgical training opportunities in the general hospital setting; getting the balance right.

    Science.gov (United States)

    Robertson, I; Traynor, O; Khan, W; Waldron, R; Barry, K

    2013-12-01

    The general hospital can play an important role in training of higher surgical trainees (HSTs) in Ireland and abroad. Training opportunities in such a setting have not been closely analysed to date. The aim of this study was to quantify operative exposure for HSTs over a 5-year period in a single institution. Analysis of electronic training logbooks (over a 5-year period, 2007-2012) was performed for general surgery trainees on the higher surgical training programme in Ireland. The most commonly performed adult and paediatric procedures per trainee, per year were analysed. Standard general surgery operations such as herniae (average 58, range 32-86) and cholecystectomy (average 60, range 49-72) ranked highly in each logbook. The most frequently performed emergency operations were appendicectomy (average 45, range 33-53) and laparotomy for acute abdomen (average 48, range 10-79). Paediatric surgical experience included appendicectomy, circumcision, orchidopexy and hernia/hydrocoele repair. Overall, the procedure most commonly performed in the adult setting was endoscopy, with each trainee recording an average of 116 (range 98-132) oesophagogastroduodenoscopies and 284 (range 227-354) colonoscopies. General hospitals continue to play a major role in the training of higher surgical trainees. Analysis of the electronic logbooks over a 5-year period reveals the high volume of procedures available to trainees in a non-specialist centre. Such training opportunities are invaluable in the context of changing work practices and limited resources.

  10. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study.

    Science.gov (United States)

    Maddox, Michael M; Feibus, Allison; Liu, James; Wang, Julie; Thomas, Raju; Silberstein, Jonathan L

    2018-03-01

    To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.

  11. Transoral robotic assisted resection of the parapharyngeal space.

    Science.gov (United States)

    Mendelsohn, Abie H

    2015-02-01

    Preliminary case series have reported clinical feasibility and safety of a transoral minimally invasive technique to approach parapharyngeal space masses. With the assistance of the surgical robotic system, tumors within the parapharyngeal space can now be excised safely without neck incisions. A detailed technical description is included. After developing compressive symptoms from a parapharyngeal space lipomatous tumor, the patient was referred by his primary otolaryngologist because of poor open surgical access to the nasopharyngeal component of the tumor. Transoral robotic assisted resection of a 54- × 46-mm parapharyngeal space mass was performed, utilizing 97 minutes of robotic surgical time. Pictorial demonstration of the robotic resection is provided. Parapharyngeal space tumors have traditionally been approached via transcervical skin incisions, typically including blunt dissection from tactile feedback. The transoral robotic approach offers magnified 3D visualization of the parapharyngeal space that allows for complete and safe resection. © 2014 Wiley Periodicals, Inc.

  12. Virtual vitreoretinal surgery: construction of a training programme on the Eyesi Surgical Simulator

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Vestergaard, Anders Højslet; Grauslund, Jakob

    Purpose: The purpose of this study was to test the construct validity of a full virtual reality vitreoretinal training program at the Eyesi Surgical simulator. Design and methods: A virtual vitreoretinal training program was composed on the Eyesi Surgical simulator, software version 2.9.2 (VRmagic...... GmbH, Manheim, Germany). It was completed twice by three groups: Group 1: Twenty medical students Group 2: Ten ophthalmology residents Group 3: Five vitreoretinal surgeons The program consisted of six training modules (Figure 1): Navigation level 2 (Nav2) Forceps Training level 5 (ForT5) Bimanual...... developed a training program in virtual vitreoretinal surgery with construct validity for four out of six modules and for overall score. This makes the program a useful tool in the training of future vitreoretinal surgeons....

  13. European Association of Endoscopic Surgeons (EAES) consensus statement on the use of robotics in general surgery.

    Science.gov (United States)

    Szold, Amir; Bergamaschi, Roberto; Broeders, Ivo; Dankelman, Jenny; Forgione, Antonello; Langø, Thomas; Melzer, Andreas; Mintz, Yoav; Morales-Conde, Salvador; Rhodes, Michael; Satava, Richard; Tang, Chung-Ngai; Vilallonga, Ramon

    2015-02-01

    Following an extensive literature search and a consensus conference with subject matter experts the following conclusions can be drawn: 1. Robotic surgery is still at its infancy, and there is a great potential in sophisticated electromechanical systems to perform complex surgical tasks when these systems evolve. 2. To date, in the vast majority of clinical settings, there is little or no advantage in using robotic systems in general surgery in terms of clinical outcome. Dedicated parameters should be addressed, and high quality research should focus on quality of care instead of routine parameters, where a clear advantage is not to be expected. 3. Preliminary data demonstrates that robotic system have a clinical benefit in performing complex procedures in confined spaces, especially in those that are located in unfavorable anatomical locations. 4. There is a severe lack of high quality data on robotic surgery, and there is a great need for rigorously controlled, unbiased clinical trials. These trials should be urged to address the cost-effectiveness issues as well. 5. Specific areas of research should include complex hepatobiliary surgery, surgery for gastric and esophageal cancer, revisional surgery in bariatric and upper GI surgery, surgery for large adrenal masses, and rectal surgery. All these fields show some potential for a true benefit of using current robotic systems. 6. Robotic surgery requires a specific set of skills, and needs to be trained using a dedicated, structured training program that addresses the specific knowledge, safety issues and skills essential to perform this type of surgery safely and with good outcomes. It is the responsibility of the corresponding professional organizations, not the industry, to define the training and credentialing of robotic basic skills and specific procedures. 7. Due to the special economic environment in which robotic surgery is currently employed special care should be taken in the decision making process when

  14. Robotic nephroureterectomy: a simplified approach requiring no patient repositioning or robot redocking.

    Science.gov (United States)

    Zargar, Homayoun; Krishnan, Jayram; Autorino, Riccardo; Akca, Oktay; Brandao, Luis Felipe; Laydner, Humberto; Samarasekera, Dinesh; Ko, Oliver; Haber, Georges-Pascal; Kaouk, Jihad H; Stein, Robert J

    2014-10-01

    Robotic technology is increasingly adopted in urologic surgery and a variety of techniques has been described for minimally invasive treatment of upper tract urothelial cancer (UTUC). To describe a simplified surgical technique of robot-assisted nephroureterectomy (RANU) and to report our single-center surgical outcomes. Patients with history of UTUC treated with this modality between April 2010 and August 2013 were included in the analysis. Institutional review board approval was obtained. Informed consent was signed by all patients. A simplified single-step RANU not requiring repositioning or robot redocking. Lymph node dissection was performed selectively. Descriptive analysis of patients' characteristics, perioperative outcomes, histopathology, and short-term follow-up data was performed. The analysis included 31 patients (mean age: 72.4±10.6 yr; mean body mass index: 26.6±5.1kg/m(2)). Twenty-six of 30 tumors (86%) were high grade. Mean tumor size was 3.1±1.8cm. Of the 31 patients, 13 (42%) had pT3 stage disease. One periureteric positive margin was noted in a patient with bulky T3 disease. The mean number of lymph nodes removed was 9.4 (standard deviation: 5.6; range: 3-21). Two of 14 patients (14%) had positive lymph nodes on final histology. No patients required a blood transfusion. Six patients experienced complications postoperatively, with only one being a high grade (Clavien 3b) complication. Median hospital stay was 5 d. Within the follow-up period, seven patients experienced bladder recurrences and four patients developed metastatic disease. Our RANU technique eliminates the need for patient repositioning or robot redocking. This technique can be safely reproduced, with surgical outcomes comparable to other established techniques. We describe a surgical technique using the da Vinci robot for a minimally invasive treatment of patients presenting with upper tract urothelial cancer. This technique can be safely implemented with good surgical outcomes

  15. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.

    Science.gov (United States)

    Fleerkotte, Bertine M; Koopman, Bram; Buurke, Jaap H; van Asseldonk, Edwin H F; van der Kooij, Herman; Rietman, Johan S

    2014-03-04

    There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10 MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6 MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Robotic gait training using an impedance-controlled robot is feasible in gait

  16. A cross sectional study of surgical training among United Kingdom general practitioners with specialist interests in surgery.

    Science.gov (United States)

    Ferguson, H J M; Fitzgerald, J E F; Reilly, J; Beamish, A J; Gokani, V J

    2015-04-08

    Increasing numbers of minor surgical procedures are being performed in the community. In the UK, general practitioners (family medicine physicians) with a specialist interest (GPwSI) in surgery frequently undertake them. This shift has caused decreases in available cases for junior surgeons to gain and consolidate operative skills. This study evaluated GPwSI's case-load, procedural training and perceptions of offering formalised operative training experience to surgical trainees. Prospective, questionnaire-based cross-sectional study. A novel, 13-item, self-administered questionnaire was distributed to members of the Association of Surgeons in Primary Care (ASPC). A total 113 of 120 ASPC members completed the questionnaire, representing a 94% response rate. Respondents were general practitioners practising or intending to practice surgery in the community. Respondents performed a mean of 38 (range 5-150) surgical procedures per month in primary care. 37% (42/113) of respondents had previously been awarded Membership or Fellowship of a Surgical Royal College; 22% (25/113) had completed a surgical certificate or diploma or undertaken a course of less than 1 year duration. 41% (46/113) had no formal British surgical qualifications. All respondents believed that surgical training in primary care could be valuable for surgical trainees, and the majority (71/113, 63%) felt that both general practice and surgical trainees could benefit equally from such training. There is a significant volume of surgical procedures being undertaken in the community by general practitioners, with the capacity and appetite for training of prospective surgeons in this setting, providing appropriate standards are achieved and maintained, commensurate with current standards in secondary care. Surgical experience and training of GPwSI's in surgery is highly varied, and does not yet benefit from the quality assurance secondary care surgical training in the UK undergoes. The Royal Colleges of

  17. Surgical training in your hands: organising a skills course.

    Science.gov (United States)

    Burnand, Henry; Mutimer, Jon

    2012-12-01

    The advent of simulated surgical skills courses has brought dynamic changes to the traditional approach to acquiring practical skills in surgery. Teaching is a core part of the surgical profession, and any trainee can be involved in the organisation of skills training courses. This paper outlines the importance of organising surgical skills courses for trainees, and provides a practical guide on how to do so within busy clinical environments. The paper examines how to plan a course, how to design the programme, and provides tips on faculty staff requirements, venue, finance and participants, with additional suggestions for assessment and evaluation. We recommend the organisation of skills courses to any trainee. By following key ground rules, the surgical trainee can enable the acquisition of advanced learning opportunities and the ability to demonstrate valuable organisational skills. © Blackwell Publishing Ltd 2012.

  18. Integrated surgical academic training in the UK: a cross-sectional survey.

    Science.gov (United States)

    Blencowe, Natalie S; Glasbey, James C; McElnay, Philip J; Bhangu, Aneel; Gokani, Vimal J; Harries, Rhiannon L

    2017-10-01

    This study aimed to explore variations in the provision of integrated academic surgical training across the UK. This is an online cross-sectional survey (consisting of 44 items with a range of free-text, binomial and 5-point Likert scale responses) developed by the Association of Surgeons in Training. A self-reported survey instrument was distributed to academic surgical trainees across the UK (n=276). 143 (51.9%) responses were received (81% male, median age: 34 years), spanning all UK regions and surgical specialties. Of the 143 trainees, 29 were core trainees (20.3%), 99 were specialty trainees (69.2%) and 15 (10.5%) described themselves as research fellows. The structure of academic training varied considerably, with under a third of trainees receiving guaranteed protected time for research. Despite this, however, 53.1% of the respondents reported to be satisfied with how their academic training was organised. Covering clinical duties during academic time occurred commonly (72.7%). Although most trainees (n=88, 61.5%) met with their academic supervisor at least once a month, six (4.2%) never had an academic supervisory meeting. Most trainees (n=90, 62.9%) occupied a full-time rota slot and only 9.1% (n=13) described their role as 'supernumerary'. Although 58.7% (n=84) of the trainees were satisfied with their clinical competence, 37.8% (n=54) felt that clinical time focused more on service provision than the acquisition of technical skills. 58 (40.6%) had experienced some form of negative sentiment relating to their status as an academic trainee. Integrated academic training presents unique challenges and opportunities within surgery. This survey has identified variation in the quality of current programmes, meaning that the future provision of integrated surgical academic training should be carefully considered. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is

  19. Laser assisted robotic surgery in cornea transplantation

    Science.gov (United States)

    Rossi, Francesca; Micheletti, Filippo; Magni, Giada; Pini, Roberto; Menabuoni, Luca; Leoni, Fabio; Magnani, Bernardo

    2017-03-01

    Robotic surgery is a reality in several surgical fields, such as in gastrointestinal surgery. In ophthalmic surgery the required high spatial precision is limiting the application of robotic system, and even if several attempts have been designed in the last 10 years, only some application in retinal surgery were tested in animal models. The combination of photonics and robotics can really open new frontiers in minimally invasive surgery, improving the precision, reducing tremor, amplifying scale of motion, and automating the procedure. In this manuscript we present the preliminary results in developing a vision guided robotic platform for laser-assisted anterior eye surgery. The robotic console is composed by a robotic arm equipped with an "end effector" designed to deliver laser light to the anterior corneal surface. The main intended application is for laser welding of corneal tissue in laser assisted penetrating keratoplasty and endothelial keratoplasty. The console is equipped with an integrated vision system. The experiment originates from a clear medical demand in order to improve the efficacy of different surgical procedures: when the prototype will be optimized, other surgical areas will be included in its application, such as neurosurgery, urology and spinal surgery.

  20. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Network analysis of surgical innovation: Measuring value and the virality of diffusion in robotic surgery.

    Science.gov (United States)

    Garas, George; Cingolani, Isabella; Panzarasa, Pietro; Darzi, Ara; Athanasiou, Thanos

    2017-01-01

    Existing surgical innovation frameworks suffer from a unifying limitation, their qualitative nature. A rigorous approach to measuring surgical innovation is needed that extends beyond detecting simply publication, citation, and patent counts and instead uncovers an implementation-based value from the structure of the entire adoption cascades produced over time by diffusion processes. Based on the principles of evidence-based medicine and existing surgical regulatory frameworks, the surgical innovation funnel is described. This illustrates the different stages through which innovation in surgery typically progresses. The aim is to propose a novel and quantitative network-based framework that will permit modeling and visualizing innovation diffusion cascades in surgery and measuring virality and value of innovations. Network analysis of constructed citation networks of all articles concerned with robotic surgery (n = 13,240, Scopus®) was performed (1974-2014). The virality of each cascade was measured as was innovation value (measured by the innovation index) derived from the evidence-based stage occupied by the corresponding seed article in the surgical innovation funnel. The network-based surgical innovation metrics were also validated against real world big data (National Inpatient Sample-NIS®). Rankings of surgical innovation across specialties by cascade size and structural virality (structural depth and width) were found to correlate closely with the ranking by innovation value (Spearman's rank correlation coefficient = 0.758 (p = 0.01), 0.782 (p = 0.008), 0.624 (p = 0.05), respectively) which in turn matches the ranking based on real world big data from the NIS® (Spearman's coefficient = 0.673;p = 0.033). Network analysis offers unique new opportunities for understanding, modeling and measuring surgical innovation, and ultimately for assessing and comparing generative value between different specialties. The novel surgical innovation metrics developed may

  2. Load evaluation of the da Vinci surgical system for transoral robotic surgery.

    Science.gov (United States)

    Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kitano, Hiroya

    2015-12-01

    Transoral robotic surgery, performed with the da Vinci surgical system (da Vinci), is a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a 3-dimensional magnified view and ability to see and work around curves or angles. However, the current da Vinci surgical system does not provide haptic feedback. This is problematic because the potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury and mandibular fracture. To assess the potential for intraoperative injuries, we measured the load of the endoscope and the instrument of the da Vinci Si surgical system. We pressed the endoscope and instrument of the da Vinci Si against Load cell six times each and measured the dynamic load and the time-to-maximum load. We also struck the da Vinci Si endoscope and instrument against the Load cell six times each and measured the impact load. The maximum dynamic load was 7.27 ± 1.31 kg for the endoscope and 1.90 ± 0.72 for the instrument. The corresponding time-to-maximum loads were 1.72 ± 0.22 and 1.29 ± 0.34 s, but the impact loads were significantly lower than the dynamic load. It remains possible that a major load is exerted on adjacent structures by continuous contact with the endoscope and instrument of da Vinci Si. However, there is a minor delay in reaching the maximum load. Careful monitoring by an on-site assistant may, therefore, help prevent contiguous injury.

  3. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...... affect the overall latency. To measure the photon-to-photon latency, we used a microcontroller to determine the time between the activation of a lightemitting diode in front of the endoscopic camera and the corresponding increase in intensity of the surgeon's display as measured by a phototransistor...

  4. Arm reduced robotic-assisted laparoscopic hysterectomy with transvaginal cuff closure.

    Science.gov (United States)

    Bodur, Serkan; Dede, Murat; Fidan, Ulas; Firatligil, Burcin F; Ulubay, Mustafa; Ozturk, Mustafa; Yenen, Mufit C

    2017-09-01

    The use of robotics for benign etiology in gynecology has not proven to be more beneficial when compared to traditional laparoscopy. The major concern regarding robotic hysterectomy stems from its high cost. To evaluate the clinical utility and effectiveness of one-arm reduced robotic-assisted laparoscopic hysterectomy as a cost-effective surgical option for total robotic hysterectomy. A sample population of 54 women who underwent robotic-assisted laparoscopic surgery for benign gynecologic indications was evaluated, and two groups were identified: (1) the two-armed robotic-assisted laparoscopic surgery group (n = 38 patients), and (2) the three-armed robotic-assisted laparoscopic surgery group (n = 16 patients). An increased cost was observed when three-armed robotic surgery was employed for benign gynecologic surgery (p < 0.001). The cost reduction observed in the study group was primarily derived from one robotic arm reduction and vaginal closure of the cuff. This cost reduction was achieved without an increase in complication rates or undesirable postoperative outcomes. An estimated profit between $399.5 and $421.5 was made for each patient depending on the suture material chosen for cuff closure. Two-armed surgery resulted in an 18.6% reduction in procedure-specific costs for robotic hysterectomy. Two-armed robotic-assisted laparoscopic hysterectomy appears to be a cost-effective solution for robotic gynecologic surgery. This surgical solution can be performed as effectively as classical three-armed robotic hysterectomies for benign indications without the risk of increased surgical-related morbidities. This approach has the potential to be a widely preferred surgical approach in medical communities where cost reduction is one of the primary determinants of surgery type.

  5. The immediate intervention effects of robotic training in patients after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao

    2016-07-01

    [Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training.

  6. Assessment of Robotic Patient Simulators for Training in Manual Physical Therapy Examination Techniques

    Science.gov (United States)

    Ishikawa, Shun; Okamoto, Shogo; Isogai, Kaoru; Akiyama, Yasuhiro; Yanagihara, Naomi; Yamada, Yoji

    2015-01-01

    Robots that simulate patients suffering from joint resistance caused by biomechanical and neural impairments are used to aid the training of physical therapists in manual examination techniques. However, there are few methods for assessing such robots. This article proposes two types of assessment measures based on typical judgments of clinicians. One of the measures involves the evaluation of how well the simulator presents different severities of a specified disease. Experienced clinicians were requested to rate the simulated symptoms in terms of severity, and the consistency of their ratings was used as a performance measure. The other measure involves the evaluation of how well the simulator presents different types of symptoms. In this case, the clinicians were requested to classify the simulated resistances in terms of symptom type, and the average ratios of their answers were used as performance measures. For both types of assessment measures, a higher index implied higher agreement among the experienced clinicians that subjectively assessed the symptoms based on typical symptom features. We applied these two assessment methods to a patient knee robot and achieved positive appraisals. The assessment measures have potential for use in comparing several patient simulators for training physical therapists, rather than as absolute indices for developing a standard. PMID:25923719

  7. Assessment of robotic patient simulators for training in manual physical therapy examination techniques.

    Directory of Open Access Journals (Sweden)

    Shun Ishikawa

    Full Text Available Robots that simulate patients suffering from joint resistance caused by biomechanical and neural impairments are used to aid the training of physical therapists in manual examination techniques. However, there are few methods for assessing such robots. This article proposes two types of assessment measures based on typical judgments of clinicians. One of the measures involves the evaluation of how well the simulator presents different severities of a specified disease. Experienced clinicians were requested to rate the simulated symptoms in terms of severity, and the consistency of their ratings was used as a performance measure. The other measure involves the evaluation of how well the simulator presents different types of symptoms. In this case, the clinicians were requested to classify the simulated resistances in terms of symptom type, and the average ratios of their answers were used as performance measures. For both types of assessment measures, a higher index implied higher agreement among the experienced clinicians that subjectively assessed the symptoms based on typical symptom features. We applied these two assessment methods to a patient knee robot and achieved positive appraisals. The assessment measures have potential for use in comparing several patient simulators for training physical therapists, rather than as absolute indices for developing a standard.

  8. Assessment of robotic patient simulators for training in manual physical therapy examination techniques.

    Science.gov (United States)

    Ishikawa, Shun; Okamoto, Shogo; Isogai, Kaoru; Akiyama, Yasuhiro; Yanagihara, Naomi; Yamada, Yoji

    2015-01-01

    Robots that simulate patients suffering from joint resistance caused by biomechanical and neural impairments are used to aid the training of physical therapists in manual examination techniques. However, there are few methods for assessing such robots. This article proposes two types of assessment measures based on typical judgments of clinicians. One of the measures involves the evaluation of how well the simulator presents different severities of a specified disease. Experienced clinicians were requested to rate the simulated symptoms in terms of severity, and the consistency of their ratings was used as a performance measure. The other measure involves the evaluation of how well the simulator presents different types of symptoms. In this case, the clinicians were requested to classify the simulated resistances in terms of symptom type, and the average ratios of their answers were used as performance measures. For both types of assessment measures, a higher index implied higher agreement among the experienced clinicians that subjectively assessed the symptoms based on typical symptom features. We applied these two assessment methods to a patient knee robot and achieved positive appraisals. The assessment measures have potential for use in comparing several patient simulators for training physical therapists, rather than as absolute indices for developing a standard.

  9. Avoiding Surgical Skill Decay: A Systematic Review on the Spacing of Training Sessions.

    Science.gov (United States)

    Cecilio-Fernandes, Dario; Cnossen, Fokie; Jaarsma, Debbie A D C; Tio, René A

    Spreading training sessions over time instead of training in just 1 session leads to an improvement of long-term retention for factual knowledge. However, it is not clear whether this would also apply to surgical skills. Thus, we performed a systematic review to find out whether spacing training sessions would also improve long-term retention of surgical skills. We searched the Medline, PsycINFO, Embase, Eric, and Web of Science online databases. We only included articles that were randomized trials with a sample of medical trainees acquiring surgical motor skills in which the spacing effect was reported. The quality and bias of the articles were assessed using the Cochrane Collaboration's risk of bias assessment tool. With respect to the spacing effect, 1955 articles were retrieved. After removing duplicates and articles that did not meet the inclusion criteria, 11 articles remained. The overall quality of the experiments was "moderate." Trainees in the spaced condition scored higher in a retention test than students in the massed condition. Our systematic review showed evidence that spacing training sessions improves long-term surgical skills retention when compared to massed practice. However, the optimal gap between the re-study sessions is unclear. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  10. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial

    Science.gov (United States)

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano

    2016-01-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928

  11. Virtual Reality Training System for Anytime/Anywhere Acquisition of Surgical Skills: A Pilot Study.

    Science.gov (United States)

    Zahiri, Mohsen; Booton, Ryan; Nelson, Carl A; Oleynikov, Dmitry; Siu, Ka-Chun

    2018-03-01

    This article presents a hardware/software simulation environment suitable for anytime/anywhere surgical skills training. It blends the advantages of physical hardware and task analogs with the flexibility of virtual environments. This is further enhanced by a web-based implementation of training feedback accessible to both trainees and trainers. Our training system provides a self-paced and interactive means to attain proficiency in basic tasks that could potentially be applied across a spectrum of trainees from first responder field medical personnel to physicians. This results in a powerful training tool for surgical skills acquisition relevant to helping injured warfighters.

  12. Optimized positioning of autonomous surgical lamps

    Science.gov (United States)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  13. Appropriate working hours for surgical training according to Australasian trainees.

    Science.gov (United States)

    O'Grady, Gregory; Harper, Simon; Loveday, Benjamin; Adams, Brandon; Civil, Ian D; Peters, Matthew

    2012-04-01

    The demands of surgical training, learning and service delivery compete with the need to minimize fatigue and maintain an acceptable lifestyle. The optimal balance of working hours is uncertain. This study aimed to define the appropriate hours to meet these requirements according to trainees. All Australian and New Zealand surgical trainees were surveyed. Roster structures, weekly working hours and weekly 'sleep loss hours' (work practices were then correlated with sufficiency of training time, time for study, fatigue and its impacts, and work-life balance preferences. Multivariate and univariate analyses were performed. The response rate was 55.3% with responders representative of the total trainee body. Trainees who worked median 60 h/week (interquartile range: 55-65) considered their work hours to be appropriate for 'technical' and 'non-technical' training needs compared with 55 h/week (interquartile range: 50-60) regarded as appropriate for study/research needs. Working ≥65 h/week, or accruing ≥5.5 weekly 'sleep loss hours', was associated with increased fatigue, reduced ability to study, more frequent dozing while driving and impaired concentration at work. Trainees who considered they had an appropriate work-life balance worked median 55 h/week. Approximately, 60 h/week proved an appropriate balance of working hours for surgical training, although study and lifestyle demands are better met at around 55 h/week. Sleep loss is an important determinant of fatigue and its impacts, and work hours should not be considered in isolation. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  14. How to set up a robotic-assisted laparoscopic surgery center and training of staff.

    Science.gov (United States)

    Lenihan, John P

    2017-11-01

    The use of computers to assist surgeons in the operating room has been an inevitable evolution in the modern practice of surgery. Robotic-assisted surgery has been evolving now for over two decades and has finally matured into a technology that has caused a monumental shift in the way gynecologic surgeries are performed. Prior to robotics, the only minimally invasive options for most Gynecologic (GYN) procedures including hysterectomies were either vaginal or laparoscopic approaches. However, even with over 100 years of vaginal surgery experience and more than 20 years of laparoscopic advancements, most gynecologic surgeries in the United States were still performed through an open incision. However, this changed in 2005 when the FDA approved the da Vinci Surgical Robotic System tm for use in gynecologic surgery. Over the last decade, the trend for gynecologic surgeries has now dramatically shifted to less open and more minimally invasive procedures. Robotic-assisted surgeries now include not only hysterectomy but also most all other commonly performed gynecologic procedures including myomectomies, pelvic support procedures, and reproductive surgeries. This success, however, has not been without controversies, particularly around costs and complications. The evolution of computers to assist surgeons and make minimally invasive procedures more common is clearly a trend that is not going away. It is now incumbent on surgeons, hospitals, and medical societies to determine the most cost-efficient and productive use for this technology. This process is best accomplished by developing a Robotics Program in each hospital that utilizes robotic surgery. Copyright © 2017. Published by Elsevier Ltd.

  15. Research on micromanipulator’s clamping force sensing based on static wirerope tension of a surgical robot

    Directory of Open Access Journals (Sweden)

    Lingtao Yu

    2015-04-01

    Full Text Available The micromanipulator’s force feedback is one of the key research contents of minimally invasive surgical robotic system. Because the micromanipulator is a kind of compact construction which is suitable for valve installation with small space in surgery, especially for the influence of disinfection method, there are major difficulties and limitations to integrate compact sensors in the end of micromanipulator. This article focuses on the 3-degree-of-freedom micromanipulator’s clamping force sensing, and these three joints are actuated by wirerope driving. A clamping force sensing method is proposed based on static tension of wirerope driving, and a static model between the clamping force and wirerope’s static tension is established considering the influence of real friction resistance in the mechanical system. Finally, an equivalent experimental test platform for 3-degree-of-freedom micromanipulator’s clamping force sensing is set up, and then a series of experiments of the clamping force are studied. The frictional resistances of wirerope between the guide plate and guide pulley mechanism are tested, and a calibration and correction method of the experimental clamping force is proposed. The final experiment results show that the total average accuracy of experimental clamping force is about 78.3%, and it can be the basic measurement force to realize micromanipulator’s clamping force feedback of a minimally invasive surgical robot.

  16. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases

    Directory of Open Access Journals (Sweden)

    Nef Tobias

    2009-12-01

    Full Text Available Abstract Background Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. Methods ARMin II is an exoskeleton robot with six degrees of freedom (DOF moving shoulder, elbow and wrist joints. Four volunteers with chronic (≥ 12 months post-stroke left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour. Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA, secondary outcomes were the Wolf Motor Function Test (WMFT, the Catherine Bergego Scale (CBS, the Maximal Voluntary Torques (MVTs and a questionnaire about ADL-tasks, progress, changes, motivation etc. Results Three out of four patients showed significant improvements (p Conclusion Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.

  17. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  18. Robot-assisted training for heart failure patients - a small pilot study.

    Science.gov (United States)

    Schoenrath, Felix; Markendorf, Susanne; Brauchlin, Andreas Emil; Frank, Michelle; Wilhelm, Markus Johannes; Saleh, Lanja; Riener, Robert; Schmied, Christian Marc; Falk, Volkmar

    2015-12-01

    The objective of this study was assess robot-assisted gait therapy with the Lokomat® system in heart failure patients. Patients (n = 5) with stable heart failure and a left ventricular ejection fraction of less than 45% completed a four-week aerobic training period with three trainings per week and an integrated dynamic resistance training of the lower limbs. Patients underwent testing of cardiac and inflammatory biomarkers. A cardiopulmonary exercise test, a quality of life score and an evaluation of the muscular strength by measuring the peak quadriceps force was performed. No adverse events occurred. The combined training resulted in an improvement in peak work rate (range: 6% to 36%) and peak quadriceps force (range: 3% to 80%) in all participants. Peak oxygen consumption (range: –3% to + 61%) increased in three, and oxygen pulse (range: –7% to + 44%) in four of five patients. The quality of life assessment indicated better well-being in all participants. NT-ProBNP (+233 to –733 ng/ml) and the inflammatory biomarkers (hsCRP and IL6) decreased in four of five patients (IL 6: +0.5 to –2 mg/l, hsCRP: +0.2 to –6.5 mg/l). Robot-assisted gait therapy with the Lokomat® System is feasible in heart failure patients and was safe in this trial. The combined aerobic and resistance training intervention with augmented feedback resulted in benefits in exercise capacity, muscle strength and quality of life, as well as an improvement of cardiac (NT-ProBNP) and inflammatory (IL6, hsCRP) biomarkers. Results can only be considered as preliminary and need further validation in larger studies. (ClinicalTrials.gov number, NCT 02146196)

  19. Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study

    Directory of Open Access Journals (Sweden)

    Friedman Joseph H

    2010-10-01

    Full Text Available Abstract Background Parkinson's disease is a chronic, neurodegenerative disease characterized by gait abnormalities. Freezing of gait (FOG, an episodic inability to generate effective stepping, is reported as one of the most disabling and distressing parkinsonian symptoms. While there are no specific therapies to treat FOG, some external physical cues may alleviate these types of motor disruptions. The purpose of this study was to examine the potential effect of continuous physical cueing using robot-assisted sensorimotor gait training on reducing FOG episodes and improving gait. Methods Four individuals with Parkinson's disease and FOG symptoms received ten 30-minute sessions of robot-assisted gait training (Lokomat to facilitate repetitive, rhythmic, and alternating bilateral lower extremity movements. Outcomes included the FOG-Questionnaire, a clinician-rated video FOG score, spatiotemporal measures of gait, and the Parkinson's Disease Questionnaire-39 quality of life measure. Results All participants showed a reduction in FOG both by self-report and clinician-rated scoring upon completion of training. Improvements were also observed in gait velocity, stride length, rhythmicity, and coordination. Conclusions This pilot study suggests that robot-assisted gait training may be a feasible and effective method of reducing FOG and improving gait. Videotaped scoring of FOG has the potential advantage of providing additional data to complement FOG self-report.

  20. Fresh frozen cadaver workshops for advanced vascular surgical training.

    Science.gov (United States)

    Jansen, Shirley; Cowie, Margaret; Linehan, John; Hamdorf, Jeffery M

    2014-11-01

    Reduction in working hours, streamlined training schemes and increasing use of endovascular techniques has meant a reduction in operative experience for newer vascular surgical trainees, especially those exposures which are not routinely performed such as thoracoabdominal, thoracotomy and retroperitoneal aortic, for example. This paper describes an Advanced Anatomy of Exposure course which was designed and convened at the Clinical Training & Evaluation Centre in Western Australia and uses fresh frozen cadavers. Feedback was obtained from the participants who attended over three courses by questionnaire. Feedback was strongly positive for the course meeting both its learning outcomes and personal learning objectives, and in addition, making a significant contribution to specialty skills. Most participants thought the fresh frozen cadaveric model significantly improved the learning objectives for training. The fresh frozen cadaver is an excellent teaching model highly representative of the living open surgical scenario where advanced trainees and newly qualified consultants can improve their operative confidence and consequently patient safety in vascular surgery. An efficient fresh frozen cadaver teaching programme can benefit many health professionals simultaneously maximizing the use of donated human tissue. © 2013 Royal Australasian College of Surgeons.

  1. From Leonardo to da Vinci: the history of robot-assisted surgery in urology.

    Science.gov (United States)

    Yates, David R; Vaessen, Christophe; Roupret, Morgan

    2011-12-01

    What's known on the subject? and What does the study add? Numerous urological procedures can now be performed with robotic assistance. Though not definitely proven to be superior to conventional laparoscopy or traditional open surgery in the setting of a randomised trial, in experienced centres robot-assisted surgery allows for excellent surgical outcomes and is a valuable tool to augment modern surgical practice. Our review highlights the depth of history that underpins the robotic surgical platform we utilise today, whilst also detailing the current place of robot-assisted surgery in urology in 2011. The evolution of robots in general and as platforms to augment surgical practice is an intriguing story that spans cultures, continents and centuries. A timeline from Yan Shi (1023-957 bc), Archytas of Tarentum (400 bc), Aristotle (322 bc), Heron of Alexandria (10-70 ad), Leonardo da Vinci (1495), the Industrial Revolution (1790), 'telepresence' (1950) and to the da Vinci(®) Surgical System (1999), shows the incredible depth of history and development that underpins the modern surgical robot we use to treat our patients. Robot-assisted surgery is now well-established in Urology and although not currently regarded as a 'gold standard' approach for any urological procedure, it is being increasingly used for index operations of the prostate, kidney and bladder. We perceive that robotic evolution will continue infinitely, securing the place of robots in the history of Urological surgery. Herein, we detail the history of robots in general, in surgery and in Urology, highlighting the current place of robot-assisted surgery in radical prostatectomy, partial nephrectomy, pyeloplasty and radical cystectomy. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  2. Atypical autonomic dysreflexia during robotic-assisted body weight supported treadmill training in an individual with motor incomplete spinal cord injury.

    Science.gov (United States)

    Geigle, Paula R; Frye, Sara Kate; Perreault, John; Scott, William H; Gorman, Peter H

    2013-03-01

    A 41-year-old man with a history of C6 American Spinal Injury Association (ASIA) Impairment Scale (AIS) C spinal cord injury (SCI), enrolled in an Institutional Review Board (IRB)-approved, robotic-assisted body weight-supported treadmill training (BWSTT), and aquatic exercise research protocol developed asymptomatic autonomic dysreflexia (AD) during training. Little information is available regarding the relationship of robotic-assisted BWSTT and AD. After successfully completing 36 sessions of aquatic exercise, he reported exertional fatigue during his 10th Lokomat intervention and exhibited asymptomatic or silent AD during this and the three subsequent BWSTT sessions. Standard facilitators of AD were assessed and no obvious irritant identified other than the actual physical exertion and positioning required during robotic-assisted BWSTT. Increased awareness of potential silent AD presenting during robotic assisted BWSTT training for individuals with motor incomplete SCI is required as in this case AD clinical signs were not concurrent with occurrence. Frequent vital sign assessment before, during, and at conclusion of each BWSTT session is strongly recommended.

  3. Basic surgical training in Ireland: the impact of operative experience, training program allocation and mentorship on trainee satisfaction.

    LENUS (Irish Health Repository)

    O'Sullivan, K E

    2013-12-01

    Application to the Irish basic surgical training (BST) program in Ireland has decreased progressively over the past 5 years. We hypothesised that this decline was secondary to dissatisfaction with training correlated with reduced operative experience and lack of mentorship among BSTs.

  4. A Comparative Study of Surgical Training in South East Asia, Australia and The United Kingdom

    Directory of Open Access Journals (Sweden)

    Siew Kheong Lum

    2009-07-01

    Conclusion: Quality of training can be improved by changing to a curriculum and competency based model, utilization of continuous assessment methods, reducing service requirements and better compensation for trainers. Southeast Asia has the potential to provide centres of excellence for surgical training. Surgical educators in SEA will find useful information in this paper to improve their programs which will hopefully evolve into a common core curriculum and enable cross border exchange of surgical trainees in SEA for broader exposure.

  5. Development of a medical robot system for minimally invasive surgery.

    Science.gov (United States)

    Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang

    2012-03-01

    Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Future robotic platforms in urologic surgery: Recent Developments

    Science.gov (United States)

    Herrell, S. Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803

  7. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders

    NARCIS (Netherlands)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and

  8. Robotic surgery of the liver: Italian experience and review of the literature

    Science.gov (United States)

    Reggiani, P; Antonelli, B; Rossi, G

    2013-01-01

    Robotic liver resection is a new promising minimally invasive surgical technique not yet validated by level I evidence. During recent years, the application of the laparoscopic approach to liver resection has grown less than other abdominal specialties due to the intrinsic limitations of laparoscopic instruments. Robotics can overcome these limitations above all for complex operations. A review of the literature on major hepatic surgery was conducted on PubMed using selected keywords. Two hundred and thirty-five patients in 17 series were analysed and outcomes such as operative time, estimated blood loss, length of hospital stay, complications, conversion rate, and costs were described. The most commonly performed procedures were wedge resection and segmentectomy, but the predominance of major hepatectomies performed with robotic surgery is likely due to the superior control achieved by the robotic system. The conversion and complication rates were 4.2% and 13.4%, respectively. Intracavitary fluid collections and bile leaks were the most frequently occurring morbidities. The mean operation time was 285 min. The mean intraoperative blood loss was 50–280 mL. The mean postoperative hospital stay was four to seven days. Overall survival and long-term outcomes were not reported. Robotic liver surgery in Italy has become a clinical reality that is gaining increasing acceptance; a survey was carried out on robotic surgery, which showed that it is perceived as a significant advantage for operators and a consistent gain for the patient. More than 100 robotic hepatic resections have been performed in Italy where important robotic training schools are active. Robotic liver surgery is feasible and safe in trained and experienced hands. Further evaluation is required to assess the improvement in outcomes and long-term oncologic follow-up. PMID:24174991

  9. 30 Years of Robotic Surgery.

    Science.gov (United States)

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  10. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  11. Cluster randomized trial to evaluate the impact of team training on surgical outcomes.

    Science.gov (United States)

    Duclos, A; Peix, J L; Piriou, V; Occelli, P; Denis, A; Bourdy, S; Carty, M J; Gawande, A A; Debouck, F; Vacca, C; Lifante, J C; Colin, C

    2016-12-01

    The application of safety principles from the aviation industry to the operating room has offered hope in reducing surgical complications. This study aimed to assess the impact on major surgical complications of adding an aviation-based team training programme after checklist implementation. A prospective parallel-group cluster trial was undertaken between September 2011 and March 2013. Operating room teams from 31 hospitals were assigned randomly to participate in a team training programme focused on major concepts of crew resource management and checklist utilization. The primary outcome measure was the occurrence of any major adverse event, including death, during the hospital stay within the first 30 days after surgery. Using a difference-in-difference approach, the ratio of the odds ratios (ROR) was estimated to compare changes in surgical outcomes between intervention and control hospitals. Some 22 779 patients were enrolled, including 5934 before and 16 845 after team training implementation. The risk of major adverse events fell from 8·8 to 5·5 per cent in 16 intervention hospitals (adjusted odds ratio 0·57, 95 per cent c.i. 0·48 to 0·68; P trends revealed significant improvements among ten institutions, equally distributed across intervention and control hospitals. Surgical outcomes improved substantially, with no difference between trial arms. Successful implementation of an aviation-based team training programme appears to require modification and adaptation of its principles in the context of the the surgical milieu. Registration number: NCT01384474 (http://www.clinicaltrials.gov). © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes.

    Science.gov (United States)

    Hung, Andrew J; Chen, Jian; Che, Zhengping; Nilanon, Tanachat; Jarc, Anthony; Titus, Micha; Oh, Paul J; Gill, Inderbir S; Liu, Yan

    2018-05-01

    Surgical performance is critical for clinical outcomes. We present a novel machine learning (ML) method of processing automated performance metrics (APMs) to evaluate surgical performance and predict clinical outcomes after robot-assisted radical prostatectomy (RARP). We trained three ML algorithms utilizing APMs directly from robot system data (training material) and hospital length of stay (LOS; training label) (≤2 days and >2 days) from 78 RARP cases, and selected the algorithm with the best performance. The selected algorithm categorized the cases as "Predicted as expected LOS (pExp-LOS)" and "Predicted as extended LOS (pExt-LOS)." We compared postoperative outcomes of the two groups (Kruskal-Wallis/Fisher's exact tests). The algorithm then predicted individual clinical outcomes, which we compared with actual outcomes (Spearman's correlation/Fisher's exact tests). Finally, we identified five most relevant APMs adopted by the algorithm during predicting. The "Random Forest-50" (RF-50) algorithm had the best performance, reaching 87.2% accuracy in predicting LOS (73 cases as "pExp-LOS" and 5 cases as "pExt-LOS"). The "pExp-LOS" cases outperformed the "pExt-LOS" cases in surgery time (3.7 hours vs 4.6 hours, p = 0.007), LOS (2 days vs 4 days, p = 0.02), and Foley duration (9 days vs 14 days, p = 0.02). Patient outcomes predicted by the algorithm had significant association with the "ground truth" in surgery time (p algorithm in predicting, were largely related to camera manipulation. To our knowledge, ours is the first study to show that APMs and ML algorithms may help assess surgical RARP performance and predict clinical outcomes. With further accrual of clinical data (oncologic and functional data), this process will become increasingly relevant and valuable in surgical assessment and training.

  13. International Workshop and Summer School on Medical and Service Robotics

    CERN Document Server

    Bouri, Mohamed; Mondada, Francesco; Pisla, Doina; Rodic, Aleksandar; Helmer, Patrick

    2016-01-01

    Medical and Service Robotics integrate the most recent achievements in mechanics, mechatronics, computer science, haptic and teleoperation devices together with adaptive control algorithms. The book  includes topics such as surgery robotics, assist devices, rehabilitation technology, surgical instrumentation and Brain-Machine Interface (BMI) as examples for medical robotics. Autonomous cleaning, tending, logistics, surveying and rescue robots, and elderly and healthcare robots are typical examples of topics from service robotics. This is the Proceedings of the Third International Workshop on Medical and Service Robots, held in Lausanne, Switzerland in 2014. It presents an overview of current research directions and fields of interest. It is divided into three sections, namely 1) assistive and rehabilitation devices; 2) surgical robotics; and 3) educational and service robotics. Most contributions are strongly anchored on collaborations between technical and medical actors, engineers, surgeons and clinicians....

  14. [Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot].

    Science.gov (United States)

    Liu, Yali; Ji, Linhong

    2018-02-01

    Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

  15. Surgical training, duty-hour restrictions, and implications for meeting the Accreditation Council for Graduate Medical Education core competencies: views of surgical interns compared with program directors.

    Science.gov (United States)

    Antiel, Ryan M; Van Arendonk, Kyle J; Reed, Darcy A; Terhune, Kyla P; Tarpley, John L; Porterfield, John R; Hall, Daniel E; Joyce, David L; Wightman, Sean C; Horvath, Karen D; Heller, Stephanie F; Farley, David R

    2012-06-01

    To describe the perspectives of surgical interns regarding the implications of the new Accreditation Council for Graduate Medical Education (ACGME) duty-hour regulations for their training. We compared responses of interns and surgery program directors on a survey about the proposed ACGME mandates. Eleven general surgery residency programs. Two hundred fifteen interns who were administered the survey during the summer of 2011 and a previously surveyed national sample of 134 surgery program directors. Perceptions of the implications of the new duty-hour restrictions on various aspects of surgical training, including the 6 ACGME core competencies of graduate medical education, measured using 3-point scales (increase, no change, or decrease). Of 215 eligible surgical interns, 179 (83.3%) completed the survey. Most interns believed that the new duty-hour regulations will decrease continuity with patients (80.3%), time spent operating (67.4%), and coordination of patient care (57.6%), while approximately half believed that the changes will decrease their acquisition of medical knowledge (48.0%), development of surgical skills (52.8%), and overall educational experience (51.1%). Most believed that the changes will improve or will not alter other aspects of training, and 61.5% believed that the new standards will decrease resident fatigue. Surgical interns were significantly less pessimistic than surgery program directors regarding the implications of the new duty-hour restrictions on all aspects of surgical training (P training under the new paradigm of duty-hour restrictions have significant concerns about the effect of these regulations on the quality of their training.

  16. Medical Robotic and Tele surgical Simulation Education Research

    Science.gov (United States)

    2017-05-01

    Prototypes have been carried to product completion through additional investment by Adventist Health System/Sunbelt, Inc. dba Florida Hospital and are...robotic surgery. Prototypes have been carried to product completion through additional investment by Adventist Health System/Sunbelt, Inc. dba Florida...develop a nationally accepted curriculum in the Fundamentals of Robotic Surgery (FRS). Period 1 Telesurgery: Communications Latency Experiments

  17. Multicenter review of robotic versus laparoscopic ventral hernia repair: is there a role for robotics?

    Science.gov (United States)

    Walker, Peter A; May, Audriene C; Mo, Jiandi; Cherla, Deepa V; Santillan, Monica Rosales; Kim, Steven; Ryan, Heidi; Shah, Shinil K; Wilson, Erik B; Tsuda, Shawn

    2018-04-01

    The utilization of robotic platforms for general surgery procedures such as hernia repair is growing rapidly in the United States. A limited amount of data are available evaluating operative outcomes in comparison to standard laparoscopic surgery. We completed a retrospective review comparing robotic and laparoscopic ventral hernia repair to provide safety and outcomes data to help design a future prospective trial design. A retrospective review of 215 patients undergoing ventral hernia repair (142 robotic and 73 laparoscopic) was completed at two large academic centers. Primary outcome measure evaluated was recurrence. Secondary outcomes included incidence of primary fascial closure, and surgical site occurrences. Propensity for treatment match comparison demonstrated that robotic repair was associated with a decreased incidence of recurrence (2.1 versus 4.2%, p robotic repair was associated with increased incidence of primary fascial closure (77.1 versus 66.7%, p robotic repairs were completed on patients with lower body mass index (28.1 ± 3.6 versus 34.2 ± 6.4, p robotic repair was associated with decreased recurrence and surgical site occurrence. However, the differences noted in the patient populations limit the interpretability of these results. As adoption of robotic ventral hernia repair increases, prospective trials need to be designed in order to investigate the efficacy, safety, and cost effectiveness of this evolving technique.

  18. Da Vinci Xi Robot-Assisted Penetrating Keratoplasty.

    Science.gov (United States)

    Chammas, Jimmy; Sauer, Arnaud; Pizzuto, Joëlle; Pouthier, Fabienne; Gaucher, David; Marescaux, Jacques; Mutter, Didier; Bourcier, Tristan

    2017-06-01

    This study aims (1) to investigate the feasibility of robot-assisted penetrating keratoplasty (PK) using the new Da Vinci Xi Surgical System and (2) to report what we believe to be the first use of this system in experimental eye surgery. Robot-assisted PK procedures were performed on human corneal transplants using the Da Vinci Xi Surgical System. After an 8-mm corneal trephination, four interrupted sutures and one 10.0 monofilament running suture were made. For each procedure, duration and successful completion of the surgery as well as any unexpected events were assessed. The depth of the corneal sutures was checked postoperatively using spectral-domain optical coherence tomography (SD-OCT). Robot-assisted PK was successfully performed on 12 corneas. The Da Vinci Xi Surgical System provided the necessary dexterity to perform the different steps of surgery. The mean duration of the procedures was 43.4 ± 8.9 minutes (range: 28.5-61.1 minutes). There were no unexpected intraoperative events. SD-OCT confirmed that the sutures were placed at the appropriate depth. We confirm the feasibility of robot-assisted PK with the new Da Vinci Surgical System and report the first use of the Xi model in experimental eye surgery. Operative time of robot-assisted PK surgery is now close to that of conventional manual surgery due to both improvement of the optical system and the presence of microsurgical instruments. Experimentations will allow the advantages of robot-assisted microsurgery to be identified while underlining the improvements and innovations necessary for clinical use.

  19. Performance on a Surgical In-Training Examination Varies by Training Year and Pathway.

    Science.gov (United States)

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2016-08-01

    Few studies in surgery have addressed medical knowledge competency training as defined by the Accreditation Council for Graduate Medical Education. As in-training examinations are ubiquitous educational tools for surgical residents in the United States, insights into examination performance may help fill this void. The purpose of this study was to determine the relationship between In-Service Examination performance and training characteristics in plastic surgery. This retrospective cohort study reviewed performance data for the Plastic Surgery In-Service Training Examination for the years 2012 to 2015. Comparisons were made both within and between training pathways by means of Kruskal-Wallis and Mann-Whitney U tests. Data were available for 1367 independent (37.9 percent) and 2240 integrated residents (62.1 percent). Among integrated residents, performance increased with additional years of training (p 0.05). Similarly, independent resident examination performance increased by year of training (p 0.05). At each level of training (postgraduate years 4 to 6), integrated residents outperformed their independent resident colleagues (postgraduate years 1 to 3) (p < 0.001). Performance on the Plastic Surgery In-Service Training Examination increases during residency, with integrated residents outperforming independent residents. These findings may have implications for medical knowledge competency training as defined by the Accreditation Council for Graduate Medical Education.

  20. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    Science.gov (United States)

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.