WorldWideScience

Sample records for robot-driven gait orthosis

  1. A Motor Learning Oriented, Compliant and Mobile Gait Orthosis

    Directory of Open Access Journals (Sweden)

    A. Calanca

    2012-01-01

    Full Text Available People affected by Cerebral Palsy suffer from physical disabilities due to irreversible neural impairment since the very beginning of their life. Difficulties in motor control and coordination often relegate these patients to the use of a wheelchair and to the unavoidable upcoming of disuse syndromes. As pointed out in recent literature Damiano [7] physical exercise, especially in young ages, can have a deep impact on the patient health and quality of life. For training purposes is very important to keep an upright position, although in some severe cases this is not trivial. Many commercial mobile orthoses are designed to facilitate the standing, but not all the patients are able to deploy them. ARGO, the Active Reciprocated Gait Orthosis we developed, is a device that overcomes some of the limitations of these devices. It is an active device that is realized starting from a commercial reciprocated Gait Orthosis applying sensors and actuators to it. With ARGO we aim to develop a device for helping limbs in a non-coercive way accordingly to user’s intention. In this way patients can drive the orthosis by themselves, deploying augmented biofeedback over movements. In fact Cerebral Palsy patients usually have weak biofeedback mechanisms and consequently are hardly inclined to learn movements. To achieve this behavior ARGO deploys a torque planning algorithm and a force control system. Data collected from a single case of study shows benefits of the orthosis. We will show that our test patient reaches complete autonomous walking after few hour of training with prototype.

  2. Robotic gait trainer in water: development of an underwater gait-training orthosis.

    Science.gov (United States)

    Miyoshi, Tasuku; Hiramatsu, Kazuaki; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2008-01-01

    To develop a robotic gait trainer that can be used in water (RGTW) and achieve repetitive physiological gait patterns to improve the movement dysfunctions. The RGTW is a hip-knee-ankle-foot orthosis with pneumatic actuators; the control software was developed on the basis of the angular motions of the hip and knee joint of a healthy subject as he walked in water. Three-dimensional motions and electromyographic (EMG) activities were recorded in nine healthy subjects to evaluate the efficacy of using the RGTW while walking on a treadmill in water. The device could preserve the angular displacement patterns of the hip and knee and foot trajectories under all experimental conditions. The tibialis anterior EMG activities in the late swing phase and the biceps femoris throughout the stance phase were reduced whose joint torques were assisted by the RGTW while walking on a treadmill in water. Using the RGTW could expect not only the effect of the hydrotherapy but also the standard treadmill gait training, in particular, and may be particularly effective for treating individuals with hip joint movement dysfunction.

  3. Design a New Orthosis and Assessment of Its Effects on Knee Joint Kinetics and Kinematics During Gait

    Directory of Open Access Journals (Sweden)

    Mostafa Kamali

    2015-12-01

    Methods: Ten subjects without any neuromuscular disease participated in this study. New orhosis with the same structure of Scottish rite orthosis was designed. Qualysis system analyses with seven cameras as well as a Kistler force plate were used to measure the kinematics and kinetics variables during the gait with and without orthosis. For statistical analysis independent student-t test was used. The significance level was set at p0.05. There was significant difference between peak medio-lateral forces applied on knee during walking with and without orthosis (p<0.05. Conclusion: The new orthosis decreases the adductor moment on knee joint therefore, it can decrease the forces applied on medial compartment of the knee joint. This orthosis improves walking because it does not let inferior transition. This orthosis can improve femur alignment. It is recommended that physiotherapist prescribe this orthosis in order to decrease pain in patients with OA.

  4. Design and Evaluation of the AIRGAIT Exoskeleton: Leg Orthosis Control for Assistive Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2013-01-01

    Full Text Available This paper introduces the body weight support gait training system known as the AIRGAIT exoskeleton and delves into the design and evaluation of its leg orthosis control algorithm. The implementation of the mono- and biarticular pneumatic muscle actuators (PMAs as the actuation system was initiated to generate more power and precisely control the leg orthosis. This research proposes a simple paradigm for controlling the mono- and bi-articular actuator movements cocontractively by introducing a cocontraction model. Three tests were performed. The first test involved control of the orthosis with monoarticular actuators alone without a subject (WO/S; the second involved control of the orthosis with mono- and bi-articular actuators tested WO/S; and the third test involved control of the orthosis with mono- and bi-articular actuators tested with a subject (W/S. Full body weight support (BWS was implemented in this study during the test W/S as the load supported by the orthosis was at its maximum capacity. This assessment will optimize the control system strategy so that the system operates to its full capacity. The results revealed that the proposed control strategy was able to co-contractively actuate the mono- and bi-articular actuators simultaneously and increase stiffness at both hip and knee joints.

  5. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  6. [Influence of spinal orthosis on gait and physical functioning in women with postmenopausal osteoporosis].

    Science.gov (United States)

    Schmidt, K; Hübscher, M; Vogt, L; Klinkmüller, U; Hildebrandt, H D; Fink, M; Banzer, W

    2012-03-01

    Osteoporosis is a widespread chronic bone disease leading to an increased risk of bone fractures. The most common clinical consequences are back pain, hyperkyphosis, limitations of physical functioning and activities of daily living as well as reduced quality of life. Furthermore, osteoporosis is associated with decreased strength and deficits of gait and balance, all together resulting in an increased risk of falls and a subsequent aggravation of fracture risk. Besides pharmaceutical and exercise therapy, back orthoses are increasingly being used in the therapy of osteoporosis and rehabilitation after vertebral fractures. Previous studies have shown that wearing a spinal orthosis results in a reduction of pain as well as improvements of posture and back extensor strength. To date there is no study that has evaluated the effects of a spinal orthosis on gait stability and physical functioning in patients with osteoporosis. Therefore the purpose of the present study was to assess the effects of a spinal orthosis on gait and pain-induced limitations of activities of daily living (ADL) in women with osteoporosis. A total of 69 postmenopausal osteoporotic women with and without vertebral fractures were randomly assigned to receive either a spinal orthosis (Thämert Osteo-med intervention group n=35; average age 74 ± 8.3 years, height 158.3 ± 6.3 cm, weight 62.8 ± 9.6 kg, t-score -2.6  ± 1.0, number of vertebral fractures 1.4 ± 2.0) or to a waiting list control group (n= 34, age 74.1 ± 7.7 years, height 159.6 ± 5.9 cm, weight 65.4 ± 11.3 kg, t-score -2.9± 0.8, number of vertebral fractures: 0.9 ± 1.2). The following outcome measures were collected at baseline and at 3 and 6 months follow-up: gait parameters including gait analysis: velocity, stride length and width, double support time (% of gait cycle) and perceived limitations in activities of daily living (numeric rating scale 1-10; 1=best, 10= worst situation). The ANCOVA indicated a

  7. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO)

    International Nuclear Information System (INIS)

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-01-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  8. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.

    Science.gov (United States)

    Burdett, R G; Borello-France, D; Blatchly, C; Potter, C

    1988-08-01

    The effects of the Air-Stirrup (AS) standard ankle brace on the gait of 19 subjects with hemiplegia resulting from a cerebrovascular accident who exhibited excessive subtalar joint motion were studied. Videotaped trials and footprint analyses were used to measure subjects' hip, knee, and ankle sagittal plane angles; inversion and eversion of the calcaneus; and time-distance gait characteristics. A one-way analysis of variance for repeated measures was used to compare the gait of 19 subjects with the AS brace and unbraced and 11 subjects with the AS brace, unbraced, and with an ankle-foot orthosis. The AS brace was associated with more calcaneal stability during standing than the unbraced condition. The ankle-foot orthosis was associated with less plantar flexion at foot-strike than either the AS brace or unbraced condition. Both the AS brace and the ankle-foot orthosis were associated with less mid-swing plantar flexion and increased step length on the paretic side compared with no brace. These results support the effectiveness of the AS brace in controlling inversion and eversion instability in patients with hemiplegia.

  9. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    Science.gov (United States)

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  10. Effects on foot external rotation of the modified ankle-foot orthosis on post-stroke hemiparetic gait.

    Science.gov (United States)

    Kim, Ha Jeong; Chun, Min Ho; Kim, Hong Min; Kim, Bo Ryun

    2013-08-01

    To evaluate the effects of heel-opened ankle foot orthosis (HOAFO) on hemiparetic gait after stroke, especially on external foot rotation, and to compare the effects of HOAFO with conventional plastic-AFO (pAFO) and barefoot during gait. This cross-over observational study involved 15 hemiparetic patients with external rotation of the affected foot. All subjects were able to walk independently, regardless of their usual use of a single cane, and had a less than fair-grade in ankle dorsiflexion power. Each patient was asked to walk in three conditions with randomized sequences: 1) barefoot, 2) with a pAFO, and 3) with an HOAFO. Their gait patterns were analyzed using a motion analysis system. Fifteen patients consisted of nine males and six females. On gait analysis, hip and foot external rotation were significantly greater in pAFO (-3.35° and -23.68°) than in barefoot and HOAFO conditions (pexternal rotation compared with pAFO; although there was no significant difference between HOAFO and barefoot walking. Walking speed and percentage of single limb support were significantly greater for HOAFO than in barefoot walking. HOAFO was superior to pAFO in reducing hip and foot external rotation during the stance phase in patients with post-stroke hemiparesis. HOAFO may, therefore, be useful in patients with excessive external rotation of the foot during conventional pAFO.

  11. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  12. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    Science.gov (United States)

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  13. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.

    Science.gov (United States)

    Hidler, Joseph; Wisman, Wessel; Neckel, Nathan

    2008-12-01

    Background One of the most popular robot assisted rehabilitation devices used is the Lokomat. Unfortunately, not much is known about the behaviors exhibited by subjects in this device. The goal of this study was to evaluate the kinematic patterns of individuals walking inside the Lokomat compared to those demonstrated on a treadmill. Methods Six healthy subjects walked on a treadmill and inside the Lokomat while the motions of the subject and Lokomat were tracked. Joint angles and linear motion were determined for Lokomat and treadmill walking. We also evaluated the variability of the patterns, and the repeatability of measuring techniques. Findings The overall kinematics in the Lokomat are similar to those on a treadmill, however there was significantly more hip and ankle extension, and greater hip and ankle range of motion in the Lokomat (P<0.05). Additionally, the linear movement of joints was reduced in the Lokomat. Subjects tested on repeated sessions presented consistent kinematics, demonstrating the ability to consistently setup and test subjects. Interpretation The reduced degrees of freedom in the Lokomat are believed to be the reason for the specific kinematic differences. We found that despite being firmly attached to the device there was still subject movement relative to the Lokomat. This led to variability in the patterns, where subjects altered their gait pattern from step to step. These results are clinically important as a variable step pattern has been shown to be a more effective gait training strategy than one which forces the same kinematic pattern in successive steps.

  14. Evaluation of gait performance of a participant with Perthes disease while walking with and without a Scottish-Rite orthosis.

    Science.gov (United States)

    Karimi, Mohammad; Sedigh, Jafar; Fatoye, Francis

    2013-06-01

    Scottish-Rite orthosis is one of the conservative methods used to treat Legg-Calvé-Perthes disease. As there was not enough evidence to show the effects of using this orthosis on reducing the loads applied on the limb, this research aimed to find the influence of this orthosis. A participant with Perthes disease on the left hip joint was recruited into this study to walk with and without the orthosis. The kinetic and kinematic parameters were collected by a motion analysis system and a Kistler force platform. No significant differences were noted between the hip joint flexion/extension range of motion and the moments between the sound side and the side affected by Legg-Calvé-Perthes disease. It may be concluded that use of orthosis may not have any positive effects to decrease the loads or to improve the alignment of the hip joint in participants with Perthes disease, as expected. The use of Scottish-Rite orthosis not only does not improve the containment of the hip joint, but also does not have any significant influence on loads applied on the joint during walking of the subject with Perthes disease. The results of this research can be used by clinicians involved in treatment of patients with Legg-Calvé-Perthes disease.

  15. Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Quy-Thinh Dao

    2018-03-01

    Full Text Available Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and adapt the compliance accordingly. In this research, a new control strategy for a high compliant lower-limb rehabilitation orthosis system named AIRGAIT is developed. The AIRGAIT orthosis is powered by pneumatic artificial muscle actuators. The trajectory tracking controller based on a modified computed torque control which employs a fractional derivative is proposed for the tracking purpose. In addition, a new method is proposed for compliance control of the robotic orthosis which results in the successful implementation of the assist-as-needed training strategy. Finally, various subject-based experiments are carried out to verify the effectiveness of the developed control system.

  16. Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2014-04-01

    Full Text Available It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM or pneumatic muscle actuators (PMA. It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.

  17. An ankle-foot orthosis powered by artificial pneumatic muscles.

    Science.gov (United States)

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  18. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.

    Science.gov (United States)

    do Nascimento, Breno Gontijo; Vimieiro, Claysson Bruno Santos; Nagem, Danilo Alves Pinto; Pinotti, Marcos

    2008-04-01

    Powered orthosis is a special class of gait assist device that employs a mechanical or electromechanical actuator to enhance movement of hip, knee, or ankle articulations. Pneumatic artificial muscle (PAM) has been suggested as a pneumatic actuator because its performance is similar to biological muscle. The electromyography (EMG) signal interpretation is the most popular and simplest method to establish the patient voluntary control of the orthosis. However, this technique is not suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. For those cases, an alternative control strategy should be provided. The aim of the present study is to develop a gait assistance orthosis for lower limb powered by PAMs controlled by a voluntary activation method based on the angular behavior of hip joint. In the present study, an orthosis that has been molded in a patient was employed and, by taking her anthropometric parameters and movement constraints, the adaptation of the existing orthosis to the powered orthosis was planned. A control system was devised allowing voluntary control of a powered orthosis suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. A pilot clinical study was reported where a patient, victim of poliovirus, successfully tested a hip orthosis especially modified for the gait test evaluation in the parallel bar system. The hip orthosis design and the control circuitry parameters were able to be set to provide satisfactory and comfortable use of the orthosis during the gait cycle.

  19. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  20. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A

  1. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Y.L.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Harlaar, J.; Brehm, M.A.

    2015-01-01

    Introduction: Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off

  2. Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients: Timed Up and Go and Gait Speed Assessments

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2016-03-01

    Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patients post stroke. This may be due to the positive effect of rocker modification on improving push off and transferring weight during the stance phase of gait.

  3. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Science.gov (United States)

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (ppush-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  4. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Directory of Open Access Journals (Sweden)

    Yvette L Kerkum

    Full Text Available Rigid Ankle-Foot Orthoses (AFOs are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP. While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years were prescribed with a ventral shell spring-hinged AFO (vAFO. The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05 was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power

  5. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  6. Neuromorphic walking gait control.

    Science.gov (United States)

    Still, Susanne; Hepp, Klaus; Douglas, Rodney J

    2006-03-01

    We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.

  7. Soft mobile robots driven by foldable dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong, E-mail: jxzhouxx@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  8. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  9. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  11. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    Science.gov (United States)

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  12. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    Science.gov (United States)

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  13. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.

    Science.gov (United States)

    Nolan, Karen J; Yarossi, Mathew

    2011-03-01

    Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic

  14. Effect of pneumatic compressing powered orthosis in stroke patients: preliminary study.

    Science.gov (United States)

    Kim, Eun Sil; Yoon, Yong-Soon; Sohn, Min Kyun; Kwak, Soo-Hyun; Choi, Jong Ho; Oh, Ji Sun

    2015-04-01

    To evaluate the feasibility and effectiveness of a knee-ankle-foot orthosis powered by artificial pneumatic muscles (PKAFO). Twenty-three hemiplegic patients (age, 59.6±13.7 years) were assessed 19.7±36.6 months after brain lesion. The 10-m walking time was measured as a gait parameter while the individual walked on a treadmill. Walking speed (m/s), step cycle (cycle/s), and step length (m) were also measured on a treadmill with and without PKAFO, and before and after gait training. Clinical parameters measured before and after gait training included Korean version of Modified Bathel Index (K-MBI), manual muscle test (MMT), and Modified Ashworth Scale (MAS) of hemiplegic ankle. Gait training comprised treadmill walking for 20 minutes, 5 days a week for 3 weeks at a comfortable speed. The 10-m walking time, walking speed, step length, and step cycle were significantly greater with PKAFO than without PKAFO, and after gait training (both p<0.05). K-MBI was improved after gait training (p<0.05), but MMT and MAS were not. PKAFO may improve gait function in hemiplegic patients. It can be a useful orthosis for gait training in hemiplegic patients.

  15. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    Science.gov (United States)

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  16. Effectiveness of an Articulated Knee Hyperextension Orthosis in Genu Recurvatum

    Directory of Open Access Journals (Sweden)

    Rahul ASRM

    2014-08-01

    Full Text Available Genu Recurvatum is a deformity of knee joint that tends to push it backwards by excessive extension in tibio-femoral joints. This poses a significant challenge because of technical difficulties and a high incidence of recurrence. This report describes a 63 years old male diagnosed as post-polio residual paralysis who showed excessive genu recurvatum of his left knee during long standing and walking. An Articulated Knee Hyperextension Orthosis (KAFO was tried to check its effectiveness in terms of gait and energy expenditure.

  17. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    Science.gov (United States)

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  18. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  19. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  20. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    Directory of Open Access Journals (Sweden)

    Anil K. Raj

    2011-01-01

    Full Text Available While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC has developed the Mina, a prototype sensorimotor robotic orthosis for mobility assistance that provides mobility capability for paraplegic and paraparetic users. This paper describes the initial concept, design goals, and methods of this wearable overground robotic mobility device, which uses compliant actuation to power the hip and knee joints. Paralyzed users can balance and walk using the device over level terrain with the assistance of forearm crutches employing a quadrupedal gait. We have initiated sensory substitution feedback mechanisms to augment user sensory perception of his or her lower extremities. Using this sensory feedback, we hypothesize that users will ambulate with a more natural, upright gait and will be able to directly control the gait parameters and respond to perturbations. This may allow bipedal (with minimal support gait in future prototypes.

  1. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    Science.gov (United States)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  2. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    Science.gov (United States)

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  3. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Directory of Open Access Journals (Sweden)

    Frankovský P.

    2017-08-01

    Full Text Available This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  4. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Science.gov (United States)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  5. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    Science.gov (United States)

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  6. A new approach to implement a customized anatomic insole in orthopaedic footwear of lower limb orthosis

    Science.gov (United States)

    Peixoto, J.; Flores, P.; Souto, A. P.

    2017-10-01

    This paper concerns the development of a new approach for orthopaedic footwear to apply in KAFO orthosis (acronym for Knee Ankle Foot Orthosis). This procedure starts with full characterization of the problem with the purpose to characterize a plantar of a patient’s foot with polio. A 3D Scanner was used to collect their feet’s data to produce an anatomic insole. After this step, the patient performs a study of his gait using a static and dynamic study with the aim of characterizing the parameters to improve quality in the footwear. The insole was produced using a 3D printing technology. It was essential to optimize manufacturing processes and it was developed a footwear prototype with innovative characteristics, which is 25% lighter, allowing the user to consume less energy in daily routines.

  7. Development of body weight support gait training system using antagonistic bi-articular muscle model.

    Science.gov (United States)

    Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku; Yamamoto, Shin-Ichiroh

    2010-01-01

    The purpose of this study is to develop a body weight support gait training system for stroke and spinal cord injury. This system consists of a powered orthosis, treadmill and equipment of body weight support. Attachment of the powered orthosis is able to fit subject who has difference of body size. This powered orthosis is driven by pneumatic McKibben actuator. Actuators are arranged as pair of antagonistic bi-articular muscle model and two pairs of antagonistic mono-articular muscle model like human musculoskeletal system. Part of the equipment of body weight support suspend subject by wire harness, and body weight of subject is supported continuously by counter weight. The powered orthosis is attached equipment of body weight support by parallel linkage, and movement of the powered orthosis is limited at sagittal plane. Weight of the powered orthosis is compensated by parallel linkage with gas-spring. In this study, we developed system that has orthosis powered by pneumatic McKibben actuators and equipment of body weight support. We report detail of our developed body weight support gait training system.

  8. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.

    Science.gov (United States)

    Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven

    2015-10-01

    Accurate and precise mediolateral foot placement is important for balance during gait, but is impaired post stroke. Mediolateral foot placement may be improved with ankle-foot orthosis use. The purpose of this study was to determine whether an ankle-foot orthosis improves mediolateral foot-placement ability during post-stroke ambulation. Crossover trial with randomized order of conditions tested. The accuracy and precision of mediolateral foot placement was quantified while subjects targeted four different randomized step widths. Subjects were tested with and without their regular non-rigid ankle-foot orthosis in two separate visits (order randomized). While ankle-foot orthosis use corrected foot and ankle alignment (i.e. significantly decreased mid-swing plantar flexion, p = 0.000), effects of ankle-foot orthosis use on hip hiking (p = 0.545), circumduction (p = 0.179), coronal plane hip range of motion (p = 0.06), and mediolateral foot-placement ability (p = 0.537) were not significant. While ankle-foot orthosis-mediated equinovarus correction of the affected foot and ankle was not associated with improved biomechanics of walking (i.e. proximal ipsilateral hip kinematics or mediolateral foot-placement ability), it may affect other aspects of balance that were not tested in this study (e.g. proprioception, cerebellar, vestibular, and cognitive mechanisms). Studies that investigate the effect of ankle-foot orthosis on gait can help advance stroke rehabilitation by documenting the specific gait benefits of ankle-foot orthosis use. In this study, we investigated the effect of ankle-foot orthosis use on mediolateral foot-placement ability, an aspect of gait important for maintaining balance. © The International Society for Prosthetics and Orthotics 2014.

  9. COMPARISON BETWEEN PHYSIOLOGICAL COST INDEX IN HEALTHY NORMAL CHILDREN AS AGAINST AMBULATORY SPASTIC DIPLEGIC CEREBRAL PALSY (WITH AND WITHOUT ORTHOSIS IN THE AGE GROUP 6 TO 18 YEARS

    Directory of Open Access Journals (Sweden)

    Swatia Bhise

    2016-08-01

    Full Text Available Background: Efficacy of rehabilitation program for subjects with orthosis with objective measurement. The study aiming to objectively compare the PCI and walking speed of normal children with ambulatory spastic diaplegic. Also we aimed to analyze whether BMIhad impact on energy cost. Methods: 41 normal children and 41 community walking spastic diaplegic aged between 6 to 18 yrs. were assessed to compare the PCI. Speed of walking and heart rate were checked constantlyboth barefoot and in shoes in normal children and with and without conventional AFO in children with spastic diaplegic at their chosen velocities over four consecutive lengths of a 12.5m walkway i.e. total 50m.,Pre and Post readings are taken. Heart rate is affected by speed; PCI with speed of walking and heart rate was calculated for each child. Results: The mean PCI in shoes and barefoot was same in normal children i.e. 0.05 ±0.039beats/meter. The PCI for children with pathological gait i.e. spastic diaplegic without orthosis and with orthosis is 0.199 ±0.176 and 0.104± 0.093beats/meter appreciably greater than that for normal children(p less than 0.05. Conclusion: This study showed that walking with orthosis in spastic diplegic CP children showed higher costs of energy and slower walking speed compared normal children with age matched. The PCI of walking, with orthosis in children with spastic Diplegic cerebral palsy is less as compared to without orthosis i.e. gait is more energy efficient with orthosis. BMI doesn’t show any correlation with PCI further study may require.

  10. Immediate effects of using ankle-foot orthoses in the kinematics of gait and in the balance reactions in Charcot-Marie-Tooth disease

    OpenAIRE

    Pereira, Rouse Barbosa; Felício, Lílian Ramiro; Ferreira, Arthur de Sá; Menezes, Sara Lúcia de; Freitas, Marcos Raimundo Gomes de; Orsini, Marco

    2014-01-01

    The Charcot-Marie-Tooth (CMT) disease is a peripheral hereditary neuropathy with progressive distal muscle atrophy and weakness, mainly in lower limbs, that evolves limiting the gait and balance. The objective of the study was to analyse the immediate effects of using Ankle-Foot Orthosis (AFO) in the gait's kinematics and balance in patients with CMT. Nine individuals were evaluated by Tinetti scales and Dynamic Gait Index (DGI) and gait's kinematics parameters through the motion capturing sy...

  11. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    Science.gov (United States)

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  12. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  13. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  14. A mechanized gait trainer for restoring gait in nonambulatory subjects.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Werner, C; Bardeleben, A

    2000-09-01

    To construct an advanced mechanized gait trainer to enable patients the repetitive practice of a gaitlike movement without overstraining therapists. DEVICE: Prototype gait trainer that simulates the phases of gait (by generating a ratio of 40% to 60% between swing and stance phases), supports the subjects according to their ability (lifts the foot during swing phase), and controls the center of mass in the vertical and horizontal directions. Two nonambulatory, hemiparetic patients who regained their walking ability after 4 weeks of daily training on the gait trainer, a 55-year-old woman and a 62-year-old man, both of whom had a first-time ischemic stroke. Four weeks of training, five times a week, each session 20 minutes long. Functional ambulation category (FAC, levels 0-5) to assess gait ability and ground level walking velocity. Rivermead motor assessment score (RMAS, 0-13) to assess gross motor function. Patient 1: At the end of treatment, she was able to walk independently on level ground with use of a walking stick. Her walking velocity had improved from .29m/sec to .59m/sec. Her RMAS score increased from 4 to 10, meaning she could walk at least 40 meters outside, pick up objects from floor, and climb stairs independently. Patient 2: At end of 4-week training, he could walk independently on even surfaces (FAC level 4), using an ankle-foot orthosis and a walking stick. His walking velocity improved from .14m/sec to .63m/sec. His RMAS increased from 3 to 10. The gait trainer enabled severely affected patients the repetitive practice of a gaitlike movement. Future studies may elucidate its value in gait rehabilitation of nonambulatory subjects.

  15. Gait COP trajectory of left side hip-dislocation and scoliotic patient using ankle-foot orthoses

    Science.gov (United States)

    Chong, Albert K.; Alrikabi, Redha; Milburn, Peter

    2017-07-01

    Plantar pressure-sensing mats and insole plantar sensor pads are ideal low-cost alternatives to force plates for capturing plantar COP excursion during gait. The acquired COP traces, in the form of pedobarographic images are favored by many clinicians and allied health professionals for evaluation of foot loading and balance in relation to foot biomechanics, foot injury, foot deformation, and foot ulceration. Researchers have recommended the use of COP trace for the biomechanical study of the deformed foot and lower-limb to improve orthosis design and testing. A correctly designed orthoses improves mobility and reduces pain in the foot, lower limb and lower spine region during gait. The research was carried out to evaluate the performance of two types of orthosis, namely: a custom-molded orthosis and an over-the-counter molded orthosis to determine the quality of gait of an adult scoliotic patient. COP trace patterns were compared with those of a healthy adult and showed the design of the custom-molded orthosis resulted in an improved quality of movements and provided enhanced stability for the deformed left foot during gait.

  16. Development of an Active Ankle Foot Orthosis to Prevent Foot Drop and Toe Drag in Hemiplegic Patients: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Jungyoon Kim

    2011-01-01

    Full Text Available We developed an active ankle-foot orthosis (AAFO that controls dorsiflexion/plantarflexion of the ankle joint to prevent foot drop and toe drag during hemiplegic walking. To prevent foot slap after initial contact, the ankle joint must remain active to minimize forefoot collision against the ground. During late stance, the ankle joint must also remain active to provide toe clearance and to aid with push-off. We implemented a series elastic actuator in our AAFO to induce ankle dorsiflexion/plantarflexion. The activator was controlled by signals from force sensing register (FSR sensors that detected gait events. Three dimensional gait analyses were performed for three hemiplegic patients under three different gait conditions: gait without AFO (NAFO, gait with a conventional hinged AFO that did not control the ankle joint (HAFO, and gait with the newly-developed AFO (AAFO. Our results demonstrate that our newly-developed AAFO not only prevents foot drop by inducing plantarflexion during loading response, but also prevents toe drag by facilitating plantarflexion during pre-swing and dorsiflexion during swing phase, leading to improvement in most temporal-spatial parameters. However, only three hemiplegic patients were included in this gait analysis. Studies including more subjects will be required to evaluate the functionality of our newly developed AAFO.

  17. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study

    OpenAIRE

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van De Walle, Patricia; Seyler, J

    2006-01-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (wit...

  18. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy

    NARCIS (Netherlands)

    Brehm, M.A.; Harlaar, J.; Schwartz, M.

    2008-01-01

    Objective: To determine the effect of ankle-foot orthoses on walking efficiency and gait in a heterogeneous group of children with cerebral palsy, using barefoot walking as the control condition. Design: A retrospective study. Methods: Barefoot and ankle-foot orthosis data for 172 children with

  19. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis.

    Science.gov (United States)

    Beaudreuil, Johann; Bendaya, Samy; Faucher, Marc; Coudeyre, Emmanuel; Ribinik, Patricia; Revel, Michel; Rannou, François

    2009-12-01

    To develop clinical practice guidelines concerning the use of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis. The French Physical Medicine and Rehabilitation Society (SOFMER) methodology, associating a systematic literature review, collection of everyday clinical practice, and external review by multidisciplinary expert panel, was used. Few high-level studies of bracing for knee osteoarthritis were found. No evidence exists for the effectiveness of rest orthosis. Evidence for knee sleeves suggests that they decrease pain in knee osteoarthritis, and their use is associated with subjective improvement. These actions do not appear to depend on a local thermal effect. The effectiveness of knee sleeves for disability is not demonstrated for knee osteoarthritis. Short- and mid-term follow-up indicates that valgus knee bracing decreases pain and disability in medial knee osteoarthritis, appears to be more effective than knee sleeves, and improves quality of life, knee proprioception, quadriceps strength, and gait symmetry, and decreases compressive loads in the medial femoro-tibial compartment. However, results of response to valgus knee bracing remain inconsistent; discomfort and side effects can result. Thrombophlebitis of the lower limbs has been reported with the braces. Braces, whatever kind, are infrequently prescribed in clinical practice for osteoarthritis of the lower limbs. Modest evidence exists for the effectiveness of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis, with only low level recommendations for its use. Braces are prescribed infrequently in French clinical practice for osteoarthritis of the knee. Randomized clinical trials concerning bracing in knee osteoarthritis are still necessary.

  20. Design and Evaluation of a New Type of Knee Orthosis to Align the Mediolateral Angle of the Knee Joint with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Amir Esrafilian

    2012-01-01

    Full Text Available Background. Osteoarthritis (OA is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05. Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.

  1. Development of Ankle Foot Orthosis (AFO Using Pneumatic Artificial Muscle for Disabled Children

    Directory of Open Access Journals (Sweden)

    Ishak N.Z.

    2017-01-01

    Full Text Available Ankle foot orthosis (AFO are commonly used to correct the instabilities and joint weakness of lower limb. In this research, AFO was developed by using pneumatic artificial muscle (PAM to prevent plantarflexion to occur and also to correct the foot from the inversion syndrome. The research started with designing the AFO by using SolidWorks software based on anthropometry measurement data (n=5, age=12 years old. The mechanical simulation was conducted by using Autodesk Inventor software to obtain a safety factor before the fabrication process was conducted. The AFO was fabricated using 3D printer and the thermoplastic elastomer (TPE rubber was selected as the material. PAM was tested by using test bed machine to generate the force and contraction by muscle. The result shows that the PAM was suitable for low speed as the displacement was greater. The AFO could be valuable for the gait rehabilitation.

  2. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Science.gov (United States)

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  3. The influence of ankle joint mobility when using an orthosis on stability in patients with spinal cord injury: a pilot study.

    Science.gov (United States)

    Arazpour, M; Bani, M A; Hutchins, S W; Curran, S; Javanshir, M A

    2013-10-01

    Perceived risk of falling is an important factor for people with spinal cord injury (SCI). This study investigated the influence of ankle joint motion on postural stability and walking in people with SCI when using an orthosis. Volunteer subjects with SCI (n=5) participated in this study. Each subject was fitted with an advanced reciprocating gait orthosis (ARGO) equipped with either solid or dorsiflexion-assist type ankle-foot orthosis (AFOs) and walked at their self-selected speed along a flat walkway to enable the comparison of walking speed, cadence and endurance. A force plate system and a modified Falls Efficacy Scale (MFES) were utilized to measure postural sway and the perceived fear of falling, respectively. There were significant differences in the mean MFES scores between two types of orthosis (P=0.023). When using two crutches, there was no significant difference in static standing postural sway in the medio-lateral (M/L) direction (P=0.799), but significant difference in the antero-posterior (A/P) direction (P=0.014). However, during single crutch support, there was a significant difference in both M/L (P=0.019) and A/P (P=0.022) directions. Walking speed (7%) and endurance (5%) significantly increased when using the ARGO with dorsi flexion assisted AFOs. There was no significant deference between two types of orthoses in cadence (P=0.54). Using an ARGO with dorsiflexion-assisted AFOs increased the fear of falling, but improved static postural stability and increased walking speed and endurance, and should therefore be considered as an effective orthosis during the rehabilitation of people with SCI.

  4. Prototyping of Individual Ankle Orthosis Using Additive Manufacturing Technologies

    Directory of Open Access Journals (Sweden)

    Natalia Wierzbicka

    2017-09-01

    Full Text Available The paper presents design and manufacturing process of an individualized ankle orthosis using additive manufacturing technologies and reverse engineering. Conventional processes of manufacturing of orthosesareexpensive and time consuming -an alternative method was proposed. The patient’s leg was 3D scanned and the orthosis was designed using a CAD system. It was then manufactured using the Fused Deposition Modelling technology, assembled and fully tested. Positive results were obtained.

  5. [Modern approach to gait restoration in patients in the acute period of cerebral stroke].

    Science.gov (United States)

    Skvortsova, V I; Ivanova, G E; Rumiantseva, N A; Staritsyn, A N; Kovrazhkina, E A; Suvorov, A Iu

    2010-01-01

    An objective of the study was to work out a complex program of gait restoration in patients with stroke using robot-driven mechanized gait trainers. The study included patients in the acute period of stroke (the mean age 59+/-10,4 years) who were not able to walk without assistance; 53 patients of the main group and 25 patients of the control group. The mean interval from the disease onset to the beginning of gait retraining sessions with mechanized gait trainers was 14+/-1,6 days depending on the adequacy of functional probes. The restoration program included everyday 30 minute sessions of exercise therapy. Patients of the main group received 20 min sessions using mechanized gait trainers Motomed Viva 2 and Gait Trainer 1 (GT1) with continuous monitoring of blood pressure and cardiac beat frequency. The number of sessions with GT1 was from 5 to 12, mean 7+/-1 sessions. After the complex restoration treatment, significant positive changes on scales of standing balance, functional categories of gait, Berg, Barthel (p< or =0.01) were observed in patients of the main group compared to controls. All patients of the main group became able to walk with a support or independently. The significant decrease (p< or =0.05) of a number of patients with disorders of proprioceptive sensitivity (from 37,7 to 9,4%) and with ataxia of the low extremities (from 37 to 11,3%) was observed in the main group, while no changes were seen in the control group. It has been concluded that the complex use of reflex kinesitherapy and robot-driven mechanotherapy in patients in the acute period of stroke allows to increase the functional activity and the level of self-service already prior to the discharge from hospital.

  6. Biomechanics of the immediate impact of wearing a rigid thoracolumbar corset on gait kinematics and spatiotemporal parameters

    Directory of Open Access Journals (Sweden)

    Taiar Redha

    2018-01-01

    Full Text Available The corset support is a device classified as orthosis. It compensates a functional deficiency with means of protection, recovery, correction, maintenance, and support or contention. There are two types of orthosis 1 rest orthosis and 2 corrective orthosis. Rest orthosis maintains joints in a defined position to avoid deformities or to relieve a pain at joints. Corrective orthosis adjusts joint deformity either passively or actively. Corset is used in various pathological use, thoracic-lumbar fracture, scoliosis, Scheuermann’s disease or spinal dystrophy. The purpose of this study was 1 to determine the immediate impact of wearing a semi-rigid thoracolumbar corset, the Lombax® Dorso on gait kinematics and 2 spatiotemporal parameters in 6 adults. These parameters were recorded using the optoelectronic system Vicon® on treadmill gait subjects with and without corset for the comparison. The results showed that wearing a corset significantly decrease the rotation amplitudes of the scapular and pelvic girdles (p<0.05 in the frontal plane. The movement of the pelvis and hip in this same plane was decreased also when comparing with and without a corset effects (p<0.05. The corset significantly increased the range of flexion-extension of the hip during the gait cycle. At the conclusion of this study the discriminate parameters of wearing a corset was quantified. The results and in association with manufacturer will help to improve materials for better optimization support. Comparable perspectives and after improvement of materials will aim to experiment with patients on real daily life situation.

  7. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    Science.gov (United States)

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  8. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    Science.gov (United States)

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  9. Effect of New Kypho-Remainder Orthosis on Curve Intensity in Adults With Postural Hyper Kyphosis

    Directory of Open Access Journals (Sweden)

    Omid Torkaman

    2017-10-01

    Conclusion Considering the importance of maintaining a proper posture to optimize the muscles activity in preventing deformity and orthosis with a bio-feedback mechanism may be the solution. The long-term effect of using a bio-feedback orthosis indicated that kypho-remainder orthosis can significantly improve the kyphosis curve in individuals with postural hyper-kyphosis. 

  10. Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons' task performance and ergonomics.

    Science.gov (United States)

    Sánchez-Margallo, Juan A; Sánchez-Margallo, Francisco M

    2017-12-01

    The objective of this study is to assess the surgeons' performance and ergonomics during the use of a robotic-driven needle holder in laparoscopic suturing tasks. Six right-handed laparoscopic surgeons with different levels of experience took part in this study. Participants performed a set of three different intracorporeal suturing tasks organized in ten trials during a period of five weeks. Surgeons used both conventional (Conv) and robotic (Rob) laparoscopic needle holders. Precision using the surgical needle, quality of the intracorporeal suturing performance, execution time and leakage pressure for the urethrovesical anastomosis, as well as the ergonomics of the surgeon's hand posture, were analyzed during the first, fifth and last trials. No statistically significant differences in precision and quality of suturing performance were obtained between both groups of instruments. Surgeons required more time using the robotic instrument than using the conventional needle holder to perform the urethrovesical anastomosis, but execution time was significantly reduced after training ([Formula: see text] 0.05). There were no differences in leakage pressure for the anastomoses carried out by both instruments. After training, novice surgeons significantly improved the ergonomics of the wrist ([Formula: see text] 0.05) and index finger (Conv: 36.381[Formula: see text], Rob: 30.389[Formula: see text]; p = 0.024) when using the robotic instrument compared to the conventional needle holder. Results have shown that, although both instruments offer similar technical performance, the robotic-driven instrument results in better ergonomics for the surgeon's hand posture compared to the use of a conventional laparoscopic needle holder in intracorporeal suturing.

  11. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    Directory of Open Access Journals (Sweden)

    Chin Robin

    2009-06-01

    Full Text Available Abstract Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1. Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle.

  12. Internal Models Support Specific Gaits in Orthotic Devices

    DEFF Research Database (Denmark)

    Matthias Braun, Jan; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Patients use orthoses and prosthesis for the lower limbs to support and enable movements, they can not or only with difficulties perform themselves. Because traditional devices support only a limited set of movements, patients are restricted in their mobility. A possible approach to overcome such...... the system's accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing behaviour changes depending on the patient's current walking situation. We conclude that the here presented model-based support of different gaits has the power to enhance the patient's mobility....

  13. Design of a gait training device for control of pelvic obliquity.

    Science.gov (United States)

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  14. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  15. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  16. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.

    Science.gov (United States)

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J

    2006-10-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.

  17. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    Science.gov (United States)

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  19. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    OpenAIRE

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to comm...

  20. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    Science.gov (United States)

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  1. Counterforce Orthosis In The Management Of Lateral Epicondylitis.

    Science.gov (United States)

    Vellilappilly, Daison Varghese; Rai, Heroor Ravindranath; Varghese, Jaison; Renjith, Vishnu

    2017-01-01

    Lateral Epicondylitis (LE), is a condition characterized by the pain and tenderness over the lateral epicondyle of the humerus. LE is commonly seen among people who are involved in sports such as tennis and golf. Any activity that repeatedly overstrains the extensor carpi radialis brevis tendon can lead to LE. The management of lateral epicondylitis generally involves the use of counterforce orthosis. The aim of this review is to summarize the evidence regarding the effectiveness of counterforce orthoses on the clinical outcomes of patients with lateral epicondylitis. The PubMed, Ovid, and ProQuest databases were searched for potential studies which explored the use of counterforce orthosis in the management of lateral epicondylitis. To have a better understanding of the effectiveness of various types of orthoses, the review is organized into four sections. The first section explores the use of a single orthotic device, the second section focuses on the combined use of orthotic devices, the third section explore studies that compared the effect of local steroid injection along with orthosis and the last section narrate the studies that compared various types of orthotic devices. The studies support the use of orthotic devices as a treatment modality for lateral epicondylitis. There is rising evidence which supports the use of a comprehensive approach, (by combining routine physiotherapy with orthotic devices) in the management of LE. Orthosis alone or in combination with routine physical therapy can be considered as an evidence-based treatment strategy for patients with lateral epicondylitis. However, on the basis of the literature review conducted, the authors recommend that further high-quality clinical trials regarding the management of lateral epicondylitis are necessary to strengthen the evidence-based physiotherapy practice.

  2. The Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2015-09-01

    Full Text Available Objectives: Ankle Foot Orthoses (AFOs are widely utilized to improve walking ability in hemiplegic patients. The present study aimed to evaluate the effect of Rocker bar Ankle Foot Orthosis (RAFO on functional mobility in post-stroke hemiplegic patients. Methods: Fifteen hemiplegic patients (men and women who were at least 6-months post-stroke and able to walk without assistive device for at least 10 meters voluntarily participated in this study. The patients were examined with and without RAFO. Their functional mobility was evaluated through 10-meter walk test and Timed Up and Go (TUG test. Also, paired t-test was used to analyze obtained data. Results: When patients used RAFO, their gait speed significantly increased (P<0.05. Also, the time of performing TUG test experienced a significant decrease using RAFO compared with utilizing shoe only (P<0.05. Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patient’s secondary to stroke. It seems that, it has been due to the positive effect of rocker modification on improving push off and transferring weight during stance phase of gait.

  3. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  4. How Does Ankle-foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?

    Science.gov (United States)

    2014-05-10

    IDEO), is available to injured service members but prescription guidelines are limited. Questions/purposes In this study we ask (1) does dynamic AFO...1.78 97.3 7.5 R LE tissue loss/trauma 4 40 1.81 81.0 9.3 L ankle fracture and osteoarthritis 5 30 1.75 79.1 9.8 L tibia/fibula fracture 6 30 1.76 78.2

  5. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy.

    Science.gov (United States)

    Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap

    2014-12-01

    A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.

  6. Use and tolerability of a side pole static ankle foot orthosis in children with neurological disorders.

    Science.gov (United States)

    Delvert, Céline; Rippert, Pascal; Margirier, Françoise; Vadot, Jean-Pierre; Bérard, Carole; Poirot, Isabelle; Vuillerot, Carole

    2017-04-01

    Transverse-plane foot deformities are a frequently encountered issue in children with neurological disorders. They are the source of many symptoms, such as pain and walking difficulties, making their prevention very important. We aim to describe the use and tolerability of a side pole static ankle foot orthosis used to prevent transverse-plane foot deformities in children with neurologic disorders. Monocentric, retrospective, observational study. Medical data were collected from 103 children with transverse-plane foot deformities in one or both feet caused by a neurological impairment. All children were braced between 2001 and 2010. Unilateral orthosis was prescribed for 32 children and bilateral orthosis for 71. Transverse-plane foot deformities were varus in 66% of the cases and an equinus was associated in 59.2% of the cases. Mean age for the first prescription was 8.6 years. For the 23 patients present at the 4-year visit, 84.8% still wore the orthosis daily, and 64.7% wore the orthosis more than 6 h per day. The rate of permanent discontinuation of wearing the orthosis was 14.7%. The side pole static ankle foot orthosis is well tolerated with very few side effects, which promotes regular wearing and observance. Clinical relevance Side pole static ankle foot orthoses are well tolerated and can be safely used for children with foot abnormalities in the frontal plane that have a neurological pathology origin.

  7. The effects of a new designed forearm orthosis in treatment of lateral epicondylitis.

    Science.gov (United States)

    Forogh, Bijan; Khalighi, Mohsen; Javanshir, Mohammad Ali; Ghoseiri, Kamiar; Kamali, Mohammad; Raissi, Gholamreza

    2012-07-01

    This paper reports on the design and testing of a new designed forearm orthosis and explores its efficacious in comparison to the standard counterforce orthosis in patients with lateral epicondylitis. Twenty-four patients were enrolled in this assessor-blinded clinical trial and randomly assigned to two parallel treatment groups. The measures of pain and function, the pain threshold and grip strength were compared using patient rated tennis elbow evaluation (PRTEE) form, algometer and dynamometer respectively at baseline and 4 weeks after treatment. Paired and independent t-test statistical methods recruited for within and between groups comparisons respectively. The both orthoses, counterforce and new-designed, significantly relieved pain, and improved function, pain threshold and grip strength of all patients after 4 weeks application. The new-designed orthosis seemed to be more effective than the counterforce orthosis in pain relief, but there was not any significant difference in efficacious of two types of orthoses regarding function. The new-designed orthosis can significantly relieve pain, improve function, increase pain threshold and grip strength after application. This orthosis seemed to be more effective than counterforce orthosis in relieving pain and increasing the pain threshold probably due to the limitation of forearm supination.

  8. Can an ankle-foot orthosis change hearts and minds?

    Science.gov (United States)

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Blair, James A; Hsu, Joseph R

    2011-01-01

    The current military conflicts of Operation Enduring Freedom and Operation Iraqi Freedom have been characterized by high-energy explosive wounding patterns, with the majority affecting the extremities. While many injuries have resulted in amputation, surgical advances have allowed the orthopaedic surgeon to pursue limb salvage in the face of injuries once considered unsalvageable. The military limb salvage patient is frequently highly active and motivated and expresses significant frustration with the slow nature of limb salvage rehabilitation and continued functional deficits. Inspired by these patients, efforts at this institution began to provide them with a more dynamic orthosis. Utilizing techniques and technology resulting from cerebral palsy, stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To date, this device has significantly improved the functional capabilities of the limb salvage wounded warrior population when combined with a high-intensity rehabilitation program. Clinical and biomechanical research is currently underway at this institution in order to fully characterize the device, its effect on patients, and what can be done to modify future generations of the device to best serve the combat-wounded limb salvage population.

  9. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system

    Science.gov (United States)

    Kashapova, R. M.; Kashapov, R. N.; Kashapova, R. S.

    2017-09-01

    The possibility of using the built-in ultrasound physiotherapy system of the hand orthosis is explored in the work. The individual mesh orthosis from nylon 12 was manufactured by the 3D prototyping method on the installation of selective laser sintering SLS SPro 60HD. The applied technology of three-dimensional scanning made it possible to obtain a model of the patient’s hand and on the basis of it to build a virtual model of the mesh frame. In the course of the research, the developed system of ultrasound exposure was installed on the orthosis and its tests were carried out. As a result, the acceleration of the healing process and the reduction in the time of wearing orthosis were found.

  10. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    Science.gov (United States)

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  11. Simulations and experimental evaluation of an active orthosis for interaction in virtual environments

    Directory of Open Access Journals (Sweden)

    Tsveov Mihail

    2018-01-01

    Full Text Available In this work, the development of a human arm active orthosis is presented. The orthosis is designed primarily for training and rehabilitation in virtual environments.The orthosis system is intended for embodiment in virtual reality where it is allowing human to perceive forces at different body parts or the weight of lifted objects. In the paper the choice of a mechanical structure is shown equivalent to the structure of the human arm. A mechanical model of the orthosis arm as haptic device is built, where kinematic and dynamic parameters are evaluated. Impedance control scheme is selected as the most suitable for force refection at the hand or arm. An open-loop impedance controller is presented in the paper. Computer experiments are carried out using the dimensions of a real arm orthosis. Computer experiments have been carried out to provide force reflection by VR, according to virtual scenario. The conducted simulations show the range of the forces on the operator hand, orthosis can provide. The results of additional measurements and experimental evaluations of physical quantities in the interaction in a virtual environment are revealed in the paper.

  12. Restoration of ankle movements with the ActiGait implantable drop foot stimulator: a safe and reliable treatment option for permanent central leg palsy.

    Science.gov (United States)

    Martin, Klaus Daniel; Polanski, Witold Henryk; Schulz, Anne-Kathrin; Jöbges, Michael; Hoff, Hansjoerg; Schackert, Gabriele; Pinzer, Thomas; Sobottka, Stephan B

    2016-01-01

    OBJECT The ActiGait drop foot stimulator is a promising technique for restoration of lost ankle function by an implantable hybrid stimulation system. It allows ankle dorsiflexion by active peroneal nerve stimulation during the swing phase of gait. In this paper the authors report the outcome of the first prospective study on a large number of patients with stroke-related drop foot. METHODS Twenty-seven patients who experienced a stroke and with persisting spastic leg paresis received an implantable ActiGait drop foot stimulator for restoration of ankle movement after successful surface test stimulation. After 3 to 5 weeks, the stimulator was activated, and gait speed, gait endurance, and activation time of the system were evaluated and compared with preoperative gait tests. In addition, patient satisfaction was assessed using a questionnaire. RESULTS Postoperative gait speed significantly improved from 33.9 seconds per 20 meters to 17.9 seconds per 20 meters (p < 0.0001), gait endurance from 196 meters in 6 minutes to 401 meters in 6 minutes (p < 0.0001), and activation time from 20.5 seconds to 10.6 seconds on average (p < 0.0001). In 2 patients with nerve injury, surgical repositioning of the electrode cuff became necessary. One patient showed a delayed wound healing, and in another patient the system had to be removed because of a wound infection. Marked improvement in mobility, social participation, and quality of life was confirmed by 89% to 96% of patients. CONCLUSIONS The ActiGait implantable drop foot stimulator improves gait speed, endurance, and quality of life in patients with stroke-related drop foot. Regarding gait speed, the ActiGait system appears to be advantageous compared with foot orthosis or surface stimulation devices. Randomized trials with more patients and longer observation periods are needed to prove the long-term benefit of this device.

  13. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...

  14. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.

    Science.gov (United States)

    Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano

    2017-10-01

    The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Effect of abducens orthosis combined with walker on developmental dysplasia of the hip].

    Science.gov (United States)

    Hu, Zhiyong; Xu, Yongqiang; Liang, Jieyu; Li, Kanghua; Liao, Qiande

    2009-07-01

    To evaluate the effect of abducens orthosis combined with walker on developmental dysplasia of the hip (DDH). A total of 126 patients (224 hips) with DDH aged 6-36 months in Xiangya Hospital was randomly divided into 2 groups: an orthosis combined with walker group and an improved hip frog cast fixation group. Seventy patients (130 hips) were treated by the orthosis combined with walker and 56 patients (94 hips) were treated by the improved hip frog cast fixation. We compared the effect and complications of the 2 groups. The fineness rates of the orthosis combined with walker group and the improved hip frog cast fixation group were 89.2% and 90.4%, respectively, with no significant difference (P>0.05). The rate of femoral head osteonecrosis in the orthosis combined with walker group was significantly lower than that in the improved hip frog cast fixation group (1.5% vs. 5.3%,Pwalker has a lower proportion of femoral head osteonecrosis, but a higher proportion of re-dislocation.

  16. Active lower limb orthosis with one degree of freedom for people with paraplegia.

    Science.gov (United States)

    Gloger, Michal; Obinata, Goro; Genda, Eiichi; Babjak, Jan; Pei, Yanling

    2017-07-01

    The main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this paper. The main idea of this device is based on HALO mechanism. HALO is compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new orthosis is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It is proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the center of gravity were decreased by 40% with significantly smaller standard deviations in case of the active orthosis. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis. The new @halo device is the first active orthosis for lower limbs with just one actuated degree of freedom for users with paraplegia.

  17. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2015-01-01

    Full Text Available Background: Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. Materials and Methods: A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. Results: The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. Discussion: It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  18. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling.

    Science.gov (United States)

    Karimi, Mohammad; Kavyani, Mahsa

    2015-01-01

    Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  19. foot orthosis in improving the balance in children with spastic

    African Journals Online (AJOL)

    Khaled A. Olama

    2012-11-02

    Nov 2, 2012 ... The present study aims to evaluate the effect of the three side ... enabled them to gain more balance control and postural reactions . © 2012 Ain Shams ..... sis on balance board to stimulate the child postural .... plantar-flexion improved gait efficiency by improving stability .... Older adults often adopt a.

  20. Fully embedded myoelectric control for a wearable robotic hand orthosis.

    Science.gov (United States)

    Ryser, Franziska; Butzer, Tobias; Held, Jeremia P; Lambercy, Olivier; Gassert, Roger

    2017-07-01

    To prevent learned non-use of the affected hand in chronic stroke survivors, rehabilitative training should be continued after discharge from the hospital. Robotic hand orthoses are a promising approach for home rehabilitation. When combined with intuitive control based on electromyography, the therapy outcome can be improved. However, such systems often require extensive cabling, experience in electrode placement and connection to external computers. This paper presents the framework for a stand-alone, fully wearable and real-time myoelectric intention detection system based on the Myo armband. The hard and software for real-time gesture classification were developed and combined with a routine to train and customize the classifier, leading to a unique ease of use. The system including training of the classifier can be set up within less than one minute. Results demonstrated that: (1) the proposed algorithm can classify five gestures with an accuracy of 98%, (2) the final system can online classify three gestures with an accuracy of 94.3% and, in a preliminary test, (3) classify three gestures from data acquired from mildly to severely impaired stroke survivors with an accuracy of over 78.8%. These results highlight the potential of the presented system for electromyography-based intention detection for stroke survivors and, with the integration of the system into a robotic hand orthosis, the potential for a wearable platform for all day robot-assisted home rehabilitation.

  1. Design and evaluation of Mina: a robotic orthosis for paraplegics.

    Science.gov (United States)

    Neuhaus, Peter D; Noorden, Jerryll H; Craig, Travis J; Torres, Tecalote; Kirschbaum, Justin; Pratt, Jerry E

    2011-01-01

    Mobility options for persons suffering from paraplegia or paraparesis are limited to mainly wheeled devices. There are significant health, psychological, and social consequences related to being confined to a wheelchair. We present the Mina, a robotic orthosis for assisting mobility, which offers a legged mobility option for these persons. Mina is an overground robotic device that is worn on the back and around the legs to provide mobility assistance for people suffering from paraplegia or paraparesis. Mina uses compliant actuation to power the hip and knee joints. For paralyzed users, balance is provided with the assistance of forearm crutches. This paper presents the evaluation of Mina with two paraplegics (SCI ASIA-A). We confirmed that with a few hours of training and practice, Mina is currently able to provide paraplegics walking mobility at speeds of up to 0.20 m/s. We further confirmed that using Mina is not physically taxing and requires little cognitive effort, allowing the user to converse and maintain eye contact while walking. © 2011 IEEE

  2. Wearing an active spinal orthosis improves back extensor strength in women with osteoporotic vertebral fractures

    DEFF Research Database (Denmark)

    Valentin, Gitte Hoff; Pedersen, Louise Nymann; Maribo, Thomas

    2014-01-01

    .Study design:Experimental follow-up.Methods:The women used the active spinal orthosis for 3 months. Outcomes were changes in isometric back extensor strength, changes in back pain and changes in physical functioning.Results:A total of 13 women were included in the trial. Wearing the orthosis during a 3-month......Background:Vertebral fractures are the most common clinical manifestations of osteoporosis. Vertebral fractures and reduced back extensor strength can result in hyperkyphosis. Hyperkyphosis is associated with diminished daily functioning and an increased risk of falling. Improvements in back...... extensor strength can result in decreased kyphosis and thus a decreased risk of falls and fractures.Objectives:The aim was to examine the effects of an active spinal orthosis - Spinomed III - on back extensor strength, back pain and physical functioning in women with osteoporotic vertebral fractures...

  3. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children

    Directory of Open Access Journals (Sweden)

    Zimmerli Lukas

    2010-04-01

    Full Text Available Abstract Background Virtual reality (VR offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT. The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat®. Methods A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1 walk normally without supporting assistance, (2 with therapists' instructions to promote active participation, (3 with VR as a motivating tool to walk actively and (4 with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. Results The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p Conclusions The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation.

  4. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  5. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  6. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    OpenAIRE

    Raj, Anil K.; Neuhaus, Peter D.; Moucheboeuf, Adrien M.; Noorden, Jerryll H.; Lecoutre, David V.

    2011-01-01

    While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC) has developed the Mina, a prototype sensorimotor robotic ort...

  7. Resistant metatarsus adductus: prospective randomized trial of casting versus orthosis.

    Science.gov (United States)

    Herzenberg, John E; Burghardt, Rolf D

    2014-03-01

    Metatarsus adductus is a common pediatric foot deformity related to intrauterine molding. It is usually a mild deformity that responds well to simple observation or minimal treatment with a home program of stretching. Resistant cases may need a more aggressive approach such as serial casting or special bracing to avoid the need for surgical intervention. We compared clinical outcomes using serial casting with orthoses for resistant metatarsus adductus. We prospectively treated 27 infants (43 feet) between the ages 3 and 9 months who failed home stretching treatment. Patients were randomized to either serial plaster casting or Bebax orthoses. Footprints and simulated weight-bearing anteroposterior and lateral view radiographs were made at entry and follow-up. There was no statistical difference between casting and Bebax for the following parameters: age at study entry, length of treatment, number of clinic visits, follow-up, and follow-up maintenance treatments. Both groups showed improvement in footprint and radiographic measurements post-treatment, without worsening of heel valgus. The Bebax group had greater improvement in the footprint heel bisector measurement than the casting group. The Bebax treatment requires more active parental cooperation. A simulated cost analysis of materials and office visit charges, however, revealed that Bebax treatment was significantly less expensive, about half the cost of casting. Because of the cost savings and virtually identical clinical results, we recommend the Bebax orthosis for resistant metatarsus in pre-walking infants with parents who are compliant. Other considerations include specific insurance plans, which may pay for casts but not orthoses.

  8. Gait and its assessment in psychiatry

    OpenAIRE

    Sanders, Richard D.; Gillig, Paulette Marie

    2010-01-01

    Gait reflects all levels of nervous system function. In psychiatry, gait disturbances reflecting cortical and subcortical dysfunction are often seen. Observing spontaneous gait, sometimes augmented by a few brief tests, can be highly informative. The authors briefly review the neuroanatomy of gait, review gait abnormalities seen in psychiatric and neurologic disorders, and describe the assessment of gait.

  9. Surgical therapy by sandwich transplantation using a dermal collagen-elastin matrix and full thickness split grafts and gait rehabilitation with individualized orthesis

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2012-01-01

    Full Text Available Painful callosities of the feet (PCOF are a rare complaint in children with severe impairment of mobility and quality of life. There is no medical treatment available.We investigated the usefulness of a recently developed combined transplant technique-the sandwich transplantation with dermal collagen-elastin template in this rare condition. A 14-year-old boy suffered from PCOF for several years without any improvement by topical therapy, dermabrasion, and oral retinoids. He was unable to walk normally and suffered from severe pain. We performed a complete deep excision of the hyperkeratotic plantar tissue in general anaesthesia in combination with sandwich transplantation in the same setting. Dry sheets of collagen-elastin matrix (1 mm thickness were placed on the soft tissue defects and covered by full-thickness mesh graft transplants from the upper leg. An individualized orthosis was produced for gait rehabilitation. Two weeks after surgery the gait-related pain was reduced remarkably. Using the orthosis, the boy was able to walk pain-free even on staircase. Surgery of PCOF with sandwich transplantation and gait rehabilitation appears to be a promising strategy for this rare condition.

  10. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    Science.gov (United States)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  11. Role of three side support ankle–foot orthosis in improving the ...

    African Journals Online (AJOL)

    Cerebral palsy (CP) is a heterogeneous group of permanent, non-progressive motor disorders of movement and posture. Ankle–foot orthoses (AFOs) are frequently prescribed to correct skeletal misalignments in spastic CP. The present study aims to evaluate the effect of the three side support ankle–foot orthosis on ...

  12. Exercises to Improve Gait Abnormalities

    Science.gov (United States)

    ... Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner of how a ...

  13. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  14. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation

    NARCIS (Netherlands)

    Vrieling, Aline H.; van Keeken, Helco G.; Schoppen, Tanneke; Hof, At L.; Otten, Bert; Halbertsma, Jan P. K.; Postema, Klaas

    Objective: To describe the adjustments in gait characteristics of obstacle crossing, gait initiation and gait termination that occur in subjects with a recent lower limb amputation during the rehabilitation process. Design: Prospective and descriptive study. Subjects: Fourteen subjects with a recent

  15. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.

    Science.gov (United States)

    Rajasekaran, Vijaykumar; López-Larraz, Eduardo; Trincado-Alonso, Fernando; Aranda, Joan; Montesano, Luis; Del-Ama, Antonio J; Pons, Jose L

    2018-01-03

    Gait training for individuals with neurological disorders is challenging in providing the suitable assistance and more adaptive behaviour towards user needs. The user specific adaptation can be defined based on the user interaction with the orthosis and by monitoring the user intentions. In this paper, an adaptive control model, commanded by the user intention, is evaluated using a lower limb exoskeleton with incomplete spinal cord injury individuals (SCI). A user intention based adaptive control model has been developed and evaluated with 4 incomplete SCI individuals across 3 sessions of training per individual. The adaptive control model modifies the joint impedance properties of the exoskeleton as a function of the human-orthosis interaction torques and the joint trajectory evolution along the gait sequence, in real time. The volitional input of the user is identified by monitoring the neural signals, pertaining to the user's motor activity. These volitional inputs are used as a trigger to initiate the gait movement, allowing the user to control the initialization of the exoskeleton movement, independently. A Finite-state machine based control model is used in this set-up which helps in combining the volitional orders with the gait adaptation. The exoskeleton demonstrated an adaptive assistance depending on the patients' performance without guiding them to follow an imposed trajectory. The exoskeleton initiated the trajectory based on the user intention command received from the brain machine interface, demonstrating it as a reliable trigger. The exoskeleton maintained the equilibrium by providing suitable assistance throughout the experiments. A progressive change in the maximum flexion of the knee joint was observed at the end of each session which shows improvement in the patient performance. Results of the adaptive impedance were evaluated by comparing with the application of a constant impedance value. Participants reported that the movement of the

  16. Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness

    OpenAIRE

    Pancani, Silvia; Rowson, Jennifer; Tindale, Wendy; Heron, Nicola; Langley, Joe; McCarthy, Avril D.; Quinn, Ann; Reed, Heath; Stanton, Andrew; Shaw, Pamela J.; McDermott, Christopher J.; Mazzà, Claudia

    2016-01-01

    The aim of this study was to quantify the biomechanical features of the Sheffield Support Snood (SSS), a cervical orthosis specifically designed for patients with neck weakness. The orthosis is designed to be adaptable to a patient’s level of functional limitation using adjustable removable supports, which contribute support and restrict movement only in desired anatomical planes. \\ud Methods: The SSS was evaluated along with two commercially available orthoses, the Vista and Headmaster. The ...

  17. Effect of Ankle-foot Orthosis on Lower Limb Muscle Activities and Static Balance of Stroke Patients Authors’ Names

    OpenAIRE

    Lee, Youngmin; Her, Jin Gang; Choi, Youngeun; Kim, Heesoo

    2014-01-01

    [Purpose] This study examined the effects of an ankle-foot orthosis worn during balance training on lower limb muscle activity and static balance of chronic stroke patients. [Subjects] The subjects were twenty-five inpatients receiving physical therapy for chronic stroke. [Methods] The chronic stroke patients were divided into two groups: thirteen patients were assigned to the ankle-foot orthosis group, while the remaining twelve patients wore only their shoes. Each group performed balance tr...

  18. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review.

    Science.gov (United States)

    Swinnen, Eva; Beckwée, David; Meeusen, Romain; Baeyens, Jean-Pierre; Kerckhofs, Eric

    2014-01-01

    The aim of this systematic review was to summarize the improvements in balance after robot-assisted gait training (RAGT) in stroke patients. Two databases were searched: PubMed and Web of Knowledge. The most important key words are "stroke," "RAGT," "balance," "Lokomat," and "gait trainer." Studies were included if stroke patients were involved in RAGT protocols, and balance was determined as an outcome measurement. The articles were checked for methodological quality by 2 reviewers (Cohen's κ = 0.72). Nine studies were included (7 true experimental and 2 pre-experimental studies; methodological quality score, 56%-81%). In total, 229 subacute or chronic stroke patients (70.5% male) were involved in RAGT (3 to 5 times per week, 3 to 10 weeks, 12 to 25 sessions). In 5 studies, the gait trainer was used; in 2, the Lokomat was used; in 1 study, a single-joint wearable knee orthosis was used; and in 1 study, the AutoAmbulator was used. Eight studies compared RAGT with other gait rehabilitation methods. Significant improvements (no to large effect sizes, Cohen's d = 0.01 to 3.01) in balance scores measured with the Berg Balance Scale, the Tinetti test, postural sway tests, and the Timed Up and Go test were found after RAGT. No significant differences in balance between the intervention and control groups were reported. RAGT can lead to improvements in balance in stroke patients; however, it is not clear whether the improvements are greater compared with those associated with other gait rehabilitation methods. Because a limited number of studies are available, more specific research (eg, randomized controlled trials with larger, specific populations) is necessary to draw stronger conclusions.

  19. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  20. Design and Development of Effective Transmission Mechanisms on a Tendon Driven Hand Orthosis for Stroke Patients

    OpenAIRE

    Park, Sangwoo; Weber, Lynne; Bishop, Lauri; Stein, Joel; Ciocarlie, Matei

    2018-01-01

    Tendon-driven hand orthoses have advantages over exoskeletons with respect to wearability and safety because of their low-profile design and ability to fit a range of patients without requiring custom joint alignment. However, no existing study on a wearable tendon-driven hand orthosis for stroke patients presents evidence that such devices can overcome spasticity given repeated use and fatigue, or discusses transmission efficiency. In this study, we propose two designs that provide effective...

  1. iGrab: hand orthosis powered by twisted and coiled polymer muscles

    Science.gov (United States)

    Saharan, Lokesh; de Andrade, Monica Jung; Saleem, Wahaj; Baughman, Ray H.; Tadesse, Yonas

    2017-10-01

    Several works have been reported in powered hand orthosis in the last ten years for assistive or rehabilitative purposes. However, most of these approaches uses conventional actuators such as servo motors to power orthosis. In this work, we demonstrate the recently reported twisted and coiled polymeric (TCP) muscles to drive a compact, light, inexpensive and wearable upper extremity device, iGrab. A 3D printed orthotic hand module was designed, developed and tested for the performance. The device has six 2-ply muscles of diameter 1.35 mm with a length of 380 mm. We used a single 2-ply muscle for each finger and two 2-ply muscles for the thumb. Pulsed actuation of the muscles at 1.8 A current for 25 s with 7% duty cycle under natural cooling showed full flexion of the fingers within 2 s. Modeling and simulation were performed on the device using standard Euler-Lagrangian equations. Our artificial muscles powered hand orthosis demonstrated the capability of pinching and picking objects of different shapes, weights, and sizes.

  2. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  3. Single DoF Hand Orthosis for Rehabilitation of Stroke and SCI Patients

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Apuroop, K. G. S.; Boddupalli, Sricharan

    2017-08-01

    Many stroke and spinal cord injury patients suffer from paralysis which range from severe to nominal. Some of them, after therapy, could regain most of the motor control, particularly in hands if the severity level is not so high. In this paper we propose a hand orthosis for such patients whose stroke and spinal cord injury severity is nominal and the motor control in hands can be regained by therapy as part of their rehabilitation process. The patients can wear this orthosis and the therapy can be done with simple Human Computer Interface. The physicians, the physiotherapists and the patients themselves can carry out the therapy with the help of this device. The tests conducted in the lab and the results obtained are very promising that this can be an effective mechanism for stroke and spinal cord injury patients in their rehabilitation process. The hand orthosis is designed and fabricated locally so that it can be made available to such patients at an affordable cost.

  4. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process

    Directory of Open Access Journals (Sweden)

    Gabriele Baronio

    2016-01-01

    Full Text Available The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities.

  5. EFFECT OF ORTHOTIC SUBTALAR ALIGNMENT WITH CO-ACTIVATION EXERCISE FOR ALTERATION IN GAIT ENDURANCE IN A CHILD WITH CEREBRAL PALSYSINGLE CASE STUDY

    Directory of Open Access Journals (Sweden)

    K. Vadivelan

    2016-10-01

    Full Text Available Background: Energy cost of walking is two times higher in children with cerebral palsy when compared with normal children; this may be due to gait abnormalities.There is a negative influence on physical activity and early onsets of fatigue in activities of daily living are evident in cerebral palsy children and the reason for this is increase in energy cost of walking. Therefore, the treatment techniques which targets on correction of gait abnormalities and Energy conservation during walking are important to maintain orimprove independent functioning.The aim is to find out the effects of using Supra Malleolar Orthosis (SMO along with co-activation exercise in the increase of gait endurance and also to encourage independent skills and abilities in cerebral palsy child. Methods: A 14 years child with spastic hemiplegic cerebral palsy was treated with custom made supra malleolar orthotic which was designed with an orthotic support followed with specific exercises, co-activating dorsiflexors and plantar flexors actively and with assistance. The subject was made to do the co-activation exercises 3 days per week for 8 weeks. Step length, stride length, cadence, navicular drop test, medial arch height and calcaneal eversion were measured before starting the treatment and at the end of 8th week. Results: the results of treatment shows that there is an improvement in 2 minutes’ walk test from 7(pre-test to 13, step length from 22 (pre-test to 32,stride length from 36(pre-test to 47,cadence from 39 (pretest to 37 after the use of Supra Malleolar Orthosis (SMO and a co-activation exercises intervention. There was a clear and significant improvement noted in navicular drop test, medial arch height and calcaneal eversion after a period of 8 weeks use of orthosis and exercise intervention when compared with pre-test value. Conclusion: Orthotic subtalar alignment with co-acticvation exercises for alteration in gait endurance in a child is showing

  6. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    modules to train individuals to distinguish gait deviations (trunk motion and lower-limb motion). Each of these modules help trainers improve their...AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool PRINCIPAL INVESTIGATOR: Dr. Karim Abdel-Malek CONTRACTING...study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities

  7. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.

    Science.gov (United States)

    Lerner, Zachary F; Damiano, Diane L; Park, Hyung-Soon; Gravunder, Andrew J; Bulea, Thomas C

    2017-06-01

    Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.

  8. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  9. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    Science.gov (United States)

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  10. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-01-01

    Background Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. Objectives To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Materials and Methods Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Results Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). Conclusions The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one). PMID:28180116

  11. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis.

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-07-01

    Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one).

  12. Tic-induced gait dysfunction.

    NARCIS (Netherlands)

    Fasano, A.; Ruzicka, E.; Bloem, B.R.

    2012-01-01

    BACKGROUND: Many neurological disorders impair gait, but only a few of them are episodic or paroxysmal, the most important ones being freezing of gait and paroxysmal dyskinesias. METHODS: We describe 4 patients with tic disorders (3 with Tourette syndrome, and 1 with a tic disorder secondary to

  13. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as record...

  14. A mechanized gait trainer for restoration of gait.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D

    2000-01-01

    The newly developed gait trainer allows wheel-chair-bound subjects the repetitive practice of a gait-like movement without overstressing therapists. The device simulates the phases of gait, supports the subjects according to their abilities, and controls the center of mass (CoM) in the vertical and horizontal directions. The patterns of sagittal lower limb joint kinematics and of muscle activation for a normal subject were similar when using the mechanized trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists were required to support treadmill walking. Gait movements on the trainer were highly symmetrical, impact free, and less spastic. The vertical displacement of the CoM was bi-phasic instead of mono-phasic during each gait cycle on the new device. Two cases of non-ambulatory patients, who regained their walking ability after 4 weeks of daily training on the gait trainer, are reported.

  15. A method to standardize gait and balance variables for gait velocity.

    NARCIS (Netherlands)

    Iersel, M.B. van; Olde Rikkert, M.G.M.; Borm, G.F.

    2007-01-01

    Many gait and balance variables depend on gait velocity, which seriously hinders the interpretation of gait and balance data derived from walks at different velocities. However, as far as we know there is no widely accepted method to correct for effects of gait velocity on other gait and balance

  16. Immediate effect of a functional wrist orthosis for children with cerebral palsy or brain injury: A randomized controlled trial.

    Science.gov (United States)

    Jackman, Michelle; Novak, Iona; Lannin, Natasha; Galea, Claire

    2017-10-28

    Two-group randomized controlled trial. Upper limb orthoses worn during functional tasks are commonly used in pediatric neurologic rehabilitation, despite a paucity of high-level evidence. The purpose of this study was to investigate if a customized functional wrist orthosis, when placed on the limb, leads to an immediate improvement in hand function for children with cerebral palsy or brain injury. A 2-group randomized controlled trial involving 30 children was conducted. Participants were randomized to either receive a customized functional wrist orthosis (experimental, n = 15) or not receive an orthosis (control, n = 15). The box and blocks test was administered at baseline and repeated 1 hour after experimental intervention, with the orthosis on if randomized to the orthotic group. After intervention, there were no significant differences on the box and blocks test between the orthotic group (mean, 10.13; standard deviation, 11.476) and the no orthotic group (mean, 14.07; standard deviation, 11.106; t[28], -0.954; P = .348; and 95% confidence interval, -12.380 to 4.513). In contrast to the findings of previous studies, our results suggest that a functional wrist orthosis, when supporting the joint in a 'typical' position, may not lead to an immediate improvement in hand function. Wearing a functional wrist orthosis did not lead to an immediate improvement in the ability of children with cerebral palsy or brain injury to grasp and release. Further research is needed combining upper limb orthoses with task-specific training and measuring outcomes over the medium to long term. Copyright © 2017 Hanley & Belfus. All rights reserved.

  17. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.

    Science.gov (United States)

    Wu, Cheng-Hua; Mao, Hui-Fen; Hu, Jwu-Sheng; Wang, Ting-Yun; Tsai, Yi-Jeng; Hsu, Wei-Li

    2018-03-05

    Powered exoskeleton can improve the mobility for people with movement deficits by providing mechanical support and facilitate the gait training. This pilot study evaluated the effect of gait training using a newly developed powered lower limb exoskeleton robot for individuals with complete spinal cord injury (SCI). Two participants with a complete SCI were recruited for this clinical study. The powered exoskeleton gait training was 8 weeks, 1 h per session, and 2 sessions per week. The evaluation was performed before and after the training for (1) the time taken by the user to don and doff the powered exoskeleton independently, (2) the level of exertion perceived by participants while using the powered exoskeleton, and (3) the mobility performance included the timed up-and-go test, 10-m walk test, and 6-min walk test with the powered exoskeleton. The safety of the powered exoskeleton was evaluated on the basis of injury reports and the incidence of falls or imbalance while using the device. The results indicated that the participants were donning and doffing the powered lower limb exoskeleton robot independently with a lower level of exertion and walked faster and farther without any injury or fall incidence when using the powered exoskeleton than when using a knee-ankle-foot orthosis. Bone mineral densities was also increased after the gait training. No adverse effects, such as skin abrasions, or discomfort were reported while using the powered exoskeleton. The findings demonstrated that individuals with complete SCI used the powered lower limb exoskeleton robot independently without any assistance after 8 weeks of powered exoskeleton gait training. Trial registration: National Taiwan University Hospital. 201210051RIB . Name of registry: Hui-Fen Mao. URL of registry: Not available. Date of registration: December 12th, 2012. Date of enrolment of the first participant to the trial: January 3rd, 2013.

  18. Gait, mobility, and falls in older people

    OpenAIRE

    Gschwind, Yves Josef

    2012-01-01

    My doctoral thesis contributes to the understanding of gait, mobility, and falls in older people. All presented projects investigated the most prominent and sensitive markers for fall-related gait changes, that is gait velocity and gait variability. Based on the measurement of these spatio-temporal gait parameters, particularly when using a change-sensitive dual task paradigm, it is possible to make conclusions regarding walking, balance, activities of daily living, and falls in o...

  19. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech

    2015-01-01

    Abstract The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical...... to good reliability with ICCs of 0.4–0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18...

  1. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  2. GaitKeeper: A System for Measuring Canine Gait

    Directory of Open Access Journals (Sweden)

    Cassim Ladha

    2017-02-01

    Full Text Available It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time. Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance

  3. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes

    NARCIS (Netherlands)

    Kosse, Nienke; Vuillerme, Nicolas; Hortobagyi, Tibor; Lamoth, Claude

    Introduction Normative data of how natural aging affects gait can serve as a frame of reference for changes in gait dynamics due to pathologies. Therefore, the present study aims (1) to identify gait variables sensitive to age-related changes in gait over the adult life span using the iPod and (2)

  4. Early rehabilitation treatment combined with equinovarus foot deformity surgical correction in stroke patients: safety and changes in gait parameters.

    Science.gov (United States)

    Giannotti, Erika; Merlo, Andrea; Zerbinati, Paolo; Longhi, Maria; Prati, Paolo; Masiero, Stefano; Mazzoli, Davide

    2016-06-01

    Equinovarus foot deformity (EVFD) compromises several prerequisites of walking and increases the risk of falling. Guidelines on rehabilitation following EVFD surgery are missing in current literature. The aim of this study was to analyze safety and adherence to an early rehabilitation treatment characterized by immediate weight bearing with an ankle-foot orthosis (AFO) in hemiplegic patients after EVFD surgery and to describe gait changes after EVFD surgical correction combined with early rehabilitation treatment. Retrospective observational cohort study. Inpatient rehabilitation clinic. Forty-seven adult patients with hemiplegia consequent to ischemic or haemorrhagic stroke (L/R 20/27, age 56±15 years, time from lesion 6±5 years). A specific rehabilitation protocol with a non-articulated AFO, used to allow for immediate gait training, started one day after EVFD surgery. Gait analysis (GA) data before and one month after surgery were analyzed. The presence of differences in GA space-time parameters, in ankle dorsiflexion (DF) values and peaks at initial contact (DF at IC), during stance (DF at St) and swing (DF at Sw) were assessed by the Wilcoxon Test while the presence of correlations between pre- and post-operative values by Spearman's correlation coefficient. All patients completed the rehabilitation protocol and no clinical complications occurred in the sample. Ankle DF increased one month after surgery at all investigated gait phases (Wilcoxon Test, Prehabilitation associated with surgical procedure is safe and may be suitable to correct EVFD by restoring both the neutral heel foot-ground contact and the ankle DF peaks during stance and swing at one month from surgery. The proposed protocol is a safe and potentially useful rehabilitative approach after EVFD surgical correction in stroke patients.

  5. Management of a patient's gait abnormality using smartphone technology in-clinic for improved qualitative analysis: A case report.

    Science.gov (United States)

    VanWye, William R; Hoover, Donald L

    2018-05-01

    Qualitative analysis has its limitations as the speed of human movement often occurs more quickly than can be comprehended. Digital video allows for frame-by-frame analysis, and therefore likely more effective interventions for gait dysfunction. Although the use of digital video outside laboratory settings, just a decade ago, was challenging due to cost and time constraints, rapid use of smartphones and software applications has made this technology much more practical for clinical usage. A 35-year-old man presented for evaluation with the chief complaint of knee pain 24 months status-post triple arthrodesis following a work-related crush injury. In-clinic qualitative gait analysis revealed gait dysfunction, which was augmented by using a standard IPhone® 3GS camera. After video capture, an IPhone® application (Speed Up TV®, https://itunes.apple.com/us/app/speeduptv/id386986953?mt=8 ) allowed for frame-by-frame analysis. Corrective techniques were employed using in-clinic equipment to develop and apply a temporary heel-to-toe rocker sole (HTRS) to the patient's shoe. Post-intervention video revealed significantly improved gait efficiency with a decrease in pain. The patient was promptly fitted with a permanent HTRS orthosis. This intervention enabled the patient to successfully complete a work conditioning program and progress to job retraining. Video allows for multiple views, which can be further enhanced by using applications for frame-by-frame analysis and zoom capabilities. This is especially useful for less experienced observers of human motion, as well as for establishing comparative signs prior to implementation of training and/or permanent devices.

  6. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  7. Effect of medial arch support foot orthosis on plantar pressure distribution in females with mild-to-moderate hallux valgus after one month of follow-up.

    Science.gov (United States)

    Farzadi, Maede; Safaeepour, Zahra; Mousavi, Mohammad E; Saeedi, Hassan

    2015-04-01

    Higher plantar pressures at the medial forefoot are reported in hallux valgus. Foot orthoses with medial arch support are considered as an intervention in this pathology. However, little is known about the effect of foot orthoses on plantar pressure distribution in hallux valgus. To investigate the effect of a foot orthosis with medial arch support on pressure distribution in females with mild-to-moderate hallux valgus. Quasi-experimental. Sixteen female volunteers with mild-to-moderate hallux valgus participated in this study and used a medial arch support foot orthosis for 4 weeks. Plantar pressure for each participant was assessed using the Pedar-X(®) in-shoe system in four conditions including shoe-only and foot orthosis before and after the intervention. The use of the foot orthosis for 1 month led to a decrease in peak pressure and maximum force under the hallux, first metatarsal, and metatarsals 3-5 (p hallux and the first metatarsal head by transferring the load to the other regions. It would appear that this type of foot orthosis can be an effective method of intervention in this pathology. Findings of this study will improve the clinical knowledge about the effect of the medial arch support foot orthosis used on plantar pressure distribution in hallux valgus pathology. © The International Society for Prosthetics and Orthotics 2014.

  8. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  9. Gait Stability in Children with Cerebral Palsy

    Science.gov (United States)

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  10. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  11. Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles

    Science.gov (United States)

    Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel

    2018-03-01

    The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles

  12. Development and simulation of a passive upper extremity orthosis for amyoplasia

    DEFF Research Database (Denmark)

    Jensen, Erik Føge; Raunsbæk, Joakim; Lund, Jan Nørgaard

    2018-01-01

    Introduction People who are born with arthrogryposis multiplex congenita are typically not able to perform activities of daily living (ADL) due to decreased muscle mass, joint contractures and unnatural upper extremity positioning. They are, therefore, potential users of an assistive device capable....... Results For a given configuration using a mono- and a bi-articular spring, the simulations showed that spring stiffnesses of 400?Nm?1 and of 1029?Nm?1, respectively, were able to lower the maximal muscle activity estimated by the musculoskeletal model to a level in which the 10 postures can be realized....... Conclusion By augmenting residual muscle strength with a partially gravity-balanced passive orthosis, ADLs may be achievable for people with arthrogryposis multiplex congenita....

  13. Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    Science.gov (United States)

    Peurala, Sinikka H; Titianova, Ekaterina B; Mateev, Plamen; Pitkänen, Kauko; Sivenius, Juhani; Tarkka, Ina M

    2005-01-01

    To assess the effects of rehabilitation in thirty-seven ambulatory patients with chronic stroke during three weeks in-patient rehabilitation period. In the intervention group, each patient received 75 min physiotherapy daily every workday including 20 minutes in the electromechanical gait trainer with body-weight support (BWS). In the control group, each patient participated in 45 min conventional physiotherapy daily. Motor ability was assessed with the first five items of the Modified Motor Assessment Scale (MMAS1-5) and ten meters walking speed. Spatio-temporal gait characteristics were recorded with an electrical walkway. The MMAS1-5 (pgait characteristics improved only in the intervention group, as seen in increased Functional Ambulation Profile score (p=0.023), velocity (p=0.023), the step lengths (affected side, p=0.011, non-affected side p=0.040), the stride lengths (p=0.018, p=0.006) and decreased step-time differential (p=0.043). Furthermore, all gait characteristics and other motor abilities remained in the discharge level at the six months in the intervention group. It appears that BWS training gives a long-lasting benefit in gait qualities even in chronic stroke patients.

  14. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.

    Science.gov (United States)

    Galvez, Jose A; Budovitch, Amy; Harkema, Susan J; Reinkensmeyer, David J

    2011-01-01

    Robotic devices are being developed to automate repetitive aspects of walking retraining after neurological injuries, in part because they might improve the consistency and quality of training. However, it is unclear how inconsistent manual training actually is or whether stepping quality depends strongly on the trainers' manual skill. The objective of this study was to quantify trainer variability of manual skill during step training using body-weight support on a treadmill and assess factors of trainer skill. We attached a sensorized orthosis to one leg of each patient with spinal cord injury and measured the shank kinematics and forces exerted by different trainers during six training sessions. An expert trainer rated the trainers' skill level based on videotape recordings. Between-trainer force variability was substantial, about two times greater than within-trainer variability. Trainer skill rating correlated strongly with two gait features: better knee extension during stance and fewer episodes of toe dragging. Better knee extension correlated directly with larger knee horizontal assistance force, but better toe clearance did not correlate with larger ankle push-up force; rather, it correlated with better knee and hip extension. These results are useful to inform robotic gait-training design.

  15. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    Science.gov (United States)

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  16. Invariant Classification of Gait Types

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    . Input silhouettes are matched to the database using the Hungarian method. A classifier is defined based on the dissimilarity between the input silhouettes and the gait actions of the database. The overall recognition rate is 88.2% on a large and diverse test set. The recognition rate is better than...

  17. Control Motion Approach of a Lower Limb Orthosis to Reduce Energy Consumption

    Directory of Open Access Journals (Sweden)

    Daniel Sanz-Merodio

    2012-12-01

    Full Text Available By analysing the dynamic principles of the human gait, an economic gait-control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs of healthy people, which are then de-normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cost is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in each state is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off-line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6% compared with a pure CGA pattern.

  18. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.

    Science.gov (United States)

    Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B

    2001-01-01

    Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.

  19. Effect of Posture Training with Weighted Kypho-Orthosis (WKO) on Improving Balance in Women with Osteoporosis

    OpenAIRE

    Raeissadat, Seyed Ahmad; Sedighipour, Leyla; Pournajaf, Safura; Vahab Kashani, Reza; Sadeghi, Shahram

    2014-01-01

    Objectives. To determine the effect of weighted kypho-orthosis (WKO) on improving balance in women with osteoporosis. In this nonrandomized controlled clinical trial, 31 patients with osteoporosis were included. The patients were assigned to two groups: (1) control group who received 4-week home-based daily exercise program including weight bearing, back strengthening, and balance exercises and (2) intervention group (WKO) who performed aforementioned exercises and wore WKO for one hour twice...

  20. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance.

    Science.gov (United States)

    Kawamura, T; Takanaka, K; Nakamura, T; Osumi, H

    2013-06-01

    In recent years, there is an increase in the number of people that require support during walking as a result of a decrease in the leg muscle strength accompanying aging. An important index for evaluating walking ability is step length. A key cause for a decrease in step length is the loss of muscle strength in the legs. Many researchers have designed and developed orthoses for walking assistance. In this study, we advanced the design of an orthosis for walking assistance that assists the forward swing of the leg to increase step length. We employed a pneumatic artificial muscle as the actuator so that flexible assistance with low rigidity can be achieved. To evaluate the performance of the system, we measured the effect of assistance quantitatively. In this study, we constructed a prototype of the orthosis and measure EMG and step length on fitting it to a healthy subject so as to determine the effect of assistance, noting the increase in the obtained step length. Although there was an increase in EMG stemming from the need to maintain body balance during the stance phase, we observed that the EMG of the sartorius muscle, which helps swing the leg forward, decreased, and the strength of the semitendinosus muscle, which restrains the leg against over-assistance, did not increase but decreased. Our experiments showed that the assistance force provided by the developed orthosis is not adequate for the intended task, and the development of a mechanism that provides appropriate assistance is required in the future.

  1. Characteristics of the muscle activities of the elderly for various pressures in the pneumatic actuator of lower limb orthosis

    Science.gov (United States)

    Kim, Kyong; Yu, Chang-Ho; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    There developed a lower limb orthosis with a pneumatic rubber actuator, which can assist and improve the muscular activities in the lower limb of the elderly. For this purpose, the characteristics of the lower limbs muscle activities for various pressures in the pneumatic actuator for the lower limb orthosis was investigated. To find out the characteristics of the muscle activities for various pneumatic pressures, it analyzed the flexing and extending movement of the knees, and measured the lower limbs muscular power. The subjects wearing the lower limbs orthosis were instructed to perform flexing and extending movement of the knees. The variation in the air pressure of the pneumatic actuator was varies from one kgf/cm2 to four kgf/cm2. The muscular power was measured by monitoring electromyogram using MP100 (BIOPAC Systems, Inc.) and detailed three-dimensional motions of the lower limbs were collected by APAS 3D Motion Analysis system. Through this study, it expected to find the most suitable air pressure for the improvement of the muscular power of the aged.

  2. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.

    Science.gov (United States)

    Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R

    2010-01-01

    To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.

  3. Human Gait Recognition Based on Multiview Gait Sequences

    Directory of Open Access Journals (Sweden)

    Xiaxi Huang

    2008-05-01

    Full Text Available Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.

  4. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  5. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  6. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  7. The effect of ankle foot orthosis stiffness on the energy cost of walking : A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  8. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study.

    NARCIS (Netherlands)

    Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background: In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  9. Gait, posture and cognition in Parkinson's disease

    OpenAIRE

    Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen

    2016-01-01

    ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do n...

  10. Performance analysis for gait in camera networks

    OpenAIRE

    Michela Goffredo; Imed Bouchrika; John Carter; Mark Nixon

    2008-01-01

    This paper deploys gait analysis for subject identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real...

  11. Inter-Trial Gait Variability Reduction Using Continous Curve Registration

    National Research Council Canada - National Science Library

    Sadeghi, H

    2001-01-01

    Timing in peak gait values shifts slightly between gait trials. When gait data are averaged, some of the standard deviation can be associated to this inter-trial variability unless normalization is carried out beforehand...

  12. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, H.P.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson’s disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  13. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  14. Gait recognition based on integral outline

    Science.gov (United States)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  15. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  16. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  17. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.

    Science.gov (United States)

    Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond

    2013-06-01

    With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.

  18. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

    Science.gov (United States)

    d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola

    2017-04-14

    In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., ergonomics assessment of wearable robots.

  19. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    Science.gov (United States)

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  20. First signs of elderly gait for women.

    Science.gov (United States)

    Kaczmarczyk, Katarzyna; Wiszomirska, Ida; Błażkiewicz, Michalina; Wychowański, Michał; Wit, Andrzej

    2017-06-27

    The aims of this study have been twofold: to attempt to reduce the number of spatiotemporal parameters used for describing gait through the factor analysis and component analysis; and to explore the critical age of decline for other gait parameters for healthy women. A total of 106 women (aged ≥ 40 years old (N = 76) and ≤ 31 years old (N = 30)) were evaluated using a pressure-sensitive mat (Zebris Medical System, Tübingen, Germany) for collecting spatiotemporal gait parameters. The factor analysis identified 2 factors - labelled Time and Rhythm - that accounted for 72% of the variation in significant free-gait parameters; the principal component analysis identified 4 of these parameters that permit full clinical evaluation of gait quality. No difference was found between the groups in terms of the values of parameters reflecting the temporal nature of gait (Rhythm), namely step time, stride time and cadence, whereas significant differences were found for total double support phase (p gait, we selected 3 parameters: total double support, stride time and velocity. We concluded that the women taking part in the experiment manifested significant signs of senile gait after the age of 60 years old, with the first symptoms thereof already manifesting themselves after 50 years of age. We show that among 26 spatiotemporal parameters that may be used for characterizing gait, at least a half of them may be omitted in the assessment of gait correctness; a finding that may be useful in clinical practice. The finding that the onset of senile gait occurs in the case of women after the age of 60 years old, in turn, may be useful in evaluating the ability for performing types of physical work that mainly require ambulation. Med Pr 2017;68(4):441-448. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Shotgun approaches to gait analysis : insights & limitations

    NARCIS (Netherlands)

    Kaptein, Ronald G.; Wezenberg, Daphne; IJmker, Trienke; Houdijk, Han; Beek, Peter J.; Lamoth, Claudine J. C.; Daffertshofer, Andreas

    2014-01-01

    Background: Identifying features for gait classification is a formidable problem. The number of candidate measures is legion. This calls for proper, objective criteria when ranking their relevance. Methods: Following a shotgun approach we determined a plenitude of kinematic and physiological gait

  2. [Subjective Gait Stability in the Elderly].

    Science.gov (United States)

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  3. Gait analysis by high school students

    NARCIS (Netherlands)

    Heck, A.; van Dongen, C.

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of

  4. Flexible Piezoelectric Sensor-Based Gait Recognition

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2018-02-01

    Full Text Available Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  5. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  6. Gait and Function in Class III Obesity

    Directory of Open Access Journals (Sweden)

    Catherine Ling

    2012-01-01

    Full Text Available Walking, more specifically gait, is an essential component of daily living. Walking is a very different activity for individuals with a Body Mass Index (BMI of 40 or more (Class III obesity compared with those who are overweight or obese with a BMI between 26–35. Yet all obesity weight classes receive the same physical activity guidelines and recommendations. This observational study examined the components of function and disability in a group with Class III obesity and a group that is overweight or has Class I obesity. Significant differences were found between the groups in the areas of gait, body size, health condition, and activity capacity and participation. The Timed Up and Go test, gait velocity, hip circumference, and stance width appear to be most predictive of activity capacity as observed during gait assessment. The findings indicate that Class III-related gait is pathologic and not a normal adaptation.

  7. Comparison of the Classifier Oriented Gait Score and the Gait Profile Score based on imitated gait impairments.

    Science.gov (United States)

    Christian, Josef; Kröll, Josef; Schwameder, Hermann

    2017-06-01

    Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Plantar Pressure During Gait in Pregnant Women.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipel, Véronique

    2016-11-01

    During pregnancy, physical and hormonal modifications occur. Morphologic alterations of the feet are found. These observations can induce alterations in plantar pressure. This study sought to investigate plantar pressures during gait in the last 4 months of pregnancy and in the postpartum period. A comparison with nulliparous women was conducted to investigate plantar pressure modifications during pregnancy. Fifty-eight women in the last 4 months of pregnancy, nine postpartum women, and 23 healthy nonpregnant women (control group) performed gait trials on an electronic walkway at preferred speeds. The results for the three groups were compared using analysis of variance. During pregnancy, peak pressure and contact area decreased for the forefoot and rearfoot. These parameters increased significantly for the midfoot. The gait strategy seemed to be lateralization of gait with an increased contact area of the lateral midfoot and both reduced pressure and a later peak time on the medial forefoot. In the postpartum group, footprint parameters were modified compared with the pregnant group, indicating a trend toward partial return to control values, although differences persisted between the postpartum and control groups. Pregnant women had altered plantar pressures during gait. These findings could define a specific pattern of gait footprints in late pregnancy because plantar pressures had characteristics that could maintain a stable and safe gait.

  9. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jessica Cantillo-Negrete

    2018-01-01

    Full Text Available Motor imagery-based brain-computer interfaces (BCI have shown potential for the rehabilitation of stroke patients; however, low performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average performance was 74.1 ± 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2 ± 7.6% and 70 ± 6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation of stroke patients.

  10. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José

    2018-03-01

    This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.

  11. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  12. Guillain-Barre Syndrome – rehabilitation outcome, residual deficits and requirement of lower limb orthosis for locomotion at 1 year follow-up.

    Science.gov (United States)

    Gupta, Anupam; Taly, Arun B; Srivastava, Abhishek; Murali, Thyloth

    2010-01-01

    To analyse long-term functional recovery, deficits and requirement of lower limb orthosis (LLO) for locomotion in patients with Guillain-Barre Syndrome (GBS). Prospective longitudinal follow-up study. Neurological Rehabilitation unit of university hospital. Sixty-nine patients of GBS admitted for inpatient rehabilitation. Thirty-five patients (M:F, 19:16) reporting after 1 year follow-up (50.72%) were included in study (between September 2005 and July 2009). Their residual deficits and requirement of LLO were recorded and analysed. Age ranged from 4 to 65 year (29.74 ± 15.75). Twenty-seven patients had typical GBS and eight patients had acute motor axonal neuropathy variant. Twenty-eight patients (80%) had neuropathic pain needing medication with 11 required more than one drug. Twenty-one patients (60%) had foot drop and advised ankle-foot orthosis-AFO (20 bilateral AFO). Thirty patients (85.71%) needed assistive devices also for locomotion at discharge. After 1 year, foot drop was still present in 12 patients (34.28%) using orthosis. Modified Barthel Index scores, Modified Rankin Scale and Hughes Disability Scale were used to assess functional disabilities. Significant recovery was observed at the time of discharge and after 1 year (p < 0.001 each). Patients with GBS continue to show significant functional recovery for long period. They have residual deficits even after 1 year with requirement of orthosis in large number of patients.

  13. Gait variability: methods, modeling and meaning

    Directory of Open Access Journals (Sweden)

    Hausdorff Jeffrey M

    2005-07-01

    Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.

  14. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults

    NARCIS (Netherlands)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-01-01

    BACKGROUND: Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. RESEARCH QUESTION: We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults.

  15. Gait variability measurements in lumbar spinal stenosis patients: part B. Preoperative versus postoperative gait variability

    International Nuclear Information System (INIS)

    Papadakis, N C; Christakis, D G; Tzagarakis, G N; Chlouverakis, G I; Kampanis, N A; Stergiopoulos, K N; Katonis, P G

    2009-01-01

    The objective of this study was to assess the gait variability of lumbar spinal stenosis (LSS) patients and to evaluate its postoperative progression. The hypothesis was that LSS patients' preoperative gait variability in the frequency domain was higher than the corresponding postoperative. A tri-axial accelerometer sensor was used for the gait measurement and a spectral differential entropy algorithm was used to measure the gait variability. Twelve subjects with LSS were measured before and after surgery. Preoperative measurements were performed 2 days before surgery. Postoperative measurements were performed 6 and 12 months after surgery. Preoperative gait variability was higher than the corresponding postoperative. Also, in most cases, gait variability appeared to decrease throughout the year

  16. Relationships of Stroke Patients’ Gait Parameters with Fear of Falling

    OpenAIRE

    Park, Jin; Yoo, Ingyu

    2014-01-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations...

  17. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    OpenAIRE

    Hiraoka, Koichi; Hatanaka, Ryota; Nikaido, Yasutaka; Jono, Yasutomo; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta

    2014-01-01

    The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA) during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the...

  18. Case report on the use of a functional electrical orthosis in rehabilitation of upper limb function in a chronic stroke patient

    Directory of Open Access Journals (Sweden)

    Catalin Moghioroiu

    2018-05-01

    Full Text Available Introduction. The increasing incidence of strokes and their occurrence in younger active people require the development of solutions that allow participation, despite the debilitating deficit that is not always solved by rehabilitation. The present report shows such a potential solution. Objective. In this presentation we will show the effects of using a functional electric orthosis, the high number of repetitions and daily electrostimulation in a young stroke patient with motor deficit in the upper limb, the difficulties encountered in attempting to use orthosis, the results and the course of its recovery over the years. Materials and Methods. The present report shows the evolution of a 31-year-old female patient with hemiplegia, resulting from a hemorrhagic stroke, from the moment of surgery to the moment of purchasing a functional electrical orthosis and a few months later, highlighting a 3-week period when the training method focused on performing a large number of repetitions of a single exercise helped by the orthosis – 3 weekly physical therapy sessions, with a duration of one hour and 15 minutes, plus 2 electrostimulation sessions lasting 20 minutes each and 100 elbow extension, daily, 6 times a week. The patient was evaluated and filmed at the beginning and end of the 3 week period. The patient's consent was obtained for the use of the data and images presented. Results. Invalidating motor deficiency and problems specific to the use of upper limb functional electrostimulation in patients with stroke sequelae (flexion synergy, exaggeration of reflex response, wrist position during stimulation, etc. made it impossible to use orthosis in functional activities within ADL although it allowed the achievement of a single task. Evaluation on the FuglMayer assessment does not show any quantifiable progress, although it is possible to have slightly improved the control of the shoulder and elbow and increased the speed of task execution

  19. A COMPARATIVE STUDY TO FIND OUT IMMEDIATE EFFECTIVENESS OF MOVEMENT WITH MOBILIZATION VERSUS ELBOW ORTHOSIS ON PAIN AND GRIP STRENGTH IN LATERAL EPICONDYLITIS IN HOUSEWIVES

    Directory of Open Access Journals (Sweden)

    Trishna Kakati

    2015-12-01

    Full Text Available Background: There are various studies using Mulligan’s MWM with or without combining with electrotherapy modalities and proved the efficacy of the technique in immediately decreasing pain and improving grip strength in patients with lateral epicondylitis. Orthotic as a treatment is also proved to be beneficial in decreasing pain and improving grip strength. There is evidence that housewives are prone to develop lateral epicondylitis due to their routine household work. But there is lack of evidence which compare initial effects of MWM and orthosis in housewives bringing up better outcome measures. The purpose of this study is to compare the initial effectiveness of Mulligan’s MWM and elbow orthosis on pain and grip strength in housewives with lateral epicondylitis. The aim of the study is to evaluate the effectiveness of Mulligan’s MWM technique versus counterforce elbow orthosis in immediately reducing pain and improving grip strength in lateral epicondylitis in housewives. Methodos: All subjects underwent a pre-treatment examination to assess pain and pain free hand grip strength with the help of outcome measures. Subjects were randomly assigned into two groups, A and B respectively; having 25 subjects in each group. Group A was treated with one session of Mulligan’s MWM technique. Group B was treated with Counterforce elbow strap orthosis. Data was assessed pre-treatment and immediately after treatment. Visual Analogue Scale (VAS and hand grip on Hand Grip Dynamometer (HGD were used as outcome measures. Results: Independent t-test was performed to see the effectiveness between Mulligan’s MWM and elbow orthosis. For VAS, t = - 2.243 which is significant at 5% level of significance. It has been inferred that VAS decreases more when Mulligan’s MWM was applied. For HGD, t = 0.878 which is not significant implying that increase in HGD do not differ remarkably for the two treatments. Conclusion: It has been recorded from the study that

  20. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

    Directory of Open Access Journals (Sweden)

    Ilaria Mileti

    2018-03-01

    Full Text Available Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD. In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25 for three tested methods and good performance (0.25 < G < 0.70 for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.

  1. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.

    Science.gov (United States)

    Schmalz, Thomas; Pröbsting, Eva; Auberger, Roland; Siewert, Gordon

    2016-04-01

    The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee-ankle-foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety. © The International Society for Prosthetics and Orthotics 2014.

  2. Virtual Reality to control active participation in a subacute stroke patient during robot-assisted gait training.

    Science.gov (United States)

    Bergmann, J; Krewer, C; Müller, F; Koenig, A; Riener, R

    2011-01-01

    Virtual Reality (VR) provides a promising medium to enrich robot assisted rehabilitation. VR applications present the opportunity to engage patients in therapy and control participation. The aim of this study was to investigate two strategies to control active participation of a stroke patient focusing on the involvement of the paretic leg in task solution. A subacute stroke patient with a severe hemiparesis performed two experiments on the driven gait orthosis Lokomat. Patient activity was quantified by weighted interaction torques measured in both legs (experiment A) and the paretic leg only (experiment B). The patient was able to successfully implement both the bilateral and unilateral control modality. Both control modes increased the motor output of the paretic leg, however the paretic leg control mode resulted in a much more differentiated regulation of the activity in the leg. Both control modes are appropriate approaches to enhance active participation and increase motor output in the paretic leg. Further research should evaluate the therapeutic benefit of patients with hemiparesis using the unilateral control mode depending on the severity of their impairment. © 2011 IEEE

  3. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    Science.gov (United States)

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  4. Detecting Gait Asymmetry with Wearable Accelerometers

    Science.gov (United States)

    2015-03-18

    by overuse. Common overuse injuries include stress fractures , tendinitis, bursitis, fasciitis, and medial tibial stress syndrome (shin splints) [11...magnitude feature values for subject 1 are shown in (a), before and after repetitive stress injury. Magnitude and pattern features are plotted in...Dudziñski, A. Lees, M. Lake, and M. Wychowañski, “Adjustments in gait symmetry with walking speed in trans-femoral and trans- tibial amputees,” Gait

  5. Kinematic gait analyses in healthy Golden Retrievers

    OpenAIRE

    Silva, Gabriela C.A.; Cardoso, Mariana Trés; Gaiad, Thais P.; Brolio, Marina P.; Oliveira, Vanessa C.; Assis Neto, Antonio; Martins, Daniele S.; Ambrósio, Carlos E.

    2014-01-01

    Kinematic analysis relates to the relative movement between rigid bodies and finds application in gait analysis and other body movements, interpretation of their data when there is change, determines the choice of treatment to be instituted. The objective of this study was to standardize the march of Dog Golden Retriever Healthy to assist in the diagnosis and treatment of musculoskeletal disorders. We used a kinematic analysis system to analyse the gait of seven dogs Golden Retriever, female,...

  6. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  7. Gait Disorders In Patients After Polytrauma

    Directory of Open Access Journals (Sweden)

    Jakušonoka Ruta

    2015-04-01

    Full Text Available Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years, 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05. The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.

  8. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  9. Gait Recognition Using Wearable Motion Recording Sensors

    Directory of Open Access Journals (Sweden)

    Davrondzhon Gafurov

    2009-01-01

    Full Text Available This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  10. Altered vision destabilizes gait in older persons.

    Science.gov (United States)

    Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav

    2009-08-01

    This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.

  11. Gait parameters in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Cristina Elena Prado Teles Fregonesi

    2010-02-01

    Full Text Available Diabetes mellitus is a chronic disease that results in sensorimotor alterations. These changes affect balance and walking and predispose affected patients to falls. The aim of this review was to identify studies in the recent literature that assess gait parameters and aspects involved in walking. The MEDLINE, SciELO, LILACS and PEDro databases were searched using the following combination of keywords: diabetic neuropathies x gait; diabetes mellitus x gait, and diabetic foot x gait. After the application of selection criteria, 15 articles were retrieved, summarized, discussed, and are included in this review. Diabetic neuropathy was found to lead to deficits in step amplitude, gait velocity and gait cadence on flat surfaces, without sudden changes in direction or stops, and to balance and coordination deficits on inclined and uneven terrain. Diabetic neuropathies also increase plantar pressure rates and lead to difficulties in the terminal stance phase and pre-swing phase due to changes in triceps surae activation. Thus, the next initial contact occurs in an inadequate manner, with the forefoot and without absorption of shocks.

  12. Development of a novel virtual reality gait intervention.

    Science.gov (United States)

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combined effects of knee brace, laterally wedged insoles and toe-in gait on knee adduction moment and balance in moderate medial knee osteoarthritis patients.

    Science.gov (United States)

    Khan, Saad Jawaid; Khan, Soobia Saad; Usman, Juliana; Mokhtar, Abdul Halim; Abu Osman, Noor Azuan

    2018-03-01

    To test the hypothesis that toe-in gait (TI) will further reduce first peak (Knee Adduction Moment) KAM and decrease balance when combined with a knee brace (KB) and laterally wedged insoles (LWI) in medial knee osteoarthritis (kOA) patients. Twenty patients with bilateral symptomatic medial kOA. 4-point leverage-based KB, full-length LWI with 5° inclination and toe-in gait (TI). First and second peak knee adduction moment (fKAM and sKAM respectively), balance and pain. The fKAM and sKAM were determined from 3-dimensional gait analysis with six randomized conditions: (1) N (without any intervention), (2) KB, (3) KB + TI, (4) LWI, (5) LWI + TI, (6) KB + LWI + TI. Balance was assessed by Biodex Balance System using three stability settings, (i) Static (ii) Moderate dynamic setting for fall risk (FR12) and (iii) High dynamic setting for fall risk (FR8). The reduction in fKAM and sKAM was greatest (19.75% and 12%) when TI was combined with KB and LWI respectively. No change in balance was observed when TI combined with KB, and LWI and when used concurrently with both the orthosis at static and FR12 conditions. Significant balance reduction was found at FR8 for KB + TI (22.22%), and KB + LWI + TI (35.71%). Pain increased significantly for KB (258%), KB + TI (305%), LWI + TI (210%) and KB + LWI + TI (316%). LWI showed no effect on pain. There is a synergistic effect of TI when combined with KB and LWI concurrently in sKAM reduction. However, the concurrent use of TI, KB and LWI decreases balance and pain as assessed on a highly dynamic platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients

    NARCIS (Netherlands)

    Ekkelenkamp, R.; Veneman, J.F.; van der Kooij, Herman

    2005-01-01

    LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic

  15. Is Freezing of Gait in Parkinson's Disease a Result of Multiple Gait Impairments? Implications for Treatment

    Science.gov (United States)

    Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.

    2012-01-01

    Several gait impairments have been associated with freezing of gait (FOG) in patients with Parkinson's disease (PD). These include deteriorations in rhythm control, gait symmetry, bilateral coordination of gait, dynamic postural control and step scaling. We suggest that these seemingly independent gait features may have mutual interactions which, during certain circumstances, jointly drive the predisposed locomotion system into a FOG episode. This new theoretical framework is illustrated by the evaluation of the potential relationships between the so-called “sequence effect”, that is, impairments in step scaling, and gait asymmetry just prior to FOG. We further discuss what factors influence gait control to maintain functional gait. “Triggers”, for example, such as attention shifts or trajectory transitions, may precede FOG. We propose distinct categories of interventions and describe examples of existing work that support this idea: (a) interventions which aim to maintain a good level of locomotion control especially with respect to aspects related to FOG; (b) those that aim at avoiding FOG “triggers”; and (c) those that merely aim to escape from FOG once it occurs. The proposed theoretical framework sets the stage for testable hypotheses regarding the mechanisms that lead to FOG and may also lead to new treatment ideas. PMID:22288021

  16. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  17. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    NARCIS (Netherlands)

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.

    2012-01-01

    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  18. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  19. Unstable gait due to spasticity of the rectus femoris: gait analysis and motor nerve block.

    Science.gov (United States)

    Gross, R; Leboeuf, F; Rémy-Néris, O; Perrouin-Verbe, B

    2012-12-01

    We present the case of a 54 year-old man presenting with a right Brown-Séquard plus syndrome (BSPS) after a traumatic cervical spinal cord injury. After being operated on with selective tibial neurotomy and triceps surae lengthening because of a right spastic equinus foot, he developed a gait disorder at high speed. The patient complained about an instability of the right knee. Observational gait analysis exhibited an oscillating, flexion/extension motion of the right knee during stance, which was confirmed by gait analysis. Dynamic electromyographic recordings exhibited a clonus of the right rectus femoris (RF) during stance. The spastic activity of the RF and the abnormal knee motion totally reversed after a motor nerve block of the RF, as well as after botulinum toxin type A injection into the RF. We emphasize that complex, spastic gait disorders can benefit from a comprehensive assessment including gait analysis and nerve blocks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Robert J Ellis

    Full Text Available A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson's disease (PD; however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application ("SmartMOVE" to address both needs.The accuracy of smartphone-based gait analysis (utilizing the smartphone's built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths was validated against two heel contact-based measurement devices: heel-mounted footswitch sensors (to capture step times and an instrumented pressure sensor mat (to capture step lengths. 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls yielded medium-to-large effect sizes (eta-squared values, and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues yielded small-to-medium effect sizes-while at the same time, device-related measurement error yielded small-to-negligible effect sizes.These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways, particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.

  1. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  2. Gait rehabilitation machines based on programmable footplates.

    Science.gov (United States)

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-02-09

    Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning promoting a task-specific repetitive

  3. Gait rehabilitation machines based on programmable footplates

    Directory of Open Access Journals (Sweden)

    Bernhardt Rolf

    2007-02-01

    Full Text Available Abstract Background Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. Results With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I. For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Conclusion Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles

  4. Gait Recognition Using Image Self-Similarity

    Directory of Open Access Journals (Sweden)

    Chiraz BenAbdelkader

    2004-04-01

    Full Text Available Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Performance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for a data set of 54 people.

  5. Gait Recognition Based on Outermost Contour

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2011-10-01

    Full Text Available Gait recognition aims to identify people by the way they walk. In this paper, a simple but e ective gait recognition method based on Outermost Contour is proposed. For each gait image sequence, an adaptive silhouette extraction algorithm is firstly used to segment the frames of the sequence and a series of postprocessing is applied to obtain the normalized silhouette images with less noise. Then a novel feature extraction method based on Outermost Contour is performed. Principal Component Analysis (PCA is adopted to reduce the dimensionality of the distance signals derived from the Outermost Contours of silhouette images. Then Multiple Discriminant Analysis (MDA is used to optimize the separability of gait features belonging to di erent classes. Nearest Neighbor (NN classifier and Nearest Neighbor classifier with respect to class Exemplars (ENN are used to classify the final feature vectors produced by MDA. In order to verify the e ectiveness and robustness of our feature extraction algorithm, we also use two other classifiers: Backpropagation Neural Network (BPNN and Support Vector Machine (SVM for recognition. Experimental results on a gait database of 100 people show that the accuracy of using MDA, BPNN and SVM can achieve 97.67%, 94.33% and 94.67%, respectively.

  6. Gait Characteristics in Adolescents With Multiple Sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior; Menascu, Shay

    2017-03-01

    Multiple sclerosis is a progressive autoimmune disease of the central nervous system. A presentation of multiple sclerosis before age18 years has traditionally been thought to be rare. However, during the past decade, more cases have been reported. We examined gait characteristics in 24 adolescents with multiple sclerosis (12 girls, 12 boys). Mean disease duration was 20.4 (S.D. = 24.9) months and mean age was 15.5 (S.D. = 1.1) years. The mean expanded disability status scale score was 1.7 (S.D. = 0.7) indicating minimal disability. Outcomes were compared with gait and the gait variability index value of healthy age-matched adolescents. Adolescents with multiple sclerosis walked slower with a wider base of support compared with age-matched healthy control subjects. Moreover, the gait variability index was lower in the multiple sclerosis group compared with the values in the healthy adolescents: 85.4 (S.D. = 8.1) versus 96.5 (S.D. = 7.4). We present gait parameters of adolescents with multiple sclerosis. From a clinical standpoint, our data could improve management of walking dysfunction in this relatively young population. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Robot-Crawler: Statically Balanced Gaits

    Directory of Open Access Journals (Sweden)

    S. Parasuraman

    2012-12-01

    Full Text Available This paper presents a new statically balanced walking technique for a robot-crawler. The gait design and the control of the robot crawler aim to achieve stability while walking. This statically balanced gait has to be designed in a different fashion to a wheeled robot, as there are discrete changes in the support of the robot when its legs are lifted or placed on the ground. The stability of the robot depends on how the legs are positioned relative to the body and also on the sequence and timing with which the legs are lifted and placed. In order to reduce the risk of stability loss while walking, a measure for the robot stability (so-called stability margin is typically used in the gait and motion planning. In this paper different biological behaviours of four-legged animals are studied and mapped on a quad-legrobot-crawler. Experiments were carried out on the forward walking gaits of lizards and horses. Based on these results, the stability margins of different gaits are discussed and compared.

  8. Development and decline of upright gait stability

    Directory of Open Access Journals (Sweden)

    Marco eIosa

    2014-02-01

    Full Text Available Upright gait is a peculiar characteristic of humans that requires the ability to manage upper body dynamic balance while walking, despite the perturbations that are generated by movements of the lower limbs. Most of the studies on upright gait stability have compared young adults and the elderly to determine the effects of aging. In other studies the comparison was between healthy subjects and patients to examine specific pathologies. Fewer researches have also investigated the development of upright gait stability in children.This review discusses these studies in order to provide an overview of this relevant aspect of human locomotion. A clear trend from development to decline of upright gait stability has been depicted across the entire lifespan, from toddlers at first steps to elderly. In old individuals, even if healthy, the deterioration of skeletal muscle, combined with sensorial and cognitive performance, reduces the ability to maintain an upright trunk during walking, increasing the instability and the risk of falls. Further, the pathological causes of altered development or of a sudden loss of gait stability, as well as the environmental influence are investigated. The last part of this review is focused on the control of upper body accelerations during walking, a particularly interesting topic for the recent development of low-cost wearable accelerometers.

  9. Relationships of stroke patients' gait parameters with fear of falling.

    Science.gov (United States)

    Park, Jin; Yoo, Ingyu

    2014-12-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations between gait parameters and fear of falling scores were calculated. There was a moderate degree of correlation between fear of falling scores and the step cycle item of gait parameters. [Conclusions] According to our results, the step cycle gait parameter may be related to increased fall anxiety.

  10. Skeletal and Clinical Effects of Exoskeleton-Assisted Gait

    Science.gov (United States)

    2015-10-01

    robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, the health benefits of exoskeleton -assisted gait have not been...for the use of robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, clinical teams are not provided with...appropriate tools to estimate or predict potential health benefits (e.g. bone health) associated with exoskeleton -assisted gait. What was the impact on other

  11. Deterioration of gait and balance over time

    DEFF Research Database (Denmark)

    Kreisel, Stefan H; Blahak, Christian; Bäzner, Hansjörg

    2013-01-01

    Cross-sectional studies have shown an association between the severity of age-related white matter change (ARWMC) and lower body motor function. However, the association between prevalent ARWMC and incident deterioration of balance and gait remains insufficiently investigated. This study investig......Cross-sectional studies have shown an association between the severity of age-related white matter change (ARWMC) and lower body motor function. However, the association between prevalent ARWMC and incident deterioration of balance and gait remains insufficiently investigated. This study...... relevance: given the increasing use of neuroimaging, incidental white matter pathology is common; being able to delineate natural trajectories of balance and gait function given ARWMC may improve patient advice and help optimize allocation of care....

  12. Kinematics gait disorder in men with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose M; Soto-Hermoso, Victor M

    2014-01-01

    The aim of this study was to assess the kinematics disorder of gait in men with fibromyalgia. We studied 12 male with fibromyalgia and 14 healthy men. Each participant of the study walked five trials along a 18.6-m walkway. Fibromyalgia patients completed a Spanish version of Fibromyalgia Impact Questionnaire. Significant differences between fibromyalgia and control groups were found in velocity, stride length, and cadence. Gait parameters of men affected by fibromyalgia were impaired when compared to those of healthy group due to bradykinesia. According to previous studies to assess gait variables in female patients, the male with fibromyalgia also showed lower values of velocity, cadence, and stride length than healthy group but not reported significant differences in swing, stance, single, or double support phase.

  13. Gait disorders in patients with fibromyalgia.

    Science.gov (United States)

    Auvinet, Bernard; Bileckot, Richard; Alix, Anne-Sophie; Chaleil, Denis; Barrey, Eric

    2006-10-01

    The objective of this study was to compare gait in patients with fibromyalgia and in matched controls. Measurements must be obtained in patients with fibromyalgia, as the evaluation scales for this disorder are semi-quantitative. We used a patented gait analysis system (Locometrix Centaure Metrix, France) developed by the French National Institute for Agricultural Research. Relaxed walking was evaluated in 14 women (mean age 50+/-5 years; mean height 162+/-5 cm; and mean body weight 68+/-13 kg) meeting American College of Rheumatology criteria for fibromyalgia and in 14 controls matched on sex, age, height, and body weight. Gait during stable walking was severely altered in the patients. Walking speed was significantly diminished (Pfibromyalgia.

  14. Quantifying gait patterns in Parkinson's disease

    Science.gov (United States)

    Romero, Mónica; Atehortúa, Angélica; Romero, Eduardo

    2017-11-01

    Parkinson's disease (PD) is constituted by a set of motor symptoms, namely tremor, rigidity, and bradykinesia, which are usually described but not quantified. This work proposes an objective characterization of PD gait patterns by approximating the single stance phase a single grounded pendulum. This model estimates the force generated by the gait during the single support from gait data. This force describes the motion pattern for different stages of the disease. The model was validated using recorded videos of 8 young control subjects, 10 old control subjects and 10 subjects with Parkinson's disease in different stages. The estimated force showed differences among stages of Parkinson disease, observing a decrease of the estimated force for the advanced stages of this illness.

  15. Gait characteristics in women's safety shoes.

    Science.gov (United States)

    Goto, Kanako; Abe, Kaoru

    2017-11-01

    Although workers in Japan are required to wear safety footwear, there is concern about occupational accidents that occur when wearing safety shoes. This study aimed to analyze the effect of wearing hardsoled safety shoes on both spatiotemporal gait characteristics and the muscle activity in the lower extremities. Seventeen young women participated in this study. A 5-m gait trial and a surface electromyography trial were conducted while the women walked in either safety shoes or sports shoes. Paired t-tests were performed to analyze the differences in gait characteristics when walking in the two different pairs of shoes. Walking in safety shoes was associated with a significant increase in vastus lateralis, biceps femoris and tibialis anterior activity. This increased muscle activity in the lower extremities is likely compensating for the lower flexibility of the safety shoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  17. Early functional postoperative therapy of distal radius fracture with a dynamic orthosis: results of a prospective randomized cross-over comparative study.

    Directory of Open Access Journals (Sweden)

    Fabian M Stuby

    Full Text Available This study was conducted according to GCP criteria as a prospective randomized cross-over study. The primary goal of the study was to determine clinical findings and patient satisfaction with postoperative treatment. 29 patients with a distal radius fracture that was surgically stabilized from volar and who met the inclusion criteria were enrolled over a 12-month period. Each patient randomly received either a dorsal plaster splint or a vacuum-fit flexible but blocked orthosis applied postoperatively in the operating theatre to achieve postoperative immobilization. After one week all patients were crossed over to the complementary device maintaining the immobilization until end of week 2. After week 2 both groups were allowed to exercise wrist mobility with a physiotherapist, in the orthosis group the device was deblocked, thus allowing limited wrist mobility. After week 4 the devices were removed in both groups. Follow-up exams were performed after postoperative weeks 1, 2, 4 and 12.Results were determined after week 1 and 2 using SF 36 and a personally compiled questionnaire; after weeks 4 and 12 with a clinical check-up, calculation of ROM and the DASH Score. Comparison of the two groups showed a significant difference in ROM for volar flexion after 4 weeks, but no significant differences in DASH Score, duration of disability or x-ray findings. With regard to satisfaction with comfort and hygiene, patients were significantly more satisfied with the dynamic orthosis, and 23 of the 29 patients would prefer the flexible vacuum orthosis in future.German Clinical Trials Register (DRKS DRKS00006097.

  18. Evaluation of the magnitude of hip joint deformation in subjects with avascular necrosis of the hip joint during walking with and without Scottish Rite orthosis.

    Science.gov (United States)

    Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony

    2017-02-01

    The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.

  19. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    Directory of Open Access Journals (Sweden)

    Hiraoka Koichi

    2014-10-01

    Full Text Available The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the start tone, the condition of initiating gait with the non-preferred leg indicated by the start tone, and the condition of initiating gait with the leg spontaneously chosen. These findings fail to support the view that the process of choosing the initial swing leg affects APA during gait initiation. The lateral displacement of the center of pressure in the period in which shifting the center of pressure to the initial swing phase before initiating gait with the left leg indicated by the external cue was significantly larger than that when initiating gait with the right leg indicated by the external cue, and significantly larger than that when initiating gait with the leg spontaneously chosen. Weight shift to the initial swing side during APA during gait initiation was found to be asymmetrical when choosing the leg in response to an external cue

  20. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  1. Gait Analysis by Multi Video Sequence Analysis

    DEFF Research Database (Denmark)

    Jensen, Karsten; Juhl, Jens

    2009-01-01

    The project presented in this article aims to develop software so that close-range photogrammetry with sufficient accuracy can be used to point out the most frequent foot mal positions and monitor the effect of the traditional treatment. The project is carried out as a cooperation between...... and the calcaneus angle during gait. In the introductory phase of the project the task has been to select, purchase and draw up hardware, select and purchase software concerning video streaming and to develop special software concerning automated registration of the position of the foot during gait by Multi Video...

  2. Periodic gaits for the CMU Ambler

    Science.gov (United States)

    Dwivedi, Suren N.; Mahalingam, Swaminathan

    1992-02-01

    The configuration of the Carnegie-Mellon University Ambler, a six-legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. In this article, gaits developed for this unprecedented configuration are described. A stability criterion has been developed that ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities and continuously satisfy the stability criterion.

  3. Person identification by gait analysis and photogrammetry

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Vedel, Jens

    2005-01-01

    Surveillance images from a bank robbery were analyzed and compared with images of a suspect. Based on general bodily features, gait and anthropometric measurements, we were able to conclude that one of the perpetrators showed strong resemblance to the suspect. Both exhibited a gait characterized...... by hyperextension of the leg joints, and bodily measurements did not differ by more than 6 mm on average. The latter was quantified by photogrammetry: i.e., measuring by using images of the perpetrator as captured by surveillance cameras. Using the computer software Photomodeler Pro, synchronous images from...

  4. Effect of Shoes on Stiffness and Energy Efficiency of Ankle-Foot Orthosis: Bench Testing Analysis.

    Science.gov (United States)

    Kobayashi, Toshiki; Gao, Fan; LeCursi, Nicholas; Foreman, K Bo; Orendurff, Michael S

    2017-12-01

    Understanding the mechanical properties of ankle-foot orthoses (AFOs) is important to maximize their benefit for those with movement disorders during gait. Though mechanical properties such as stiffness and/or energy efficiency of AFOs have been extensively studied, it remains unknown how and to what extent shoes influence their properties. The aim of this study was to investigate the effect of shoes on stiffness and energy efficiency of an AFO using a custom mechanical testing device. Stiffness and energy efficiency of the AFO were measured in the plantar flexion and dorsiflexion range, respectively, under AFO-alone and AFO-Shoe combination conditions. The results of this study demonstrated that the stiffness of the AFO-Shoe combination was significantly decreased compared to the AFO-alone condition, but no significant differences were found in energy efficiency. From the results, we recommend that shoes used with AFOs should be carefully selected not only based on their effect on alignment of the lower limb, but also their effects on overall mechanical properties of the AFO-Shoe combination. Further study is needed to clarify the effects of differences in shoe designs on AFO-Shoe combination mechanical properties.

  5. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M.; Mulder, Mascha C. Borgerhoff; Horemans, Herwin L.; van der Woude, Luc H.; Ribbers, Gerard M.

    2011-01-01

    Objective: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Design: Clinical experimental

  6. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Lucas; Ribbers, Gerard M

    2011-01-01

    OBJECTIVE: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. DESIGN: Clinical experimental

  7. Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations

    Directory of Open Access Journals (Sweden)

    John S. Palmisano

    2012-01-01

    Full Text Available A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD and experimental results are presented.

  8. Effects of obesity and chronic low back pain on gait

    OpenAIRE

    Cimolin, Veronica; Vismara, Luca; Galli, Manuela; Zaina, Fabio; Negrini, Stefano; Capodaglio, Paolo

    2011-01-01

    Abstract Background Obesity is often associated with low back pain (LBP). Despite empirical evidence that LBP induces gait abnormalities, there is a lack of quantitative analysis of the combined effect of obesity and LBP on gait. The aim of our study was to quantify the gait pattern of obese subjects with and without LBP and normal-mass controls by using Gait Analysis (GA), in order to investigate the cumulative effects of obesity and LBP on gait. Methods Eight obese females with chronic LBP ...

  9. Real time biometric surveillance with gait recognition

    Science.gov (United States)

    Mohapatra, Subasish; Swain, Anisha; Das, Manaswini; Mohanty, Subhadarshini

    2018-04-01

    Bio metric surveillance has become indispensable for every system in the recent years. The contribution of bio metric authentication, identification, and screening purposes are widely used in various domains for preventing unauthorized access. A large amount of data needs to be updated, segregated and safeguarded from malicious software and misuse. Bio metrics is the intrinsic characteristics of each individual. Recently fingerprints, iris, passwords, unique keys, and cards are commonly used for authentication purposes. These methods have various issues related to security and confidentiality. These systems are not yet automated to provide the safety and security. The gait recognition system is the alternative for overcoming the drawbacks of the recent bio metric based authentication systems. Gait recognition is newer as it hasn't been implemented in the real-world scenario so far. This is an un-intrusive system that requires no knowledge or co-operation of the subject. Gait is a unique behavioral characteristic of every human being which is hard to imitate. The walking style of an individual teamed with the orientation of joints in the skeletal structure and inclinations between them imparts the unique characteristic. A person can alter one's own external appearance but not skeletal structure. These are real-time, automatic systems that can even process low-resolution images and video frames. In this paper, we have proposed a gait recognition system and compared the performance with conventional bio metric identification systems.

  10. The Practicalities of Assessing Freezing of Gait

    NARCIS (Netherlands)

    Barthel, C.; Mallia, E.; Debu, B.; Bloem, B.R.; Ferraye, M.U.

    2016-01-01

    BACKGROUND: Freezing of gait (FOG) is a mysterious, complex and debilitating phenomenon in Parkinson's disease. Adequate assessment is a pre-requisite for managing FOG, as well as for assigning participants in FOG research. The episodic nature of FOG, as well as its multiple clinical expressions

  11. Functional Neuroanatomy for Posture and Gait Control

    Directory of Open Access Journals (Sweden)

    Kaoru Takakusaki

    2017-01-01

    Full Text Available Here we argue functional neuroanatomy for posture- gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture- gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  12. Preliminary Assessment of a Compliant Gait Exoskeleton.

    Science.gov (United States)

    Cestari, Manuel; Sanz-Merodio, Daniel; Garcia, Elena

    2017-06-01

    Current commercial wearable gait exoskeletons contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume a significant amount of energy, and their stiffness may not be appropriate for safe human-machine interactions. Adjustable compliant actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user, and to store and release energy in passive elastic elements. Introduction of such compliant actuation in gait exoskeletons, however, has been limited by the larger power-to-weight and volume ratio requirement. This article presents a preliminary assessment of the first compliant exoskeleton for children. Compliant actuation systems developed by our research group were integrated into the ATLAS exoskeleton prototype. The resulting device is a compliant exoskeleton, the ATLAS-C prototype. The exoskeleton is coupled with a special standing frame to provide balance while allowing a semi-natural gait. Experiments show that when comparing the behavior of the joints under different stiffness conditions, the inherent compliance of the implemented actuators showed natural adaptability during the gait cycle and in regions of shock absorption. Torque tracking of the joint is achieved, identifying the areas of loading response. The implementation of a state machine in the control of knee motion allowed reutilization of the stored energy during deflection at the end of the support phase to partially propel the leg and achieve a more natural and free swing.

  13. Proprioceptive perturbations of stability during gait

    NARCIS (Netherlands)

    Duysens, J.; Beerepoot, V.P.; Veltink, Petrus H.; Weerdesteyn, V.; Smits-Engelsman, B.C.M.

    2008-01-01

    Through recent studies, the role of proprioceptors in reactions to perturbations during gait has been finally somewhat better understood. The input from spindle afferents has been investigated with tendon taps, vibration and other forms of muscle stretches, including some resembling natural

  14. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    OpenAIRE

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved signifi...

  15. Gait analysis in anorexia and bulimia nervosa.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  16. The ankle-foot orthosis improves balance and reduces fall risk of chronic spastic hemiparetic patients.

    Science.gov (United States)

    Cakar, E; Durmus, O; Tekin, L; Dincer, U; Kiralp, M Z

    2010-09-01

    Ankle foot orthoses (AFO) are commonly used orthotic device in order to restore the ankle foot function and to improve the balance and gait in post-stroke hemiparetic patients. However, there remain some discussions about their effectiveness on long term hemiparetic patients who had mild to moderate spasticity. To investigate the relative effect of prefabricated thermoplastic posterior leaf spring AFO (PLS-AFO) on balance and fall risk. A cross-over interventional study The Department of PMR of a tertiary hospital. Twenty-five chronic post-stroke long duration hemiparetic patients who had Ashworth grade 1-2 spasticity at affected calf muscles and lower limb Brunnstrom stage 2-3 and also able to walk independently without an assistive device. Berg Balance Scale (BERG), and the postural stability test (PST) and the fall risk test (FRT) of Biodex balance systems were used for the assessments. All of the patients were assessed with AFO and without AFO. All assessments were made with footwear. The mean post-stroke duration was 20,32±7,46 months. The BERG scores were 42,12±9,05 without AFO and 47,52±7,77 with AFO; the overall stability scores of FRT were 3,35±1,97 without AFO and 2,69±1,65 with AFO (Pbalance and provide fall risk reduction in chronic post-stroke ambulatory hemiparetic patients who had mild to moderate spasticity on their affected lower limb. These results encourage the usage of AFO on long duration hemiparetic patients in order to provide better balance and lesser fall risk.

  17. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    Science.gov (United States)

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  18. Gait and Cognition in Parkinson’s Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task

    Directory of Open Access Journals (Sweden)

    Heiko Gaßner

    2017-10-01

    Full Text Available IntroductionCognitive and gait deficits are common symptoms in Parkinson’s disease (PD. Motor-cognitive dual tasks (DTs are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters.MethodsCognitive function, single task (ST and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3’s. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT − ST/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs.ResultsCorrelation analysis revealed weak correlations between MoCA score and DT costs of gait parameters (r/rSp ≤ 0.3. DT costs of stride length, swing time variability, and maximum toe clearance (|r/rSp| > 0.2 were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes, but significant between-group effects in DT gait costs were not observed.ConclusionThese findings suggest that DT gait performance is not indicative

  19. Effect of Cue Timing and Modality on Gait Initiation in Parkinson Disease With Freezing of Gait.

    Science.gov (United States)

    Lu, Chiahao; Amundsen Huffmaster, Sommer L; Tuite, Paul J; Vachon, Jacqueline M; MacKinnon, Colum D

    2017-07-01

    To examine the effects of cue timing, across 3 sensory modalities, on anticipatory postural adjustments (APAs) during gait initiation in people with Parkinson disease (PD). Observational study. Biomechanics research laboratory. Individuals with idiopathic PD (N=25; 11 with freezing of gait [FOG]) were studied in the off-medication state (12-h overnight withdrawal). Gait initiation was tested without cueing (self-initiated) and with 3 cue timing protocols: fixed delay (3s), random delay (4-12s), and countdown (3-2-1-go, 1-s intervals) across 3 sensory modalities (acoustic, visual, and vibrotactile). The incidence and spatiotemporal characteristics of APAs during gait initiation were analyzed, including vertical ground reaction forces and center of pressure. All cue timings and modalities increased the incidence and amplitude of APAs compared with self-initiated stepping. Acoustic and visual cues, but not vibrotactile stimulation, improved the timing of APAs. Fixed delay or countdown timing protocols were more effective at decreasing APA durations than random delay cues. Cue-evoked improvements in APA timing, but not amplitude, correlated with the level of impairment during self-initiated gait. Cues did not improve the late push-off phase in the FOG group. External cueing improves gait initiation in PD regardless of cue timing, modality, or clinical phenotype (with and without FOG). Acoustic or visual cueing with predictive timing provided the greatest improvements in gait initiation; therefore, these protocols may provide the best outcomes when applied by caregivers or devices. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences.

    Directory of Open Access Journals (Sweden)

    Gina Caplen

    Full Text Available This is the first time that gait characteristics of broiler (meat chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10 would be intermediate to those of lame broilers (n = 12 and jungle fowl (n = 10, tested at two ages: immature and adult. Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated

  1. Gait performance of children and adolescents with sensorineural hearing loss.

    Science.gov (United States)

    Melo, Renato de Souza

    2017-09-01

    Several studies have demonstrated that children with sensorineural hearing loss (SNHL) may exhibit balance disorders, which can compromise the gait performance of this population. Compare the gait performance of normal hearing (NH) children and those with SNHL, considering the sex and age range of the sample, and analyze gait performance according to degrees of hearing loss and etiological factors in the latter group. This is a cross-sectional study that assessed 96 students, 48 NH and 48 with SNHL, aged between 7 and 18 years. The Brazilian version of the Dynamic Gait Index (DGI) was used to analyze gait and the Mann-Whitney test for statistical analysis. The group with SNHL obtained lower average gait performance compared to NH subjects (p=0.000). This was also observed when the children were grouped by sex female and male (p=0.000). The same difference occurred when the children were stratified by age group: 7-18 years (p=0.000). The group with severe and profound hearing loss exhibited worse gait performance than those with mild and moderate loss (p=0.048) and children with prematurity as an etiological factor demonstrated the worst gait performance. The children with SNHL showed worse gait performance compared to NH of the same sex and age group. Those with severe and profound hearing loss and prematurity as an etiological factor demonstrated the worst gait performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2017-08-01

    Full Text Available Background: Gait disorders, a highly prevalent condition in older adults, are associated with several adverse health consequences. Gait analysis allows qualitative and quantitative assessments of gait that improves the understanding of mechanisms of gait disorders and the choice of interventions. This manuscript aims (1 to give consensus guidance for clinical and spatiotemporal gait analysis based on the recorded footfalls in older adults aged 65 years and over, and (2 to provide reference values for spatiotemporal gait parameters based on the recorded footfalls in healthy older adults free of cognitive impairment and multi-morbidities.Methods: International experts working in a network of two different consortiums (i.e., Biomathics and Canadian Gait Consortium participated in this initiative. First, they identified items of standardized information following the usual procedure of formulation of consensus findings. Second, they merged databases including spatiotemporal gait assessments with GAITRite® system and clinical information from the “Gait, cOgnitiOn & Decline” (GOOD initiative and the Generation 100 (Gen 100 study. Only healthy—free of cognitive impairment and multi-morbidities (i.e., ≤ 3 therapeutics taken daily—participants aged 65 and older were selected. Age, sex, body mass index, mean values, and coefficients of variation (CoV of gait parameters were used for the analyses.Results: Standardized systematic assessment of three categories of items, which were demographics and clinical information, and gait characteristics (clinical and spatiotemporal gait analysis based on the recorded footfalls, were selected for the proposed guidelines. Two complementary sets of items were distinguished: a minimal data set and a full data set. In addition, a total of 954 participants (mean age 72.8 ± 4.8 years, 45.8% women were recruited to establish the reference values. Performance of spatiotemporal gait parameters based on the recorded

  3. Effect of Posture Training with Weighted Kypho-Orthosis (WKO on Improving Balance in Women with Osteoporosis

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Raeissadat

    2014-01-01

    Full Text Available Objectives. To determine the effect of weighted kypho-orthosis (WKO on improving balance in women with osteoporosis. In this nonrandomized controlled clinical trial, 31 patients with osteoporosis were included. The patients were assigned to two groups: (1 control group who received 4-week home-based daily exercise program including weight bearing, back strengthening, and balance exercises and (2 intervention group (WKO who performed aforementioned exercises and wore WKO for one hour twice a day. Patients were assessed using clinical balance tests (timed up and go test, functional reach test, and unilateral balance test before and 4 weeks after start of treatment. Results. Functional reach and timed up and go test were improved significantly in both groups compared to baseline. The improvement in intervention group was more significant in comparison to control group (P<0.05. Discussion. Posture training with WKO together with exercise program improved two clinical balance tests in women with osteoporosis. Conclusion. Posture training support (PTS applied as WKO together with back extension exercises can be prescribed as an intervention in elderly women in order to reduce the risk of falling.

  4. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Montero-Odasso, Manuel M; Sarquis-Adamson, Yanina; Speechley, Mark; Borrie, Michael J; Hachinski, Vladimir C; Wells, Jennie; Riccio, Patricia M; Schapira, Marcelo; Sejdic, Ervin; Camicioli, Richard M; Bartha, Robert; McIlroy, William E; Muir-Hunter, Susan

    2017-07-01

    Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. To determine whether a dual-task gait test is associated with incident dementia in MCI. The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per 1000 person-years). The models remained robust after adjusting by baseline cognition except for dual-task gait cost when dichotomized. Dual

  5. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer.

    Science.gov (United States)

    Dias, D; Laíns, J; Pereira, A; Nunes, R; Caldas, J; Amaral, C; Pires, S; Costa, A; Alves, P; Moreira, M; Garrido, N; Loureiro, L

    2007-12-01

    Partial body weight support (PBWS) is an accepted treatment for hemiplegic patients. The aim of this study is to compare the efficiency of gait trainer with conventional treatment on the gait management after stroke. Forty chronic post-stroke hemiplegics were part of a prospective research. Inclusion criteria were: first ever stroke in a chronic stage with stabilised motor deficits; age >18 and gait trainer, for the same period of time and frequency. Assessment tools: Motricity Index (MI); Toulouse Motor Scale (TMS); modified Ashworth Spasticity Scale (mASS); Berg Balance Scale (BBS); Rivermead Mobility Index (RMI); Fugl-Meyer Stroke Scale (F-MSS); Functional Ambulation Category (FAC); Barthel Index (BI); 10 meters, time up and go (TUG), 6 minutes, and step tests. EG and CG did the assessments before treatment (T(0)), right after treatment (T(1)), and on follow-up, 3 months later (T(2)). CG and EG were homogenous in all the variables at T(0). CG and EG showed improvement in almost all the assessment scales after treatment, although only some with relevant differences. EG showed statistically relevant improvement on T(1) and on T(2) in several of the assessment tools, whereas CG only showed statistically significant improvement after T(1) and only in some of the assessment tools. Both groups of chronic hemiplegic patients improved after either PBWS with gait trainer or Bobath treatment. Only subjects undergoing PBWS with gait trainer maintained functional gain after 3 months.

  6. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  7. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    Science.gov (United States)

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Treatment of Gait Ignition Failure with Ropinirole

    Directory of Open Access Journals (Sweden)

    Alexis N. Cohen-Oram

    2014-10-01

    Full Text Available Gait ignition failure (GIF is a syndrome characterized by hesitation or inability to initiate gait from a static position. It may occur in a variety of conditions, including normal pressure hydrocephalus, subcortical vascular disease, parkinsonian syndromes and a variety of focal lesions. Previous information on the treatment of GIF has been primarily anecdotal, but there have been a few reports of response to dopamine agonists. We report a 63-year-old man with anoxic encephalopathy who developed GIF nine years after the initial anoxic insult. The patient’s GIF responded robustly, albeit transiently, to ropinirole. MRI was unrevealing, but a positron emission tomography scan showed hypometabolism in the deep frontal ACA/MCA watershed area; this may have disconnected the basal ganglia from the motor cortex and/or interrupted dopaminergic mesocortical transmission. Our understanding of the pathophysiology and the treatment of GIF remains limited, but there may be at least a limited therapeutic role for dopamine agonists.

  9. Neglected Alkaptonuric Patient Presenting with Steppage Gait

    Directory of Open Access Journals (Sweden)

    Babak Mirzashahi

    2016-04-01

    Full Text Available Even though intervertebral disc degeneration can be found in the natural course of alkaptonuria, detection of the disease by black disc color change in a patient without any other presentation of alkaptonuria is an exceptionally rare condition. We have reported a very rare case of alkaptonuria presented with low back pain and steppage gait in a 51-year-old male with a complaint of chronic low-back pain and steppage gait who was operated on for prolapsed lumbar disc herniation. Intraoperatively his lumbar disk was discovered to be black. The alkaptonuria diagnosis was considered after histopathological examination of the black disc material and elevated urinary concentration of homogentisic acid confirmed the diagnosis. To our knowledge, this presentation has not been reported previously in literature.

  10. Asymmetry in gait pattern following tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Læssøe, Uffe; Rasmussen, Sten

    2017-01-01

    INTRODUCTION: Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12...... months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. PATIENTS AND METHODS: The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post......-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. RESULTS: 49 patients were included with a mean age of 43.1 years (18...

  11. Plantar pressure during gait in pregnant women

    OpenAIRE

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipel, Véronique

    2016-01-01

    Background: During pregnancy, physical and hormonal modifications occur. Morphologic alterations of the feet are found. These observations can induce alterations in plantar pressure. This study sought to investigate plantar pressures during gait in the last 4 months of pregnancy and in the postpartum period. A comparison with nulliparous women was conducted to investigate plantar pressure modifications during pregnancy. Methods: Fifty-eight women in the last 4 months of pregnancy, nine postpa...

  12. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke.

    Science.gov (United States)

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-05-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.

  13. Gait Recognition and Walking Exercise Intensity Estimation

    Directory of Open Access Journals (Sweden)

    Bor-Shing Lin

    2014-04-01

    Full Text Available Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients’ exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude. Furthermore, empirical mode decomposition (EMD was used to filter the noise of patients’ attitude to acquire the Fourier transform energy spectrum. Linear discriminant analysis was then applied to this energy spectrum for training and recognition. When the gait or motion was recognized, the walking exercise intensity was estimated. In addition, this study addressed the correlation between inertia and exercise intensity by using the residual function of the EMD and quadratic approximation to filter the effect of the baseline drift integral of the acceleration sensor. The increase in the determination coefficient of the regression equation from 0.55 to 0.81 proved that the accuracy of the method for estimating walking exercise intensity proposed by Kurihara was improved in this study.

  14. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  15. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  16. Office management of gait disorders in the elderly.

    Science.gov (United States)

    Lam, Robert

    2011-07-01

    To provide family physicians with an approach to office management of gait disorders in the elderly. Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific "cautious" gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders. Family physicians will find it helpful to classify gait

  17. Vision-based gait impairment analysis for aided diagnosis.

    Science.gov (United States)

    Ortells, Javier; Herrero-Ezquerro, María Trinidad; Mollineda, Ramón A

    2018-02-12

    Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work, provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence about their accuracy. Graphical Abstract Graphical abstract reflecting main contributions of the manuscript: at the top, a robust, semantic and easy-to-interpret feature set to describe impaired gait patterns; at the bottom, a new dataset consisting of video-recordings of a number of volunteers simulating different patterns of pathological gait, where features were statistically assessed.

  18. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    Science.gov (United States)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  20. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  1. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].

    Science.gov (United States)

    Schwartz, Isabella; Meiner, Zeev

    2013-03-01

    Regaining one's ability to walk is of great importance for neurological patients and is a major goal of all rehabilitation programs. Treating neurological patients in the acute phase after the event is technically difficult because of their motor weakness and balance disturbances. Based on studies in spinalized animals, a novel locomotor training that incorporates high repetitions of task-oriented practice by the use of body weight-supported treadmill training (BWSTT) was developed to overcome these obstacles. The use of BWSTT enables early initiation of gait training, integration of weightbearing activities, stepping and balance by the use of a task-specific approach, and a symmetrical gait pattern. However, despite the theoretical potential of BWSTT to become an invaluable therapeutic tool, its effect on walking outcomes was disappointing when compared with conventional training of the same duration. To facilitate the deLivery of BWSTT, a motorized robotic driven gait orthosis (RBWSTT) was recently developed. It has many advantages over the conventional method, including less effort for the physiotherapists, longer session duration, more physiological and reproducible gait patterns, and the possibility of measuring a patient's performances. Several studies have been conducted using RBWSTT in patients after stroke, spinal cord injury, multiple sclerosis and other neurological diseases. Although some of the results were encouraging, there is still uncertainty regarding proper patient selection, timing and protocol for RBWTT treatment following neurological diseases. More large randomized controlled studies are needed in order to answer these questions.

  2. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Science.gov (United States)

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  3. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait.

    Science.gov (United States)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Luc H; Ribbers, Gerard M

    2011-10-01

    To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Clinical experimental study. University Medical Centre. Nineteen stroke patients (12 males; mean age 55 years (standard deviation (SD) 10 years); mean time post onset 3.6 months (SD 1.4 months)) with a spastic paresis of the lower extremity. Functional mobility was assessed with the timed up and go test, walking speed and gait characteristics were measured with clinical gait analysis and performed with and without a verbal dual task. Patient satisfaction was determined with a questionnaire. Walking with the high orthopaedic shoe resulted in improved functional mobility (22%; pshoes. The dual task interfered with functional mobility during walking. The interference was equally big for normal shoes as for the orthopaedic shoe. Patients evaluated walking with the high orthopaedic shoe as an improvement (psafety, walking distance and walking speed. In the early recovery phase after stroke, when regaining walking ability, a temporary high orthopaedic shoe can improve hemiplegic gait, even with dual task interference. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity

  5. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Freezing of gait: moving forward on a mysterious clinical phenomenon

    NARCIS (Netherlands)

    Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A.

    2011-01-01

    Freezing of gait (FoG) is a unique and disabling clinical phenomenon characterised by brief episodes of inability to step or by extremely short steps that typically occur on initiating gait or on turning while walking. Patients with FoG, which is a feature of parkinsonian syndromes, show variability

  7. Day-to-day reliability of gait characteristics in rats

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures...

  8. Gait characteristics of hemiparetic stroke survivors in Osun State ...

    African Journals Online (AJOL)

    Stroke is one of the leading causes of severe handicap. Deficiencies in walking may present significant challenges to mobility, resulting in abnormal and inefficient gait patterns in stroke survivors. This study compared the gait characteristics of hemiparetic stroke survivors and those of healthy individuals and determined the ...

  9. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  10. Measuring medial longitudinal arch deformation during gait. A reliability study

    DEFF Research Database (Denmark)

    Bencke, Jesper; Christiansen, Ditte; Jensen, Anne Kathrine Bendrup

    2012-01-01

    during gait and to compare this method with a static measure and a 2D dynamic method. Fifty-two feet (26 healthy male participants) were tested twice 4-9 days apart in a biomechanical gait analysis laboratory using a 3D three-marker foot model, a 2D video-based model for the measurement of MLAD during...

  11. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  12. Neurological gait disorders in elderly people: clinical approach and classification.

    NARCIS (Netherlands)

    Snijders, A.H.; Warrenburg, B.P.C. van de; Giladi, N.; Bloem, B.R.

    2007-01-01

    Gait disorders are common and often devastating companions of ageing, leading to reductions in quality of life and increased mortality. Here, we present a clinically oriented approach to neurological gait disorders in the elderly population. We also draw attention to several exciting scientific

  13. Pregnancy-related changes in center of pressure during gait.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipe, Véronique

    2017-01-01

    Physical and hormonal modifications occuring during the pregnancy, can lead to an increase in postural instability and to a higher risk of falls during gait. The first objective was to describe the center of pressure (COP) during late pregnancy at different gait velocity. Comparison of nulliparous women with postpartum women were conducted in order to investigate the effects of pregnancy. The second objective was to analyse COP variability between pregnant and non-pregnant women in order to investigate the effects of pregnancy on gait variability. Fifty-eight pregnant women in the last four months of pregnancy, nine postpartum women and twenty-three healthy non-pregnant women performed gait trials at three different speeds: preferred, slow and fast. In the last four months of pregnancy gait velocity decreased. During the pregnancy, gait velocity decreased by 22%, stopover time increased by 6-12%, COP excursion XY decreased by 5% and COP velocity decreased by 16% and 20% along the anteroposterior and transverse axes, respectively. After delivery, gait velocity increased by 3% but remained a lower compared to non-pregnant women (-12%). Intra-individual variability was greater for non-pregnant than pregnant women. COP parameters were influenced by pregnancy. This suggests that pregnant women establish very specific and individual strategies with the aim of maintaining stability during gait.

  14. Functional electrical stimulation of the triceps surae during gait

    NARCIS (Netherlands)

    Monaghan, C.C.

    2009-01-01

    Every year stroke affects approximately 15 million people worldwide. It is the leading cause of disability in the western world. Gait relearning has high priority for stroke survivors. One of the most commonly treated effects of stroke gait is drop-foot (the inability to raise the toes during the

  15. Gait Disorders in Parkinson's Disease: Assessment and Management

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2013-12-01

    Full Text Available Gait disorder, a major cause of morbidity in the elderly population, is one of the cardinal features of Parkinson's disease. Owing to the characteristics of these gaits varying widely from festination to freezing of gait, analysis can be hardly identified in the clinical setting. Instrumented gait analysis has been widely used in a traditional gait laboratory. Recently, wireless monitoring systems have become highly informative by allowing long-term data collection in a variety of environments outside the labs. The quantitative analysis of gait patterns is probably the first step to a successful management of an individual patient. The presence of abnormal gait usually indicates advanced stages of disease and is often associated with cognitive impairment, falls, and injuries. Besides pharmacological and surgical treatments, parkinsonian gait can benefit from a variety of interventions. Assistive devices prevent patients from falls, and cueing strategies help them decrease episodes of freezing. Therefore, a multidisciplinary team approach to the optimal management is essential for an elderly patient with Parkinson's disease.

  16. Gait analysis of adults with generalised joint hypermobility

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Tegner, Heidi; Alkjær, Tine

    2012-01-01

    BACKGROUND: The majority of adults with Generalised Joint Hypermobility experience symptoms such as pain and joint instability, which is likely to influence their gait pattern. Accordingly, the purpose of the present project was to perform a biomechanical gait analysis on a group of patients...

  17. Gait analysis after successful mobile bearing total ankle replacement.

    NARCIS (Netherlands)

    Doets, H.C.; van Middelkoop, M.; Houdijk, J.H.P.; Nelissen, R.G.; Veeger, H.E.J.

    2007-01-01

    Background: The effect of total ankle replacement on gait is not fully known in terms of joint kinematics, ground reaction force, and activity of the muscles of the lower leg. Methods: A comparative gait study was done in 10 patients after uneventful unilateral mobile-bearing total ankle replacement

  18. Apraxia of gait- or apraxia of postural transitions?

    Science.gov (United States)

    Dale, Marian L; Curtze, Carolin; Nutt, John G

    2018-02-19

    "Apraxia of gait" is not a useful concept and freezing of gait should also not be considered an apraxia. The concept of apraxia may, however, be applied to distortions of postural transitions that can accompany fronto-parietal lesions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Gait Coordination After Stroke: Benefits of Acoustically Paced Treadmill Walking

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.C.; Kwakkel, G.; van Wieringen, P.C.W.; Beek, P.J.

    2007-01-01

    Background and Purpose: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. Participants: Ten people after stroke volunteered for the

  20. Gait coordination after stroke: benefits of acoustically paced treadmill walking.

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.; Kwakkel, G.; Wieringen, P.C. van; Beek, P.J.

    2007-01-01

    BACKGROUND AND PURPOSE: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. PARTICIPANTS: Ten people after stroke volunteered for the

  1. Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis

    Science.gov (United States)

    Saharan, Lokesh; Sharma, Ashvath; Jung de Andrade, Monica; Baughman, Ray H.; Tadesse, Yonas

    2017-04-01

    Partial or total upper extremity impairment affects the quality of life of a vast number of people due to stroke, neuromuscular disease, or trauma. Many researchers have presented hand orthosis to address the needs of rehabilitation or assistance on upper extremity function. Most of the devices available commercially and in literature are powered by conventional actuators such as DC motors, servomotors or pneumatic actuators. Some prototypes are developed based on shape memory alloy (SMA) and dielectric elastomers (DE). This study presents a customizable, 3D printed, a lightweight exoskeleton (iGrab) based on recently reported Twisted and Coiled Polymer (TCP) muscles, which are lightweight, provide high power to weight ratio and large stroke. We used silver coated nylon 6, 6 threads to make the TCP muscles, which can be easily actuated electrothermally. We reviewed briefly hand orthosis created with various actuation technologies and present our design of tendon-driven exoskeleton with the muscles confined in the forearm area. A single muscle is used to facilitate the motion of all three joints namely DIP (Distal interphalangeal), PIP (Proximal Interphalangeal) and MCP (Metacarpophalangeal) using passive tendons though circular rings. The grasping capabilities, along with TCP muscle properties utilized in the design such as life cycle, actuation under load and power inputs are discussed.

  2. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis

    Directory of Open Access Journals (Sweden)

    Angélique Slijper

    2012-01-01

    Full Text Available Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO and a standard carbon composite ankle foot orthosis (C-AFO. Methods. Twelve participants, mean age 56 years (range 26–72, with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW, walking velocity, the Physiological Cost Index (PCI, and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76, PCI −0.09 beats/m (95% CI −0.27, 0.95, velocity 0.04 m/s (95% CI −0.01, 0.097, and in the Stairs Test −11.8 s (95% CI −19.05, −4.48. All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  3. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients' satisfaction, walking speed and physical activity level.

    NARCIS (Netherlands)

    Swigchem, R. van; Vloothuis, J.; Boer, J. de; Weerdesteijn, V.G.M.; Geurts, A.C.H.

    2010-01-01

    OBJECTIVE: The aim of this study was to evaluate whether community-dwelling chronic stroke patients wearing an ankle-foot orthosis would benefit from changing to functional electrical stimulation of the peroneal nerve. METHODS: In 26 community-dwelling chronic (> 6 months post-onset) patients after

  4. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    Science.gov (United States)

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spatial-temporal parameters of gait in women with fibromyalgia.

    Science.gov (United States)

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  6. Boosting Discriminant Learners for Gait Recognition Using MPCA Features

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2009-01-01

    Full Text Available This paper proposes a boosted linear discriminant analysis (LDA solution on features extracted by the multilinear principal component analysis (MPCA to enhance gait recognition performance. Three-dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature selection. These feature vectors are then fed into an LDA-style booster, where several regularized and weakened LDA learners work together to produce a strong learner through a novel feature weighting and sampling process. The LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for classification. The experimental results on the NIST/USF “Gait Challenge” data-sets show that the proposed solution has successfully improved the gait recognition performance and outperformed several state-of-the-art gait recognition algorithms.

  7. Locomotion Gait Planning of Climber Snake-Like Robot

    Directory of Open Access Journals (Sweden)

    Mohammad Nezaminia

    2013-04-01

    Full Text Available In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered practical problems plus solutions were addressed. Finally we found out that: the vertical motion was producing more fault than horizontal locomotion, and notably the fastest gait of locomotion was the wheeling gait

  8. A perceptual map for gait symmetry quantification and pathology detection.

    Science.gov (United States)

    Moevus, Antoine; Mignotte, Max; de Guise, Jacques A; Meunier, Jean

    2015-10-29

    The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way. We propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry. The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.

  9. Quantitative Gait Analysis in Patients with Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Seon Jong Pyo

    2017-09-01

    Full Text Available Objective Gait disturbance is the main factor contributing to a negative impact on quality of life in patients with Huntington’s disease (HD. Understanding gait features in patients with HD is essential for planning a successful gait strategy. The aim of this study was to investigate temporospatial gait parameters in patients with HD compared with healthy controls. Methods We investigated 7 patients with HD. Diagnosis was confirmed by genetic analysis, and patients were evaluated with the Unified Huntington’s Disease Rating Scale (UHDRS. Gait features were assessed with a gait analyzer. We compared the results of patients with HD to those of 7 age- and sex-matched normal controls. Results Step length and stride length were decreased and base of support was increased in the HD group compared to the control group. In addition, coefficients of variability for step and stride length were increased in the HD group. The HD group showed slower walking velocity, an increased stance/swing phase in the gait cycle and a decreased proportion of single support time compared to the control group. Cadence did not differ significantly between groups. Among the UHDRS subscores, total motor score and total behavior score were positively correlated with step length, and total behavior score was positively correlated with walking velocity in patients with HD. Conclusion Increased variability in step and stride length, slower walking velocity, increased stance phase, and decreased swing phase and single support time with preserved cadence suggest that HD gait patterns are slow, ataxic and ineffective. This study suggests that quantitative gait analysis is needed to assess gait problems in HD.

  10. Gait in children with cerebral palsy : observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing scale

    NARCIS (Netherlands)

    Maathuis, KGB; van der Schans, CP; van Iperen, A; Rietman, HS; Geertzen, JHB

    2005-01-01

    The aim of this study was to test the inter- and intra-observer reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating

  11. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Directory of Open Access Journals (Sweden)

    James Gardiner

    Full Text Available Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  12. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Science.gov (United States)

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  13. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  14. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    Science.gov (United States)

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.

  15. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  16. Smartphone User Identity Verification Using Gait Characteristics

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2016-09-01

    Full Text Available Smartphone-based biometrics offers a wide range of possible solutions, which could be used to authenticate users and thus to provide an extra level of security and theft prevention. We propose a method for positive identification of smartphone user’s identity using user’s gait characteristics captured by embedded smartphone sensors (gyroscopes, accelerometers. The method is based on the application of the Random Projections method for feature dimensionality reduction to just two dimensions. Then, a probability distribution function (PDF of derived features is calculated, which is compared against known user PDF. The Jaccard distance is used to evaluate distance between two distributions, and the decision is taken based on thresholding. The results for subject recognition are at an acceptable level: we have achieved a grand mean Equal Error Rate (ERR for subject identification of 5.7% (using the USC-HAD dataset. Our findings represent a step towards improving the performance of gait-based user identity verification technologies.

  17. Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients

    NARCIS (Netherlands)

    Hoogkamer, W.; Bruijn, S.M.; Sunaert, S.; Swinnen, S.P.; Calenbergh, F. Van; Duysens, J.E.J.

    2015-01-01

    The evident ataxic characteristics of gait in patients with cerebellar damage suggest that the cerebellum plays an important role in the neural control of gait. Ataxic features, such as increased gait variability and increased step width, are often related to gait stability. However, the link

  18. Effect of dual task type on gait and dynamic stability during stair negotiation at different inclinations

    NARCIS (Netherlands)

    Madehkhaksar, F.; Egges, J.

    Stair gait is a common daily activity with great potential risk for falls. Stairs have varying inclinations and people may perform other tasks concurrently with stair gait. This study investigated dual-task interference in the context of complex gait tasks, such as stair gait at different

  19. Probabilistic Gait Classification in Children with Cerebral Palsy: A Bayesian Approach

    Science.gov (United States)

    Van Gestel, Leen; De Laet, Tinne; Di Lello, Enrico; Bruyninckx, Herman; Molenaers, Guy; Van Campenhout, Anja; Aertbelien, Erwin; Schwartz, Mike; Wambacq, Hans; De Cock, Paul; Desloovere, Kaat

    2011-01-01

    Three-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns. Therefore,…

  20. Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio

    2010-01-01

    The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…

  1. Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-12-01

    Gait impairment is a primary symptom of cervical spondylotic myelopathy (CSM); however, little is known about specific kinetic and kinematic gait parameters. The objectives of the study were: (1) to compare gait patterns of people with untreated CSM to those of age- and gender-matched healthy controls; (2) to examine the effect of gait speed on kinematic and kinetic parameters.

  2. Gait Patterns in Twins with Cerebral Palsy: Similarities and Development over Time after Multilevel Surgery

    Science.gov (United States)

    van Drongelen, Stefan; Dreher, Thomas; Heitzmann, Daniel W. W.; Wolf, Sebastian I.

    2013-01-01

    To examine gait patterns and gait quality, 7 twins with cerebral palsy were measured preoperatively and after surgical intervention. The aim was to study differences and/or similarities in gait between twins, the influence of personal characteristics and birth conditions, and to describe the development of gait over time after single event…

  3. Can biomechanical variables predict improvement in crouch gait?

    Science.gov (United States)

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  4. Upper limb movement analysis during gait in multiple sclerosis patients.

    Science.gov (United States)

    Elsworth-Edelsten, Charlotte; Bonnefoy-Mazure, Alice; Laidet, Magali; Armand, Stephane; Assal, Frederic; Lalive, Patrice; Allali, Gilles

    2017-08-01

    Gait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group. In this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7±9.6years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2±1) and 25 healthy age-matched controls using a 3-dimension gait analysis. MS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability. Upper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gait biometrics under spoofing attacks: an experimental investigation

    Science.gov (United States)

    Hadid, Abdenour; Ghahramani, Mohammad; Kellokumpu, Vili; Feng, Xiaoyi; Bustard, John; Nixon, Mark

    2015-11-01

    Gait is a relatively biometric modality which has a precious advantage over other modalities, such as iris and voice, in that it can be easily captured from a distance. Although it has recently become a topic of great interest in biometric research, there has been little investigation into gait spoofing attacks where a person tries to imitate the clothing or walking style of someone else. We recently analyzed for the first time the effects of spoofing attacks on silhouette-based gait biometric systems and showed that it was indeed possible to spoof gait biometric systems by clothing impersonation and the deliberate selection of a target that has a similar build to the attacker. To gain deeper insight into the performance of current gait biometric systems under spoofing attacks, we provide a thorough investigation on how clothing can be used to spoof a target and evaluate the performance of two state-of-the-art recognition methods on a gait spoofing database recorded at the University of Southampton. Furthermore, we describe and evaluate an initial solution coping with gait spoofing attacks. The obtained results are very promising and point out interesting findings which can be used for future investigations.

  6. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  7. The effects of smartphone multitasking on gait and dynamic balance.

    Science.gov (United States)

    Lee, Jeon Hyeong; Lee, Myoung Hee

    2018-02-01

    [Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person's dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone.

  8. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stepping strategies for regulating gait adaptability and stability.

    Science.gov (United States)

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (padaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  11. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    OpenAIRE

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may also be a predictor of fall risk. The objective of the present study was to assess the association between gait variability, LDS of gait and fall history in a large sample of elderly subjects.Subj...

  12. Effect of arm swing strategy on local dynamic stability of human gait

    OpenAIRE

    Punt, M.; Bruijn, S.M.; Wittink, H.; van Dieen, J.H.

    2015-01-01

    Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subj...

  13. Improvement of Freezing of Gait in Patients with Parkinson's Disease by Imagining Bicycling

    Directory of Open Access Journals (Sweden)

    Akio Kikuchi

    2014-03-01

    Full Text Available Freezing of gait (FOG is one of the factors that reduce the quality of life in patients with Parkinson's disease (PD. Imagining bicycling before gait start provided improvement in FOG in 2 PD patients. Imagining and mimicking bicycling after the initiation of gait allowed the rhythmic gait to continue without interruption. We suggest that imagining and mimicking bicycling, which are nonexternal cues, could serve as a helpful therapeutic approach for the intractable freezing and interruption of gait of PD patients.

  14. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    OpenAIRE

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of...

  15. Use of Photogrammetry and Biomechanical Gait analysis to Identify Individuals

    DEFF Research Database (Denmark)

    Larsen, Peter Kastmand; Simonsen, Erik Bruun; Lynnerup, Niels

    Photogrammetry and recognition of gait patterns are valuable tools to help identify perpetrators based on surveillance recordings. We have found that stature but only few other measures have a satisfying reproducibility for use in forensics. Several gait variables with high recognition rates were...... found. Especially the variables located in the frontal plane are interesting due to large inter-individual differences in time course patterns. The variables with high recognition rates seem preferable for use in forensic gait analysis and as input variables to waveform analysis techniques...

  16. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  17. Variability and Similarity of Gait as Evaluated by Joint Angles

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter Kastmand; Alkjær, Tine

    2014-01-01

    . Six sets from 12 men were collected. For each man, a variability range VR (mean ± 1SD) of a specific joint angle at a specific time point (a gait cycle was 100 time points) was calculated. In turn, each individual was compared with the 11 others, and whenever 1 of these 11 had a value within...... this individual’s VR, it counted as positive. By adding the positives throughout the gait cycle, we created simple bar graphs; tall bars indicated a small discriminatory power, short bars indicated a larger one. The highest discriminatory power was at time points 60–80 in the gait cycle. We show how our data can...

  18. Do sit-to-stand performance changes during gait acquisition?

    OpenAIRE

    Bastos, Alana Maria Ferreira Guimarães; Costa, Carolina Souza Neves da; Rocha, Nelci Adriana Cicuto Ferreira

    2014-01-01

    In a child's daily routine, sit-to-stand (STS) is a prerequisite activity for many functional tasks. The relationship between gait and other abilities has been pointed out by many authors, but there is no study investigating the changes in STS during gait acquisition in children. The purpose of this study was to analyse, in healthy children, changes that occur in STS performance during gait acquisition. Five healthy children were initially assessed with an average age of 13.6 months. The kine...

  19. Effects of walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia.

    Science.gov (United States)

    Hwang, Jongseok; Shin, Yongil; Park, Ji-Ho; Cha, Young Joo; You, Joshua Sung H

    2018-04-07

    The robotic-assisted gait training (RAGT) system has gained recognition as an innovative, effective paradigm to improve functional ambulation and activities of daily living in spinal cord injury and stroke. However, the effects of the Walkbot robotic-assisted gait training system with a specialized hip-knee-ankle actuator have never been examined in the paraplegia and quadriplegia population. The aim of this study was to determine the long-term effects of Walkbot training on clinical for hips and knee stiffness in individuals with paraplegia or quadriplegia. Nine adults with subacute or chronic paraplegia resulting from spinal cord injury or quadriplegia resulting from cerebral vascular accident (CVA) and/or hypoxia underwent progressive conventional gait retraining combined with the Walkbot RAGT for 5 days/week over an average of 43 sessions for 8 weeks. Clinical outcomes were measured with the Functional Ambulation Category (FAC), Modified Rankin Scale (MRS), Korean version of the Modified Barthel Index (K-MBI), Modified Ashworth Scale (MAS). Kinetic and kinematic data were collected via a built-in Walkbot program. Wilcoxon signed-rank tests showed significant positive intervention effects on K-MBI, maximal hip flexion and extension, maximal knee flexion, active torque in the knee joint, resistive torque, and stiffness in the hip joint (P quadriplegia who had reached a plateau in motor recovery after conventional therapy.

  20. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    Science.gov (United States)

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  1. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  2. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients.

    Science.gov (United States)

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-08-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.

  3. Gait and Equilibrium in Subcortical Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2011-01-01

    Full Text Available Subcortical vascular dementia is a clinical entity, widespread, even challenging to diagnose and correctly treat. Patients with this diagnosis are old, frail, often with concomitant pathologies, and therefore, with many drugs in therapy. We tried to diagnose and follow up for three years more than 600 patients. Study subjects were men and women, not bedridden, aged 68–94 years, outpatients, recruited from June, 1st 2007 to June, 1st 2010. We examined them clinically, neurologically, with specific consideration on drug therapies. Our aim has been to define gait and imbalance problem, if eventually coexistent with the pathology of white matter and/or with the worsening of the deterioration. Drug intake interference has been detected and considered.

  4. FY1995 development of rehabilitation system for promoting social integration of people with disabilities. Development of a robotic orthosis assisting motion capabilities; 1995 nendo shogaino aru hito no shakai shinshutsu wo sokushinsuru rehabilitation system no kaihatsu. Rehabilitation kino wo yusuru doryoku sogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    People with slight disabilities on motion. capability can be active in daily life using properly designed motion-assisting devices. Using these device in various cases would help the disabled participate in production activities, and would promote social integration of the disabled as rehabilitation in a broad sense. This research aims at developing such a device capable to help human motion by forearm based on technology and science in robotics. Two different methods are discussed in this research in order to develop robotic orthosis with good performance for assisting human motion by forearm. The first method is constructing a robotic orthosis with electronic motors and force sensors to produce a desired mechanical impedance. This orthosis was carefully designed such that mechanical safety for human is realized. The validity of the mechanism is illustrated by several experiments. The second method is constructing a low cost robotic orthosis with pneumatic actuators. A new type of pneumatic actuator is developed to realize this orthosis. Experimental results show that physical therapy can be performed effectively using this orthosis operated by direct teaching. (NEDO)

  5. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E

    2018-01-01

    Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.

  6. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait.

    Science.gov (United States)

    de Souza Fortaleza, Ana Claudia; Mancini, Martina; Carlson-Kuhta, Patty; King, Laurie A; Nutt, John G; Chagas, Eliane Ferrari; Freitas, Ismael Forte; Horak, Fay B

    2017-07-01

    Freezing of gait (FoG) is associated with less automatic gait and more impaired cognition, balance and postural transitions compared to people with PD who do not have FoG. However, it is unknown whether dual-task cost during postural sway, postural transitions (such as gait initiation and turning), and gait are more in subjects with Parkinson's disease (PD) who have freezing of gait (FoG+) compared to those who do not have FoG (FoG-). Here, we hypothesized that the effects of a cognitive dual task on postural sway, postural transitions and gait would be larger in FoG+ than FoG-. Thirty FoG- and 24 FoG+ performed an Instrumented Stand and Walk test in OFF medication state, with and without a secondary cognitive task (serial subtraction by 3s). Measures of postural sway, gait initiation, turning, and walking were extracted using body-worn inertial sensors. FoG+ showed significantly larger dual task cost than FoG- for several gait metrics, but not during postural sway or postural transitions. During walking, FoG+ exhibited a larger dual task cost than FoG- resulting in shorter stride length and slower stride velocity. During standing, FoG+ showed a larger postural sway compared to FoG- and during gait initiation, FoG+, but not FoG-, showed a longer first step duration during the dual-task condition compared to single-task condition (interaction effect, p=0.04). During turning, both groups showed a slower turn peak speed in the dual-task condition compared to single task condition. These findings partly support our hypothesis that dual task cost on walking is greater in FoG+ than FoG-. Copyright © 2017. Published by Elsevier B.V.

  7. Auditive Discrimination of Equine Gaits by Parade Horses

    Directory of Open Access Journals (Sweden)

    Duilio Cruz-Becerra

    2009-06-01

    Full Text Available The purpose of this study was to examine parade horses’ auditory discriminationamong four types of equine gaits: paso-fino (“fine step”, trote-reunido(“two-beat trot”, trocha (“trot”, and galope-reunido (“gallop”. Two experimentallynaïve horses were trained to discriminate the sound of their owngait (paso-fino or fine step, through an experimental module that dispensedfood if the subject pressed a lever after hearing a sound reproduction of aparticular gait. Three experimental phases were developed, defined by theperiod of exposure to the sounds (20, 10, and 5 seconds, respectively. Thechoice between pairs of sounds including the horse’s own gait (fine stepand two-beat trot; fine step and gallop; and fine step and trot was reinforceddifferentially. The results indicate that the fine step horses are able todiscriminate their own gait from others, and that receptivity to their ownsounds could be included in their training regime.

  8. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  9. Development Aspects of a Robotised Gait Trainer for Neurological Rehabilitation

    National Research Council Canada - National Science Library

    Schmidt, H

    2001-01-01

    .... Conventional training methods, e.g. treadmill training, require great physical effort from the therapists to assist the patient After the successful development and application of a mechanised gait trainer, a new research project...

  10. Automatic Gait Recognition for Human ID at a Distance

    National Research Council Canada - National Science Library

    Nixon, Mark S; Carter, John N

    2004-01-01

    Recognising people by their gait is a biometric of increasing interest. Now, analysis has progressed from evaluation by few techniques on small databases with encouraging results to large databases and still with encouraging results...

  11. Management of apraxic gait in a stroke patient.

    Science.gov (United States)

    Jantra, P; Monga, T N; Press, J M; Gervais, B J

    1992-01-01

    There is little information available regarding management of apraxic gait. We present a 61-year-old man with a five-year history of right-sided cerebrovascular accident, apraxic gait, difficulty in walking, and frequent falls. A CT head scan revealed moderate cerebral atrophy, a small lacunar infarction. The patient was unable to initiate walking, was bed ridden and housebound. Traditional gait training and balance exercises failed to improve his gait. Two straight canes were modified by fixing florescent horizontal projections approximately two inches up from the tip of the cane. The patient was instructed to step over the horizontal projected portion, making use of visual cues from the florescent painted projections. The patient became independent with safe ambulation after practicing for approximately three weeks and was discharged home.

  12. Impact of Caryolanemagnolol on Gait and Functional Mobility on ...

    African Journals Online (AJOL)

    ... on drug indicates that caryolanemagnolol use may improve balance and functional mobility in individuals with HD. ... deterioration in gait or increased falls after tetrabenazine .... balance control systems that maintain balance during dynamic ...

  13. Ergonomics, anthropometrics, and kinetic evaluation of gait: A case study

    OpenAIRE

    Lima, Rosa; Fontes, Liliana Magalhães Campos; Arezes, P.; Carvalho, Miguel

    2015-01-01

    This study aimed to develop appropriate changes in a pair of shoes in order to improve the gait of an individual selected for this case study. This analysis took into account ergonomic aspects, namely those relating to the individual’s anthropometrics. Gait analysis was done with the adapted footwear both before and after intervention.A conventional X-ray was performed, which revealed a 29-mm left lower limb shortening and possible foot adduction. The anthropometric assessment confir...

  14. Skeletal and Clinical Effects of Exoskeletal Assisted - Gait

    Science.gov (United States)

    2016-10-01

    clinical functional outcomes. The hypothesis of the study is that exoskeleton -assisted ambulation has skeletal and general health benefits for...for the use of robotic exoskeletons to enable gait in individuals with a complete SCI, clinical teams are not provided with appropriate tools to...estimate or predict potential health benefits (e.g. bone health) associated with exoskeleton -assisted gait. What was the impact on other disciplines

  15. Hip mechanics underlie lower extremity power training-induced increase in old adults' fast gait velocity : The Potsdam Gait Study (POGS)

    NARCIS (Netherlands)

    Beijersbergen, Chantal M. I.; Granacher, Urs; Gäbler, Martijn; DeVita, Paul; Hortobagyi, Tibor

    Background: Aging is associated with slowed gait and old compared with young adults generally walk with greater positive hip work (H1) and reduced positive ankle work (A2). The role of exercise interventions on old adults' gait mechanics that underlie training-induced improvements in gait velocity

  16. Flexed-knee gait in children with cerebral palsy.

    Science.gov (United States)

    Church, C; Ge, J; Hager, S; Haumont, T; Lennon, N; Niiler, T; Hulbert, R; Miller, F

    2018-04-01

    Aims The purpose of this study was to evaluate the long-term outcome of adolescents with cerebral palsy who have undergone single-event multilevel surgery for a flexed-knee gait, followed into young adulthood using 3D motion analysis. Patients and Methods A total of 59 young adults with spastic cerebral palsy, with a mean age of 26 years (sd 3), were enrolled into the study in which their gait was compared with an evaluation that had taken place a mean of 12 years (sd 2) previously. At their visits during adolescence, the children walked with excessive flexion of the knee at initial contact and surgical or therapeutic interventions were not controlled between visits. Results Based on the change in flexed-knee gait over approximately ten years, improvements were seen in increased Gait Deviation Index (p gait (p = 0.007) suggested a mild decline in function. Quality-of-life measures showed that these patients fell within normal limits compared with typical young adults in areas other than physical function. Conclusion While some small significant changes were noted, little clinically significant change was seen in function and gait, with gross motor function maintained between adolescence and young adulthood. Cite this article: Bone Joint J 2018;100-B:549-56.

  17. Quantitative analysis of gait in the visually impaired.

    Science.gov (United States)

    Nakamura, T

    1997-05-01

    In this comparative study concerning characteristics of independent walking by visually impaired persons, we used a motion analyser system to perform gait analysis of 15 late blind (age 36-54, mean 44.3 years), 15 congenitally blind (age 39-48, mean 43.8 years) and 15 sighted persons (age 40-50, mean 44.4 years) while walking a 10-m walkway. All subjects were male. Compared to the sighted, late blind and congenitally blind persons had a significantly slower walking speed, shorter stride length and longer time in the stance phase of gait. However, the relationships between gait parameters in the late and congenitally blind groups were maintained, as in the sighted group. In addition, the gait of the late blind showed a tendency to approximate the gait patterns of the congenitally blind as the duration of visual loss progressed. Based on these results we concluded that the gait of visually impaired persons, through its active use of non-visual sensory input, represents an attempt to adapt to various environmental conditions in order to maintain a more stable posture and to effect safe walking.

  18. Gait Analysis Study of Runner Using Force Plate

    Directory of Open Access Journals (Sweden)

    Flaviana Catherine

    2017-02-01

    Full Text Available Humans do regular physical activities such as running. Gait is forward  propulsion of the human body using lower extremities as a thrust. Humans gait pattern is characterized by their limbs movement in terms of velocity, ground reaction force, work, kinetic energy and potential energy cycle . Human gait analysis is used to assess, to plan, and to deliver the treatment for individuals based on the conditions that affect their ability to move. Gait analysis is commonly used in running sport to improve the efficiency of athletes in running and to identify problems related to their posture or movement. The aim of this research is to do running gait analysis study of human, using force plate which equipped by track board. The benefit of this study is to provide information, ideas and new perspectives about running and its prevention over an injury. The main method that will be discussed in this study is system design of gait analysis with specific setting, hardware and software, in order to acquire data(s.

  19. User Identification Using Gait Patterns on UbiFloorII

    Science.gov (United States)

    Yun, Jaeseok

    2011-01-01

    This paper presents a system of identifying individuals by their gait patterns. We take into account various distinguishable features that can be extracted from a user’s gait and then divide them into two classes: walking pattern and stepping pattern. The conditions we assume are that our target environments are domestic areas, the number of users is smaller than 10, and all users ambulate with bare feet considering the everyday lifestyle of the Korean home. Under these conditions, we have developed a system that identifies individuals’ gait patterns using our biometric sensor, UbiFloorII. We have created UbiFloorII to collect walking samples and created software modules to extract the user’s gait pattern. To identify the users based on the gait patterns extracted from walking samples over UbiFloorII, we have deployed multilayer perceptron network, a feedforward artificial neural network model. The results show that both walking pattern and stepping pattern extracted from users’ gait over the UbiFloorII are distinguishable enough to identify the users and that fusing two classifiers at the matching score level improves the recognition accuracy. Therefore, our proposed system may provide unobtrusive and automatic user identification methods in ubiquitous computing environments, particularly in domestic areas. PMID:22163758

  20. Reliability of diabetic patients' gait parameters in a challenging environment.

    Science.gov (United States)

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; de Bruin, E D

    2008-11-01

    Activities of daily life require us to move about in challenging environments and to walk on varied surfaces. Irregular terrain has been shown to influence gait parameters, especially in a population at risk for falling. A precise portable measurement system would permit objective gait analysis under such conditions. The aims of this study are to (a) investigate the reliability of gait parameters measured with the Physilog in diabetic patients walking on different surfaces (tar, grass, and stones); (b) identify the measurement error (precision); (c) identify the minimal clinical detectable change. 16 patients with Type 2 diabetes were measured twice within 8 days. After clinical examination patients walked, equipped with a Physilog, on the three aforementioned surfaces. ICC for each surface was excellent for within-visit analyses (>0.938). Inter-visit ICC's (0.753) were excellent except for the knee range parameter (>0.503). The coefficient of variation (CV) was lower than 5% for most of the parameters. Bland and Altman Plots, SEM and SDC showed precise values, distributed around zero for all surfaces. Good reliability of Physilog measurements on different surfaces suggests that Physilog could facilitate the study of diabetic patients' gait in conditions close to real-life situations. Gait parameters during complex locomotor activities (e.g. stair-climbing, curbs, slopes) have not yet been extensively investigated. Good reliability, small measurement error and values of minimal clinical detectable change recommend the utilization of Physilog for the evaluation of gait parameters in diabetic patients.

  1. FreeWalker: a smart insole for longitudinal gait analysis.

    Science.gov (United States)

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  2. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy.

    Science.gov (United States)

    Błaszczyk, Janusz W; Opala-Berdzik, Agnieszka; Plewa, Michał

    2016-01-01

    Spatiotemporal gait cycle characteristics were assessed at early (P1), and late (P2) pregnancy, as well as at 2 months (PP1) and 6 months (PP2) postpartum. A substantial decrease in walking speed was observed throughout the pregnancy, with the slowest speed (1±0.2m/s) being during the third trimester. Walking at slower velocity resulted in complex adaptive adjustments to their spatiotemporal gait pattern, including a shorter step length and an increased duration of both their stance and double-support phases. Duration of the swing phase remained the least susceptible to changes. Habitual walking velocity (1.13±0.2m/s) and the optimal gait pattern were fully recovered 6 months after childbirth. Documented here adaptive changes in the preferred gait pattern seem to result mainly from the altered body anthropometry leading to temporary balance impairments. All the observed changes within stride cycle aimed to improve gait safety by focusing on its dynamic stability. The pregnant women preferred to walk at a slower velocity which allowed them to spend more time in double-support compared with their habitual pattern. Such changes provided pregnant women with a safer and more tentative ambulation that reduced the single-support period and, hence, the possibility of instability. As pregnancy progressed a significant increase in stance width and a decrease in step length was observed. Both factors allow also for gait stability improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gait Analysis of Symptomatic Flatfoot in Children: An Observational Study.

    Science.gov (United States)

    Kim, Ha Yong; Shin, Hyuck Soo; Ko, Jun Hyuck; Cha, Yong Han; Ahn, Jae Hoon; Hwang, Jae Yeon

    2017-09-01

    Flatfoot deformity is a lever arm disease that incurs kinetic inefficiency during gait. The purpose of this study was to measure the degree of kinetic inefficiency by comparing the gait analysis data of a flatfoot group with a normal control group. The patient group consisted of 26 children (21 males and 5 females) with symptomatic flatfoot. They were examined with gait analysis between May 2005 and February 2014. Exclusion criteria were patients with secondary flatfoot caused by neuromuscular disorders, tarsal coalition, vertical talus, or others. Patients' mean age was 9.5 years (range, 7 to 13 years). The gait analysis data of the study group and the normal control group were compared. The mean vertical ground reaction force (GRF) in the push-off phase was 0.99 for the patient group and 1.15 for the control group ( p push-off phase was 0.89 for the patient group and 1.27 for the control group ( p push-off phase was 1.38 for the patient group and 2.52 for the control group ( p push-off phase during gait. Symptomatic flatfeet had a moment inefficiency of 30% and power inefficiency of 45% during gait compared to feet with preserved medial longitudinal arches.

  4. Gait Deviations in Children with Autism Spectrum Disorders: A Review

    Directory of Open Access Journals (Sweden)

    Deirdre Kindregan

    2015-01-01

    Full Text Available In recent years, it has become clear that children with autism spectrum disorders (ASDs have difficulty with gross motor function and coordination, factors which influence gait. Knowledge of gait abnormalities may be useful for assessment and treatment planning. This paper reviews the literature assessing gait deviations in children with ASD. Five online databases were searched using keywords “gait” and “autism,” and 11 studies were found which examined gait in childhood ASD. Children with ASD tend to augment their walking stability with a reduced stride length, increased step width and therefore wider base of support, and increased time in the stance phase. Children with ASD have reduced range of motion at the ankle and knee during gait, with increased hip flexion. Decreased peak hip flexor and ankle plantar flexor moments in children with ASD may imply weakness around these joints, which is further exhibited by a reduction in ground reaction forces at toe-off in children with ASD. Children with ASD have altered gait patterns to healthy controls, widened base of support, and reduced range of motion. Several studies refer to cerebellar and basal ganglia involvement as the patterns described suggest alterations in those areas of the brain. Further research should compare children with ASD to other clinical groups to improve assessment and treatment planning.

  5. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gema Chamorro-Moriana

    2018-01-01

    Full Text Available This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%, orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  6. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    Science.gov (United States)

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  7. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  8. AN ANALYSIS OF THE MANUFACTURING POSSIBILITY OF SPECIAL ANKLE FOOT ORTHOSIS COMPONENTS BY OMPARISON BETWEEN THE REQUIRED PRECISION AND THE VAILABLE PRECISION ON A VERTICAL MACHINING CENTER PROGRAMED WITH TOPSOLID

    Directory of Open Access Journals (Sweden)

    Alexandru STANIMIR

    2010-06-01

    Full Text Available Validation of different solutions adopted to achieve new ankle foot orthosis involves among others their prototyping. In these paper we developed a representative part for two axis machining that requires the use of the main features of TopSolid Cad and Cam modules, and that assumes the use of the main manufacturing processes that usually may be met on a vertical machining center. Also, in order to determine the dimensional and geometrical deviations of the part this was done on the YMC 1050 machining center. After comparing the measured deviations with the requirements of various components of orthesis, we concluded that the available precision meets the requirements and that the machining center with TopSolid software that we have will enable us to realize special ankle foot orthosis of quality, for experimental research .

  9. Pathways linking regional hyperintensities in the brain and slower gait.

    Science.gov (United States)

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  10. A crawling robot driven by multi-stable origami

    Science.gov (United States)

    Pagano, Alexander; Yan, Tongxi; Chien, Brian; Wissa, A.; Tawfick, S.

    2017-09-01

    Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.

  11. The Required Coefficient of Friction for evaluating gait alterations in people with Multiple Sclerosis during gait.

    Science.gov (United States)

    Pacifici, Ilaria; Galli, Manuela; Kleiner, Ana Francisca Rozin; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Cocco, Eleonora; Marrosu, Maria Giovanna; Pau, Massimiliano

    2016-11-01

    Required Coefficient of Friction (RCOF) is one of the most critical gait parameters associated to the occurrence of slipping in individuals affected by neurological disorders characterized by balance impairments. This study aims to calculate RCOF in people with Multiple Sclerosis (MS) on the basis of three-dimensional Gait Analysis (GA) data. This study enrolls 22 people with MS (pwMS) who were characterized by an Expanded Disability Status Score in the range 1.5-6 and 10 healthy controls (HC). All participants underwent to three-dimensional GA from which we extracted kinematic and kinetic data (i.e. the Ground Reaction Forces, GRF, and joint moments and powers in the sagittal plane). RCOF was calculated as the ratio of the shear to normal GRF components during the stance phase of gait cycle, and normalized by the walking velocity. Thus, the following variables were extracted: first peak (named P1COF), valley (named V1COF), and second peak (named P2COF) in RCOF curve; also computating the maximum ankle dorsi-plantarflexion moment (MOMmax) and the maximum ankle joint power (PWRmax). Our data revealed that P2COF results are significantly lower in pwMS when compared to HC (p=0.043; Z=-2.025). In pwMS, the study found a moderate, positive correlation between V1COF and MOMmax (r=0.558; pFriction during mid stance and push off phases is critically important to determine whether the frictional capabilities of foot/floor interface are sufficient to prevent slips in pwMS. The impaired ankle moment in MS group causes increased P2COF in comparison to HC, increasing the risk of slipping in the critical phase of transmission of the developed forces to kinematic chain. Also, the correlation analysis among RCOF values and kinetic variables describe the interplay between V1COF and MOMmax: the higher V1COF is, the higher is MOMmax; and the different correlation the study found between COF and kinetic parameters in MS and HC group highlightes the different gait patterns of the two

  12. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p gait trainer (p gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  13. Does anxiety cause freezing of gait in Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Kaylena A Ehgoetz Martens

    Full Text Available Individuals with Parkinson's disease (PD commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers and 17 PD without freezing of gait (Non-Freezers were instructed to walk in two virtual environments: (i across a plank that was located on the ground (LOW, (ii across a plank above a deep pit (HIGH. Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state. Freezers reported higher levels of anxiety compared to Non-Freezers (p < 0.001 and all patients reported greater levels of anxiety when walking across the HIGH plank compared to the LOW (p < 0.001. Freezers experienced significantly more freezing of gait episodes (p = 0.013 and spent a significantly greater percentage of each trial frozen (p = 0.005 when crossing the HIGH plank. This finding was even more pronounced when comparing Freezers in their OFF state. Freezers also had greater step length variability in the HIGH compared to the LOW condition, while the step length variability in Non-Freezers did not change. In conclusion, this was the first study to directly compare freezing of gait in anxious and non-anxious situations. These results present strong evidence that anxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD.

  14. Gait Implications of Visual Field Damage from Glaucoma.

    Science.gov (United States)

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  15. Effects of obesity and chronic low back pain on gait

    Directory of Open Access Journals (Sweden)

    Galli Manuela

    2011-09-01

    Full Text Available Abstract Background Obesity is often associated with low back pain (LBP. Despite empirical evidence that LBP induces gait abnormalities, there is a lack of quantitative analysis of the combined effect of obesity and LBP on gait. The aim of our study was to quantify the gait pattern of obese subjects with and without LBP and normal-mass controls by using Gait Analysis (GA, in order to investigate the cumulative effects of obesity and LBP on gait. Methods Eight obese females with chronic LBP (OLG; age: 40.5 ± 10.1 years; BMI: 42.39 ± 5.47 Kg/m2, 10 obese females (OG; age: 33.6 ± 5.2 years; BMI: 39.26 ± 2.39 Kg/m2 and 10 healthy female subjects (CG; age: 33.4 ± 9.6 years; BMI: 22.8 ± 3.2 Kg/m2, were enrolled in this study and assessed with video recording and GA. Results and Discussion OLG showed longer stance duration and shorter step length when compared to OG and CG. They also had a low pelvis and hip ROM on the frontal plane, a low knee flexion in the swing phase and knee range of motion, a low dorsiflexion in stance and swing as compared to OG. No statistically significant differences were found in ankle power generation at push-off between OLG and OG, which appeared lower if compared to CG. At hip level, both OLG and OG exhibited high power generation levels during stance, with OLG showing the highest values. Conclusions Our results demonstrated that the association of obesity and LBP affects more the gait pattern than obesity alone. OLG were in fact characterised by an altered knee and ankle strategy during gait as compared to OG and CG. These elements may help optimizing rehabilitation planning and treatment in these patients.

  16. General tensor discriminant analysis and gabor features for gait recognition.

    Science.gov (United States)

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine

  17. Two-dimensional PCA-based human gait identification

    Science.gov (United States)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  18. Balance and gait in children with dyslexia.

    Science.gov (United States)

    Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil

    2003-05-01

    Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( Pwalking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( Pwalking speed ( Pwalking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

  19. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Science.gov (United States)

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  20. A Wearable Gait Phase Detection System Based on Force Myography Techniques

    Directory of Open Access Journals (Sweden)

    Xianta Jiang

    2018-04-01

    Full Text Available (1 Background: Quantitative evaluation of gait parameters can provide useful information for constructing individuals’ gait profile, diagnosing gait abnormalities, and better planning of rehabilitation schemes to restore normal gait pattern. Objective determination of gait phases in a gait cycle is a key requirement in gait analysis applications; (2 Methods: In this study, the feasibility of using a force myography-based technique for a wearable gait phase detection system is explored. In this regard, a force myography band is developed and tested with nine participants walking on a treadmill. The collected force myography data are first examined sample-by-sample and classified into four phases using Linear Discriminant Analysis. The gait phase events are then detected from these classified samples using a set of supervisory rules; (3 Results: The results show that the force myography band can correctly detect more than 99.9% of gait phases with zero insertions and only four deletions over 12,965 gait phase segments. The average temporal error of gait phase detection is 55.2 ms, which translates into 2.1% error with respect to the corresponding labelled stride duration; (4 Conclusions: This proof-of-concept study demonstrates the feasibility of force myography techniques as viable solutions in developing wearable gait phase detection systems.

  1. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Directory of Open Access Journals (Sweden)

    Du-Xin Liu

    2016-09-01

    Full Text Available Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS and an 87.22% average correct rate of phase (CRP on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton.

  2. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  3. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  4. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  5. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Sakurai, Ryota; Montero-Odasso, Manuel

    2017-11-09

    The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Secure and privacy enhanced gait authentication on smart phone.

    Science.gov (United States)

    Hoang, Thang; Choi, Deokjai

    2014-01-01

    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

  7. Quality of Life and Gait in Elderly Group

    Directory of Open Access Journals (Sweden)

    Taguchi, Carlos Kazuo

    2015-12-01

    Full Text Available Introduction The process of aging could lead to seniors being more prone to falls, which affects their quality of life. Objective The objective of this study is to investigate the relationship between quality of life and gait in the elderly. Methods We used World Health Organization Quality of Life-Brief (WHOQOL-Brief Brazilian version and the Dynamic Gait Index to assess fifty-six volunteers from the northeast of Brazil. Ages ranged from 60 to 85 years. Results The Dynamic Gait Index, which indicates the probability of falls, resulted in 36.3% of the sample presenting abnormal results. There was correlation between domain 2 (psychological and domain 4 (environment with domain 1(Physical and domain 3 (Social; a negative correlation between age and Domain 2; correlation between Question 1 (How would you rate your quality of life? and domains 1, 2, and 4 and no correlation between questions 1 and 2 (How satisfied are you with your health?. Question 2 was correlated with all of the domains. There was negative association between question 1 and falls, and a slight correlation between the Dynamic Gait Index scores and Question 1. Conclusion The self-perception of the study group about their quality of life was either good or very good, even though a considerable percentage of individuals had suffered falls or reported gait disturbances.

  8. Evidence of Big Five and Aggressive Personalities in Gait Biomechanics.

    Science.gov (United States)

    Satchell, Liam; Morris, Paul; Mills, Chris; O'Reilly, Liam; Marshman, Paul; Akehurst, Lucy

    2017-01-01

    Behavioral observation techniques which relate action to personality have long been neglected (Furr and Funder in Handbook of research methods in personality psychology, The Guilford Press, New York, 2007) and, when employed, often use human judges to code behavior. In the current study we used an alternative to human coding (biomechanical research techniques) to investigate how personality traits are manifest in gait. We used motion capture technology to record 29 participants walking on a treadmill at their natural speed. We analyzed their thorax and pelvis movements, as well as speed of gait. Participants completed personality questionnaires, including a Big Five measure and a trait aggression questionnaire. We found that gait related to several of our personality measures. The magnitude of upper body movement, lower body movement, and walking speed, were related to Big Five personality traits and aggression. Here, we present evidence that some gait measures can relate to Big Five and aggressive personalities. We know of no other examples of research where gait has been shown to correlate with self-reported measures of personality and suggest that more research should be conducted between largely automatic movement and personality.

  9. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain

    2016-01-01

    The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.

  11. Secure and Privacy Enhanced Gait Authentication on Smart Phone

    Directory of Open Access Journals (Sweden)

    Thang Hoang

    2014-01-01

    Full Text Available Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR and false rejection rate (FRR of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

  12. Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Juliette Ropars

    Full Text Available The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD. Dynamic surface electromyography recordings (EMGs of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF, vastus lateralis (VL, medial hamstrings (HS, tibialis anterior (TA and gastrocnemius soleus (GAS muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.

  13. Does Anxiety Cause Freezing of Gait in Parkinson's Disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A.; Ellard, Colin G.; Almeida, Quincy J.

    2014-01-01

    Individuals with Parkinson's disease (PD) commonly experience freezing of gait under time constraints, in narrow spaces, and in the dark. One commonality between these different situations is that they may all provoke anxiety, yet anxiety has never been directly examined as a cause of FOG. In this study, virtual reality was used to induce anxiety and evaluate whether it directly causes FOG. Fourteen patients with PD and freezing of gait (Freezers) and 17 PD without freezing of gait (Non-Freezers) were instructed to walk in two virtual environments: (i) across a plank that was located on the ground (LOW), (ii) across a plank above a deep pit (HIGH). Multiple synchronized motion capture cameras updated participants' movement through the virtual environment in real-time, while their gait was recorded. Anxiety levels were evaluated after each trial using self-assessment manikins. Freezers performed the experiment on two separate occasions (in their ON and OFF state). Freezers reported higher levels of anxiety compared to Non-Freezers (panxiety when walking across the HIGH plank compared to the LOW (panxiety is an important mechanism underlying freezing of gait and supports the notion that the limbic system may have a profound contribution to freezing in PD. PMID:25250691

  14. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    Science.gov (United States)

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  15. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis

    Science.gov (United States)

    Hausdorff, J. M.; Lertratanakul, A.; Cudkowicz, M. E.; Peterson, A. L.; Kaliton, D.; Goldberger, A. L.

    2000-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder marked by loss of motoneurons. We hypothesized that subjects with ALS would have an altered gait rhythm, with an increase in both the magnitude of the stride-to-stride fluctuations and perturbations in the fluctuation dynamics. To test for this locomotor instability, we quantitatively compared the gait rhythm of subjects with ALS with that of normal controls and with that of subjects with Parkinson's disease (PD) and Huntington's disease (HD), pathologies of the basal ganglia. Subjects walked for 5 min at their usual pace wearing an ankle-worn recorder that enabled determination of the duration of each stride and of stride-to-stride fluctuations. We found that the gait of patients with ALS is less steady and more temporally disorganized compared with that of healthy controls. In addition, advanced ALS, HD, and PD were associated with certain common, as well as apparently distinct, features of altered stride dynamics. Thus stride-to-stride control of gait rhythm is apparently compromised with ALS. Moreover, a matrix of markers based on gait dynamics may be useful in characterizing certain pathologies of motor control and, possibly, in quantitatively monitoring disease progression and evaluating therapeutic interventions.

  16. Effects of Acupuncture on Gait of Patients with Multiple Sclerosis.

    Science.gov (United States)

    Criado, Maria Begoña; Santos, Maria João; Machado, Jorge; Gonçalves, Arminda Manuela; Greten, Henry Johannes

    2017-11-01

    Multiple sclerosis is considered a complex and heterogeneous disease. Approximately 85% of patients with multiple sclerosis indicate impaired gait as one of the major limitations in their daily life. Acupuncture studies found a reduction of spasticity and improvement of fatigue and imbalance in patients with multiple sclerosis, but there is a lack of studies regarding gait. We designed a study of acupuncture treatment, according to the Heidelberg model of Traditional Chinese Medicine (TCM), to investigate if acupuncture can be a useful therapeutic strategy in patients with gait impairment in multiple sclerosis of relapsing-remitting type. The sample consisted of 20 individuals with diagnosis of multiple sclerosis of relapsing-remitting type. Gait impairment was evaluated by the 25-foot walk test. The results showed differences in time to walk 25 feet following true acupuncture. In contrast, there was no difference in time to walk 25 feet following sham acupuncture. When using true acupuncture, 95% of cases showed an improvement in 25-foot walk test, compared with 45% when sham acupuncture was done. Our study protocol provides evidence that acupuncture treatment can be an attractive option for patients with multiple sclerosis, with gait impairment.

  17. Dynamic Simulation of Human Gait Model With Predictive Capability.

    Science.gov (United States)

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  18. Analysis of foot load during ballet dancers' gait.

    Science.gov (United States)

    Prochazkova, Marketa; Tepla, Lucie; Svoboda, Zdenek; Janura, Miroslav; Cieslarová, Miloslava

    2014-01-01

    Ballet is an art that puts extreme demands on the dancer's musculoskeletal system and therefore significantly affects motor behavior of the dancers. The aim of our research was to compare plantar pressure distribution during stance phase of gait between a group of professional ballet dancers and non-dancers. Thirteen professional dancers (5 men, 8 women; mean age of 24.1 ± 3.8 years) and 13 nondancers (5 men, 8 women; mean age of 26.1 ± 5.3 years) participated in this study. Foot pressure analysis during gait was collected using a 2 m pressure plate. The participants were instructed to walk across the platform at a self-selected pace barefoot. Three gait cycles were necessary for the data analysis. The results revealed higher (p < 0.05) pressure peaks in medial edge of forefoot during gait for dancers in comparison with nondancers. Furthermore, differences in total foot loading and foot loading duration of rearfoot was higher (p < 0.05) in dancers as well. We can attribute these differences to long-term and intensive dancing exercises that can change the dancer's gait stereotype.

  19. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Combined gait disorder: a diagnostic challenge –a case report

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2017-02-01

    Full Text Available Gait disorders are a major cause of functional impairment and morbidity, especially in the elderly population. Prevalence of gait disorders is higher in persons over 60: is estimated to be around 15% at 60 years of age and more than 50% in people > 80 years. Most gait disorders are multifactorial and have both neurologic and non-neurologic components. Neurological gait abnormalities result from focal or diffuse lesions occurring in the neural pathways linking the cortical motor centers to the peripheral neuromuscular systems. Nonneurological gait abnormalities include gait limitations caused by musculoskeletal, cardiac, or respiratory diseases. Assessment of a gait abnormality should include history, clinical presentation and additional diagnostic tests. Finding the ethiology of a gait disorder could be a challenge for the practitioners in many cases, requiring interdisciplinary cooperation.

  1. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease

    NARCIS (Netherlands)

    Laat, K.F. de; Tuladhar, A.M.; Norden, A.G.W. van; Norris, D.G.; Zwiers, M.P.; Leeuw, F.E. de

    2011-01-01

    Gait disturbances are common in the elderly. Cerebral small vessel disease, including white matter lesions and lacunars infarcts, is thought to disrupt white matter tracts that connect important motor regions, hence resulting in gait disturbances. Pathological studies have demonstrated abnormalities

  2. An analysis of trunk kinematics and gait parameters in people with stroke

    Directory of Open Access Journals (Sweden)

    Adnil W. Titus

    2018-03-01

    Conclusion: This pilot study found significant asymmetry in trunk motion between the affected and unaffected sides that varied across the gait cycle. This suggests the trunk may need to be targeted in clinical gait retraining post-stroke.

  3. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.

    Science.gov (United States)

    Scivoletto, Giorgio; Ivanenko, Yuri; Morganti, Barbara; Grasso, Renato; Zago, Mirka; Lacquaniti, Francesco; Ditunno, John; Molinari, Marco

    2007-01-01

    Recent data on spinal cord plasticity after spinal cord injury (SCI) were reviewed to analyze the influence of training on the neurophysiological organization of locomotor spinal circuits in SCI patients. In particular, the authors studied the relationship between central pattern generators (CPGs) and motor neuron pool activation during gait. An analysis of the relations between locomotor recovery and compensatory mechanisms focuses on the hierarchical organization of gait parameters and allows characterizing kinematic parameters that are highly stable during different gait conditions and in recovered gait after SCI. The importance of training characteristics and the use of robotic/automated devices in gait recovery is analyzed and discussed. The role of CPG in defining kinematic gait parameters is summarized, and spatio-temporal maps of EMG activity during gait are used to clarify the role of CPG plasticity in sustaining gait recovery.

  4. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy: Intra-rater reliability and agreement across two repeated sessions.

    Science.gov (United States)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech; Overgaard, Søren; Holsgaard-Larsen, Anders

    2015-07-01

    The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical practice. The aim of this study was to investigate the intra-rater reliability and agreement of summary measures of gait (GDI; GPS; and the Gait Variable Score (GVS) derived from the GPS). The intra-rater reliability and agreement were investigated across two repeated sessions in 18 children aged 5-12 years diagnosed with spastic CP. No systematic bias was observed between the sessions and no heteroscedasticity was observed in Bland-Altman plots. For the GDI and GPS, excellent reliability with intraclass correlation coefficient (ICC) values of 0.8-0.9 was found, while the GVS was found to have fair to good reliability with ICCs of 0.4-0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18.5%. For the logarithmically transformed GVS, we found a fair to large variation in SEM% from 7 to 29% and in SDC% from 18 to 81%. The GDI and GPS demonstrated excellent reliability and acceptable agreement proving that they can both be used in research and clinical practice. However, the observed large variability for some of the GVS requires cautious consideration when selecting outcome measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Performance analysis for automated gait extraction and recognition in multi-camera surveillance

    OpenAIRE

    Goffredo, Michela; Bouchrika, Imed; Carter, John N.; Nixon, Mark S.

    2010-01-01

    Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and thei...

  6. Perception of Gait Patterns that Deviate from Normal and Symmetric Biped Locomotion

    Directory of Open Access Journals (Sweden)

    Ismet eHandzic

    2015-02-01

    Full Text Available This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial

  7. Symmetry and Asymmetry in Bouncing Gaits

    Directory of Open Access Journals (Sweden)

    Giovanni A. Cavagna

    2010-06-01

    Full Text Available In running, hopping and trotting gaits, the center of mass of the body oscillates each step below and above an equilibrium position where the vertical force on the ground equals body weight. In trotting and low speed human running, the average vertical acceleration of the center of mass during the lower part of the oscillation equals that of the upper part, the duration of the lower part equals that of the upper part and the step frequency equals the resonant frequency of the bouncing system: we define this as on-offground symmetric rebound. In hopping and high speed human running, the average vertical acceleration of the center of mass during the lower part of the oscillation exceeds that of the upper part, the duration of the upper part exceeds that of the lower part and the step frequency is lower than the resonant frequency of the bouncing system: we define this as on-off-ground asymmetric rebound. Here we examine the physical and physiological constraints resulting in this on-off-ground symmetry and asymmetry of the rebound. Furthermore, the average force exerted during the brake when the body decelerates downwards and forwards is greater than that exerted during the push when the body is reaccelerated upwards and forwards. This landing-takeoff asymmetry, which would be nil in the elastic rebound of the symmetric spring-mass model for running and hopping, suggests a less efficient elastic energy storage and recovery during the bouncing step. During hopping, running and trotting the landing-takeoff asymmetry and the mass-specific vertical stiffness are smaller in larger animals than in the smaller animals suggesting a more efficient rebound in larger animals.

  8. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score.

    Science.gov (United States)

    Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M

    2016-01-01

    The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.

  9. Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation.

    Science.gov (United States)

    Tong, Raymond K Y; Ng, Maple F W; Li, Leonard S W; So, Elaine F M

    2006-09-01

    This case report describes the implementation of gait training intervention that used an electromechanical gait trainer with simultaneous functional electrical stimulation (FES) for 2 patients with acute ischemic stroke. Two individuals with post-stroke hemiplegia of less than 6 weeks' duration participated in a 4-week gait training program as an adjunct to physical therapy received at a hospital. After the 4-week intervention, both patients were discharged from the hospital, and they returned after 6 months for a follow-up evaluation. By the end of the 4-week intervention, both patients had shown improvements in scores on the Barthel Index, Berg Balance Scale, Functional Ambulation Categories Scale, 5-m timed walking test, and Motricity Index. In the 6-month follow-up evaluation, both patients continued to have improvements in all outcome measures. This case report shows that, following the use of an electromechanical gait trainer simultaneously with FES, patients after acute stroke had improvements in gait performance, functional activities, balance, and motor control in the long term.

  10. Abnormalities of the First Three Steps of Gait Initiation in Patients with Parkinson's Disease with Freezing of Gait

    Directory of Open Access Journals (Sweden)

    Yohei Okada

    2011-01-01

    Full Text Available The purpose of this study was to investigate abnormalities of the first three steps of gait initiation in patients with Parkinson's disease (PD with freezing of gait (FOG. Ten PD patients with FOG and 10 age-matched healthy controls performed self-generated gait initiation. The center of pressure (COP, heel contact positions, and spatiotemporal parameters were estimated from the vertical pressures on the surface of the force platform. The initial swing side of gait initiation was consistent among the trials in healthy controls but not among the trials in PD patients. The COP and the heel contact position deviated to the initial swing side during the first step, and the COP passed medial to each heel contact position during the first two steps in PD patients. Medial deviation of the COP from the first heel contact position had significant correlation with FOG questionnaire item 5. These findings indicate that weight shifting between the legs is abnormal and that medial deviation of the COP from the first heel contact position sensitively reflects the severity of FOG during the first three steps of gait initiation in PD patients with FOG.

  11. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    Science.gov (United States)

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  12. Adaptations in the gait pattern with experimental hamstring pain

    DEFF Research Database (Denmark)

    Henriksen, M; Mortensen, Sara Rosager; Aaboe, J

    2011-01-01

    and little attention has been given to how pain in other muscles affects functional movement. The purpose of this study was to investigate the changes in the gait patterns of healthy subjects that occur during experimental muscle pain in the biceps femoris. In a cross-over study design, 14 healthy volunteers...... underwent EMG assisted 3D gait analyses before, during and after experimental biceps femoris pain induced by intramuscular injections of hypertonic saline. Isotonic saline injections were administered as a non-painful control. The experimental biceps femoris pain led to reductions in hip extensor moments......, knee flexor and lateral rotator moments. No changes in lower extremity kinematics and EMG activity in any of the recorded muscles were observed. It is concluded that experimental muscle pain in the biceps femoris leads to changes in the gait pattern in agreement with unloading of the painful muscle...

  13. View-Invariant Gait Recognition Through Genetic Template Segmentation

    Science.gov (United States)

    Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.

    2017-08-01

    Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.

  14. Analysis of Gait Pattern to Recognize the Human Activities

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    2014-09-01

    Full Text Available Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer interaction and video retrieval. The challenges are due to variations in motion, recording settings and gait differences. Here we propose an approach to recognize the human activities through gait. Activity recognition through Gait is the process of identifying an activity by the manner in which they walk. The identification of human activities in a video, such as a person is walking, running, jumping, jogging etc are important activities in video surveillance. We contribute the use of Model based approach for activity recognition with the help of movement of legs only. Experimental results suggest that our method are able to recognize the human activities with a good accuracy rate and robust to shadows present in the videos.

  15. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  16. The evaluation of off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) randomized controlled trial: study design and rational.

    Science.gov (United States)

    Mohammedi, Kamel; Potier, Louis; François, Maud; Dardari, Dured; Feron, Marilyne; Nobecourt-Dupuy, Estelle; Dolz, Manuel; Ducloux, Roxane; Chibani, Abdelkader; Eveno, Dominique-François; Crea Avila, Teresa; Sultan, Ariane; Baillet-Blanco, Laurence; Rigalleau, Vincent; Velho, Gilberto; Tubach, Florence; Roussel, Ronan; Dupré, Jean-Claude; Malgrange, Dominique; Marre, Michel

    2016-01-01

    Off-loading is essential for diabetic foot management, but remains understudied. The evaluation of Off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) trial aims to evaluate the efficacy of a new removable device "Orthèse Diabète" in the healing of diabetic foot. ORTHODIAB is a French multi-centre randomized, open label trial, with a blinded end points evaluation by an adjudication committee according to the Prospective Randomized Open Blinded End-point. Main endpoints are adjudicated based on the analysis of diabetic foot photographs. Orthèse Diabète is a new removable off-loading orthosis (PROTEOR, France) allowing innovative functions including real-time evaluation of off-loading and estimation of patients' adherence. Diabetic patients with neuropathic plantar ulcer or amputation wounds (toes or transmetatarsal) are assigned to one of 2 parallel-groups: Orthèse Diabète or control group (any removable device) according to a central computer-based randomization. Study visits are scheduled for 6 months (days D7 and D14, and months M1, M2, M3, and M6). The primary endpoint is the proportion of patients whose principal ulcer is healed at M3. Secondary endpoints are: the proportion of patients whose principal ulcer is healed at M1, M2 and M6; the proportion of patients whose initial ulcers are all healed at M1, M2, M3, and M6; principal ulcer area reduction; time-related ulcer-free survival; development of new ulcers; new lower-extremity amputation; infectious complications; off-loading adherence; and patient satisfaction. The study protocol was approved by the French National Agency for Medicines and Health Products Safety, and by the ethics committee of Saint-Louis Hospital (Paris). Comprehensive study information including a Patient Information Sheet has been provided to each patient who must give written informed consent before enrolment. Monitoring, data management, and statistical analyses are providing by UMANIS Life Science (Paris

  17. A human quadrupedal gait following poliomyelitis: From the Dercum-Muybridge collaboration (1885).

    Science.gov (United States)

    Lanska, Douglas J

    2016-03-01

    Beginning in the late 1870s, before the invention of movie cameras or projectors, pioneering English American photographer Eadweard Muybridge photographed iconic image sequences of people and animals in motion using arrays of sequentially triggered single-image cameras. In 1885, Philadelphia neurologist Francis Dercum initiated a collaborative relationship with Muybridge at the University of Pennsylvania to photograph sequential images of patients with various neurologic disorders of movement, including an acquired pathologic quadrupedal gait in a young boy that developed as a consequence of poliomyelitis. This pathologic human quadrupedal gait was compared with other quadrupedal gaits filmed by Muybridge, including a toddler girl and an adult woman crawling on hands and knees, an adult woman bear crawling on hands and feet, and a baboon walking. All of the human quadrupedal gaits were lateral sequence gaits, whereas the baboon's walking gait was a diagonal sequence gait. Modern studies have confirmed the nonpathologic quadrupedal gait sequences of humans and nonhuman primates. Despite Dercum's assertion to the contrary, the limb placement pattern of the boy with a pathologic quadrupedal gait after poliomyelitis was not the typical gait of a primate quadruped, but rather was the typical gait sequence for normal human developmental and volitional quadrupedal gaits. © 2016 American Academy of Neurology.

  18. Baseline Cerebral Small Vessel Disease Is Not Associated with Gait Decline After Five Years

    NARCIS (Netherlands)

    Van Der Holst, Helena M.; Van Uden, Ingeborg W.M.; de Laat, Karlijn F.; Van Leijsen, Esther M.C.; van Norden, Anouk G.W.; Norris, David G.; Van DIjk, Ewoud J.; Tuladhar, Anil M.; de Leeuw, Frank-Erik

    2017-01-01

    Background Cerebral small vessel disease (SVD) is cross-sectionally associated with gait disturbances, however, the relation between baseline SVD and gait decline over time is uncertain. Furthermore, diffusion tensor imaging (DTI) studies on gait decline are currently lacking. Objective To

  19. Recognition of human gait in oblique and frontal views using Kinect ...

    African Journals Online (AJOL)

    This study describes the recognition of human gait in the oblique and frontal views using novel gait features derived from the skeleton joints provided by Kinect. In D-joint, the skeleton joints were extracted directly from the Kinect, which generates the gait feature. On the other hand, H-joint distance is a feature of distance ...

  20. A Review of Balance and Gait Capacities in Relation to Falls in Persons with Intellectual Disability

    Science.gov (United States)

    Enkelaar, Lotte; Smulders, Ellen; van Schrojenstein Lantman-de Valk, Henny; Geurts, Alexander C. H.; Weerdesteyn, Vivian

    2012-01-01

    Limitations in mobility are common in persons with intellectual disabilities (ID). As balance and gait capacities are key aspects of mobility, the prevalence of balance and gait problems is also expected to be high in this population. The objective of this study was to critically review the available literature on balance and gait characteristics…

  1. Quantifying gait quality in patients with large-head and conventional total hip arthroplasty

    DEFF Research Database (Denmark)

    Jensen, Carsten; Penny, Jeannette Østergaard; Nielsen, Dennis Brandborg

    2015-01-01

    We used the Gait Deviation Index (GDI) as method to compare preoperative to postoperative gait changes after uncemented 50mm(median) large-head and 28/32mmtotal hip arthroplasty (THA). We also identified predictors of improvements in GDI. Gait analysis and patient-reported (WOMAC) datawere record...

  2. Effects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson's Disease

    NARCIS (Netherlands)

    Scholten, M.; Klemt, J.; Heilbronn, M.; Plewnia, C.; Bloem, B.R.; Bunjes, F.; Kruger, R.; Gharabaghi, A.; Weiss, D.

    2017-01-01

    Conventional subthalamic deep brain stimulation for Parkinson's disease (PD) presumably modulates the spatial component of gait. However, temporal dysregulation of gait is one of the factors that is tightly associated with freezing of gait (FOG). Temporal locomotor integration may be modulated

  3. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    NARCIS (Netherlands)

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may

  4. Effect of arm swing strategy on local dynamic stability of human gait

    NARCIS (Netherlands)

    Punt, M.; Bruijn, S.M.; Wittink, H.; van Dieen, J.H.

    2015-01-01

    Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which

  5. Effect of arm swing strategy on local dynamic stability of human gait.

    Science.gov (United States)

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Motor switching and motor adaptation deficits contribute to freezing of gait in Parkinson's disease

    NARCIS (Netherlands)

    Mohammadi, F.; Bruijn, S.M.; Vervoort, G.; van Wegen, E.E.H.; Kwakkel, G.; Verschueren, S.; Nieuwboer, A.

    2015-01-01

    Background. Patients with freezing of gait (FOG) have more difficulty with switching tasks as well as controlling the spatiotemporal parameters of gait than patients without FOG. Objective. To compare the ability of patients with and without FOG to adjust their gait to sudden speed switching and to

  7. Cueing training in the home improves gait-related mobility in Parkinson's disease : The RESCUE trial

    NARCIS (Netherlands)

    Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; Van Wegen, E.; Willems, A. M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I.

    2007-01-01

    Objectives: Gait and mobility problems are difficult to treat in people with Parkinson's disease. The Rehabilitation in Parkinson's Disease: Strategies for Cueing (RESCUE) trial investigated the effects of a home physiotherapy programme based on rhythmical cueing on gait and gait-related activity.

  8. Cueing training in the home improves gait-related mobility in Parkinson's disease: the RESCUE trial.

    NARCIS (Netherlands)

    Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; Wegen, E. van; Willems, A.M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I.

    2007-01-01

    OBJECTIVES: Gait and mobility problems are difficult to treat in people with Parkinson's disease. The Rehabilitation in Parkinson's Disease: Strategies for Cueing (RESCUE) trial investigated the effects of a home physiotherapy programme based on rhythmical cueing on gait and gait-related activity.

  9. Analysis of gait using a treadmill and a Time-of-flight camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    We present a system that analyzes human gait using a treadmill and a Time-of-flight camera. The camera provides spatial data with local intensity measures of the scene, and data are collected over several gait cycles. These data are then used to model and analyze the gait. For each frame...

  10. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: Steps to follow!

    NARCIS (Netherlands)

    Bank, P.J.M.; Roerdink, M.; Peper, C.E.

    2011-01-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait

  11. Effect of arm cycling on gait of children with hemiplegic cerebral palsy

    African Journals Online (AJOL)

    The study group received arm cycling in addition to gait training exercise, while the control group received gait training exercises only. Three dimensional (3D) motion analysis was used before and after the training program to evaluate the angular displacements of shoulder, elbow, hip, knee, and ankle joints during gait sub ...

  12. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    Science.gov (United States)

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  13. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    Science.gov (United States)

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. History of cannabis use is associated with altered gait.

    Science.gov (United States)

    Pearson-Dennett, Verity; Todd, Gabrielle; Wilcox, Robert A; Vogel, Adam P; White, Jason M; Thewlis, Dominic

    2017-09-01

    Despite evidence that cannabinoid receptors are located in movement-related brain regions (e.g., basal ganglia, cerebral cortex, and cerebellum), and that chronic cannabis use is associated with structural and functional brain changes, little is known about the long-term effect of cannabis use on human movement. The aim of the current study was to investigate balance and walking gait in adults with a history of cannabis use. We hypothesised that cannabis use is associated with subtle changes in gait and balance that are insufficient in magnitude for detection in a clinical setting. Cannabis users (n=22, 24±6years) and non-drug using controls (n=22, 25±8years) completed screening tests, a gait and balance test (with a motion capture system and in-built force platforms), and a clinical neurological examination of movement. Compared to controls, cannabis users exhibited significantly greater peak angular velocity of the knee (396±30 versus 426±50°/second, P=0.039), greater peak elbow flexion (53±12 versus 57±7°, P=0.038) and elbow range of motion (33±13 versus 36±10°, P=0.044), and reduced shoulder flexion (41±19 versus 26±16°, P=0.007) during walking gait. However, balance and neurological parameters did not significantly differ between the groups. The results suggest that history of cannabis use is associated with long-lasting changes in open-chain elements of walking gait, but the magnitude of change is not clinically detectable. Further research is required to investigate if the subtle gait changes observed in this population become more apparent with aging and increased cannabis use. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Clinical gait evaluation of patients with knee osteoarthritis.

    Science.gov (United States)

    Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan

    2017-10-01

    Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gait patterns in Prader-Willi and Down syndrome patients

    Directory of Open Access Journals (Sweden)

    Albertini Giorgio

    2010-06-01

    Full Text Available Abstract Background Prader-Willi (PWS and Down Syndrome (DS are two genetic disorders characterised by some common clinical and functional features. A quantitative description and comparison of their patterns would contribute to a deeper understanding of the determinants of motor disability in these two syndromes. The aim of this study was to measure gait pattern in PWS and DS in order to provide data for developing evidence-based deficit-specific or common rehabilitation strategies. Methods 19 PWS patients (17.7-40 yr and 21 DS patients (18-39 yr were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of normal-weight controls (Control Group: CG; 33.4 + 9.6 yr. Results and Discussion The results show that PWS and DS are characterised by different gait strategies. Spatio-temporal parameters indicated a cautious, abnormal gait in both groups, but DS walked with a less stable strategy than PWS. As for kinematics, DS showed a significantly reduced hip and knee flexion, especially at initial contact and ankle range of motion than PWS. DS were characterised by lower ranges of motion (p Conclusions Our data show that DS walk with a less physiological gait pattern than PWS. Based on our results, PWS and DS patients need targeted rehabilitation and exercise prescription. Common to both groups is the aim to improve hypotonia, muscle strength and motor control during gait. In DS, improving pelvis and hip range of motion should represent a major specific goal to optimize gait pattern.

  17. Gait analysis in demented subjects: Interests and perspectives

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2008-03-01

    Full Text Available Olivier Beauchet1, Gilles Allali2, Gilles Berrut3, Caroline Hommet4, Véronique Dubost5, Frédéric Assal21Department of Geriatrics, Angers University Hospital, France; 2Department of Neurology, Geneva University Hospital, France; 3Department of Geriatrics, Nantes University Hospital, France; 4Department of Internal Medicine and Geriatrics, Tours University Hospital, France; 5Department of Geriatrics, Dijon University Hospital, FranceAbstract: Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage.Keywords: gait, prediction of dementia, risk of falling, older adult

  18. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  19. Implementing gait pattern control and transition for legged locomotion

    International Nuclear Information System (INIS)

    Yang, Zhijun; Karamanoglu, Mehmet; Rocha, Marlon V; França, Felipe M G; Lima, Priscila M V

    2014-01-01

    In this work, a generalised central pattern generator (CPG) model is formulated to generate a full range of gait patterns for a hexapod insect. To this end, a recurrent neuronal network module, as the building block for rhythmic patterns, is proposed to extend the concept of oscillatory building blocks (OBB) for constructing a CPG model. The model is able to make transitions between different gait patterns by simply adjusting one model parameter. Simulation results are further presented to show the effectiveness and performance of the CPG network

  20. Fuzzy logic controller for stabilization of biped robot gait

    Directory of Open Access Journals (Sweden)

    Ryadchikov I.V.

    2018-01-01

    Full Text Available The article centers round the problem of stabilization of biped robot gait through smoothing out the jumps of first and second order derivatives of a biped robot control vector using the fuzzy logic approach. The structure of a composite Takagi-Sugeno fuzzy logic controller developed by the authors is presented. The simulation study of a robot gait with climbing an obstacle is carried out and the results provided in the article showed that the developed controller performed significantly better than the analytical formula model in terms of smoothing out the derivatives of the control vector.

  1. Higher-level gait disorders: an open frontier.

    Science.gov (United States)

    Nutt, John G

    2013-09-15

    The term higher-level gait disorders (HLGD) defines a category of balance and gait disorders that are not explained by deficits in strength, tone, sensation, or coordination. HLGD are characterized by various combinations of disequilibrium and impaired locomotion. A plethora of new imaging techniques are beginning to determine the neural circuits that are the basis of these disorders. Although a variety of neurodegenerative and other pathologies can produce HLGD, the most common cause appears to be microvascular disease that causes white-matter lesions and thereby disrupts balance/locomotor circuits. © 2013 Movement Disorder Society.

  2. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  3. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H.

    2005-01-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported

  4. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-02-01

    Rhythmic auditory cues including music and metronome beats have been used, sometimes interchangeably, to improve disordered gait arising from a range of clinical conditions. There has been limited investigation into whether there are optimal cue types. Different cue types have produced inconsistent effects across groups which differed in both age and clinical condition. The possible effect of normal ageing on response to different cue types has not been reported for gait. The aim of this study was to determine the effects of both rhythmic music and metronome cues on gait spatiotemporal measures (including variability) in healthy older people. Twelve women and seven men (>65 years) walked on an instrumented walkway at comfortable pace and then in time to each of rhythmic music and metronome cues at comfortable pace stepping frequency. Music but not metronome cues produced a significant increase in group mean gait velocity of 4.6 cm/s, due mostly to a significant increase in group mean stride length of 3.1cm. Both cue types produced a significant but small increase in cadence of 1 step/min. Mean spatio-temporal variability was low at baseline and did not increase with either cue type suggesting cues did not disrupt gait timing. Study findings suggest music and metronome cues may not be used interchangeably and cue type as well as frequency should be considered when evaluating effects of rhythmic auditory cueing on gait. Further work is required to determine whether optimal cue types and frequencies to improve walking in different clinical groups can be identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics.

    Science.gov (United States)

    Jansen, Karen; De Groote, Friedl; Aerts, Wouter; De Schutter, Joris; Duysens, Jacques; Jonkers, Ilse

    2014-04-30

    Spasticity is an important complication after stroke, especially in the anti-gravity muscles, i.e. lower limb extensors. However the contribution of hyperexcitable muscle spindle reflex loops to gait impairments after stroke is often disputed. In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits. A musculoskeletal model was extended with a muscle spindle model providing real-time length and velocity feedback of gastrocnemius, soleus, vasti and rectus femoris during a forward dynamic simulation (neural control model). By using a healthy subject's base muscle excitations, in combination with increased feedback gains and altered reflex modulation patterns, the effect on kinematics was simulated. A foot-ground contact model was added to account for the interaction effect between the changed kinematics and the ground. The qualitative effect i.e. the directional effect and the specific gait phases where the effect is present, on the joint kinematics was then compared with hemiparetic gait deviations reported in the literature. Our results show that increased feedback in combination with altered reflex modulation patterns of soleus, vasti and rectus femoris muscle can contribute to excessive ankle plantarflexion/inadequate dorsiflexion, knee hyperextension/inadequate flexion and increased hip extension/inadequate flexion during dedicated gait cycle phases. Increased feedback of gastrocnemius can also contribute to excessive plantarflexion/inadequate dorsiflexion, however in combination with excessive knee and hip flexion. Increased length/velocity feedback can therefore contribute to two types of gait deviations, which are both in accordance with previously reported gait deviations in hemiparetic patients. Furthermore altered modulation patterns, in particular the reduced suppression of the muscle spindle feedback during

  6. Real-time feedback of dynamic foot pressure index for gait training of toe-walking children with spastic diplegia.

    Science.gov (United States)

    Pu, Fang; Ren, Weiyan; Fan, Xiaoya; Chen, Wei; Li, Shuyu; Li, Deyu; Wang, Yu; Fan, Yubo

    2017-09-01

    The aim of this study was to determine whether and how real-time feedback of dynamic foot pressure index (DFPI) could be used to correct toe-walking gait in spastic diplegic children with dynamic equinus. Thirteen spastic diplegic children with dynamic equinus were asked to wear a monitoring device to record their ambulation during daily gait, conventional training gait, and feedback training gait. Parameters based on their DFPI and stride duration were compared among the three test conditions. The results with feedback training were significantly better for all DFPI parameters in comparison to patients' daily gait and showed significant improvements in DFPI for toe-walking gait and percentage of normal gait in comparison to conventional training methods. Moreover, stride duration under two training gaits was longer than patient's daily gait, but there was no significant difference between the two training gaits. Although the stride duration for the two training gaits was similar, gait training with real-time feedback of DFPI did produce noticeably superior results by increasing heel-loading impulse of toe-walking gait and percentage of normal gait in comparison to convention training methods. However, its effectiveness was still impacted by the motion limitations of diplegic children. Implications for Rehabilitation The DFPI-based gait training feedback system introduced in this study was shown to be more effective at toe-walking gait rehabilitation training over conventional training methods. The feedback system accomplished superior improvement in correcting toe-walking gait, but its effectiveness in an increasing heel-loading impulse in normal gait was still limited by the motion limitations of diplegic children. Stride duration of normal gait and toe-walking gait was similar under conventional and feedback gait training.

  7. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  8. Gait Strategy in Patients with Ehlers-Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…

  9. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    Science.gov (United States)

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation

    NARCIS (Netherlands)

    Roerdink, M.; Bank, P.J.M.; Peper, C.E.; Beek, P.J.

    2011-01-01

    Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing

  11. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait.

    Science.gov (United States)

    Manicolo, Olivia; Grob, Alexander; Lemola, Sakari; Hagmann-von Arx, Priska

    2016-02-01

    Previous findings showed a tendency toward higher gait variability in children with attention-deficit/hyperactivity disorder (ADHD) compared to controls. This study examined whether gait variability in children with ADHD eventually approaches normality with increasing age (delay hypothesis) or whether these gait alterations represent a persistent deviation from typical development (deviation hypothesis). This cross-sectional study compared 30 children with ADHD (25 boys; Mage=10 years 11 months, range 8-13 years; n=21 off medication, n=9 without medication) to 28 controls (25 boys; Mage=10 years 10 months, range 8-13 years). Gait parameters (i.e. velocity and variability in stride length and stride time) were assessed using an electronic walkway system (GAITRite) while children walked at their own pace. Children with ADHD walked with significantly higher variability in stride time compared to controls. Age was negatively associated with gait variability in children with ADHD such that children with higher age walked with lower variability, whereas in controls there was no such association. Children with ADHD displayed a less regular gait pattern than controls, indicated by their higher variability in stride time. The age-dependent decrease of gait variability in children with ADHD showed that gait performance became more regular with age and converged toward that of typically developing children. These results may reflect a maturational delay rather than a persistent deviation of gait regularity among children with ADHD compared to typically developing children. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jianning Wu

    2015-01-01

    Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  13. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.

    Science.gov (United States)

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  14. Effect of balance exercise on selected kinematic gait variables in ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effect of balance exercise on some selected kinematic gait parameters in patients with knee joint osteoarthritis. Forty subjects (18 men and 22 women) participated in the study.They were divided into two groups: Group 1 (experimental) that was treated with balance exercises, ...

  15. Gait recognition using kinect and locally linear embedding ...

    African Journals Online (AJOL)

    This paper presents the use of locally linear embedding (LLE) as feature extraction technique for classifying a person's identity based on their walking gait patterns. Skeleton data acquired from Microsoft Kinect camera were used as an input for (1). Multilayer Perceptron (MLP) and (2). LLE with MLP. The MLP classification ...

  16. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    Background and purpose: Children with hemophilia often bleed inside the joints and muscles, which may impair postural adjustments. These postural adjustments are necessary to control gait and postural balance during daily activities. The inability to quickly recover postural balance could elevate the risk of bleeding.

  17. Gait Development during Lifespan in Subjects with Down Syndrome

    Science.gov (United States)

    Rigoldi, Chiara; Galli, Manuela; Albertini, Giorgio

    2011-01-01

    In this work we studied and evaluated the effects of aging in a group of individuals with Down syndrome, using gait analysis as tool of investigation. 32 individuals suffering from Down syndrome (DS) were enrolled in this study as group of pathological participants. The control group (CG) was composed by 36 healthy subjects (10 children, 15…

  18. Prevention of Potential Falls of Elderly Healthy Women: Gait Asymmetry

    Science.gov (United States)

    Seo, Jung-suk; Kim, Sukwon

    2014-01-01

    The study attempted to see if exercise training would alleviate gait asymmetry between nondominant and dominant legs, thus, eliminate the likelihood of slips. The present study provided 18 older adults exercise training for eight weeks and evaluated kinematics and ground reaction forces (GRFs) in both legs. Participants were randomly assigned to…

  19. Gait variability and motor control in people with knee osteoarthritis

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle

    2015-01-01

    fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H...

  20. Virtual sensory feedback for gait improvement in neurological patients

    Directory of Open Access Journals (Sweden)

    Yoram eBaram

    2013-10-01

    Full Text Available We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient’s own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinson’s patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  1. Gait biomechanics in the era of data science.

    Science.gov (United States)

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Soft tissue artifact in canine kinematic gait analysis

    NARCIS (Netherlands)

    Schwencke, M.; Smolders, L.A.; Bergknut, N.; Gustas, P.; Meij, B.P.; Hazewinkel, H.A.W.

    2012-01-01

    Vet Surg. 2012 Oct;41(7):829-37. doi: 10.1111/j.1532-950X.2012.01021.x. Soft tissue artifact in canine kinematic gait analysis. Schwencke M, Smolders LA, Bergknut N, Gustås P, Meij BP, Hazewinkel HA. Source Department of Clinical Sciences of Companion Animals,, Faculty of Veterinary Medicine,

  3. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  4. Driving electromechanically assisted Gait Trainer for people with stroke.

    Science.gov (United States)

    Iosa, Marco; Morone, Giovanni; Bragoni, Maura; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Pratesi, Luca; Paolucci, Stefano

    2011-01-01

    Electromechanically assisted gait training is a promising task-oriented approach for gait restoration, especially for people with subacute stroke. However, few guidelines are available for selecting the parameter values of the electromechanical Gait Trainer (GT) (Reha-Stim; Berlin, Germany) and none is tailored to a patient's motor capacity. We assessed 342 GT sessions performed by 20 people with stroke who were stratified by Functional Ambulatory Category. In the first GT session of all patients, the body-weight support (BWS) required was higher than that reported in the literature. In further sessions, we noted a slow reduction of BWS and a fast increment of walking speed for the most-affected patients. Inverse trends were observed for the less-affected patients. In all the patients, the heart rate increment was about 20 beats per minute, even for sessions in which the number of strides performed was up to 500. In addition, the effective BWS measured during GT sessions was different from that initially selected by the physiotherapist. This difference depended mainly on the position of the GT platforms during selection. Finally, harness acceleration in the anteroposterior direction proved to be higher in patients with stroke than in nondisabled subjects. Our findings are an initial step toward scientifically selecting parameters in electromechanically assisted gait training.

  5. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  6. Fixating the pelvis in the horizontal plane affects gait characteristics

    NARCIS (Netherlands)

    Veneman, J.F.; Menger, Jasper; van Asseldonk, Edwin H.F.; van der Helm, F.C.T.; van der Kooij, Herman

    2008-01-01

    In assistive devices for neuro-rehabilitation, natural human motions are partly restricted by the device. This may affect the normality of walking during training. This research determines effects on gait of fixating the pelvis translations in the horizontal plane during treadmill walking. Direct

  7. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  8. White matter microstructural organization and gait stability in older adults

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2014-06-01

    Full Text Available Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI and advanced gait stability measures in 15 healthy young adults (range 18-30 years and 25 healthy older adults (range 62-82 years.Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations were found to decline with age. White matter microstructural organization (FA was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.

  9. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.

    Science.gov (United States)

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-06-13

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  10. Intention detection of gait initiation using EMG and kinematic data

    NARCIS (Netherlands)

    Wentink, E.C.; Beijen, S.I.; Hermens, Hermanus J.; Rietman, Johan Swanik; Veltink, Petrus H.

    2013-01-01

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time

  11. Intention detection of gait initiation using EMG and kinematic data

    NARCIS (Netherlands)

    Wentink, E.C.; Beijen, S.I.; Hermens, Hermanus J.; Rietman, Johan Swanik; Veltink, Petrus H.

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time

  12. Intention detection of gait initiation using EMG and kinematic data.

    Science.gov (United States)

    Wentink, E C; Beijen, S I; Hermens, H J; Rietman, J S; Veltink, P H

    2013-02-01

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time intention detection of gait initiation was determined by mimicking the TFA situation in non-amputees. EMG and inertial sensor data was measured in 10 non-amputees. Only data available in TFA was used to determine if gait initiation can be predicted in time to control a transfemoral prosthesis to generate push-off and stability. Toe-off and heel-strike of the leading limb are important parameters to be detected, to control a prosthesis and to time push-off. The results show that toe-off and heel-strike of the leading limb can be detected using EMG and kinematic data in non-amputees 130-260 ms in advance. This leaves enough time to control a prosthesis. Based on these results we hypothesize that similar results can be found in TFA, allowing for adequate control of a prosthesis during gait initiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. [Gait characteristics of women with fibromyalgia: a premature aging pattern].

    Science.gov (United States)

    Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F

    2014-01-01

    Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  14. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Accelerometry based assessment of gait parameters in children

    NARCIS (Netherlands)

    Faber, Herre; Hoeven, H. vd; Ipenburg, S. van; Lummel, Robert C. van R.C. van Rob C. Van R.C. van; Blockhuis, Nancy; Nienhuis, B.; Heikens, Sander S.C.; Brandes, Mirko; Zijlstra, Wiebren; Rosenbaum, Dieter; Terwee, C.B. Caroline B.; Slikke, R.M.A. van der Rienk M.A. vam der; Benink, Rob J. R.J.; Meijers, Wil G.H W.G.H.; de Vet, H.C.W. Henrica C W; Pitta, Fabio; Troosters, Thierry; Spruit, Martijn A.; Decramer, Marc; Gosselink, Rik; Thoumie, P.; Forward, M.J.; Plasschaert, F.S.; Burdorf, Lex; Windhorst, Judith; Beek, Allard J. van der; Molen, Henk F. van der; Swuste, Paul H.J.J.; Janssen, Maurice M.J.A.; Pas, Rianne; Aarts, Jos; Janssen-Potten, Yvonne; Vles, Johan; Pinxteren, S.A.T.v. Sjors van; Stokroos, R.J. Robert; Kingma, Herman; Pas, A.J.; Aarts, A.F.J.; Nabuurs, C.I.H.C.; Janssen, Y.; Mokkink, Lidwine B.; van der Slikke, Rienk M.A.; van Lummel, Rob C R.C.; Bouter, L.M. Lex M; de Vet, H.C.W. Henrica C W; de Witte, S.J.; Wetzels, L.; Probst, Vanessa S.; Peijl, I.D. van der; Vliet Vlieland, T.P.M.; Versteegh, M.I.M.; Lok, J.J.; Munneke, M.; Dion, R.A.E.; Bulthuis, Y.; Vollenbroek-Hutten, M.; Hermens, H.J.; Vendrig, L.; Roozenburg, B.; Wal, M. van der; Lisowski, A.E.; Murray, D.W.; Lisowski, L.A.; Creusen, H.; Witvrouw, E.; Victor, J.; Bellemans, J.; Rock, B.; Verdonk, R.; Spenkelink, C.D.; Hutten, M.M.R.; Greitemann, B.O.L.; Schillemans, P.F.; Meijer, O.G.; Dikkenberg, N. van den; Dieën, Jaap H van J.H. van; Pijls, B.; Wuisman, P.I.J.M.; Uiterwaal, M.; Dam, M.S. van; Kok, G.J.; Vogelaar, F.J.; Taminiau, A.H.M.; Derycke, P.; Vilella, P.; Loonbeek, S.; Schuffelers, K.; Jong, Z. de; Zwinderman, A.H.; Tijhuis, G.J.; Hazes, J.M.W.; Glerum, E.B.C.; Busser, H.J. J.; Ott, J.; Blank, R.; de Korte, W.G.; Veltink, Peter H. P.H.; Bussmann, Hans B.J.; de Vries, W.; Martens, W.I.J. Wim L.J.; Kerkhof, G. A.; Koelma, Frank; Franken, Henry M.; Kim, Tea-Woo; Kim, Yong-Wook; Abrahin, O.; Rodrigues, R. P.; Nascimento, V.C.; Silva-Grigoletto, M.E. Da; Sousa, E.C.; Marçal, A.C.; Van Remoortel, Hans; Raste, Yogini; Louvaris, Zafeiris; Giavedoni, Santiago; Burtin, Chris; Langer, Daniel; Wilson, Frederick; Rabinovich, Roberto; Vogiatzis, Ioannis; Hopkinson, Nicholas S; Schooten, Kimberley S.; Rispens, Sietse M; Elders, Petra J M; Lips, Paul; Pijnappels, Mirjam; Andersson, M.; Janson, C.; Emtner, M.; Sena, R.; Holt, Nicole E.; Percac-Lima, Sanja; Kurlinski, Laura A.; Thomas Julia, C.; Landry, Paige M.; Campbell, Braidie; Latham, Nancy; Ni, Pengsheng; Jette, Alan; Leveille, Suzanne G.; Bean, Johnathan F.; Bisi, Maria Cristina; Riva, Federico; Stagni, Rita; Altuğ, Filiz; Acar, Feridun; Acar, Göksemin; Cavlak, Uğur; Choi, Ho-Chun; Son, Ki Young; Cho, Belong; Park, Sang Min; Cho, Sung-Il

    2006-01-01

    The objective of this study was to examine if spatio-temporal gait parameters in healthy children can be determined from accelerations measured at the lower trunk as has been demonstrated in adults, previously. Twenty children aged 3-16 years, participated in a protocol that involved repeated walks

  16. Invariant Gait Continuum Based on the Duty-Factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse...

  17. Height estimations based on eye measurements throughout a gait cycle

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    (EH) measurement, on the other hand, is less prone to concealment. The purpose of the present study was to investigate: (1) how the eye height varies during the gait cycle, and (2) how the eye height changes with head position. The eyes were plotted manually in APAS for 16 test subjects during...

  18. Gait in ageing and associated dementias; its relationship with cognition

    NARCIS (Netherlands)

    Scherder, Erik; Eggermont, Laura; Swaab, Dick; van Heuvelen, Marieke; Kamsma, Yvo; de Greef, Mathieu; van Wijck, Ruud; Mulder, Theo

    2007-01-01

    The focus of this review is on the close relationship between gait and cognition in ageing and associated dementias. This close relationship is supported by epidemiological studies, clinical studies of older people with and without dementia that focused on the intensity of the physical activity,

  19. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Klejda Tani

    2018-03-01

    CONCLUSIONS: Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters. Kinesio Tape can be used in patients with knee osteoarthritis, especially when changing walking stereotypes is a long-term goal of the treatment.

  20. Increased gait unsteadiness in community-dwelling elderly fallers

    Science.gov (United States)

    Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.

    1997-01-01

    OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.

  1. Controlling propulsive forces in gait initiation in transfemoral amputees

    NARCIS (Netherlands)

    van Keeken, Helco G.; Vrieling, Aline H.; Hof, At L.; Halbertsma, Jan P. K.; Schoppen, Tanneke; Postema, Klaas; Otten, Bert

    During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach

  2. Gait analysis in prosthetics: Opinions, ideas and conclusions

    NARCIS (Netherlands)

    Rietman, J.S.; Postema, K.; Geertzen, J.H.B.

    2002-01-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were

  3. Do sit-to-stand performance changes during gait acquisition?

    Directory of Open Access Journals (Sweden)

    Alana Maria Ferreira Guimarães Bastos

    2014-06-01

    Full Text Available In a child's daily routine, sit-to-stand (STS is a prerequisite activity for many functional tasks. The relationship between gait and other abilities has been pointed out by many authors, but there is no study investigating the changes in STS during gait acquisition in children. The purpose of this study was to analyse, in healthy children, changes that occur in STS performance during gait acquisition. Five healthy children were initially assessed with an average age of 13.6 months. The kinematics in STS movement performance of the children was evaluated longitudinally during different periods of walking experience: children who have not acquired independent walking, 8.2 (±8.4 days of independent walking experience, and 86.2 (±8.7 days of independent walking experience. At the gait acquisition period we found a significant decrease in the final trunk flexion angle and an increase in amplitude of the trunk flexion. The walking experience may have changed the execution of the STS movement.

  4. Spatial asymmetry of post-stroke hemiparetic gait: assessment and ...

    African Journals Online (AJOL)

    Despite potential benefits, quantitative analysis of gait asymmetry is still not routinely used in many hospitals and rehabilitation institutions in developing countries due to ... Conclusion: Overall, the study demonstrated asymmetry of step length and foot rotation angle during walking of post-stroke hemiparetic individuals and ...

  5. An online gait generator for quadruped walking using motor primitives

    Directory of Open Access Journals (Sweden)

    Chunlin Zhou

    2016-11-01

    Full Text Available This article presents implementation of an online gait generator on a quadruped robot. Firstly, the design of a quadruped robot is presented. The robot contains four leg modules each of which is constructed by a 2 degrees of freedom (2-DOF five-bar parallel linkage mechanism. Together with other two rotational DOF, the leg module is able to perform 4-DOF movement. The parallel mechanism of the robot allows all the servos attached on the body frame, so that the leg mass is decreased and motor load can be balanced. Secondly, an online gait generator based on dynamic movement primitives for the walking control is presented. Dynamic movement primitives provide an approach to generate periodic trajectories and they can be modulated in real time, which makes the online adjustment of walking gaits possible. This gait controller is tested by the quadruped robot in regulating walking speed, switching between forward\\backward movements and steering. The controller is easy to apply, expand and is quite effective on phase coordination and online trajectory modulation. Results of simulated experiments are presented.

  6. Evaluating the Contributions of Dynamic Flow to Freezing of Gait in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Chad A. Lebold

    2010-01-01

    Full Text Available Although visual cues can improve gait in Parkinson's disease (PD, their underlying mechanism is poorly understood. Previous research suggests that cues contribute optical flow that is essential to elicit gait improvement. The present study manipulated how optic flow was provided, and how this might influence freezing of gait (FOG in PD. Therefore, three groups; 15 PD FOG, 16 PD non-FOG, and 16 healthy controls were tested in 3 narrow doorway conditions; baseline (Narrow, ground lines (Ground, and laser (Laser. Step length indicated that the PD FOG group was only able to improve with ground lines, while the laser increased gait variability and double support time. These results suggest that optic flow in itself is not enough to elicit gait improvement in PD. When PD patients use visual cues, gait becomes less automatically controlled and hence preplanned conscious control may be an important factor contributing to gait improvement.

  7. Early presentation of gait impairment in Wolfram Syndrome

    Directory of Open Access Journals (Sweden)

    Pickett Kristen A

    2012-12-01

    Full Text Available Abstract Background Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD individuals may be detectable across the course of the disease. Methods Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Results Across all tasks, individuals with WFS walked slower (p = 0.03, took shorter (p ≤ 0.001 and wider (p ≤ 0.001 steps and spent a greater proportion of the gait cycle in double support (p = 0.03 compared to TD individuals. Cadence did not differ between groups (p = 0.62. Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045 and dual task forward walking (rs= 0.720, p = 0.006 tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001. Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03 and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03. Conclusions Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits

  8. Early presentation of gait impairment in Wolfram Syndrome.

    Science.gov (United States)

    Pickett, Kristen A; Duncan, Ryan P; Hoekel, James; Marshall, Bess; Hershey, Tamara; Earhart, Gammon M

    2012-12-08

    Classically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease. Gait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups. Across all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider (p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs = 0.564, p = 0.045) and dual task forward walking (rs = 0.720, p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001). Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = -0.59, p = 0.03) and percent of gait cycle in double support during backward walking (rs = -0.64, p = 0.03). Quantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated with WFS, and may be a reflection of early cerebellar and

  9. Freezing of Gait in Parkinson's Disease: An Overload Problem?

    Science.gov (United States)

    Beck, Eric N; Ehgoetz Martens, Kaylena A; Almeida, Quincy J

    2015-01-01

    Freezing of gait (FOG) is arguably the most severe symptom associated with Parkinson's disease (PD), and often occurs while performing dual tasks or approaching narrowed and cluttered spaces. While it is well known that visual cues alleviate FOG, it is not clear if this effect may be the result of cognitive or sensorimotor mechanisms. Nevertheless, the role of vision may be a critical link that might allow us to disentangle this question. Gaze behaviour has yet to be carefully investigated while freezers approach narrow spaces, thus the overall objective of this study was to explore the interaction between cognitive and sensory-perceptual influences on FOG. In experiment #1, if cognitive load is the underlying factor leading to FOG, then one might expect that a dual-task would elicit FOG episodes even in the presence of visual cues, since the load on attention would interfere with utilization of visual cues. Alternatively, if visual cues alleviate gait despite performance of a dual-task, then it may be more probable that sensory mechanisms are at play. In compliment to this, the aim of experiment#2 was to further challenge the sensory systems, by removing vision of the lower-limbs and thereby forcing participants to rely on other forms of sensory feedback rather than vision while walking toward the narrow space. Spatiotemporal aspects of gait, percentage of gaze fixation frequency and duration, as well as skin conductance levels were measured in freezers and non-freezers across both experiments. Results from experiment#1 indicated that although freezers and non-freezers both walked with worse gait while performing the dual-task, in freezers, gait was relieved by visual cues regardless of whether the cognitive demands of the dual-task were present. At baseline and while dual-tasking, freezers demonstrated a gaze behaviour that neglected the doorway and instead focused primarily on the pathway, a strategy that non-freezers adopted only when performing the dual

  10. Freezing of Gait in Parkinson's Disease: An Overload Problem?

    Directory of Open Access Journals (Sweden)

    Eric N Beck

    Full Text Available Freezing of gait (FOG is arguably the most severe symptom associated with Parkinson's disease (PD, and often occurs while performing dual tasks or approaching narrowed and cluttered spaces. While it is well known that visual cues alleviate FOG, it is not clear if this effect may be the result of cognitive or sensorimotor mechanisms. Nevertheless, the role of vision may be a critical link that might allow us to disentangle this question. Gaze behaviour has yet to be carefully investigated while freezers approach narrow spaces, thus the overall objective of this study was to explore the interaction between cognitive and sensory-perceptual influences on FOG. In experiment #1, if cognitive load is the underlying factor leading to FOG, then one might expect that a dual-task would elicit FOG episodes even in the presence of visual cues, since the load on attention would interfere with utilization of visual cues. Alternatively, if visual cues alleviate gait despite performance of a dual-task, then it may be more probable that sensory mechanisms are at play. In compliment to this, the aim of experiment#2 was to further challenge the sensory systems, by removing vision of the lower-limbs and thereby forcing participants to rely on other forms of sensory feedback rather than vision while walking toward the narrow space. Spatiotemporal aspects of gait, percentage of gaze fixation frequency and duration, as well as skin conductance levels were measured in freezers and non-freezers across both experiments. Results from experiment#1 indicated that although freezers and non-freezers both walked with worse gait while performing the dual-task, in freezers, gait was relieved by visual cues regardless of whether the cognitive demands of the dual-task were present. At baseline and while dual-tasking, freezers demonstrated a gaze behaviour that neglected the doorway and instead focused primarily on the pathway, a strategy that non-freezers adopted only when

  11. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  12. Why is walker-assisted gait metabolically expensive?

    Science.gov (United States)

    Priebe, Jonathon R; Kram, Rodger

    2011-06-01

    Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A flexible wearable sensor for knee flexion assessment during gait.

    Science.gov (United States)

    Papi, Enrica; Bo, Yen Nee; McGregor, Alison H

    2018-05-01

    Gait analysis plays an important role in the diagnosis and management of patients with movement disorders but it is usually performed within a laboratory. Recently interest has shifted towards the possibility of conducting gait assessments in everyday environments thus facilitating long-term monitoring. This is possible by using wearable technologies rather than laboratory based equipment. This study aims to validate a novel wearable sensor system's ability to measure peak knee sagittal angles during gait. The proposed system comprises a flexible conductive polymer unit interfaced with a wireless acquisition node attached over the knee on a pair of leggings. Sixteen healthy volunteers participated to two gait assessments on separate occasions. Data was simultaneously collected from the novel sensor and a gold standard 10 camera motion capture system. The relationship between sensor signal and reference knee flexion angles was defined for each subject to allow the transformation of sensor voltage outputs to angular measures (degrees). The knee peak flexion angle from the sensor and reference system were compared by means of root mean square error (RMSE), absolute error, Bland-Altman plots and intra-class correlation coefficients (ICCs) to assess test-retest reliability. Comparisons of knee peak flexion angles calculated from the sensor and gold standard yielded an absolute error of 0.35(±2.9°) and RMSE of 1.2(±0.4)°. Good agreement was found between the two systems with the majority of data lying within the limits of agreement. The sensor demonstrated high test-retest reliability (ICCs>0.8). These results show the ability of the sensor to monitor knee peak sagittal angles with small margins of error and in agreement with the gold standard system. The sensor has potential to be used in clinical settings as a discreet, unobtrusive wearable device allowing for long-term gait analysis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The effect of virtual reality on gait variability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  15. Gait variability and motor control in people with knee osteoarthritis.

    Science.gov (United States)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius

    2015-10-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2011-11-01

    Full Text Available Here, we use a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters in order to investigate the role of sensory feedback in gait generation and transition. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG which is composed of simulated spiking neurons with adaptation. The CPG consists of a body CPG and four limb CPGs that are interconnected via synapses both ipsilateraly and contralaterally. We use the model both with and without sensory modulation and for different combinations of ipsilateral and contralateral coupling between the limb CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated walking gait. The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, coordinated motor output patterns for the trotting gait were obtainable without the sensory inputs. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region (MLR and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

  17. Inertial Gait Phase Detection for control of a drop foot stimulator: Inertial sensing for gait phase detection

    NARCIS (Netherlands)

    Kotiadis, D.; Hermens, Hermanus J.; Veltink, Petrus H.

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are

  18. Gait bradykinesia in Parkinson's disease: a change in the motor program which controls the synergy of gait.

    Science.gov (United States)

    Warabi, Tateo; Furuyama, Hiroyasu; Sugai, Eri; Kato, Masamichi; Yanagisawa, Nobuo

    2018-01-01

    This study examined how gait bradykinesia is changed by the motor programming in Parkinson's disease. Thirty-five idiopathic Parkinson's disease patients and nine age-matched healthy subjects participated in this study. After the patients fixated on a visual-fixation target (conditioning-stimulus), the voluntary-gait was triggered by a visual on-stimulus. While the subject walked on a level floor, soleus, tibialis anterior EMG latencies, and the y-axis-vector of the sole-floor reaction force were examined. Three paradigms were used to distinguish between the off-/on-latencies. The gap-task: the visual-fixation target was turned off; 200 ms before the on-stimulus was engaged (resulting in a 200 ms-gap). EMG latency was not influenced by the visual-fixation target. The overlap-task: the on-stimulus was turned on during the visual-fixation target presentation (200 ms-overlap). The no-gap-task: the fixation target was turned off and the on-stimulus was turned on simultaneously. The onset of EMG pause following the tonic soleus EMG was defined as the off-latency of posture (termination). The onset of the tibialis anterior EMG burst was defined as the on-latency of gait (initiation). In the gap-task, the on-latency was unchanged in all of the subjects. In Parkinson's disease, the visual-fixation target prolonged both the off-/on-latencies in the overlap-task. In all tasks, the off-latency was prolonged and the off-/on-latencies were unsynchronized, which changed the synergic movement to a slow, short-step-gait. The synergy of gait was regulated by two independent sensory-motor programs of the off- and on-latency levels. In Parkinson's disease, the delayed gait initiation was due to the difficulty in terminating the sensory-motor program which controls the subject's fixation. The dynamic gait bradykinesia was involved in the difficulty (long off-latency) in terminating the motor program of the prior posture/movement.

  19. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.

    Science.gov (United States)

    Ivanenko, Y P; Cappellini, G; Poppele, R E; Lacquaniti, F

    2008-06-01

    Here we studied the spatiotemporal organization of motoneuron (MN) activity during different human gaits. We recorded the electromyographic (EMG) activity patterns in 32 ipsilateral limb and trunk muscles from normal subjects while running and walking on a treadmill (3-12 km/h). In addition, we recorded backward walking and skipping, a distinct human gait that comprises the features of both walking and running. We mapped the recorded EMG activity patterns onto the spinal cord in approximate rostrocaudal locations of the MN pools. The activation of MNs tends to occur in bursts and be segregated by spinal segment in a gait-specific manner. In particular, sacral and cervical activation timings were clearly gait-dependent. Swing-related activity constituted an appreciable fraction (> 30%) of the total MN activity of leg muscles. Locomoting at non-preferred speeds (running and walking at 5 and 9 km/h, respectively) showed clear differences relative to preferred speeds. Running at low speeds was characterized by wider sacral activation. Walking at high non-preferred speeds was accompanied by an 'atypical' locus of activation in the upper lumbar spinal cord during late stance and by a drastically increased activation of lumbosacral segments. The latter findings suggest that the optimal speed of gait transitions may be related to an optimal intensity of the total MN activity, in addition to other factors previously described. The results overall support the idea of flexibility and adaptability of spatiotemporal activity in the spinal circuitry with constraints on the temporal functional connectivity of hypothetical pulsatile burst generators.

  20. A longitudinal study on dual-tasking effects on gait: cognitive change predicts gait variance in the elderly.

    Directory of Open Access Journals (Sweden)

    Rebecca K MacAulay

    Full Text Available Neuropsychological abilities have found to explain a large proportion of variance in objective measures of walking gait that predict both dementia and falling within the elderly. However, to this date there has been little research on the interplay between changes in these neuropsychological processes and walking gait overtime. To our knowledge, the present study is the first to investigate intra-individual changes in neurocognitive test performance and gait step time at two-time points across a one-year span. Neuropsychological test scores from 440 elderly individuals deemed cognitively normal at Year One were analyzed via repeated measures t-tests to assess for decline in cognitive performance at Year Two. 34 of these 440 individuals neuropsychological test performance significantly declined at Year Two; whereas the "non-decliners" displayed improved memory, working memory, attention/processing speed test performance. Neuropsychological test scores were also submitted to factor analysis at both time points for data reduction purposes and to assess the factor stability overtime. Results at Year One yielded a three-factor solution: Language/Memory, Executive Attention/Processing Speed, and Working Memory. Year Two's test scores also generated a three-factor solution (Working Memory, Language/Executive Attention/Processing Speed, and Memory. Notably, language measures loaded on Executive Attention/Processing Speed rather than on the Memory factor at Year Two. Hierarchal multiple regression revealed that both Executive Attention/Processing Speed and sex significantly predicted variance in dual task step time at both time points. Remarkably, in the "decliners", the magnitude of the contribution of the neuropsychological characteristics to gait variance significantly increased at Year Two. In summary, this study provides longitudinal evidence of the dynamic relationship between intra-individual cognitive change and its influence on dual task gait