WorldWideScience

Sample records for robot telecontrol system

  1. Tele-control of an endoscopic surgical robot system between Japan and Thailand for tele-NOTES.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Ieiri, Satoshi; Konishi, Kozo; Maeda, Takashi; Fujino, Yuichi; Ueda, Yukihiro; Navicharern, Patpong; Tanoue, Kazuo; Hashizume, Makoto

    2009-01-01

    We describe our experience of the development of a endoscopic surgical robot system that can penetrate into the body through the esophagus and perform surgeries in the upper gastric tubes and several organs in the abdominal cavity. In this paper, we describe the results of an experiment using this robot. We describe the configuration of the control system using a gigabit ethernet system named JGN2 for the endoscopic surgical robot. We also describe the results of the first telesurgery experiment using the NOTES (natural orifice transluminal endoscopic surgery) procedure (tele-NOTES), performed at a distance of about 3,750 km.

  2. Water Dancer II-A: A Non-Tethered Telecontrollable Water Strider Robot

    Directory of Open Access Journals (Sweden)

    Licheng Wu

    2011-09-01

    Full Text Available Water Strider Robot (WSR is a kind of bio-inspired micro robot that can stand and move on water surface via surface tension. In this paper, a design method is presented with algorithms for designing driving leg. Structure, control system and software of the robot are also discussed in details. A prototype Water Dancer II-a that is driven with two electric motors is presented as successfully tested in lab. The proposed WSR is tele-controlled with infrared signals and has the capability of turning and speed regulation with features of light tiny volume and low power consumption. Experimental results are reported and discussed to show practical feasibility of the presented WSR prototype. The new results in the paper are related also to the WSR prototype design with a robot body of less than 30 × 30 mm size and with ten leg rods of 90 mm length and 0.2 diameter that are able to provide lifting force for a water walk of the 6.0 grams robot at a forward speed of 20 cm/s or angular velocity of 9 degree/s with two micro DC motors(RoomFlight 4 × 8 mm, 28 Ohm.

  3. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  4. Water Dancer II-a: a Non-tethered Telecontrollable Water Strider Robot

    Directory of Open Access Journals (Sweden)

    Licheng Wu

    2011-09-01

    Full Text Available Water Strider Robot (WSR is a kind of bio‐ inspired micro robot that can stand and move on water surface via surface tension. In this paper, a design method is presented with algorithms for designing driving leg. Structure, control system and software of the robot are also discussed in details. A prototype Water Dancer II‐a that is driven with two electric motors is presented as successfully tested in lab. The proposed WSR is tele‐controlled with infrared signals and has the capability of turning and speed regulation with features of light tiny volume and low power consumption. Experimental results are reported and discussed to show practical feasibility of the presented WSR prototype. The new results in the paper are related also to the WSR prototype design with a robot body of less than 30 x 30 mm size and with ten leg rods of 90 mm length and 0.2 diameter that are able to provide lifting force for a water walk of the 6.0 grams robot at a forward speed of 20 cm/s or angular velocity of 9 degree/s with two micro DC motors (RoomFlight 4 x 8 mm, 28 Ohm.

  5. DMT transmission in the context of industrial telecontrol applications

    Directory of Open Access Journals (Sweden)

    S. Edinger

    2006-01-01

    Full Text Available In this paper, we discuss the use of Discrete Multi Tone (DMT modulation in the context of industrial telecontrol applications. We highlight the specific requirements and characteristics of the telecontrol settings and present methods to cope with the environmental challenges posed. It turns out that DMT is ideally suited for the tasks at hand. Further enhances enable our proposed system to provide superior connection stability even under the most adverse conditions.

  6. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  7. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot

    National Research Council Canada - National Science Library

    Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi

    2016-01-01

    .... This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility...

  8. Tandem mobile robot system

    Science.gov (United States)

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  9. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.

    Science.gov (United States)

    Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi

    2016-04-28

    This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.

  10. Basic Operational Robotics Instructional System

    Science.gov (United States)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  11. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  12. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  13. Assistive and Rehabilitation Robotic System

    Directory of Open Access Journals (Sweden)

    Adrian Abrudean

    2015-06-01

    Full Text Available A short introduction concerning the content of Assistive Technology and Rehabilitation Engineering is followed by a study of robotic systems which combine two or more assistive functions. Based on biomechanical aspects, a complex robotic system is presented, starting with the study of functionality and ending with the practical aspects of the prototype development.

  14. Robotic video photogrammetry system

    Science.gov (United States)

    Gustafson, Peter C.

    1997-07-01

    For many years, photogrammetry has been in use at TRW. During that time, needs have arisen for highly repetitive measurements. In an effort to satisfy these needs in a timely manner, a specialized Robotic Video Photogrammetry System (RVPS) was developed by TRW in conjunction with outside vendors. The primary application for the RVPS has strict accuracy requirements that demand significantly more images than the previously used film-based system. The time involved in taking these images was prohibitive but by automating the data acquisition process, video techniques became a practical alternative to the more traditional film- based approach. In fact, by applying video techniques, measurement productivity was enhanced significantly. Analysis involved was also brought `on-board' to the RVPS, allowing shop floor acquisition and delivery of results. The RVPS has also been applied in other tasks and was found to make a critical improvement in productivity, allowing many more tests to be run in a shorter time cycle. This paper will discuss the creation of the system and TRW's experiences with the RVPS. Highlighted will be the lessons learned during these efforts and significant attributes of the process not common to the standard application of photogrammetry for industrial measurement. As productivity and ease of use continue to drive the application of photogrammetry in today's manufacturing climate, TRW expects several systems, with technological improvements applied, to be in use in the near future.

  15. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  16. CtrWeb: Una herramienta de programación para telecontrol de sistemas físicos educativos

    Directory of Open Access Journals (Sweden)

    Jesús Salido

    2011-01-01

    Full Text Available Resumen: En este trabajo se presenta una arquitectura software distribuida que proporciona una API (Application Programming Interface de código abierto basada en Java RMI (Remote Method Invocation para la programación, con fines educativos, del control secuencial de prototipos físicos remotos. Los prototipos físicos se construyen mediante el sistema de prototipado de la firma fischertechnikTM. La programación y acceso al prototipo físico se realiza de forma compartida por distintos desarrolladores empleando una estrategia de turnos de tiempo gestionada desde Moodle, un LMS (Learning Management System abierto de libre distribución. Palabras clave: telecontrol, laboratorio remoto, educación a distancia, automatización, control secuencial

  17. Compliant robotic systems on graphs

    NARCIS (Netherlands)

    Groothuis, Stefan; Stramigioli, Stefano; Carloni, Raffaella

    2014-01-01

    In this paper, a modular method of modeling compliant robotic systems using graph theory is treated. Graph theoretic analyses ensure a structured way of describing a system and allow a straightforward extension to more complex systems. The graph models of a series elastic actuator, a variable

  18. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  19. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    A proof of safety is paramount for an autonomous robotic surgical system to ensure that it does not cause trauma to patients. However, a proof of safety is rarely constructed, as surgical systems are too complex to be dealt with by most formal verification methods. In this paper, we design...

  20. Ubiquitous Robotic Technology for Smart Manufacturing System

    National Research Council Canada - National Science Library

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    .... This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory...

  1. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  2. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  3. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  4. Hybrid robot climbing system design

    Science.gov (United States)

    Purna Irawan, Agustinus; Halim, Agus; Kurniawan, Hengky

    2017-09-01

    This research aims to develop a climbing hybrid robot, especially to design the structure of robot that quite strong and how to build an optimal mechanism for transmitting the motor’s rotation and torque to generate movement up the pole. In this research we use analytical methods using analysis software, simulation, a prototype, and robot trial. The result showed that robot could climb a pole by with maximum velocity 0.33m/s with a 20 kg load. Based on a weight diversity trial between 10 kg and 20 kg we obtained climb up load factor with value 0.970 ± 0.0223 and climb down load factor with value 0.910 ± 0.0163. Displacement of the frame structure was 7.58 mm. To minimize this displacement, the gate system was used so as to optimize the gripper while gripping the pole. The von Misses stress in the roller was 48.49 MPa, with 0.12 mm of displacement. This result could be a reference for robot development in further research.

  5. Execution monitoring for a mobile robot system

    Science.gov (United States)

    Miller, David P.

    1990-01-01

    Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.

  6. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Ryan A. Beasley

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  7. An Ultrasound Robotic System Using the Commercial Robot UR5

    Directory of Open Access Journals (Sweden)

    Kim eMathiassen

    2016-02-01

    Full Text Available The use of robots in health care has increased dramatically over the last decade. One area of research has been to use robots to conduct ultrasound examinations, either controlled by a physician or autonomously. This paper examines the possibility of using the commercial robot UR5 from Universal Robots to make a tele-operated robotic ultrasound system. Physicians diagnosing patients using ultrasound probes are prone to repetitive strain injuries, as they are required to hold the probe in uncomfortable positions and exert significant static force. The main application for the system is to relieve the physician of this strain by letting the them control a robot that holds the probe. A set of requirements for the system is derived from the state-of-the-art systems found in the research literature. The system is developed through a low-level interface for the robot, effectively building a new software framework for controlling it. Compliance force control and forward flow haptic control of the robot was implemented. Experiments are conducted to quantify the performance of the two control schemes. The force control is estimated to have a bandwidth of 16.6 Hz, while the haptic control is estimated to have a bandwidth of 65.4 Hz for the position control of the slave and 13.4 Hz for the force control of the master. Overall, the system meets the derived requirements and the main conclusion is that it is feasible to use the UR5 robot for robotic ultrasound applications.

  8. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  9. A Motion Planning System for Mobile Robots

    Directory of Open Access Journals (Sweden)

    TUNCER, A.

    2012-02-01

    Full Text Available In this paper, a motion planning system for a mobile robot is proposed. Path planning tries to find a feasible path for mobile robots to move from a starting node to a target node in an environment with obstacles. A genetic algorithm is used to generate an optimal path by taking the advantage of its strong optimization ability. Mobile robot, obstacle and target localizations are realized by means of camera and image processing. A graphical user interface (GUI is designed for the motion planning system that allows the user to interact with the robot system and to observe the robot environment. All the software components of the system are written in MATLAB that provides to use non-predefined accessories rather than the robot firmware has, to avoid confusing in C++ libraries of robot's proprietary software, to control the robot in detail and not to re-compile the programs frequently in real-time dynamic operations.

  10. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  11. Human Robotic Systems (HRS): Robotic ISRU Acquisition Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic ISRU Resource Acquisition project element will develop two technologies:Exploration Ground Data Systems (xGDS)Sample Acquisition on...

  12. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  13. Assistant Personal Robot (APR: Conception and Application of a Tele-Operated Assisted Living Robot

    Directory of Open Access Journals (Sweden)

    Eduard Clotet

    2016-04-01

    Full Text Available This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.

  14. Multiagent robotic systems' ambient light sensor

    Science.gov (United States)

    Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.

    2017-05-01

    Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling

  15. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design......, implementation and uses of a robot programming paradigm, focused on robot skills, that facilitates intuitive and explicit task-level programming by laymen, such as factory workers, as well as ad-hoc task planning in the skill domain. We show how these robot skills can be modeled and implemented, even...... on different robot systems. Furthermore, we show how laymen can intuitively program tasks on an advanced mobile manipulator, using the skills as the fundamental building blocks. Finally, we demonstrate how the same skills can be used for ad-hoc task planning, where the robot system instead constructs the task...

  16. Remote Lab for Robotics Applications

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez

    2018-01-01

    Full Text Available This article describes the development of a remote lab environment used to test and training sessions for robotics tasks. This environment is made up of the components and devices based on two robotic arms, a network link, Arduino card and Arduino shield for Ethernet, as well as an IP camera. The remote laboratory is implemented to perform remote control of the robotic arms with visual feedback by camera, of the robots actions, where, with a group of test users, it was possible to obtain performance ranges in tasks of telecontrol of up to 92%.

  17. Modeling human operator involvement in robotic systems

    NARCIS (Netherlands)

    Wewerinke, P.H.

    1991-01-01

    A modeling approach is presented to describe complex manned robotic systems. The robotic system is modeled as a (highly) nonlinear, possibly time-varying dynamic system including any time delays in terms of optimal estimation, control and decision theory. The role of the human operator(s) is modeled

  18. USING ROBOT OPERATING SYSTEM FOR AUTONOMOUS CONTROL OF ROBOTS IN EUROBOT, ERC AND ROBOTOUR COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Grzegorz Granosik

    2016-11-01

    Full Text Available This paper presents application of the Navigation Stack available in Robot Operating System as a basis for the autonomous control of the mobile robots developed for a few different robot competitions. We present three case studies.

  19. Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel

    2015-07-03

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  20. Robotic system for glovebox size reduction

    Energy Technology Data Exchange (ETDEWEB)

    KWOK,KWAN S.; MCDONALD,MICHAEL J.

    2000-03-02

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction.

  1. Mechatronics design of a robotic systems

    OpenAIRE

    Buonocore, Luca Rosario

    2015-01-01

    The same coordination aspects are the key-points of the last proposed method about comunication: now, the robotic device have to cooperate in order to manage the object in the desired way with a good sensitivity and this can be done exploiting the torque end force sensor of the new system. A general introduction underlining the need to make a robot autonomous or at least able to operate in unstructured scenarios to cope with human end other robotic device. Project of ultralight robot ar...

  2. Microsurgical robotic system for vitreoretinal surgery.

    Science.gov (United States)

    Ida, Yoshiki; Sugita, Naohiko; Ueta, Takashi; Tamaki, Yasuhiro; Tanimoto, Keiji; Mitsuishi, Mamoru

    2012-01-01

    Robotics may improve vitreoretinal surgery by steadying hand motion, thereby reducing negative outcomes. This study aimed to develop a microsurgical robot for vitreoretinal surgery and to perform clinical procedures using robot-assisted interventions. A microsurgical system for vitreoretinal surgery was designed to meet specific requirements for the degree of freedom, accuracy, and workspace. The system was intended to provide micrometer accurate manipulation within the eye. The slave manipulator has a tool change mechanism for switching surgical instruments. The slave manipulator is controlled by the surgeon using a master manipulator consisting of multiple joints. The robotic system was used to carry out microcannulation experiments on a pig's eye. A surgeon was able to successfully perform microcannulation. This microsurgical robotic vitreoretinal surgical system showed superior operability compared with a traditional manual procedure, and it demonstrated sufficient potential to warrant further testing in animal trials to assess its clinical feasibility.

  3. Walking Robot Locomotion System Conception

    Science.gov (United States)

    Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.

    2014-09-01

    This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  4. Tandem robot control system and method for controlling mobile robots in tandem

    Science.gov (United States)

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  5. Robotic guarded motion system and method

    Science.gov (United States)

    Bruemmer, David J.

    2010-02-23

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.

  6. ROBOT CHARACTER DESIGN SIMULATION SYSTEM USING 3D PARTS MODELS

    National Research Council Canada - National Science Library

    茂木, 龍太; Tsuji, Shota; Kanematsu, Yoshihisa; Mikami, Koji; Kondo, Kunio

    2017-01-01

    The purpose of this research is the design support for robot on animation. We have developed a simulation system that canto make a new robot design with a combine of the 3DCG robot parts and a deforming each part...

  7. Automatic Robot Safety Shutdown System

    Science.gov (United States)

    Lirette, M.

    1985-01-01

    Robot turned off if acceleration exceeds preset value. Signals from accelerometer on robot arm pass through filter and amplifier, eliminating high-frequency noise and hydraulic-pump pulsations. Data digitized and processed in computer. Unit controls other machines that perform repetitive movements, including rotary tables, tracked vehicles, conveyor lines, and elevators.

  8. Aerial Robotic System for Transportation and Logistics

    Science.gov (United States)

    Iwata, Kakuya; Hashimoto, Naohisa; Komoriya, Kiyoshi

    The status quo of a research on a novel aerial robotic system for transportation and logistics is presented. Under a new concept for an aerial robotic transportation system, three-Dimensional Transportation Robots (3DTR) were constructed with twin turbojet engines equipped by high performance noise reduction system and a flexibly jointed delta wing controlled by 2-axis actuators. This vehicle is also stable in the air due to its pendulum structure. The first flight was successfully conducted on November 22, 2005. Flight examination of 3DTR indicates its short take-off and landing (STOL) capability.

  9. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  10. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  11. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  12. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  13. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  14. Dynamics of Tree-Type Robotic Systems

    CERN Document Server

    Shah, Suril Vijaykumar; Dutt, Jayanta Kumar

    2013-01-01

    This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.

  15. Distributed Computation in a Quadrupedal Robotic System

    Directory of Open Access Journals (Sweden)

    Daniel Kuehn

    2014-07-01

    Full Text Available Today's and future space missions (will have to deal with increasing requirements regarding autonomy and flexibility in the locomotor system. To cope with these requirements, a higher bandwidth for sensor information is needed. In this paper, a robotic system is presented that is equipped with artificial feet and a spine incorporating increased sensing capabilities for walking robots. In the proposed quadrupedal robotic system, the front and rear parts are connected via an actuated spinal structure with six degrees of freedom. In order to increase the robustness of the system's locomotion in terms of traction and stability, a foot-like structure equipped with various sensors has been developed. In terms of distributed local control, both structures are as self-contained as possible with regard to sensing, sensor preprocessing, control and communication. This allows the robot to respond rapidly to occurring events with only minor latency.

  16. Robotic system construction with mechatronic components inverted pendulum: humanoid robot

    Science.gov (United States)

    Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan

    2017-03-01

    Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.

  17. Ubiquitous Robotic Technology for Smart Manufacturing System

    OpenAIRE

    Wenshan Wang; Xiaoxiao Zhu; Liyu Wang; Qiang Qiu; Qixin Cao

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of ...

  18. A Lane Following Mobile Robot Navigation System Using Mono Camera

    Science.gov (United States)

    Cho, Yeongcheol; Kim, Seungwoo; Park, Seongkeun

    2017-02-01

    In this paper, we develop a lane following mobile robot using mono camera. By using camera, robot can recognize its left and right side lane, and maintain the center line of robot track. We use Hough Transform for detecting lane, and PID controller for control direction of mobile robot. The validity of our robot system is performed in a real world robot track environment which is built up in our laboratory.

  19. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  20. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  1. Ubiquitous Robotic Technology for Smart Manufacturing System

    Science.gov (United States)

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  2. Ubiquitous Robotic Technology for Smart Manufacturing System

    Directory of Open Access Journals (Sweden)

    Wenshan Wang

    2016-01-01

    Full Text Available As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  3. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  4. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Fernando Alonso-Martín

    2015-07-01

    Full Text Available Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI, to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS, which uses natural language understanding mechanisms to provide two features: (i a non-grammar multimodal input (verbal and/or written text; and (ii a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper offers many possibilities in terms of HRI. For instance, it can enhance the robot’s pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction. Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  5. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  6. Selecting and commanding individual robots in a multi-robot system

    OpenAIRE

    Couture-Beil, Alex Sebastien

    2010-01-01

    In this thesis, we present a novel real-time computer vision-based system for facilitating interactions between a single human and a multi-robot system: a user first selects an individual robot from a group of robots, by simply looking at it, and then commands the selected robot with a motion-based gesture. We describe a novel multi-robot system that demonstrates the feasibility of using face contact and motion-based gestures as two non-verbal communication channels for human-robot interactio...

  7. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    OpenAIRE

    Florin Moldoveanu; Doru Ursutiu; Dan Floroian; Laura Floroian

    2010-01-01

    In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots) need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be const...

  8. Multi-Robot Systems in Military Domains (Les Systemes Multi-Robots Dans les Domaines Militaires)

    Science.gov (United States)

    2008-12-01

    David A. Schoenwald Snow White and the 700 Dwarves Brian H. Wilcox ANNEX C – MULTI-ROBOT SYSTEMS WORKSHOP 2002 RTO-TR-IST-032 C - 3 Part V...Multi-Robot System Andrew Drenner, Jan Burt, Brian Chapeau, Tom Dahlin, Bradley Kratochvil, Colin McMillen, Brad Nelson, Nikolaos Papanikolopoulos

  9. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  10. Dual arm robotic system with sensory input

    Science.gov (United States)

    Ozguner, U.

    1987-01-01

    The need for dual arm robots in space station assembly and satellite maintainance is of increasing significance. Such robots will be in greater demand in the future when numerous tasks will be assigned to them to relieve the direct intervention of humans in space. Technological demands from these robots will be high. They will be expected to perform high speed tasks with a certain degree of autonomy. Various levels of sensing will have to be used in a sophisticated control scheme. Ongoing research in control, sensing and real-time software to produce a two-arm robotic system than can accomplish generic assembly tasks is discussed. The control hierarchy and the specific control approach are discussed. A decentralized implementation of model-reference adaptive control using Variable Structure controllers and the incorporation of tactile feedback is considered.

  11. Robotic servicing system for space material experiment

    Science.gov (United States)

    Yamawaki, Toshihiko; Shimoji, Haruhiko; Abe, Toshio

    1994-01-01

    A containerless image furnace with an electrostatic positioning device has been developed as one of the material experiment facilities on the Japanese experimental module (JEM). It is characterized by heating/melting/cooling the sample whose position is kept without any contacts by actively controlled electrostatic force exerted between the sample and a set of electrodes. The experiment using the image furnace requires various servicing operations. We have been developing a robotic servicing system with an internal robot accommodated in the rack as an alternative to the crew. It aims to reduce the load on the crew by automating regular tasks and to increase the flexibility applicable to simple irregular tasks by introducing a remote teleoperation scheme. The present robot has poor capability to replace the crew. In order to compensate it, introducing of the concept of the robot friendliness and improving the controllability of the teleoperation by the ground operator aids are essential. In this paper, we identify the tasks to be performed by the robotic servicing system and discuss the way to compensate the capability of the robot. In addition we describe the evaluation tests using an experimental model.

  12. Viewing and controlling a mobile robot with common Web technologies

    Science.gov (United States)

    Colon, Eric; Baudoin, Yvan

    1998-08-01

    Despite enthusiastic researches all over the world, completely autonomous robots are yet today an utopia. But pure teleoperated Robotics System, as generally used in unknown or dangerous environment, have also their limitations and drawbacks. The introduction of a partial autonomy, where appropriate, could greatly enhance the performances of the man-machine systems. The interactive autonomy objective is to hide sophisticated systems behind simple interfaces and to transparently provide help to the user. These principles can be implemented to control a manipulation arm or a mobile vehicle. Telecontrol is generally associated with video images, nevertheless in specific applications or under special circumstances, the images have a poor quality, can be degraded when using the systems or are not available. This implies the introduction of a 3D model that can be used as stand alone or as augmented reality display. Existing internet technologies can be used for interfacing the real and the virtual worlds. VRML provides the 3D aspects, Java is the unifying language between different computer system, browsers and plug-ins are completing the team. Using these technologies we have developed a multi client/server application to remotely view and control a mobile robot. In this paper we give the description of this application and we provide a basic presentation of the tools.

  13. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  14. Human Robotic Systems (HRS): Space Robotics Challenge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2013 and 2015, the DARPA Robotics Challenge explored through a competition the tasks and technologies for robots to operate in a natural and man-made...

  15. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  16. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  17. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  18. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  19. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Mearsurement and control system for agricultural robot

    Science.gov (United States)

    Sun, Tong; Zhang, Fangming; Ying, Yibin

    2006-10-01

    Automation of agricultural equipments in the near term appears both economically viable and technically feasible. This paper describes measurement and control system for agriculture robot. It consists of a computer, a pair of NIR cameras, one inclinometer, one potentionmeter and two encoders. Inclinometer, potentionmeter and encoders are used to measure obliquity of camera, turning angle of front-wheel and velocity of rear wheel, respectively. These sensor data are filtered before sending to PC. The test shows that the system can measure turning angle of front-wheel and velocity of rear wheel accurately whether robot is at stillness state or at motion state.

  1. A Novel Teaching System for Industrial Robots

    Directory of Open Access Journals (Sweden)

    Hsien-I Lin

    2014-03-01

    Full Text Available The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts’ Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  2. A novel teaching system for industrial robots.

    Science.gov (United States)

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  3. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  4. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  5. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  6. Robotics virtual rail system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  7. ROBOT-ASSISTED SYSTEM SIMULATION FOR OBJECT OSTEOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Mr. Evgeniy E. Levitskii

    2016-06-01

    Full Text Available The article considers the importance of creating robot-assisted system, namely of a manipulating robot, for object osteosynthesis. The article also considers classifications of robot-assisted systems used in foreign countries. The authors describe 3D model of human femoral bone, necessity of its creating and analyzing for further simulation of robot-assisted system mechanical part with hydraulic drive.

  8. Robotized Warehouse Systems: Developments and Research Opportunities

    NARCIS (Netherlands)

    K. Azadeh (Kaveh); M.B.M. de Koster (René); D. Roy (Debjit)

    2017-01-01

    textabstractRobotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of

  9. Automatic Positioning System of Small Agricultural Robot

    Science.gov (United States)

    Momot, M. V.; Proskokov, A. V.; Natalchenko, A. S.; Biktimirov, A. S.

    2016-08-01

    The present article discusses automatic positioning systems of agricultural robots used in field works. The existing solutions in this area have been analyzed. The article proposes an original solution, which is easy to implement and is characterized by high- accuracy positioning.

  10. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  11. The Co-Simulation Research of Single Leg Hydraulic Control System on Legged Robot

    National Research Council Canada - National Science Library

    YU, Bin; BA, Kaixian; LI, Chunhe; ZHU, Qixin; ZHAO, Hualong; KONG, Xiandong

    2016-01-01

    The hydraulic quadruped bionic robot has great carrying capacity, moving performance and environmental adaptiveness, making the hydraulic robot become an important branch of the bionic robot systems...

  12. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  13. Robot Control System based on Web Application and RFID Technology

    Directory of Open Access Journals (Sweden)

    Barenji Ali Vatankhah

    2015-01-01

    Full Text Available This paper discusses an integration driven framework for enabling the RFID based identification of parts to perform robotic distributor operations in the random mix based parts control based on web application. The RFID technology senses newly arriving parts to be distribution robot, the robot is able to recognize them and perform cooperative distributing via web-based application. The developed web application control system is implemented in the educational robotic arm. RFID system sends real time information from parts to the web application and web based application makes a decision for control of the robot arm, controller of robot controls the robot as based on the decision from web application. The proposed control system has increases the reconfiguration and scalability of robot system.

  14. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  15. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  16. Robotically assisted MRgFUS system

    Science.gov (United States)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  17. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  18. Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Directory of Open Access Journals (Sweden)

    Pedro U. Lima

    2008-11-01

    Full Text Available This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior T?cnico (ISR/IST in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots and dynamic (moving robots obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams.

  19. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  20. Adaptive LIDAR Vision System for Advanced Robotics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced robotic systems demand an enhanced vision system and image processing algorithms to reduce the percentage of manual operation required. Unstructured...

  1. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks:Asteroid Retrieval Capture Mechanism Development and Testbed;Mission Operations...

  2. Robotic neurorehabilitation system design for stroke patients

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available In this article, a neurorehabilitation system combining robot-aided rehabilitation with motor imagery–based brain–computer interface is presented. Feature extraction and classification algorithm for the motor imagery electroencephalography is implemented under our brain–computer interface research platform. The main hardware platform for functional recovery therapy is the Barrett Whole-Arm Manipulator. The mental imagination of upper limb movements is translated to trigger the Barrett Whole-Arm Manipulator Arm to stretch the affected upper limb to move along the predefined trajectory. A fuzzy proportional–derivative position controller is proposed to control the Whole-Arm Manipulator Arm to perform passive rehabilitation training effectively. A preliminary experiment aimed at testing the proposed system and gaining insight into the potential of motor imagery electroencephalography-triggered robotic therapy is reported.

  3. Emergent trends in robotics and intelligent systems where is the role of intelligent technologies in the next generation of robots?

    CERN Document Server

    Hartono, Pitoyo; Virčíková, Mária; Vaščák, Ján; Jakša, Rudolf

    2015-01-01

    What is the Role of Intelligent Technologies in the Next Generation of Robots ? This monograph gives answers to this question and presents emergent trends of Intelligent Systems and Robotics. After an introductory chapter celebrating 70 year of publishing the McCulloch Pitts model the book consists of the 2 parts „Robotics“ and „Intelligent Systems“. The aim of the book is to contribute to shift conventional robotics in which the robots perform repetitive, pre-programmed tasks to its intelligent form, where robots possess new cognitive skills with ability to learn and adapt to changing environment. A main focus is on Intelligent Systems, which show notable achievements in solving various problems in intelligent robotics. The book presents current trends and future directions bringing together Robotics and Computational Intelligence. The contributions include widespread experimental and theoretical results on intelligent robotics such as e.g. autonomous robotics, new robotic platforms, or talking robot...

  4. Model tracking controller design of robot manipulator system with disturbances

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-06-01

    Full Text Available In the model tracking control of robot manipulator system, the treatment of nonlinear uncertainty in the system has always been an active research field. This article establishes a kinetic equation for robot manipulator system based on Lagrange equation and proposes a model tracking control system based on differential divisor. On this basis, this article proposes a model tracking control scheme for robot manipulator systems with disturbances. The proposed scheme is robust stable under the external disturbances. At last, the system simulation approach is employed to verify the effectiveness of this scheme on robot manipulator control.

  5. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  6. An ontology system for rehabilitation robotics

    OpenAIRE

    Doğmuş, Zeynep; Dogmus, Zeynep

    2013-01-01

    Representing the available information about rehabilitation robots in a structured form, like ontologies, facilitates access to various kinds of information about the existing robots, and thus it is important both from the point of view of rehabilitation robotics and from the point of view of physical medicine. Rehabilitation robotics researchers can learn various properties of the existing robots and access to the related publications to further improve the state-of-the-art. Physical medicin...

  7. Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Directory of Open Access Journals (Sweden)

    Pedro U. Lima

    2004-09-01

    Full Text Available This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Técnico (ISR/IST in Lisbon. The acronym of the project stands both for “Society of Robots” and “Soccer Robots”, the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots and dynamic (moving robots obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams.

  8. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  9. Research and development of compact wrist rehabilitation robot system.

    Science.gov (United States)

    Yamamoto, Ikuo; Inagawa, Naohiro; Matsui, Miki; Hachisuka, Kenji; Wada, Futoshi; Hachisuka, Akiko

    2014-01-01

    Compact rehabilitation robot system which can support movement of the wrist of patients has been developed. The robot system can detect and analyze the patient's intention to move the wrist by such a biological signal as muscle potential, then, assist the wrist exercise of patients. Also, both-wrist rehabilitation robot system by mirror effect has been successfully developed for practical use in the hospital and at home.

  10. Robotics.

    Science.gov (United States)

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  11. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  12. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  13. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  14. Aerial robotic data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  15. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  16. Robotic telementoring/telesurgical system and randomized evaluation study.

    Science.gov (United States)

    Patriciu, Alexandru; Challacombe, Benjamin; Dasgupta, Prokar; Kavoussi, Louis; Stoianovici, Dan

    2005-01-01

    The paper presents a new telementoring system incorporating audio-video communication and remote robotic control. The system was developed around an off the shelf ISDN video conferencing system enhanced with video annotation and remote robot control features. The user can remotely control a robot of perform needle alignment and insertion in a Percutaneous access procedure. Particular attention was devoted to ensure the safety of the procedure. The data connection is continuously monitored and in the event of a failure the robot control is switched to the local operator. Two series of randomized trials were performed between Baltimore and London. The accuracy and procedure time were evaluated for manual needle placement, local robotic needle placement and remotely controlled robotic needle placement. The test showed that while the procedure time is not improved by the robotic approach there is an improvement in the accuracy of the procedure. The study showed also that there is no significant difference between the locally controlled robotic needled placement and the remotely controlled robotic needle placement. Thus, the proposed system can be safely used for remote robotic percutaneous access procedures.

  17. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  18. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    OpenAIRE

    Flavio Roberti; Juan Marcos Toibero; Carlos Soria; Raquel Frizera Vassallo; Ricardo Carelli

    2009-01-01

    This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras) for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimen...

  19. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2010-02-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  20. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2009-12-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  1. [A robot measurement system for spacesuit joint torque].

    Science.gov (United States)

    Du, Li-Bin; Gao, Xiao-Hui; Liu, Hong; Li, Tan-qiu

    2003-06-01

    To measure the joint torque of spacesuit so as to evaluate its dynamic force/torque performance. A method for measuring the spacesuit joint torque by use of robot technology was proposed in this paper. The design of the measuring strategy and measuring robot was put forward and a mathematical model of the system was given. Then the working space of the robot was analyzed. The robot designed is light, compact, easy to operate, and has a large working space. Experimental results demonstrated the effectiveness of the measuring principle and the reliability of the measuring system. The system can satisfy the requirements of the spacesuit joint torque measurement.

  2. Meeting the challenges of installing a mobile robotic system

    Science.gov (United States)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  3. Robotic surgical systems in maxillofacial surgery: a review

    Science.gov (United States)

    Liu, Hang-Hang; Li, Long-Jiang; Shi, Bin; Xu, Chun-Wei; Luo, En

    2017-01-01

    Throughout the twenty-first century, robotic surgery has been used in multiple oral surgical procedures for the treatment of head and neck tumors and non-malignant diseases. With the assistance of robotic surgical systems, maxillofacial surgery is performed with less blood loss, fewer complications, shorter hospitalization and better cosmetic results than standard open surgery. However, the application of robotic surgery techniques to the treatment of head and neck diseases remains in an experimental stage, and the long-lasting effects on surgical morbidity, oncologic control and quality of life are yet to be established. More well-designed studies are needed before this approach can be recommended as a standard treatment paradigm. Nonetheless, robotic surgical systems will inevitably be extended to maxillofacial surgery. This article reviews the current clinical applications of robotic surgery in the head and neck region and highlights the benefits and limitations of current robotic surgical systems. PMID:28660906

  4. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    localization and mapping SSH Secure shell URDF Unified robot description format XML Extensible markup language xiv THIS PAGE INTENTIONALLY LEFT...package. A package may contain ROS runtime execution programs, which are called nodes, a ROS-independent library , datasets, configuration files, third...Parameter Server. It is useful for running large projects, which may have many packages, nodes, libraries , parameters, and even other launch files

  5. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  6. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  7. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  8. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  9. 10th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Mondada, Francesco; Correll, Nikolaus; Mermoud, Grégory; Egerstedt, Magnus; Hsieh, M; Parker, Lynne; Støy, Kasper

    2013-01-01

    Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thru...

  10. Automatic rendezvous system testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Tobbe, Patrick A.; Naumann, Charles B.

    1991-01-01

    The Flight Robotics Laboratory of MSFC provides sophisticated real time simulation capability in the study of human/system interactions of remote systems. This paper will describe the Flight Robotics Facility of NASA/MSFC, the hardware-in-the-loop simulation configuration, and test results.

  11. A Segway RMP-based robotic transport system

    Science.gov (United States)

    Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia

    2004-12-01

    In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

  12. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  13. Interactions between Art and Mobile Robotic System Engineering

    OpenAIRE

    Mondada, F.; Legon, S.

    2001-01-01

    The field of mobile robotics offers a new medium for public entertainment and art. Mobile robots can move, react, and interact in the real world, generating behaviors that can be used as a new artistic medium quite different from sculptures, drawings or video. This new medium, like other technological media such as video or the Internet, requires considerable technical know-how to be exploited successfully. The successful design of a mobile robot demands a strong interdisciplinary and systems...

  14. Nonlinear dynamics, symmetries, and robot system design

    Science.gov (United States)

    McKee, Gerard T.; Hasinski, Richard J.; Schenker, Paul S.

    1998-10-01

    In this paper we investigate a model for self-organizing modular robotic systems based upon dynamical systems theory. Sonar sensing is used as a case study, and the effects of nonlinear interactions between sonar sensing modules are examined. We present and analyze an initial set of results based upon an implementation of the model in simulation. The results show that the sonar sensors organize the relative phase of their sampling in response to changes in the demand placed on them for sensory data. Efficient sampling rates are achieved by the system adapting to take advantage of features in the environment. We investigate the types of phase patterns that emerge, and examine their relationship with symmetries present in the environment.

  15. Robot vision system programmed in Prolog

    Science.gov (United States)

    Batchelor, Bruce G.; Hack, Ralf

    1995-10-01

    This is the latest in a series of publications which develop the theme of programming a machine vision system using the artificial intelligence language Prolog. The article states the long-term objective of the research program of which this work forms part. Many but not yet all of the goals laid out in this plan have already been achieved in an integrated system, which uses a multi-layer control hierarchy. The purpose of the present paper is to demonstrate that a system based upon a Prolog controller is capable of making complex decisions and operating a standard robot. The authors chose, as a vehicle for this exercise, the task of playing dominoes against a human opponent. This game was selected for this demonstration since it models a range of industrial assembly tasks, where parts are to be mated together. (For example, a 'daisy chain' of electronic equipment and the interconnecting cables/adapters may be likened to a chain of dominoes.)

  16. Improved OTEC System for a Submarine Robot

    Science.gov (United States)

    Chao, Yi; Jones, Jack; Valdez, Thomas

    2010-01-01

    An ocean thermal energy conversion (OTEC), now undergoing development, is a less-massive, more-efficient means of exploiting the same basic principle as that of the proposed system described in "Alternative OTEC Scheme for a Submarine Robot" (NPO-43500), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 50. The proposed system as described previously would be based on the thawing-expansion/freezing-contraction behavior of a wax or perhaps another suitable phase-change material (PCM). The power generated by the system would be used to recharge the batteries in a battery- powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. At one phase of its operational cycle, the previously proposed system would utilize the surface ocean temperature (which lies between 15 and 30 C over most of the Earth) to melt a PCM that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the PCM. The melting or freezing would cause the PCM to expand or contract, respectively, by about 9 volume percent. The PCM would be contained in tubes that would be capable of expanding and contracting with the PCM. The PCM-containing tubes would be immersed in a hydraulic fluid. The expansion and contraction would drive a flow of the hydraulic fluid against a piston that, in turn, would push a rack-and-pinion gear system to spin a generator to charge a battery.

  17. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  18. [Application of the da Vinci robotic system in thoracic surgery].

    Science.gov (United States)

    Ismail, M; Swierzy, M; Ulrich, M; Rückert, J C

    2013-08-01

    The latest technical developments of minimally invasive thoracic surgery are characterized by robotic-assisted operative procedures. Robotic-assisted thymectomy is the most advanced method in this field. A systematic literature search (PubMed, Medline) was carried out and the databank system of Intuitive Surgical (Sunnyvale, CA) was analysed. Target criteria were the analysis of the quantitative data over time, technical advantages and limiting factors of robotic-assisted thoracic surgery. The da Vinci robotic system has been used in thoracic surgery since 2001, and up to 2012 a total of 10,895 robotic-assisted lobotomies have been carried out worldwide. A total of 12 ectopic parathyroid glands in the mediastinum were resected and published. Furthermore, more than 3,500 cases of robotic-assisted thymectomy were performed. A rapid increase in the number of operations has occurred particularly for thymectomy and lung resections. Acceptance of robotic-assisted thymectomy for myasthenia and/or thymoma and mediastinal tumors is growing rapidly. For anatomic lung resection in lung cancer, robotic-assisted hilar and lymph node dissection due to this new quality are also comparable to open surgical techniques. The principles form the intrinsic technical advantages of the da Vinci robotic system.

  19. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  20. A RIDING FUZZY CONTROL SYSTEM FOR A MOUNTAIN AGRICULTURAL ROBOT

    OpenAIRE

    Wang, Yuanjie; Yang, Fuzeng; Zhou, Yu; Pan, Guanting; He, Jinyi; Lan, Yubin

    2013-01-01

    A fuzzy control system was designed to command driving directions for a mountain agriculture robot. First, a fuzzy control system program was developed based on the scheme of the robot driving control system. Then, the core part of the system--the fuzzy controller--was designed. Finally, a system model was created and a simulation test was conducted through the application of the Fuzzy Toolbox in MATLAB and SIMULINK. The results showed that the system is effective.

  1. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    Science.gov (United States)

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  2. Implementation of a robotic flexible assembly system

    Science.gov (United States)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  3. Toward robotic socially believable behaving systems

    CERN Document Server

    Jain, Lakhmi

    2016-01-01

    This volume is a collection of research studies on the modeling of emotions in complex autonomous systems. Several experts in the field are reporting their efforts and reviewing the literature in order to shed lights on how the processes of coding and decoding emotional states took place in humans, which are the physiological, physical, and psychological variables involved, invent new mathematical models and algorithms to describe them, and motivate these investigations in the light of observable societal changes and needs, such as the aging population and the cost of health care services. The consequences are the implementation of emotionally and socially believable machines, acting as helpers into domestic spheres, where emotions drive behaviors and actions. The contents of the book are highly multidisciplinary since the modeling of emotions in robotic socially believable systems requires a holistic perspective on topics coming from different research domains such as computer science, engineering, sociology...

  4. Laparoscopy-assisted Robotic Myomectomy Using the DA Vinci System

    Directory of Open Access Journals (Sweden)

    Shih-Peng Mao

    2007-06-01

    Conclusion: Minimally invasive surgery is the trend of the future. Robot-assisted laparoscopic surgery is a new technique for myomectomy. This robotic system provides a three-dimensional operative field and an easy-to-use control panel, which may be of great help when applying the suturing techniques and may shorten the learning curve. More experience with and long-term follow-up of robotic surgery may be warranted to further validate the role the robot-assisted approach in gynecologic surgery.

  5. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  6. Modular Robot System for Maintenance Tasks in Large Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Prithvi Sekhar Pagala

    2013-11-01

    Full Text Available Large scientific facilities such as particle accelerators are scenarios that require continuous maintenance and specific type of interventions. The intervening personnel are sometimes required to work exposed to residual radiation. The inclusion of robotic systems into these environmental conditions are being encouraged to increase the availability of the facility and reduce personal radiation doses. However, this scenario presents challenging conditions for robotic systems in terms of structural, equipment and environmental conditions. This paper addresses the design of a modular robotic system as an alternative to conventional robots to overcome the challenges. This work also explores the various capabilities of the design along with its future possibilities. The SMART heterogeneous modular robot systems, prototype and simulation results are presented.

  7. Control System Design for a Surface Cleaning Robot

    Directory of Open Access Journals (Sweden)

    Zhai Yuyi

    2013-05-01

    Full Text Available Abstract This paper aims to study a control system for a surface cleaning robot and the focus of the study is the surface cleaning robot controller design. The structural framework of the propulsion control system of the surface robot is designed based on the principle of PWM speed control. The function of each module in the control system is divided and described in detail. A kind of thinking based on an AVR microprocessor and its software and hardware design proposals are presented. Through RS485 and PC communication according to the agreed protocol, the control system achieves robot forward, backward, turn and work operations by the use of a DC motor or stepper motor, and it can therefore more successfully realize the work of a surface cleaning robot.

  8. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  10. A modular real-time vision system for humanoid robots

    Science.gov (United States)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  11. Pneumatic Actuation of a 2-Link Robotic System

    African Journals Online (AJOL)

    2012r

    2014-10-16

    Oct 16, 2014 ... nanorobotics, are still in the testing phase but they demand precision. The investigation of a 2-link pneumatic robotic system, using robotic and electric actuators, will be made. For the sake of representation, the prototype will be made of available materials in the market to fulfil its requirements. An insight.

  12. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  13. A fully sensorized cooperative robotic system for surgical interventions.

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M; Aceves, Marco A; Gorrostieta, Efren; Kalender, Willi A

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ± 0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ± 0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements.

  14. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Directory of Open Access Journals (Sweden)

    Saúl Tovar-Arriaga

    2012-07-01

    Full Text Available In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms. The implemented control allows the robot to compensate for small patient movements.

  15. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  16. Human Robotic Systems (HRS): National Robotics Initiative (NRI) & Robotics Technology Pipeline Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2012, NASA funded 9 grants to research institutions and universities, after reviews by NSF panels and NASA robotics experts.  The 9 research grantees...

  17. Reliability Architecture for Collaborative Robot Control Systems in Complex Environments

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2016-02-01

    Full Text Available Many different kinds of robot systems have been successfully deployed in complex environments, while research into collaborative control systems between different robots, which can be seen as a hybrid internetware safety-critical system, has become essential. This paper discusses ways to construct robust and secure reliability architecture for collaborative robot control systems in complex environments. First, the indication system for evaluating the real-time reliability of hybrid internetware systems is established. Next, a dynamic collaborative reliability model for components of hybrid internetware systems is proposed. Then, a reliable, adaptive and evolutionary computation method for hybrid internetware systems is proposed, and a timing consistency verification solution for collaborative robot control internetware applications is studied. Finally, a multi-level security model supporting dynamic resource allocation is established.

  18. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  19. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot...

  20. Declarative Rule-based Safety for Robotic Perception Systems

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs....... The language allows developers to increase trustworthiness in the robot perception system, which we argue would increase compliance with safety standards. We demonstrate the usage of the language to improve reliability in a perception pipeline and evaluate it against manually written rules on embedded hardware...

  1. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  2. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    OpenAIRE

    Charles V. Smith Iii; John C. Licato; Michael V. Doran; Thomas G. Thomas Jr.

    2010-01-01

    Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed require...

  3. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  4. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  5. An architecture for robotic system integration

    Science.gov (United States)

    Butler, P. L.; Reister, D. B.; Gourley, C. S.; Thayer, S. M.

    An architecture was developed to provide an object-oriented framework for the integration of multiple robotic subsystems into a single integrated system. By using an object-oriented approach, all subsystems can interface with each other, and still be able to be customized for specific subsystem interface needs. The object-oriented framework allows the communications between subsystems to be hidden from the interface specification itself. Thus, system designers can concentrate on what the subsystems are to do, not how to communicate. This system was developed for the Environmental Restoration and Waste Management Decontamination and Decommissioning Project at Oak Ridge National Laboratory. In this system, multiple subsystems are defined to separate the functional units of the integrated system. For example, a Human-Machine Interface (HMI) subsystem handles the high-level machine coordination and subsystem status display. The HMI also provides status-logging facilities and safety facilities for use by the remaining subsystems. Other subsystems have been developed to provide specific functionality, and many of these can be reused by other projects.

  6. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  7. A miniature bidirectional RF communication system for micro gastrointestinal robots.

    Science.gov (United States)

    Wang, Wenxing; Yan, Guozheng; Ding, Guoqing

    2003-01-01

    This paper reports a miniature, low power, two-channel, bidirectional wireless communication system that can be used in the first generation of micro gastrointestinal (GI) robots. The system consists of a miniature RF transceiver embedded in the GI robot and a control station outside the body. ISM band radio frequency (approx. 433 MHz) was used to achieve half duplex communication between the GI robot and the control station. The Frequency Shift Keying (FSK) modulation scheme was adopted to ensure a reliable and high-speed digital RF link. Animal tests have been carried out to prove the performance of the communication system.

  8. Vision-based robotic system for object agnostic placing operations

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Nalpantidis, Lazaros; Andersen, Nils Axel

    2016-01-01

    to operate within an unknown environment manipulating unknown objects. The developed system detects objects, finds matching compartments in a placing box, and ultimately grasps and places the objects there. The developed system exploits 3D sensing and visual feature extraction. No prior knowledge is provided......Industrial robots are part of almost all modern factories. Even though, industrial robots nowadays manipulate objects of a huge variety in different environments, exact knowledge about both of them is generally assumed. The aim of this work is to investigate the ability of a robotic system...

  9. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  10. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  11. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  12. System and method for seamless task-directed autonomy for robots

    Science.gov (United States)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas; Walton, Miles

    2012-09-18

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.

  13. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  14. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  15. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  16. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  17. Robot arm force control through system linearization by nonlinear feedback

    Science.gov (United States)

    Tarn, T. J.; Bejczy, A. K.; Yun, Xiaoping

    1988-01-01

    Based on a differential geometric feedback linearization technique for nonlinear time-varying systems, a dynamic force control method for robot arms is developed. It uses active force-moment measurements at the robot wrist. The controller design fully incorporate the robot-arm dynamics and is so general that it can be reduced to pure position control, hybrid position/force control, pure force control. The controller design is independent of the tasks to be performed. Computer simulations show that the controller improves the position error by a factor of ten in cases in which position errors generate force measurements. A theorem on linearization of time-varying system is also presented.

  18. A unified teleoperated-autonomous dual-arm robotic system

    Science.gov (United States)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam Sing; Backes, Paul G.; Lloyd, John

    1991-01-01

    A description is given of complete robot control facility built as part of a NASA telerobotics program to develop a state-of-the-art robot control environment for performing experiments in the repair and assembly of spacelike hardware to gain practical knowledge of such work and to improve the associated technology. The basic architecture of the manipulator control subsystem is presented. The multiarm Robot Control C Library (RCCL), a key software component of the system, is described, along with its implementation on a Sun-4 computer. The system's simulation capability is also described, and the teleoperation and shared control features are explained.

  19. System for Self-Navigating Autonomous Robots

    OpenAIRE

    Andersen, Thor Eivind Svergja; Rødseth, Mats Gjerset

    2016-01-01

    The purpose of the thesis was to build an Arduino-based robot, whose intended use was to map unknown areas, as well as to develop a server application that controls several robots and uses the gathered information to form a map of the area. Additionally, the wireless communication in the existing solution was to be updated using state-of-the-art technology. An Arduino-robot was designed and built using materials acquired from Sparkfun, Elfa Distrelec and the Cybernetic Workshops at NTNU. ...

  20. ROBODEXS; Multi-robot Deployment & Extraction System

    Science.gov (United States)

    2012-04-03

    These ranged from a scissor lift underbelly “robot elevator”, to a side-mounted clamshell box, to a rear-mounted scoop that was developed in theater...damage to the robot during lifting and increases the risk of injury to the Soldier. ROBODEXS has been designed to automatically deploy and extract...actuator to clamp the robot to the tray and then lift it to a vertical stowed position over the stroke of the actuator (Figure 3, right). When the actuator

  1. Human Robotic Systems (HRS): Robonaut 2 Technologies Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Robonaut 2 (R2) Technology Project Element within Human Robotic Systems (HRS) is to developed advanced technologies for infusion into the Robonaut 2...

  2. Implementation of Automation for Control of Robotic Systems

    National Research Council Canada - National Science Library

    Cosenzo, Keryl A; Parasuraman, Raja; Novak, Anthony; Barnes, Michael

    2006-01-01

    .... The role of the human operator in the human-robot environment is not well understood; however, most contemplated systems will require active human control or supervision with the possibility of intervention...

  3. An interactive Virtual Reality simulation system for robot control and operator training

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.; Stansfield, S.A.

    1993-11-01

    Robotic systems are often very complex and difficult to operate, especially as multiple robots are integrated to accomplish difficult tasks. In addition, training the operators of these complex robotic systems is time-consuming and costly. In this paper, a virtual reality based robotic control system is presented. The virtual reality system provides a means by which operators can operate, and be trained to operate, complex robotic systems in an intuitive, cost-effective way. Operator interaction with the robotic system is at a high, task-oriented, level. Continuous state monitoring prevents illegal robot actions and provides interactive feedback to the operator and real-time training for novice users.

  4. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  5. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  6. The Norwegian research programme on advanced robotic systems

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1991-04-01

    Full Text Available The Norwegian research programme on advanced robot systems has been focused on sensory control of robots for industrial applications and telerobotics for underwater operations. This paper gives an overview of experimental work and ongoing research. An exciting area in sensory control is visual servoing where camera images at video rate are used to grasp moving objects. Also compliant motion in partially unknown environments is a research topic. New robot control systems have been developed to apply sensory control to robotic manipulators at an acceptable sampling rate. In telerobotics the main work has been on the combination of remote control and local sensory loops in the manipulator. Also in this case visual servoing anti force control are important. The generation and updating of a world model used in a graphic display of the worksite using sensory information has been tested in combination with large delay times in the communication channel. The use of visual and acoustic data for the control of remotely operated vehicles and autonomous underwater vehicles is studied for use in robotic systems. Light-weight robot manipulators with redundant degrees of freedom and high performance joints are being designed for mobile robot applications.

  7. Progress in EEG-Based Brain Robot Interaction Systems.

    Science.gov (United States)

    Mao, Xiaoqian; Li, Mengfan; Li, Wei; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  8. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  9. Detecting new objects and building models with active robot system

    OpenAIRE

    Stergaršek Kuzmič, Eva

    2010-01-01

    An important element of a cognitive robotic system is the ability to detect novel objects and learn their representations, which are suitable for later recognition and manipulation. The basic assumption of our work is that the detection and segmentation of new objects can be facilitated by an active robotic system, which can not only observe the objects but can also manipulate them. Manipulation supports object segmentation and the accumulation of object features, which provides the basis for...

  10. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Hajime Aoyama

    2007-06-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  11. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Yuichi Satsumi

    2008-11-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  12. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  13. Robotics

    Science.gov (United States)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  14. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Malfunction of the da Vinci robotic system in urology.

    Science.gov (United States)

    Chen, Cheng-Che; Ou, Yen-Chuan; Yang, Cheng-Kuang; Chiu, Kun-Yuan; Wang, Shian-Shiang; Su, Chung-Kuang; Ho, Hao-Chung; Cheng, Chen-Li; Chen, Chuan-Shu; Lee, Jian-Ri; Chen, Wen-Min

    2012-08-01

    To analyze the incidence of malfunction of the da Vinci robotic system in a single center and to provide potential solutions. A total of 400 patients underwent da Vinci robotic urological surgery at Taichung Veterans General Hospital in Taichung, Taiwan, from December 2005 to April 2011. Episodes of malfunction of the robotic system were analyzed by period of operation, type of procedure, type of malfunction and management of the event. Overall, 14 cases of malfunction occurred (3.5% of the entire series). Among them, five (1.25%) occurred before the surgery and nine (2.25%) intraoperatively. Operative procedures included radical prostatectomy, bilateral pelvic lymph node dissection, dismembered pyeloplasty, partial nephrectomy, nephroureterectomy, and radical and partial cystectomies. Areas of malfunctions included the robotic arm system and joint (11/14), optical system (1/14), power system and connector (1/14), endoscopic instrument (1/14), and software (1/14). In 10 cases, the failure was recoverable, whereas in four cases there was a critical failure, requiring a conversion to standard laparoscopy in three of them, and the rescheduling of the surgery in one case. The da Vinci robotic system is extremely reliable for use in urology. Malfunction is rare and the risk of critical failure is very low. Managing mechanical failure before or during the surgery is the key to maintaining the safety of patients undergoing robotic surgical procedures. © 2012 The Japanese Urological Association.

  16. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  17. Material handling robot system for flow-through storage applications

    Science.gov (United States)

    Dill, James F.; Candiloro, Brian; Downer, James; Wiesman, Richard; Fallin, Larry; Smith, Ron

    1999-01-01

    This paper describes the design, development and planned implementation of a system of mobile robots for use in flow through storage applications. The robots are being designed with on-board embedded controls so that they can perform their tasks as semi-autonomous workers distributed within a centrally controlled network. On the storage input side, boxes will be identified by bar-codes and placed into preassigned flow through bins. On the shipping side, orders will be forwarded to the robots from a central order processing station and boxes will be picked from designated storage bins following proper sequencing to permit direct loading into trucks for shipping. Because of the need to maintain high system availability, a distributed control strategy has been selected. When completed, the system will permit robots to be dynamically reassigned responsibilities if an individual unit fails. On-board health diagnostics and condition monitoring will be used to maintain high reliability of the units.

  18. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  19. Audio-Visual Perception System for a Humanoid Robotic Head

    OpenAIRE

    Raquel Viciana-Abad; Rebeca Marfil; Perez-Lorenzo, Jose M.; Juan P. Bandera; Adrian Romero-Garces; Pedro Reche-Lopez

    2014-01-01

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can...

  20. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  1. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  2. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  3. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  4. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  5. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  6. Robotics

    Indian Academy of Sciences (India)

    explaining how the robot functioning is controlled. A brief description of the measurements involved is also discussed. Introduction. Basically, the developments in two other related subjects, in- strumentation and control engineering played a major role in aiding the rapid development of the field of robotics. By instru-.

  7. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  8. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  9. Audio-visual perception system for a humanoid robotic head.

    Science.gov (United States)

    Viciana-Abad, Raquel; Marfil, Rebeca; Perez-Lorenzo, Jose M; Bandera, Juan P; Romero-Garces, Adrian; Reche-Lopez, Pedro

    2014-05-28

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  10. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  11. NASA Center for Intelligent Robotic Systems for Space Exploration

    Science.gov (United States)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  12. A Robotic System to Scan and Reproduce Object

    Directory of Open Access Journals (Sweden)

    Cesare Rossi

    2011-01-01

    Full Text Available An application of a robotic system integrated with a vision system is presented. The robot is a 3-axis revolute prototype, while the vision system essentially consists in a laser scanner made up of a camera and a linear laser projector. Both the robotic and the video system were designed and built at DIME (Department of Mechanical Engineering for Energetics, University of Naples Federico II. The presented application essentially consists of a laser scanner that is installed on the robot arm; the scanner scans a 3D surface, and the data are converted in a cloud of points in the robot’s workspace. Then, starting from those points, the end-effector trajectories adopted to replicate the scanned surface are calculated; so, the same robot, by using a tool, can reproduce the scanned object. The software was developed also at the DIME. The adopted tool was a high-speed drill, installed on the last link of the robot arm, with a spherical milling cutter in order to obtain enough accurate surfaces by the data represented by the cloud of points. An algorithm to interpolate the paths and to plan the trajectories was also developed and successfully tested.

  13. BellBot - A Hotel Assistant System Using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-01-01

    Full Text Available There is a growing interest in applying intelligent technologies to assistant robots. These robots should have a number of characteristics such as autonomy, easy reconfiguration, robust perception systems and they should be oriented towards close interaction with humans. In this paper we present an automatic hotel assistant system based on a series of mobile platforms that interact with guests and service personnel to help them in different tasks. These tasks include bringing small items to customers, showing them different points of interest in the hotel, accompanying the guests to their rooms and providing them with general information. Each robot can also autonomously handle some daily scheduled tasks. Apart from user-initiated and scheduled tasks, the robots can also perform tasks based on events triggered by the building's automation system (BAS. The robots and the BAS are connected to a central server via a local area network. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively in different environments.

  14. The Thorvald II Agricultural Robotic System

    Directory of Open Access Journals (Sweden)

    Lars Grimstad

    2017-09-01

    Full Text Available This paper presents a novel and modular approach to agricultural robots. Food production is highly diverse in several aspects. Even farms that grow the same crops may differ in topology, infrastructure, production method, and so on. Modular robots help us adapt to this diversity, as they can quickly be configured for various farm environments. The robots presented in this paper are hardware modular in the sense that they can be reconfigured to obtain the necessary physical properties to operate in different production systems—such as tunnels, greenhouses and open fields—and their mechanical properties can be adapted to adjust for track width, power requirements, ground clearance, load capacity, and so on. The robot’s software is generalizing to work with the great variation of robot designs that can be realized by assembling hardware modules in different configurations. The paper presents several novel ideas for agricultural robotics, as well as extensive field trials of several different versions of the Thorvald II platform.

  15. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    OpenAIRE

    I. A. Zikratov; A. V. Gurtov; T. V. Zikratova; Kozlova, E. V.

    2014-01-01

    This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for inform...

  16. A multimodal emotion detection system during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F; Salichs, Miguel A

    2013-11-14

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human-robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human-robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately.

  17. A Multimodal Emotion Detection System during Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2013-11-01

    Full Text Available In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS. Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA, which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA, has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE and Computer Expression Recognition Toolbox (CERT. Once these new components (GEVA and GEFA give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System. Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual separately.

  18. A Multimodal Emotion Detection System during Human-Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.

    2013-01-01

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598

  19. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  20. The development of robot system for pressurizer maintenance in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Chang Hoi; Jung, Seung Ho; Seo, Yong Chil; Lee, Young Kwang; Go, Byung Yung; Lee, Kwang Won; Lee, Sang Ill; Yun, Jong Yeon; Lee, Hyung Soon; Park, Mig Non; Park, Chang Woo; Cheol, Kwon

    1999-12-01

    The pressurizer that controls the pressure variation of primary coolant system, consists of a vessel, electric heaters and a spray, is one of the safety related equipment in nuclear power plants. Therefore it is required to inspect and maintain it regularly. Because the inside of pressurizer os contaminated by radioactivity, when inspection and repairing it, the radiation exposure of workers is inevitable. In this research two robot system has been developed for inspection and maintenance of the pressurizer for the water filled case and the water sunken case. The one robot system for the water filled case consists of two links, movable gripper using wire string, and support frame for the attachment of robot. The other robot is equipped propeller in order to navigate on the water. It also equipped high performance water resistance camera to make inspection possible. The developed robots are designed under several constraints such as its weight and collision with pressurizer wall. To verify the collision free robot link length and accessibility to the any desired rod heater it is simulated by 3-dimensional graphic simulation software(RobCard). For evaluation stress of the support frame finite element analysis is performed by using the ANSYS code. (author)

  1. Systems of Geo Positioning of the Mobile Robot

    Science.gov (United States)

    Momot, M. V.; Proskokov, A. V.; Nesteruk, D. N.; Ganiyev, M.; Biktimirov, A. S.

    2017-07-01

    Article is devoted to the analysis of opportunities of electronic instruments, such as a gyroscope, the accelerometer, the magnetometer together, the video system of image identification and system of infrared indicators during creation of system of exact positioning of the mobile robot. Results of testing and the operating algorithms are given. Possibilities of sharing of these devices and their association in a single system are analyzed. Conclusions on development of opportunities and elimination of shortcomings of the received end-to-end system of positioning of the robot are drawn.

  2. Model-based development of robotic systems and services in construction robotics

    DEFF Research Database (Denmark)

    Schlette, Christian; Roßmann, Jürgen

    2017-01-01

    More and more of our indoor/outdoor environments are available as 3D digital models. In particular, digital models such as the CityGML (City Geography Markup Language) format for cities and the BIM (Building Information Modeling) methodology for buildings are becoming important standards for proj......-scale working environments. In Virtual Testbeds for construction robotics, such large-scale working environments can then be systematically accessed as mental models for the model- respectively 3D simulation-based development and control of robotic systems and services....

  3. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  4. Research of smart real-time robot navigation system

    Science.gov (United States)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  5. Motion Planning in Multi-robot Systems using Timed Automata

    DEFF Research Database (Denmark)

    Andersen, Michael. S.; Jensen, Rune S.; Bak, Thomas

    This paper dscribes how interacting timed automata can be used to model, analyze, and verify motion planning problems for systems with multiple mobile robots. The method assumes an infra-structure of simple unicycle type robots, moving om a planar grid. The motion of the robots, including simple...... kinematics, is captured in an automata formalism that allows formal composition and symbolic reasoning. The verification software UppAal is used to verify specification requirements formulated in computational tree logic (CTL), generating all feasible trajectories that satisfy specifications. The results...... of the planning are demonstrateted in a testbed that allows execution of the planned paths and motion primitives by synchronizing the planning results from UppAal with actual robotic vehicles. The planning problem may be modified online by moving obstacles in the physical environment, which causes a re...

  6. A New Method to Calibrate Robot Visual Measurement System

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2013-01-01

    Full Text Available This paper presents a new method to calibrate the robot visual measurement system. In the paper, a laser tracker is used to calibrate the robot twist angles. Each axis of the robot is moved to many positions and the positions measured by the laser tracker fit a plane. The normal vectors of the planes are the directions of the Z axes. According to the definition of the robot kinematics model parameters, the errors of the twist angles can be calculated. The joint angles zero offsets are calibrated by the constraint that the rotation relationship between the world frame and the robot base frame is relatively constant. A planar target with several parallel lines is used to obtain the pose of the camera relative to the planar target by the lines in the target plane and the vanishing line of the plane. The quantum behaved particle swarm optimization (QPSO algorithm is used to calculate the parameters. Experiments are performed and the results show that the accuracy of the robot visual measurement system is improved about 10 times after being calibrated.

  7. Distributed consensus with visual perception in multi-robot systems

    CERN Document Server

    Montijano, Eduardo

    2015-01-01

    This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: ·         distributed consensus algorithms; ·         data association and robustne...

  8. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  9. A robotic assistant system for cardiac interventions under MRI guidance

    Science.gov (United States)

    Li, Ming; Mazilu, Dumitru; Wood, Bradford J.; Horvath, Keith A.; Kapoor, Ankur

    2010-02-01

    In this paper we present a surgical assistant system for implanting prosthetic aortic valve transapically under MRI guidance, in a beating heart. The system integrates an MR imaging system, a robotic system, as well as user interfaces for a surgeon to plan the procedure and manipulate the robot. A compact robotic delivery module mounted on a robotic arm is used for delivering both balloon-expandable and self-expanding prosthesis. The system provides different user interfaces at different stages of the procedure. A compact fiducial pattern close to the volume of interest is proposed for robot registration. The image processing and the transformation recovery methods using this fiducial in MRI are presented. The registration accuracy obtained by using this compact fiducial is comparable to the larger multi-spherical marker registration method. The registration accuracy using these two methods is less than 0.62+/-0.50 deg (mean +/- std. dev.) and 0.63+/-0.72 deg (mean +/- std. dev.), respectively. We evaluated each of the components and show that they can work together to form a complete system for transapical aortic valve replacement.

  10. BROMETH: Methodology to design safe reconfigurable medical robotic systems.

    Science.gov (United States)

    Ben Salem, Mohamed Oussama; Mosbahi, Olfa; Khalgui, Mohamed; Jlalia, Zied; Frey, Georg; Smida, Mahmoud

    2017-09-01

    This research paper deals with the development of a medical robotized control system for supracondylar humeral fracture treatment. Concurrent access to shared resources and applying reconfiguration scenarios can jeopardize the safety of the system. A new methodology is proposed in this paper, termed BROMETH, to guarantee the safety of such critical systems from their specification to their deployment, and passing through certification and implementation. The solution is applied to a real case study named Browser-based Reconfigurable Orthopedic Surgery (abbrev. BROS), a robotized platform dedicated to the treatment of supracondylar fractures, to illustrate the paper's contribution. This work starts from a medical issue, namely supracondylar humeral fracture treatment, to establish a new informatics solution, namely a new methodology to design safe reconfigurable medical robotic systems. The results of the experiments performed on real SCH fracture radiographies were quite satisfactory. Clinical experiments can then be performed after deploying the system on real hardware. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Safeguards and security considerations for automated and robotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S.E.; Jaeger, C.D.

    1994-09-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A&R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S&S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S&S into the design of future A&R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S&S guidance and design considerations for automation and robotics.

  12. [Use of the Zeus robotic surgical system for cardiac surgery].

    Science.gov (United States)

    Sawa, Yoshiki; Monta, Osamu; Matsuda, Hikaru

    2004-11-01

    The development of closed chest cardiopulmonary bypass systems has opened the door for totally endoscopic cardiac surgery. We used the robotic surgical system ZEUS for closure of the atrial septal defect (ASD) in three patients. Under one-lung ventilation, Port-Access cardiopulmonary bypass system of the drainage from the right internal jugular vein and the the right femoral vein and the return to the right femoral artery was started after port placement at the forth intercostal space of the right thoracic wall. ASD direct closure was achieved by using robotic surgical system ZEUS under cardiac arrest. The three patients were discharged in 7 days after the operation uneventfully. The robotic surgical system ZEUS can make cardiac surgeries less invasive than ever.

  13. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  14. Malfunction of the Da Vinci robotic system during robot-assisted laparoscopic prostatectomy: an international survey.

    Science.gov (United States)

    Kaushik, Dharam; High, Robin; Clark, Curtis J; LaGrange, Chad A

    2010-04-01

    To determine how urologists manage technical malfunction of the Da Vinci robotic system during robot-assisted radical prostatectomy (RARP). A web-based survey was sent to urologists performing RARP. The survey questions were related to the stage of operation during which robotic malfunction occurred, management of malfunctions, and most common types of robotic malfunction. In addition, data were collected concerning surgical volume and training. One hundred (56.8%) of the 176 responding surgeons had experienced an irrecoverable intraoperative malfunction. Eighty respondents experienced mechanical failure before starting RARP, of which 46 (57.5%) rescheduled, 15 (18.8%) performed an open radical approach, 12 (15%) performed standard laparoscopic prostatectomy, and 4 (4.9%) docked another robot. Sixty-three respondents experienced mechanical failure before starting urethrovesical anastomosis, of which 26 (41.2%) converted to an open procedure, 20 (31.7%) converted to standard laparoscopy, 10 (15.8%) finished with one less arm, and 3 (4.7%) aborted the procedure. Thirty-two respondents experienced malfunction before completion of the anastomosis, of which 20 (62.5%) converted to standard laparoscopy, while 12 (37.5%) converted to open surgery. Fellowship trained surgeons were more likely to complete the prostatectomy using standard laparoscopy (P = 0.05). No significant differences existed between surgeons performing a high volume or low volume of prostatectomies in regard to management of malfunctions. Intraoperative breakdown of the Da Vinci robot is uncommon, but patients should be counseled preoperatively and a plan devised on how breakdown will be managed. Intracorporeal suturing skills allow conversion to a pure laparoscopic approach, if necessary. Consequently, standard laparoscopic suturing skills should remain in the residency curriculum.

  15. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  16. Control design and analysis for underactuated robotic systems

    CERN Document Server

    Xin, Xin

    2014-01-01

    The last two decades have witnessed considerable progress in the study of underactuated robotic systems (URSs). Control Design and Analysis for Underactuated Robotic Systems presents a unified treatment of control design and analysis for a class of URSs, which include systems with multiple-degree-of-freedom and/or with underactuation degree two. It presents novel notions, features, design techniques, and strictly global motion analysis results for these systems. These new materials are shown to be vital in studying the control design and stability analysis of URSs. Control Design and Analysis for Underactuated Robotic Systems includes the modelling, control design, and analysis presented in a systematic way particularly for the following examples: l  directly and remotely driven  Acrobots l  Pendubot l  rotational pendulum l  counter-weighted Acrobot 2-link underactuated robot with flexible elbow joint l  variable-length pendulum l  3-link gymnastic robot with passive first joint l  n-link planar robo...

  17. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  18. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  19. Integration of a RFID System in a Social Robot

    Science.gov (United States)

    Corrales, A.; Salichs, M. A.

    This article presents the integration of a system of detection and identification of RFID tags in a social robot, with the goal of improving its sensorial system and to accomplish several specific tasks, such as: recognition of objects or navigation. For this purpose, basic skills of reading and writing have been designed, following the pattern of the basic element skill of the robot software architecture. The system has been implemented physically adding two RFID interrogators with built-in antenna to the sensorial robot system. The application has been implemented and tested as a skill in the detection of products such as medicines and diverse objects in order to assist visually impaired people, users of the third age and people who cannot read.

  20. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  1. Brain, mind, body and society: autonomous system in robotics.

    Science.gov (United States)

    Shimoda, Motomu

    2013-12-01

    In this paper I examine the issues related to the robot with mind. To create a robot with mind aims to recreate neuro function by engineering. The robot with mind is expected not only to process external information by the built-in program and behave accordingly, but also to gain the consciousness activity responding multiple conditions and flexible and interactive communication skills coping with unknown situation. That prospect is based on the development of artificial intelligence in which self-organizing and self-emergent functions have been available in recent years. To date, controllable aspects in robotics have been restricted to data making and programming of cognitive abilities, while consciousness activities and communication skills have been regarded as uncontrollable aspects due to their contingency and uncertainty. However, some researchers of robotics claim that every activity of the mind can be recreated by engineering and is therefore controllable. Based on the development of the cognitive abilities of children and the findings of neuroscience, researchers have attempted to produce the latest artificial intelligence with autonomous learning systems. I conclude that controllability is inconsistent with autonomy in the genuine sense and autonomous robots recreated by engineering cannot be autonomous partners of humans.

  2. Artificial endocrine controller for power management in robotic systems.

    Science.gov (United States)

    Sauzé, Colin; Neal, Mark

    2013-12-01

    The robots that operate autonomously for extended periods in remote environments are often limited to gather only small amounts of power through photovoltaic solar panels. Such limited power budgets make power management critical to the success of the robot's mission. Artificial endocrine controllers, inspired by the mammalian endocrine system, have shown potential as a method for managing competing demands, gradually switching between behaviors, synchronizing behavior with external events, and maintaining a stable internal state of the robot. This paper reports the results obtained using these methods to manage power in an autonomous sailing robot. Artificial neural networks are used for sail and rudder control, while an artificial endocrine controller modulates the magnitude of actuator movements in response to battery or sunlight levels. Experiments are performed both in simulation and using a real robot. In simulation a 13-fold reduction in median power consumption is achieved; in the robot this is reduced to a twofold reduction because of the limitations of the simulation model. Additional simulations of a long term mission demonstrate the controller's ability to make gradual behavioral transitions and to synchronize behaviors with diurnal and seasonal changes in sunlight levels.

  3. IMPERA: Integrated Mission Planning for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Daniel Saur

    2015-10-01

    Full Text Available This paper presents the results of the project IMPERA (Integrated Mission Planning for Distributed Robot Systems. The goal of IMPERA was to realize an extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main challenge was the development of a multi-robot planning and plan execution architecture. The robot team consists of three heterogeneous robots, which have to explore an unknown environment and collect lunar drill samples. The team activities are described using the language ALICA (A Language for Interactive Agents. Furthermore, we use the mission planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems to provide an intuitive interface to generate team activities. Therefore, we define the basic skills of our team with ALICA and define the desired goal states by using a logic description. Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed by the team. The paper describes the basic components for communication, coordinated exploration, perception and object transportation. Finally, we evaluate the planning engine pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of pRoPhEt MAS in more dynamic environments.

  4. The navigation system of the JPL robot

    Science.gov (United States)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  5. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  6. Design on a Composite Mobile System for Exploration Robot

    Directory of Open Access Journals (Sweden)

    Weiyan Shang

    2016-01-01

    Full Text Available In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been studied. Firstly, a simplified dynamic model has been established, and then by affecting factors analysis on ride performance, an optimization model for suspension parameters has been presented. Using NSGA-II method, a set of nondominated solutions for suspension parameters has been gotten, and by weighing the importance of the objective function, an optimal solution has been selected to be applied on suspension design. As the wheel-tracked exploration robot has been designed and manufactured, the property test has been conducted. By testing on physical prototype, the robot’s ability to surmount complex terrain has been verified. Design of the wheel-tracked robot will provide a stable platform for field exploration tasks, and in addition, the certain configuration and suspension parameters optimization method will provide reference to other robot designs.

  7. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  8. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  9. The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery.

    Science.gov (United States)

    Feng, Allen L; Razavi, Christopher R; Lakshminarayanan, Pranav; Ashai, Zaid; Olds, Kevin; Balicki, Marcin; Gooi, Zhen; Day, Andrew T; Taylor, Russell H; Richmon, Jeremy D

    2017-11-01

    Assess the feasibility of a novel robotic platform for use in microvascular surgery. Prospective feasibility study. Robotics laboratory. The Robotic ENT (Ear, Nose, and Throat) Microsurgery System (REMS) (Galen Robotics, Inc., Sunnyvale, CA) is a robotic arm that stabilizes a surgeon's instrument, allowing precise, tremor-free movement. Six microvascular naïve medical students and one microvascular expert performed microvascular anastomosis of a chicken ischiatic artery, with and without the REMS. Trials were blindly graded by seven microvascular surgeons using a microvascular tremor scale (MTS) based on instrument tip movement as a function of vessel width. Time to completion (TTC) was measured, and an exit survey assessed participants' experience. The interrater reliability of the MTS was calculated. For microvascular-naïve participants, the mean MTS score for REMS-assisted trials was 0.72 (95% confidence interval [CI] 0.64-1.07) and 2.40 (95% CI 2.12-2.69) for freehand (P 0.05). For the microvascular expert, the mean REMS-assisted MTS score was 0.71 (95% CI 0.15-1.27) and 0.86 (95% CI 0.35-1.37) for freehand (P > 0.05). TTC was 353 seconds for the REMS-assisted trial and 299 seconds for freehand. All participants thought the REMS was more accurate and improved instrument handling and stability. The intraclass correlation coefficient for MTS ratings was 0.914 (95% CI 0.823-0.968) for consistency and 0.901 (95% CI 0.795-0.963) for absolute value. The REMS is a feasible adjunct for microvascular surgery and a potential teaching tool capable of reducing tremor in novice users. Furthermore, the MTS is a feasible grading system for assessing microvascular tremor. NA. Laryngoscope, 127:2495-2500, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Controlling the cooperative behavior of a system of automous mobile robots

    OpenAIRE

    Stilwell, Daniel J.

    1993-01-01

    A novel material transport system is presented that uses 'swarms' of small autonomous mobile robots to collectively lift and move palletized loads. The robots are relatively unsophisticated in design and have no advanced sensory or communications capability. There is no central or supervisory controller directing the robots. Each robot must be able react to its environment autonomously, yet cooperate within a team of similarly designed robots. Reactive and behavior-based pri...

  11. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  12. Indoor Inter-Robot Distance Measurement in Collaborative Systems

    Directory of Open Access Journals (Sweden)

    FILOTE, C.

    2010-08-01

    Full Text Available This paper focuses on the problem of autonomous distance calculation between multiple mobile robots in collaborative systems. We propose and discuss two distinct methods, specifically developed under important design and functional constraints, such as the speed of operation, accuracy, energy and cost efficiency. Moreover, the methods are designed to be applied to indoor robotic systems and are independent of fixed landmarks. The measurement results, performed on the CORE-TX case study, show that the proposed solutions meet the design requirements previously specified.

  13. Towards an Explanation Generation System for Robots: Analysis and Recommendations

    Directory of Open Access Journals (Sweden)

    Ben Meadows

    2016-10-01

    Full Text Available A fundamental challenge in robotics is to reason with incomplete domain knowledge to explain unexpected observations and partial descriptions extracted from sensor observations. Existing explanation generation systems draw on ideas that can be mapped to a multidimensional space of system characteristics, defined by distinctions, such as how they represent knowledge and if and how they reason with heuristic guidance. Instances in this multidimensional space corresponding to existing systems do not support all of the desired explanation generation capabilities for robots. We seek to address this limitation by thoroughly understanding the range of explanation generation capabilities and the interplay between the distinctions that characterize them. Towards this objective, this paper first specifies three fundamental distinctions that can be used to characterize many existing explanation generation systems. We explore and understand the effects of these distinctions by comparing the capabilities of two systems that differ substantially along these axes, using execution scenarios involving a robot waiter assisting in seating people and delivering orders in a restaurant. The second part of the paper uses this study to argue that the desired explanation generation capabilities corresponding to these three distinctions can mostly be achieved by exploiting the complementary strengths of the two systems that were explored. This is followed by a discussion of the capabilities related to other major distinctions to provide detailed recommendations for developing an explanation generation system for robots.

  14. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  15. Design of active orthoses for a robotic gait rehabilitation system

    Science.gov (United States)

    Villa-Parra, A. C.; Broche, L.; Delisle-Rodríguez, D.; Sagaró, R.; Bastos, T.; Frizera-Neto, A.

    2015-09-01

    An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

  16. Camera space control system for a mobile robot forklift

    Science.gov (United States)

    Miller, Richard K.; Stewart, D. G.; Brockman, W. H.; Skaar, Steven B.

    1993-05-01

    In this paper we present the method of camera space manipulation for control of a mobile cart with an on-board robot. The objective is to do three dimensional object placement. The robot- cart system is operated as a forklift. The cart has a rear wheel for steering and driving, two front wheels, and a tether allowing control from a remote computer. Two remotely placed CCTV cameras provide images for use by the control system. The method is illustrated experimentally by a box stacking task. None of the components-cameras, robot-cart, or target box are prepositioned. 'Ring cues' are placed on both boxes in order to simplify the image processing. A sequential estimation scheme solves the placement problem. This scheme produces the control necessary to place the image of the grasped box at the relevant target image position in each of the two dimensional camera planes. This results in a precise and robust manipulation strategy.

  17. Coordinated robotic system for civil structural health monitoring

    Directory of Open Access Journals (Sweden)

    Qidwai Uvais

    2017-01-01

    Full Text Available With the recent advances in sensors, robotics, unmanned aerial vehicles, communication, and information technologies, it is now feasible to move towards the vision of ubiquitous cities, where virtually everything throughout the city is linked to an information system through technologies such as wireless networking and radio-frequency identification (RFID tags, to provide systematic and more efficient management of urban systems, including civil and mechanical infrastructure monitoring, to achieve the goal of resilient and sustainable societies. In this proposed system, unmanned aerial vehicle (UAVs is used to ascertain the coarse defect signature using panoramic imaging. This involves image stitching and registration so that a complete view of the surface is seen with reference to a common reference or origin point. Thereafter, crack verification and localization has been done using the magnetic flux leakage (MFL approach which has been performed with the help of a coordinated robotic system. In which the first robot is placed at the top of the structure whereas the second robot is equipped with the designed MFL sensory system. With the initial findings, the proposed system identifies and localize the crack in the given structure.

  18. MRI guided focused ultrasound robotic system for animal experiments.

    Science.gov (United States)

    Yiannakou, Marinos; Menikou, Georgios; Yiallouras, Christos; Ioannides, Cleanthis; Damianou, Christakis

    2017-12-01

    In this paper an MRI-guided focused ultrasound (MRgFUS) robotic system was developed that can be used for conducting experiments in small animals.The target for this robotic system regarding motion was to move a therapeutic ultrasound transducer in two Cartesian axes. A single element spherically focused transducer of 3 cm diameter, focusing at 7 cm and operating at 0.4 MHz was used. The positioning device incorporates only MRI compatible materials. The propagation of ultrasound is a bottom to top approach. The 2-D positioning device is controlled by custom-made software and a custom-made electronic system which controls the two piezoelectric motors. The system was tested successfully in agar/silica/evaporated milk phantom for various tasks (robot motion, MR compatibility, and MR thermometry). The robotic system is capable of moving the focused ultrasound transducer to perform MR-guided focused ultrasound experiments in small animals. This system has the potential to be deployed as a cost effective solution for performing experiments in small animals. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  20. Development of wrist rehabilitation robot and interface system.

    Science.gov (United States)

    Yamamoto, Ikuo; Matsui, Miki; Inagawa, Naohiro; Hachisuka, Kenji; Wada, Futoshi; Hachisuka, Akiko; Saeki, Satoru

    2015-01-01

    The authors have developed a practical wrist rehabilitation robot for hemiplegic patients. It consists of a mechanical rotation unit, sensor, grip, and computer system. A myoelectric sensor is used to monitor the extensor carpi radialis longus/brevis muscle and flexor carpi radialis muscle activity during training. The training robot can provoke training through myoelectric sensors, a biological signal detector and processor in advance, so that patients can undergo effective training of extention and flexion in an excited condition. In addition, both-wrist system has been developed for mirror effect training, which is the most effective function of the system, so that autonomous training using both wrists is possible. Furthermore, a user-friendly screen interface with easily recognizable touch panels has been developed to give effective training for patients. The developed robot is small size and easy to carry. The developed aspiring interface system is effective to motivate the training of patients. The effectiveness of the robot system has been verified in hospital trails.

  1. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    Science.gov (United States)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  2. Robotic Surgical System for Radical Prostatectomy: A Health Technology Assessment

    Science.gov (United States)

    Wang, Myra; Xie, Xuanqian; Wells, David; Higgins, Caroline

    2017-01-01

    Background Prostate cancer is the second most common type of cancer in Canadian men. Radical prostatectomy is one of the treatment options available, and involves removing the prostate gland and surrounding tissues. In recent years, surgeons have begun to use robot-assisted radical prostatectomy more frequently. We aimed to determine the clinical benefits and harms of the robotic surgical system for radical prostatectomy (robot-assisted radical prostatectomy) compared with the open and laparoscopic surgical methods. We also assessed the cost-effectiveness of robot-assisted versus open radical prostatectomy in patients with clinically localized prostate cancer in Ontario. Methods We performed a literature search and included prospective comparative studies that examined robot-assisted versus open or laparoscopic radical prostatectomy for prostate cancer. The outcomes of interest were perioperative, functional, and oncological. The quality of the body of evidence was examined according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Working Group criteria. We also conducted a cost–utility analysis with a 1-year time horizon. The potential long-term benefits of robot-assisted radical prostatectomy for functional and oncological outcomes were also evaluated in a 10-year Markov model in scenario analyses. In addition, we conducted a budget impact analysis to estimate the additional costs to the provincial budget if the adoption of robot-assisted radical prostatectomy were to increase in the next 5 years. A needs assessment determined that the published literature on patient perspectives was relatively well developed, and that direct patient engagement would add relatively little new information. Results Compared with the open approach, we found robot-assisted radical prostatectomy reduced length of stay and blood loss (moderate quality evidence) but had no difference or inconclusive results for functional and oncological outcomes

  3. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  4. COOPERATIVE PERFORMANCE SYSTEM FOR AUTOMATIC PLAYING ROBOTS :BASIC TECHNOLOGY FOR SYNCHRONIZING TO THE SURROUNDING PERFORMANCE

    OpenAIRE

    若林, 直哉

    2016-01-01

    Automatic playing robots are the robots that can play musical instruments just like human players by using artificial mechanical systems and the intelligent computer ystems. When we want to try concerts with those robots, it is inevitably necessary to synchronize “our” performance to the robots. As an “automatic” robot, the robot should synchronize to our performance in tempo, expressions and etc. In this paper, a new type of automatic playing robot is proposed that can synchronize the musi...

  5. Design of an integrated master-slave robotic system for minimally invasive surgery.

    Science.gov (United States)

    Li, Jianmin; Zhou, Ningxin; Wang, Shuxin; Gao, Yuanqian; Liu, Dongchun

    2012-03-01

    Minimally invasive surgery (MIS) robots are commonly used in hospitals and medical centres. However, currently available robotic systems are very complicated and huge, greatly raising system costs and the requirements of operating rooms. These disadvantages have become the major impediments to the expansion of MIS robots. An integrated MIS robotic system is proposed based on the analysis of advantages and disadvantages of different MIS robots. In the proposed system, the master manipulators, slave manipulators, image display device and control system have been designed as a whole. Modular design is adopted for the control system for easy maintenance and upgrade. The kinematic relations between the master and the slave are also investigated and embedded in software to realize intuitive movements of hand and instrument. Finally, animal experiments were designed to test the effectiveness of the robot. The robot realizes natural hand-eye movements between the master and the slave to facilitate MIS operations. The experimental results show that the robot can realize similar functions to those of current commercialized robots. The integrated design simplifies the robotic system and facilitates use of the robot. Compared with the commercialized robots, the proposed MIS robot achieves similar functions and features but with a smaller size and less weight. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; hide

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  7. Cognitive robotic system for learning of complex visual stimuli

    Science.gov (United States)

    Potapov, A. S.; Rozhkov, A. S.

    2013-05-01

    The problem of learning of complex visual stimuli in cognitive robotics is considered. These stimuli should be selected on the base of rules supporting arbitrary comparisons of stimulus features with features of other salient objects (context). New perceptual knowledge representation based on the predicate logic is implemented to express such rules. Computable predicates are provided by low-level vision system. The rules are constructed using genetic algorithms on the base of a set of examples obtained by a robot during consequent trials. Dependence between the number of necessary trials and rule complexity is studied.

  8. Assistive Control System for Upper Limb Rehabilitation Robot.

    Science.gov (United States)

    Chen, Sung-Hua; Lien, Wei-Ming; Wang, Wei-Wen; Lee, Guan-De; Hsu, Li-Chun; Lee, Kai-Wen; Lin, Sheng-Yen; Lin, Chia-Hsun; Fu, Li-Chen; Lai, Jin-Shin; Luh, Jer-Junn; Chen, Wen-Shiang

    2016-11-01

    This paper presents an assistive control system with a special kinematic structure of an upper limb rehabilitation robot embedded with force/torque sensors. A dynamic human model integrated with sensing torque is used to simulate human interaction under three rehabilitation modes: active mode, assistive mode, and passive mode. The hereby proposed rehabilitation robot, called NTUH-ARM, provides 7 degree-of- freedom (DOF) motion and runs subject to an inherent mapping between the 7 DOFs of the robot arm and the 4 DOFs of the human arm. The Lyapunov theory is used to analyze the stability of the proposed controller design. Clinical trials have been conducted with six patients, one of which acts as a control. The results of these experiments are positive and STREAM assessment by physical therapists also reveals promising results.

  9. Robotics and Its Effects on the Educational System of Montenegro

    Science.gov (United States)

    Andic, Branko; Grujicic, Rade; Markuš, Marina Mijanovic

    2015-01-01

    The paper presents the results of research conducted among students of primary and secondary schools in Montenegro about robotics and its place in Montenegrin educational system. Survey was used as a data collecting method in the study and the results were obtained using theoretical analysis. Attitudes of Montenegrin students were compared with…

  10. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-03-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  11. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  12. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  13. [The beginnings of robotic surgery--from the roots up to the da Vinci telemanipulator system].

    Science.gov (United States)

    Dervaderics, János

    2007-12-09

    The history of the robotic surgery is only 22 years old. The article gives a short overview regarding the history of robotics, the surgical robots, the da Vinci telemanipulator system and some further commercial and experimental surgical robotic surgical simulation is also emphasized. Robotic surgery has its own place within the following concepts: 1. computer assisted surgery (CAS), 2. computer integrated surgery (CIS), 3. surgical automation, 4. surgical system integration and 5. artificial intelligence (AI). At the end of the paper there are some important sources of informations regarding robotic surgery.

  14. System safety analysis of an autonomous mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, R.J.

    1994-08-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate{trademark} robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA{copyright}) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection.

  15. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing.

    Science.gov (United States)

    Leonard, Simon; Wu, Kyle L; Kim, Yonjae; Krieger, Axel; Kim, Peter C W

    2014-04-01

    This paper introduces the smart tissue anastomosis robot (STAR). Currently, the STAR is a proof-of-concept for a vision-guided robotic system featuring an actuated laparoscopic suturing tool capable of executing running sutures from image-based commands. The STAR tool is designed around a commercially available laparoscopic suturing tool that is attached to a custom-made motor stage and the STAR supervisory control architecture that enables a surgeon to select and track incisions and the placement of stitches. The STAR supervisory-control interface provides two modes: A manual mode that enables a surgeon to specify the placement of each stitch and an automatic mode that automatically computes equally-spaced stitches based on an incision contour. Our experiments on planar phantoms demonstrate that the STAR in either mode is more accurate, up to four times more consistent and five times faster than surgeons using state-of-the-art robotic surgical system, four times faster than surgeons using manual Endo360(°)®, and nine times faster than surgeons using manual laparoscopic tools.

  16. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  17. Complete low-cost implementation of a teleoperated control system for a humanoid robot

    National Research Council Canada - National Science Library

    Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena

    2013-01-01

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking...

  18. "Excuse me, where's the registration desk?" Report on Integrating Systems for the Robot Challenge AAAI 2002

    National Research Council Canada - National Science Library

    Perzanowski, Dennis; Schultz, Alan C; Adams, William; Bugajska, Magda; Abramson, M; MacMahon, M; Atrash, A; Coblenz, M

    2002-01-01

    ...., and the Naval Research Laboratory -- collaborated and integrated their various robotic systems and interfaces to attempt The Robot Challenge held at the AAAI 2002 annual conference in Edmonton, Alberta...

  19. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.; Van Herwaarden, Joost A.

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  20. Reliability analysis of a robotic system using hybridized technique

    Science.gov (United States)

    Kumar, Naveen; Komal; Lather, J. S.

    2017-09-01

    In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda-tau (FLT) technique is employed, then the computed reliability parameters have wide range of predictions. Therefore, decision-maker cannot suggest any specific and influential managerial strategy to prevent unexpected failures and consequently to improve complex system performance. To overcome this problem, the present study utilizes a hybridized technique. With this technique, fuzzy set theory is utilized to quantify uncertainties, fault tree is utilized for the system modeling, lambda-tau method is utilized to formulate mathematical expressions for failure/repair rates of the system, and genetic algorithm is utilized to solve established nonlinear programming problem. Different reliability parameters of a robotic system are computed and the results are compared with the existing technique. The components of the robotic system follow exponential distribution, i.e., constant. Sensitivity analysis is also performed and impact on system mean time between failures (MTBF) is addressed by varying other reliability parameters. Based on analysis some influential suggestions are given to improve the system performance.

  1. Design and Evaluation of a DIY Construction System for Educational Robot Kits

    Science.gov (United States)

    Vandevelde, Cesar; Wyffels, Francis; Ciocci, Maria-Cristina; Vanderborght, Bram; Saldien, Jelle

    2016-01-01

    Building a robot from scratch in an educational context can be a challenging prospect. While a multitude of projects exist that simplify the electronics and software aspects of a robot, the same cannot be said for construction systems for robotics. In this paper, we present our efforts to create a low-cost do-it-yourself construction system for…

  2. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  3. Percutaneous inner-ear access via an image-guided industrial robot system

    OpenAIRE

    Baron, S; Eilers, H; Munske, B; Toennies, JL; Balachandran, R; Labadie, RF; Ortmaier, T; Webster, RJ

    2010-01-01

    Image-guided robots have been widely used for bone shaping and percutaneous access to interventional sites. However, due to high-accuracy requirements and proximity to sensitive nerves and brain tissues, the adoption of robots in inner-ear surgery has been slower. In this paper the authors present their recent work towards developing two image-guided industrial robot systems for accessing challenging inner-ear targets. Features of the systems include optical tracking of the robot base and too...

  4. Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System

    Science.gov (United States)

    Hu, Min

    2017-10-01

    In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.

  5. DEVELOPMENT OF TRAJECTORY CONTROL SYSTEM FOR THE OMNIDIRECTIONAL MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Y. A. Kapitanyuk

    2014-03-01

    Full Text Available The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.

  6. Distributed cooperating processes in a mobile robot control system

    Science.gov (United States)

    Skillman, Thomas L., Jr.

    1988-01-01

    A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.

  7. A real-time robot arm collision detection system

    Science.gov (United States)

    Shaffer, Clifford A.; Herb, Gregory M.

    1990-01-01

    A data structure and update algorithm are presented for a prototype real time collision detection safety system for a multi-robot environment. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3-D space into eight equal cubic octants until each octant meets some decomposition criteria. The octree stores cylspheres (cylinders with spheres on each end) and rectangular solids as primitives (other primitives can easily be added as required). These primitives make up the two seven degrees-of-freedom robot arms and environment modeled by the system. Octree nodes containing more than a predetermined number N of primitives are decomposed. This rule keeps the octree small, as the entire environment for the application can be modeled using a few dozen primitives. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Incidents in which one robot arm comes too close to another arm or an object are reported. Cycle time for interpreting current joint angles, updating the octree, and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 80386 processor running at 20 MHz.

  8. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  9. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  10. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  11. L-systems driven self-reconfiguration of modular robots

    Directory of Open Access Journals (Sweden)

    Dongyang Bie

    2016-10-01

    Full Text Available In the domain of modular self-reconfigurable robotic systems, self-reconfiguration is known to be a highly challenging task. This article presents a novel algorithm for distributed self-reconfiguration by combining cellular automata and L-systems. Cellular automata is used to handle the relative motion planning of decentralized modules. L-systems are introduced to provide a topological description for the target configuration. The turtle interpretation is extended to modular robotics to generate local predictions for distributed modules from global description. Local predictions spread out in the system through gradient propagation. Modules, using cellular automata rules managing local motion, climb gradient to the expanding fronts for constructing global configurations. Both simulations and experiments have demonstrated the practical effectiveness of the proposed algorithm.

  12. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  13. Stiffness analysis and experimental validation of robotic systems

    Science.gov (United States)

    Carbone, Giuseppe

    2011-06-01

    Stiffness can be considered of primary importance in order to guarantee the successful use of any robotic system for a given task. Therefore, this paper proposes procedures for carrying out both numerical and experimental estimations of stiffness performance for multibody robotic systems. The proposed numerical procedure is based on models with lumped parameters for deriving the Cartesian stiffness matrix. Stiffness performance indices are also proposed for comparing stiffness performance. Then, an experimental procedure for the evaluation stiffness performance is proposed as based on a new measuring system named as Milli-CATRASYS (Milli Cassino Tracking System) and on a trilateration technique. Cases of study are reported to show the soundness and engineering feasibility of both the proposed numerical formulation for stiffness analysis and experimental validation of stiffness performance.

  14. An architecture for an adaptive, flexible robotic welding system

    Science.gov (United States)

    Martin, J. F.; Ruokangas, C. C.

    1985-02-01

    A single computer containing a central processing unit (CPU) of the 8-bit or 16-bit type is ordinarily employed for the control of modern robotic processing cells. The computer system together with the actuator servo circuits is referred to as the 'controller'. The detailed capabilities of the controller and the architecture of the system in which it is contained become especially important in the case of high-unit-value, low-batch-count manufacturing. In the production of aerospace components and military electronics, the requirements for an automated system demand a much higher level of flexibility and adaptivity than is needed in the case of most consumer-goods product lines. The present investigation is concerned with a particular manufacturing process involving the TIG (tungsten inert gas) welding of Space Shuttle Main Engine (SSME) components. Attention is given to an approach for achieving the required characteristics in an integrated, hierarchical robotic welding system.

  15. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  16. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  17. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...... tools and robots, and recharge their batteries while underwater. These properties will provide the system, when fully developed, with unique capabilities such as ability to adapt robotic morphology and function to the current task and tolerate failures leading to long-term autonomous operations....

  18. Design of the arm-wrestling robot's force acquisition system based on Qt

    Science.gov (United States)

    Huo, Zhixiang; Chen, Feng; Wang, Yongtao

    2017-03-01

    As a collection of entertainment and medical rehabilitation in a robot, the research on the arm-wrestling robot is of great significance. In order to achieve the collection of the arm-wrestling robot's force signals, the design and implementation of arm-wrestling robot's force acquisition system is introduced in this paper. The system is based on MP4221 data acquisition card and is programmed by Qt. It runs successfully in collecting the analog signals on PC. The interface of the system is simple and the real-time performance is good. The result of the test shows the feasibility in arm-wrestling robot.

  19. Pneumatic Actuation of a 2-Link Robotic System | Ramjug-Ballgobin ...

    African Journals Online (AJOL)

    The investigation of a 2-link pneumatic robotic system, using robotic and electric actuators, will be made. For the sake of representation, the prototype will be made of available materials in the market to fulfil its requirements. An insight into robots explaining the various functions in the human world will be outlined. The aim of ...

  20. Experience in system design for human-robot teaming in urban search & rescue

    NARCIS (Netherlands)

    Kruijff, G.J.M.; Janíček, M.; Keshavdas, S.; Larochelle, B.; Zender, H.; Smets, N.J.J.M.; Mioch, T.; Neerincx, M.A.; Diggelen, J. van; Colas, F.; Liu, M.; Pomerleau, F.; Svoboda, T.; Petriček, T.; Pirri, F.; Giannni, M.; Papadakis, P.; Sinha, A.; Balmer, P.; Tomatis, N.; WOrst, R.; Linder, T.; Surmann, H.; Tretyakov, V.; Corrao, S.; Pratzler-Wanczura, S.; Sulk, M.

    2012-01-01

    The paper describes experience with applying a user-centric design methodology in developing systems for human-robot teaming in Urban Search & Rescue. A human-robot team consists of several robots (rovers/UGVs, microcopter/UAVs), several humans at an off-site command post (mission commander, UGV

  1. System design of a hand-held mobile robot for craniotomy.

    Science.gov (United States)

    Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim

    2009-01-01

    This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.

  2. Robotic cholecystectomy using Revo-i Model MSR-5000, the newly developed Korean robotic surgical system: a preclinical study.

    Science.gov (United States)

    Lim, Jin Hong; Lee, Woo Jung; Park, Dong Won; Yea, Hye Jin; Kim, Se Hoon; Kang, Chang Moo

    2017-08-01

    Laparoscopic surgery has become the standard option for gastrointestinal surgeries. However, laparoscopic procedures require extended training times and are difficult for inexperienced surgeons. Robot-assisted laparoscopic surgery facilitates easy adaptation of laparoscopic procedures, but robotic surgical systems are expensive. In addition, their cost has remained high because there is currently only one manufacturer of commercially available systems. Recently, a new Korean robotic surgical system, Revo-i, has been developed. The aim of this study was to evaluate the feasibility and safety of Revo-i by performing robotic cholecystectomy in a porcine model. After approval by the Institutional Animal Care and Use Committee of Yonsei University Health System, cholecystectomy was performed in four pigs using the Revo-i robotic surgical system. Operative time and perioperative complications were recorded, and all animals were observed for postoperative complications for 2 weeks after surgery RESULTS: Robotic cholecystectomy was completed successfully and without gallbladder perforation in all cases. The mean operative time was 78 ± 12 min, the mean docking time was 4.5 ± 2.52 min, and the mean console time was 49.8 ± 14.17 min. There were no perioperative complications, and none of the animal used for the in vivo models exhibited abnormal behavior during the postoperative observation period. These preliminary results verify the safety and efficacy of robotic cholecystectomy using the Revo-i robotic surgical system. Human trials are slated to begin accordingly.

  3. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  4. A real-time robot arm collision avoidance system

    Science.gov (United States)

    Shaffer, Clifford A.; Herb, Gregory M.

    1992-01-01

    A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.

  5. Haptic and Visual Training of System Behavior – a case study for Robotic Programming-by-Demonstration

    Directory of Open Access Journals (Sweden)

    Schmirgel Volker

    2011-12-01

    Full Text Available Programming-by-demonstration (PBD is a new paradigm for programming industrial robots enabled by the development of the DLR/KUKA light-weight robot. Although the PBD approach facilitates and simplifies the generation of robot programs, the technician still needs to have skills and knowledge about the robotic system in order to produce efficient trajectories and to exploit the abilities of the robot in an optimal way. Within the EU-SKILLS project a robotic training system and protocol was developed to enable enactive learning of robotic skills and abilities. The paper presents the evaluation of the skill transfer for robotic PBD based on enactive learning.

  6. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  7. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  8. CONTROL SYSTEM FOR UNMANNED AIRCRAFT EQUIPPED WITH ROBOTICS ARM

    OpenAIRE

    Alexei A. Margun; Konstantin A. Zimenko; Dmitry N. Bazylev; Alexei A. Bobtsov; Artem S. Kremlev; Denis D. Ibraev; Martin Cech

    2014-01-01

    The paper deals with the problem of control system synthesis for multi rotational UAV equipped with robotics arm. Control algorithm is proposed based on the method of feedback linearization and synthesis of proportional-differential controller with the real time computation of the inertia tensor and center of mass changes and compensation of the reactive torque generated by the dynamics of the manipulator. Quadrocopter with attached articulated manipulator is selected as a model o...

  9. Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System

    OpenAIRE

    Faix, Marvin; Lobo, Jorge; Laurent, Raphael; Vaufreydaz, Dominique; Mazer, Emmanuel

    2015-01-01

    International audience; This paper presents a stochastic computing implementationof a Bayesian sensorimotor system that performsobstacle avoidance for an autonomous robot. In a previouswork we have shown that we are able to automatically design aprobabilistic machine which computes inferences on a Bayesianmodel using stochastic arithmetic. We start from a high levelBayesian model description, then our compiler generates anelectronic circuit, corresponding to the probabilistic inference,operat...

  10. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    OpenAIRE

    Omar Alani; Omar Daoud

    2009-01-01

    In this paper, a predistortion neural network (PDNN) architecture has been imposed to the Sniffer Mobile Robot (SNFRbot) that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR). Simulation results show that using PDNN resulted in better PAPR performance than the...

  11. Graphical analysis of power systems for mobile robotics

    Science.gov (United States)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  12. Smart Micro/Nano-robotic Systems for Gene Delivery.

    Science.gov (United States)

    Pedram, Alireza; Pishkenari, Hossein Nejat

    2017-01-01

    Small scale robotics have attracted growing attention for the prospect of targeting and accessing cell-sized sites, necessary for high precision biomedical applications and drug/gene delivery. The loss of controlled gene therapy, inducing systemic side effects and reduced therapeutic efficiency, can be settled utilizing these intelligent carriers. Newly proposed solutions for the main challenges of control, power supplying, gene release and final carrier extraction/degradation have shifted these smart miniature robots to the point of being employed for practical applications of transferring oligonucleotides (pDNA, siRNA, mRNA, etc.) in near future. In this paper, different scenarios and their endeavors to address the vital working demands and steps, in particular, carrier attachment and release, cell internalization, manipulation concerns as well as actuation systems are discussed.This review highlights some promising experimental results showing controlled gene release of robotic systems in comparison with current non-specific gene delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Autonomous Monitoring Aerial Robot System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji H.; Gu, Beom W; Thai, Van X.; Rim, C. T. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, autonomous monitoring aerial robot system (AMARS), which includes omnidirectional wireless charging platform, aerial robot, landing coils and a battery management board, is proposed to guarantee automatic monitoring of NPPs. The prototype of the system is fabricated, and omnidirectional charging of the system is experimentally validated with 1 C charging state. AR(Aerial Robots)s are essential for NPP accident management because human cannot access to the accident site due to the risks of unexpected explosions, collapses, and high level of radioactive contaminants. Moreover, ARs can support operators to manage normal operation of NPPs built in harsh environment of high temperature and humidity such as UAE Barakah NPP. Because these ARs usually have very low energy capacity, however, the operation time of ARs is less than 30 minutes and should be recharged regularly by human powers, which makes it impossible to monitor NPPs by ARs automatically. In this paper, the concept of AMARS has been proposed and its performance was successfully verified with a fabricated prototype. The charging state of the on board battery in AR was measured as 0.5 C with the induced voltage of 18.6 V, which is well matched to the designed induced voltage when the AR was placed on the edge of the wireless charging platform.

  14. Concepts for multi-IFU robotic positioning systems

    Science.gov (United States)

    Miziarski, Stan; Brzeski, Jurek; Bland Hawthorn, Joss; Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Horton, Anthony; Lawrence, Jon; Saunders, Will; Smith, Greg A.; Staszak, Nicholas

    2012-09-01

    Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection, guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a number of instruments.

  15. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  16. Power And Propulsion Systems For Mobile Robotic Applications

    Science.gov (United States)

    Layuan, Li; Haiming, Zou

    1987-02-01

    Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.

  17. Optimizing a mobile robot control system using GPU acceleration

    Science.gov (United States)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  18. Docking System Design and Self-Assembly Control of Distributed Swarm Flying Robots

    Directory of Open Access Journals (Sweden)

    Hongxing Wei

    2012-11-01

    Full Text Available This paper presents a novel docking system design and the distributed self-assembly control strategy for a Distributed Swarm Flying Robot (DSFR. The DSFR is a swarm robot comprising many identical robot modules that are able to move on the ground, dock with each other and fly coordinately once self-assembled into a robotic structure. A generalized adjacency matrix method is proposed to describe the configurations of robotic structures. Based on the docking system and the adjacency matrix, experiments are performed to demonstrate and verify the self-assembly control strategy.

  19. Adaptive Robotic Systems Design in University of Applied Sciences

    Directory of Open Access Journals (Sweden)

    Gunsing Jos

    2016-01-01

    Full Text Available In the industry for highly specialized machine building (small series with high variety and high complexity and in healthcare a demand for adaptive robotics is rapidly coming up. Technically skilled people are not always available in sufficient numbers. A lot of know how with respect to the required technologies is available but successful adaptive robotic system designs are still rare. In our research at the university of applied sciences we incorporate new available technologies in our education courses by way of research projects; in these projects students will investigate the application possibilities of new technologies together with companies and teachers. Thus we are able to transfer knowledge to the students including an innovation oriented attitude and skills. Last years we developed several industrial binpicking applications for logistics and machining-factories with different types of 3D vision. Also force feedback gripping has been developed including slip sensing. Especially for healthcare robotics we developed a so-called twisted wire actuator, which is very compact in combination with an underactuated gripper, manufactured in one piece in polyurethane. We work both on modeling and testing the functions of these designs but we work also on complete demonstrator systems. Since the amount of disciplines involved in complex product and machine design increases rapidly we pay a lot of attention with respect to systems engineering methods. Apart from the classical engineering disciplines like mechanical, electrical, software and mechatronics engineering, especially for adaptive robotics more and more disciplines like industrial product design, communication … multimedia design and of course physics and even art are to be involved depending on the specific application to be designed. Design tools like V-model, agile/scrum and design-approaches to obtain the best set of requirements are being implemented in the engineering studies from

  20. Intelligent Systems and Its Applications in Robotics

    Science.gov (United States)

    Kaynak, Okyay

    The last decade of the last millennium is characterized by what might be called the intelligent systems revolution, as a result of which, it is now possible to have man made systems that exhibit ability to reason, learn from experience and make rational decisions without human intervention. Prof. Zadeh has coined the word MIQ (machine intelligence quotient) to describe a measure of intelligence of man-made systems. In this perspective, an intelligent system can be defined as a system that has a high MIQ.

  1. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    Science.gov (United States)

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  2. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  3. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  4. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    Science.gov (United States)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  5. Urological robotic surgery: preliminary experience with the Zeus system.

    Science.gov (United States)

    Miyake, Osamu; Kiuchi, Hiroshi; Yoshimura, Kazuhiro; Okuyama, Akihiko

    2005-10-01

    We performed robotic or robotically-assisted laparoscopic surgery for urological diseases, and evaluated the ef ficacy and safety of this surgery. Between November 2003 and June 2004, we performed laparoscopic surgery with the Zeus system in eight cases. Three adrenalectomy cases of cortical adenoma presenting with Cushing syndrome and primary aldosteronism, and two cases of nephrectomy for renal cell carcinoma in dialyzed patients were performed solely with Zeus. In two cases of ureteral stenosis, Zeus was used for ureteral anastomosis after partial ureterectomy by manual laparoscopy. In one prostatectomy case, vesico-urethral anastomosis was performed with Zeus after extraperitoneal prostatectomy by manual laparoscopy. All of the cases were successfully treated without any complications during or after operation. All patients were discharged from hospital within 12 days postoperatively. As for adrenalectomy, nephrectomy and pyeloplasty, this may be the fi rst report in Japan. Our preliminary experiences suggest that such a robot system, which is being developed day by day, might become more beneficial in future in urological laparoscopic surgery.

  6. Fundamentals of robotic mechanical systems theory, methods, and algorithms

    CERN Document Server

    Angeles, Jorge

    2014-01-01

    The 4th edition includes updated and additional examples and exercises on the core fundamental concepts of mechanics, robots, and kinematics of serial robots. New images of CAD models and physical robots help to motivate concepts being introduced. Each chapter of the book can be read independetly of others as it addresses a seperate issue in robotics.

  7. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  8. Develop tele-controls for self thrusting percussion drilling machine and associated interface.

    CSIR Research Space (South Africa)

    Ottermann, RW

    2000-10-01

    Full Text Available CIRCUIT DIAGRAMS AND PROGRAM FLOW CHARTS .................................................47 5 TABLE OF FIGURES Figure 4-1 : System level functional analysis..................................................... 10 Figure 6-1 : Valve configuration... stream_source_info Gap702_report_final.pdf.txt stream_content_type text/plain stream_size 74221 Content-Encoding UTF-8 stream_name Gap702_report_final.pdf.txt Content-Type text/plain; charset=UTF-8 1 Safety in Mines...

  9. CONTROL SYSTEM FOR UNMANNED AIRCRAFT EQUIPPED WITH ROBOTICS ARM

    Directory of Open Access Journals (Sweden)

    Alexei A. Margun

    2014-11-01

    Full Text Available The paper deals with the problem of control system synthesis for multi rotational UAV equipped with robotics arm. Control algorithm is proposed based on the method of feedback linearization and synthesis of proportional-differential controller with the real time computation of the inertia tensor and center of mass changes and compensation of the reactive torque generated by the dynamics of the manipulator. Quadrocopter with attached articulated manipulator is selected as a model of the control object. Systems of equations describing the behavior of considered dynamical system are obtained according to the Newton and Euler-Lagrange laws. Expressions are offered, defining the inertia tensor and the position of the system center of mass depending on the current position of the manipulator, and the torque acting on the quadrocopter from the manipulator. Feedback linearization with arm influence compensation on quadrocopter is applied for the resulting nonlinear coupled system. As a result, robot dynamics equations have been converted to a linear stationary system. Converted system control is achieved by a proportional-differential controller. Examined system simulation is done with control method described in the paper and the classical method based on a proportional-differential controller. Simulation results confirm the effectiveness of the proposed approach and demonstrate that the proposed approach provides higher accuracy of the tracking error, than control method by means of proportional-differential regulator.

  10. Swarm Robot Systems Based on the Evolution of Personality Traits

    OpenAIRE

    Jr., Sidney Nascimento GIVIGI; SCHWARTZ, Howard M.

    2007-01-01

    Game theory may be very useful in modeling and analyzing swarms of robots. Using game theory in conjunction with traits of personalities, we achieve intelligent swarm robots. Traits of personality are characteristics of each robot that define the robots' behaviours. The environment is represented as a game and due to the evolution of the traits through a learning process, we show how the robots may react intelligently to changes in the environment. A proof of convergence f...

  11. Novel PID Tracking Controller for 2DOF Robotic Manipulator System Based on Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Elkhateeb Nasr A.

    2017-12-01

    Full Text Available This study presents a well-developed optimization methodology based on the dynamic inertia weight Artificial Bee Colony algorithm (ABC to design an optimal PID controller for a robotic arm manipulator. The dynamical analysis of robotic arm manipulators investigates a coupling relation between the joint torques applied by the actuators and the position and acceleration of the robot arm. An optimal PID control law is obtained from the proposed (ABC algorithm and applied to the robotic system. The designed controller optimizes the trajectory of the robot’s end effector for a time-variant input and makes the robot robust in the presence of external disturbance.

  12. Robotics

    Science.gov (United States)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  13. Robot Learning Using Learning Classifier Systems Approach

    OpenAIRE

    Jabin, Suraiya

    2010-01-01

    In this chapter, I have presented Learning Classifier Systems, which add to the classical Reinforcement Learning framework the possibility of representing the state as a vector of attributes and finding a compact expression of the representation so induced. Their formalism conveys a nice interaction between learning and evolution, which makes them a class of particularly rich systems, at the intersection of several research domains. As a result, they profit from the accumulated extensions of ...

  14. Optimal design of passive gravity compensation system for articulated robots

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Gyun; Lee, Jae Young; Kim, Sang Hyun; Kim, Sung Rak [Hyundai Heavy Industries Co. Ltd., Daejeon (Korea, Republic of)

    2012-01-15

    In this paper, the optimal design of a spring type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.

  15. Calibration system of underwater robot sensor based on CID algorithm

    Science.gov (United States)

    Wang, Xiaolong; Wang, Sen; Gao, Lifu; Wu, Shan; Wei, Shuheng

    2017-06-01

    In the calibration of static characteristic of the sensor, the original measured data are usually a nonlinear distribution. Based on this situation, underwater robot sensor static calibration system is designed. The system consists of four parts: a sensor, I-V conversion with amplifying circuit, microcontroller STM32F107 and a PC. The lower computer and the upper computer communicate by USB. A kind of adaptive cyclic iterative denoising (CID) algorithm is presented for data processing. Finally the curve will be fitted with compensation processing.

  16. Towards intelligent robot-assisted rehabilitation systems

    Science.gov (United States)

    Barkana, Duygun Erol

    2010-07-01

    This article presents an intelligent control architecture that is used to monitor the task and safety issues to provide assessment of the progress and to alter the task parameters. Additionally, a verbal feedback recognition system is integrated inside the intelligent control architecture to incorporate patients' and therapists' feedback to make necessary modifications to impart effective therapy during the execution of the task in an automated manner. Hybrid system modelling technique is used to design the intelligent control architecture. Experimental results are presented to demonstrate the efficacy of the intelligent control architecture.

  17. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    2008-01-01

    Presents a history of unmanned missions of exploration of our Solar System. This book provides technical descriptions of the spacecraft, of their mission designs and of instrumentations. It discusses scientific results together with details of mission management. It covers missions from the 1950s and some of the other missions and their results.

  18. Ubiquitous Robotic Technology for Smart Manufacturing System

    National Research Council Canada - National Science Library

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    ... more individualized and more flexible, it shows great prospect to develop smart manufacturing systems, where machines are not likely to be preconfigured by traditional teaching methods, but doing variable tasks and coping with a wide variety of unexpected environmental and operational changes. The future manufacturing industry also requires that t...

  19. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy.

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M; Hata, Nobuhiko; Fischer, Gregory S

    2015-08-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure.

  20. Application of growing nested Petri nets for modeling robotic systems operating under risk

    Science.gov (United States)

    Sorokin, E. V.; Senkov, A. V.

    2017-10-01

    The paper studies the peculiarities of modeling robotic systems engaged in mining. Existing modeling mechanisms are considered, which are based on nested Petri nets, and a new formalism of growing Petri nets is presented that allows modeling robotic systems operating under risk. Modeling is provided both for the regular operation mode and for non-standard modes in which individual elements of the system can perform uncharacteristic functions. The example shows growing Petri nets that are used for modeling extraction of flat coal seams by a robotic system consisting of several different-type autonomous robots.

  1. Modelling cooperation of industrial robots as multi-agent systems

    Science.gov (United States)

    Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.

    2017-08-01

    Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.

  2. Robotic Transnasal Endoscopic Skull Base Surgery: Systematic Review of the Literature and Report of a Novel Prototype for a Hybrid System (Brescia Endoscope Assistant Robotic Holder).

    Science.gov (United States)

    Bolzoni Villaret, Andrea; Doglietto, Francesco; Carobbio, Andrea; Schreiber, Alberto; Panni, Camilla; Piantoni, Enrico; Guida, Giovanni; Fontanella, Marco Maria; Nicolai, Piero; Cassinis, Riccardo

    2017-09-01

    Although robotics has already been applied to several surgical fields, available systems are not designed for endoscopic skull base surgery (ESBS). New conception prototypes have been recently described for ESBS. The aim of this study was to provide a systematic literature review of robotics for ESBS and describe a novel prototype developed at the University of Brescia. PubMed and Scopus databases were searched using a combination of terms, including Robotics OR Robot and Surgery OR Otolaryngology OR Skull Base OR Holder. The retrieved papers were analyzed, recording the following features: interface, tools under robotic control, force feedback, safety systems, setup time, and operative time. A novel hybrid robotic system has been developed and tested in a preclinical setting at the University of Brescia, using an industrial manipulator and readily available off-the-shelf components. A total of 11 robotic prototypes for ESBS were identified. Almost all prototypes present a difficult emergency management as one of the main limits. The Brescia Endoscope Assistant Robotic holder has proven the feasibility of an intuitive robotic movement, using the surgeon's head position: a 6 degree of freedom sensor was used and 2 light sources were added to glasses that were therefore recognized by a commercially available sensor. Robotic system prototypes designed for ESBS and reported in the literature still present significant technical limitations. Hybrid robot assistance has a huge potential and might soon be feasible in ESBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Vision System of Mobile Robot Combining Binocular and Depth Cameras

    Directory of Open Access Journals (Sweden)

    Yuxiang Yang

    2017-01-01

    Full Text Available In order to optimize the three-dimensional (3D reconstruction and obtain more precise actual distances of the object, a 3D reconstruction system combining binocular and depth cameras is proposed in this paper. The whole system consists of two identical color cameras, a TOF depth camera, an image processing host, a mobile robot control host, and a mobile robot. Because of structural constraints, the resolution of TOF depth camera is very low, which difficultly meets the requirement of trajectory planning. The resolution of binocular stereo cameras can be very high, but the effect of stereo matching is not ideal for low-texture scenes. Hence binocular stereo cameras also difficultly meet the requirements of high accuracy. In this paper, the proposed system integrates depth camera and stereo matching to improve the precision of the 3D reconstruction. Moreover, a double threads processing method is applied to improve the efficiency of the system. The experimental results show that the system can effectively improve the accuracy of 3D reconstruction, identify the distance from the camera accurately, and achieve the strategy of trajectory planning.

  4. DEA-based efficiency evaluation of a novel robotic system for femoral neck surgery.

    Science.gov (United States)

    Wang, Yu; Yun, Chao; Hu, Lei; Liu, Wenyong; Luan, Sheng

    2009-06-01

    Efficiency evaluation is important for expanding the acceptance and deployment of medical robots, but it is still an open issue. In this study, a data envelopment analysis (DEA)-based method was proposed and implemented with a novel robotic system for femoral neck surgery. Femoral neck surgeries with and without the assistance of the robotic system were modelled as decision-making units (DMUs). C(2)R model was chosen to calculate the relative efficiency. Clinical simulation experiments were performed with 12 Sawbone models and 24 cadaveric femurs, and 19 clinical cases were chosen to be the control group. The minimum value of the robotically assisted surgery was 1, and the minimum value of the traditional surgery was 0.741535, demonstrating the efficiency of the robotic system. This research showed that DEA-based efficiency evaluation is practical for medical robotic systems.

  5. Robotic Cholecystectomy Using the Newly Developed Korean Robotic Surgical System, Revo-i: A Preclinical Experiment in a Porcine Model

    Science.gov (United States)

    Kang, Chang Moo; Chong, Jae Uk; Lim, Jin Hong; Park, Dong Won; Park, Sung Jun; Gim, Suhyeon; Ye, Hye Jin; Kim, Se Hoon

    2017-01-01

    One Korean company recently successfully produced a robotic surgical system prototype called Revo-i (MSR-5000). We, therefore, conducted a preclinical study for robotic cholecystectomy using Revo-i, and this is a report of the first case of robotic cholecystectomy performed using the Revo-i system in a preclinical porcine model. Revo-i consists of a surgeon console (MSRC-5000), operation cart (MSRO-5000) and vision cart (MSRV-5000), and a 40 kg-healthy female porcine was prepared for robotic cholecystectomy with general anesthesia. The primary end point was the safe completion of these procedures using Revo-i: The total operation time was 88 minutes. The dissection time was defined as the time from the initial dissection of the Calot area to the time to complete gallbladder detachment from the liver bed: The dissection time required 14 minutes. The surgical console time was 45 minutes. There was no gallbladder perforation or significant bleeding noted during the procedure. The porcine survived for two weeks postoperatively without any complications. Like the da Vinci surgical system, the Revo-i provides a three-dimensional operative view and allows for angulated instrument motion (forceps, needle-holders, clip-appliers, scissors, bipolar energy, and hook monopolar energy), facilitating an effective laparoscopic procedure. Our experience suggests that robotic cholecystectomy can be safely completed in a porcine model using Revo-i. PMID:28792158

  6. Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot

    Science.gov (United States)

    Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo

    2018-01-01

    To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.

  7. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  8. Autonomous Fault Detection for Performance Bugs in Component Based Robotic Systems

    Science.gov (United States)

    2016-12-01

    requiring a manual modeling of the system behavior . 3295 Khalastchi et al. [11], in contrast, introduce an online fault detection approach which is purely...diagnosis of robot navigation software,” in Simulation, Modeling , and Programming for Autonomous Robots, S. Carpin, I. Noda, E. Pagello, M. Reggiani, and... Autonomous Fault Detection for Performance Bugs in Component-Based Robotic Systems Johannes Wienke1 and Sebastian Wrede1 Abstract— We present a novel

  9. Algorithm for automated calculation of a segmented electromechatronic module of robotic system motion

    Directory of Open Access Journals (Sweden)

    Shepelenko Mikhail

    2017-01-01

    Full Text Available The paper deals with the design of digital models of the elements of the electromechatronic part of motion module of robotic systems, which provides increasing productivity of the electromechatronic components of robotic and mechatronic manipulators. The developed software provides 3D-modeling of the electromechatronic part; calculation of electromechatronic and electrical elements and visualization of the electrical machine part. It reduces the cost of designing electromechatronic components of manipulators of robotic and mechatronic systems.

  10. Cooperative system and method using mobile robots for testing a cooperative search controller

    Science.gov (United States)

    Byrne, Raymond H.; Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.

    2002-01-01

    A test system for testing a controller provides a way to use large numbers of miniature mobile robots to test a cooperative search controller in a test area, where each mobile robot has a sensor, a communication device, a processor, and a memory. A method of using a test system provides a way for testing a cooperative search controller using multiple robots sharing information and communicating over a communication network.

  11. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  12. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    Science.gov (United States)

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  13. Decision support systems for robotic surgery and acute care

    Science.gov (United States)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  14. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  15. Autonomous, teleoperated, and shared control of robot systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.J.

    1994-12-31

    This paper illustrates how different modes of operation such as bilateral teleoperation, autonomous control, and shared control can be described and implemented using combinations of modules in the SMART robot control architecture. Telerobotics modes are characterized by different ``grids`` of SMART icons, where each icon represents a portion of run-time code that implements a passive control law. By placing strict requirements on the module`s input-output behavior and using scattering theory to develop a passive sampling technique, a flexible, expandable telerobot architecture is achieved. An automatic code generation tool for generating SMART systems is also described.

  16. Aspects Regarding Evaluation of Friction Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2016-06-01

    Full Text Available The paper reveals both experimentally and by numerical simulation that modelling the dynamic behaviour of a robotic system that contains pairs where spin motion exists, finally leads towards nonlinear dynamical models. Despite the fact that academic monographs upon rigid mechanics use the hypothesis that spinning torque depends linearly on the normal force, a simple experiment contradicts this assumption. To this end, the motion of an axi-symmetric body making two contacts with dry friction is analyzed. The qualitative non-linearity of spinning torque on loading force dependence is validated in the end by the modelling of the test using dynamical simulation software.

  17. Advanced technologies of microlenses production for robot system camcorders

    Science.gov (United States)

    Karapetyan, K. G.; Denisova, O. V.

    2017-10-01

    The processes of formation of microlenses in photosensitive silicate and germanate glasses have been studied. A series of successive operations with samples of photosensitive glass activated by silver and cerium ions: irradiation, photolithography, secondary heat treatment, diffusion and ion exchange lead to the formation of various profiles on the glass surface, including convex or concave lens surfaces. On the basis of this effect, a promising technology for the production of raster microlenses and lenses for various optical devices and video cameras of a robotic system was developed.

  18. Optimal Trajectories Generation in Robotic Fiber Placement Systems

    Science.gov (United States)

    Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane

    2017-06-01

    The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.

  19. Mammary artery harvesting using the Da Vinci Si robotic system

    Directory of Open Access Journals (Sweden)

    Leonardo Secchin Canale

    2014-03-01

    Full Text Available Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system.

  20. Mammary artery harvesting using the Da Vinci Si robotic system

    Science.gov (United States)

    Canale, Leonardo Secchin; Bonatti, Johannes

    2014-01-01

    Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system. PMID:24896171

  1. BOA: Asbestos Pipe-Insulation Abatement Robot System

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.

    1996-06-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  2. The robot's eyes - Stereo vision system for automated scene analysis

    Science.gov (United States)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  3. Trends in control and decision-making for human-robot collaboration systems

    CERN Document Server

    Zhang, Fumin

    2017-01-01

    This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic ar...

  4. SENSORY SYSTEM FOR THE DETERMINATION OF THE STEPPING FORCES OF MOBILE ROBOTS

    Directory of Open Access Journals (Sweden)

    STROE Ioan

    2016-11-01

    Full Text Available The mobile robot is a real interesting element in research. The stepping robots present interest for the quality that they can show on the hilly ground. The movement in a certain pace of a bipedal robot demands the achievement of a dynamic that imposes them a certain balance. The sensory system associated with the bipedal robots must ensure the transfer of information to the execution elements in real time. In the paper, the author presents a strength sensorial system attached to the stepping robot’s sole. The paper presents the constructive shape of the sole and of the sensory strain cells. The sole is articulated and allows the robot to realize a rolling-like leg. The information sent by the sensory system that is part of the robot’s leg are used to detect the contact between the leg and the ground’s surface, determining the position and the balance of the robot.

  5. Multi-Robot Systems for Subsurface Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a heterogeneous multi-robot team developed as a platform for effective subsurface planetary exploration. State-of-art robotic exploration...

  6. Cryogenic and LOX Based Propulsion Systems for Robotic Planetary Missions

    National Research Council Canada - National Science Library

    Valentian, Dominique

    2005-01-01

    Robotic planetary missions use almost exclusively storable propellants. However, it is clear that the use LOX/LH2 and LOX/HC combinations will offer a tremendous payload gain for most robotic missions...

  7. Multi-robot system using low-cost infrared sensors

    Directory of Open Access Journals (Sweden)

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  8. Unmanned systems: a lab-based robotic arm for grasping

    OpenAIRE

    Jacinto, Arturo, II

    2015-01-01

    Approved for public release; distribution is unlimited This thesis implements the development of a Robotic Manipulation Laboratory to explore learning opportunities for various student experiments including the initial selection, startup and development of the Robotic arm and glove controller. The Robotic Manipulation Laboratory consists of a 6 Degree of Freedom robotic arm and a resistive glove controller that allows students to achieve hands-on understanding of the physics required to fa...

  9. Cloud-Enhanced Robotic System for Smart City Crowd Control

    OpenAIRE

    Akhlaqur Rahman; Jiong Jin; Antonio Cricenti; Ashfaqur Rahman; Marimuthu Palaniswami; Tie Luo

    2016-01-01

    Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT) by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS). However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decisio...

  10. UPenn Multi-Robot Unmanned Vehicle System (MAGIC)

    Science.gov (United States)

    2014-05-05

    areas. Local plan is much better and tells the robot to go through known and traversable terrain (white). (a) robot entering maze environment (b...Final 3. DATES COVERED (From - To) 15 Feb 2011- 14 Sep 2013 4. TITLE AND SUBTITLE Multi- Robot Teaming - MAGIC 2010 Second Place...University of Pennsylvania for multi- robot perception, planning, and control in the context of the MAGIC competition and in ensuing years. We have

  11. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  12. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics.

    Science.gov (United States)

    Chiolerio, A; Quadrelli, Marco B

    2017-07-01

    Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".

  13. Flexible Vision Control System For Precision Robotic Arc Welding

    Science.gov (United States)

    Richardson, Richard W.

    1989-02-01

    A system is described which is based on a unique weld image sensor design which integrates the optical system into the weld end effector to produce the so-called "coaxial view" of the weld zone. The resulting weld image is processed by a flexible, table driven vision processing system which can be adapted to detect a variety of features and feature relationships. Provision is made for interactive "teaching" of image features for generation of table parameters from test welds. A table driven control program allows various vision control strategies to be invoked. The main result of the system is a level of emulation of the capability of the expert welder or welding operator, essential to successful precision welding robotization.

  14. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  15. A robotic inspection experimental system (ARIES) and BOA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    ARIES consists of a 6-wheeled K3A mobile platform, a compact subturret, a sonar imaging system, a laser-based light detection and ranging (lidar) navigation beacon system, and a camera positioning system. It has a sonar imaging system used in navigation and collision avoidance and an automatic docking/charging system. Drum-referencing algorithms and camera-positioning algorithms have been included in the primitive instruction set for the robot. The robot`s navigation is based on Synchro-Drive, a patented design that utilizes concentric shafts to distribute drive and steering power to the six wheels simultaneously. ARIES uses a virtual path concept in which only a limited amount of information needs to be provided to the control computer in order to get the vehicle moving. The safety and health evaluation, during the human factors assessment, found several areas of concern including ergonomics, laser hazards, tripping hazards, fall-from-above and struck-by hazards, electrical hazards, and decontamination of the system. BOA is a self-propelled automated mini-enclosure, able to remove insulation from installed pipes, primarily of 4 inch nominal outside diameter. The system is designed for two operators: one oversees the abatement head operation from a distance of 10 or 15 feet using a pendant control and the other bags the debris at a cyclonic bagging station that is attached by a vacuum hose to the cutting head. Since the abatement head is its own enclosure, there may be no need for further enclosures to be built. The system wets and removes asbestos insulation automatically, cutting the debris into consistent chunks and moving the wave under a strong vacuum to a bagging machine. Prior to reaching the bagging operation, the material passes through a water separator which greatly reduces the weight of the debris and allows recirculation of water, after sufficient filtration. The safety and health evaluation, during the human factors assessment, focused on: noise, dust

  16. Design and Implementation of a Remote Control System for a Bio-Inspired Jumping Robot

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-10-01

    Full Text Available This paper presents the design and implementation of a remote control system for a bio-inspired jumping robot. The system is composed of a server, a gateway, and a jumping robot. The proposed remote control system is used to monitor the posture of the jumping robot and control it in remote places. A three-axis accelerometer is used to detect the tilts of the robot. A compass is used to sense the azimuth of the robot. The calibrations of the accelerometer and the compass are conducted. The sensor data of the robot can be sent to the server through a ZigBee wireless sensor network (WSN. An algorithm is designed to calculate the posture of the robot from the sensor data. The posture of the robot can be displayed on the human-computer interface of the server using the virtual reality technology of OpenGL. The robots can be controlled by the operator through the interface. Two experiments have been done to verify the posture detection method and test the performance of the system.

  17. Evaluating dedicated and shared storage policies in robot-based compact storage and retrieval systems

    NARCIS (Netherlands)

    B. Zou (Bipan); M.B.M. de Koster (René); X. Xu (Xianhao)

    2016-01-01

    textabstractRobot-based compact storage and retrieval systems (RCSRS) have seen many implementations over the last few years. In such a system, the inventory items are stored in bins, organized in a grid. In each cell of the grid, a certain number of bins are stored on top of each other. Robots with

  18. On Formal Specification of Emergent Behaviours in Swarm Robotic Systems

    Directory of Open Access Journals (Sweden)

    Alan FT Winfield

    2005-12-01

    Full Text Available It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics.

  19. Fiscal 1997 report on the results of the international standardization R and D. Robot control system; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Robot seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the robot control system was conducted in the following items: 1) integrated open control system, 2) remote control robot manipulation language, 3) human factor robot use built-in LAN system, 4) built-in actuator driver. In 1), there were some problems to be pointed out around the system, but the effectiveness was confirmed as system architecture of each verification item. In 2), development/design were made of RCML(R-Cube Manipulation Language) as a remote robot manipulation language, telecommunication protocol, and the experimental system, and the international standardization was targeted. In 3), the R and D was conducted of the realtime telecommunication protocol which clears the standards for the distributed control required for construction of human factor robot and the advanced realtime micro-controller, ULSI, which is the one that the protocol was made IC. In 4), an intelligent connector for built-in actuator was developed which enables saving of wiring in robot system and plug-in connection. 13 refs., 186 figs., 53 tabs.

  20. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  1. Model-driven engineering approach to design and implementation of robot control system

    OpenAIRE

    Trojanek, Piotr

    2013-01-01

    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into t...

  2. System and method for controlling a vision guided robot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yhu-Tin; Daro, Timothy; Abell, Jeffrey A.; Turner, III, Raymond D.; Casoli, Daniel J.

    2017-03-07

    A method includes the following steps: actuating a robotic arm to perform an action at a start position; moving the robotic arm from the start position toward a first position; determining from a vision process method if a first part from the first position will be ready to be subjected to a first action by the robotic arm once the robotic arm reaches the first position; commencing the execution of the visual processing method for determining the position deviation of the second part from the second position and the readiness of the second part to be subjected to a second action by the robotic arm once the robotic arm reaches the second position; and performing a first action on the first part using the robotic arm with the position deviation of the first part from the first position predetermined by the vision process method.

  3. MRI-guided focused ultrasound robotic system for the treatment of bone cancer.

    Science.gov (United States)

    Menikou, Georgios; Yiallouras, Christos; Yiannakou, Marinos; Damianou, Christakis

    2017-03-01

    A novel MRI-conditional robot was developed that navigates a focused ultrasound (FUS) transducer. With this robotic system the transducer can access bones. The intended application is pain palliation from bone cancer using thermal ablation using FUS. The robotic system has four computer-controlled axes (three linear and one angular). The robotic system was manufactured using a digital manufacturing 3D printer, using acrylonitrile butadiene styrene (ABS) plastic. MRI-conditional optical encoders were used to accurately control the robotic system. The robotic system was successfully tested for MRI safety and compatibility, using fast-gradient pulse sequences and a liquid phantom. The robotic system has been tested for its functionality for creating discrete and multiple (overlapping) lesions in a gel phantom. An MRI-conditional FUS robotic system was developed that has the potential to create thermal lesions with the intention of treating bone cancer for the purpose of pain palliation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  5. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  6. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  7. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Directory of Open Access Journals (Sweden)

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  8. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  9. A novel scanning system using an industrial robot and the workspace measurement and positioning system

    Science.gov (United States)

    Zhao, Ziyue; Zhu, Jigui; Yang, Linghui; Lin, Jiarui

    2015-10-01

    The present scanning system consists of an industrial robot and a line-structured laser sensor which uses the industrial robot as a position instrument to guarantee the accuracy. However, the absolute accuracy of an industrial robot is relatively poor compared with the good repeatability in the manufacturing industry. This paper proposes a novel method using the workspace measurement and positioning system (wMPS) to remedy the lack of accuracy of the industrial robot. In order to guarantee the positioning accuracy of the system, the wMPS which is a laser-based measurement technology designed for large-volume metrology applications is brought in. Benefitting from the wMPS, this system can measure different cell-areas by the line-structured laser sensor and fuse the measurement data of different cell-areas by using the wMPS accurately. The system calibration which is the procedure to acquire and optimize the structure parameters of the scanning system is also stated in detail in this paper. In order to verify the feasibility of the system for scanning the large free-form surface, an experiment is designed to scan the internal surface of the door of a car-body in white. The final results show that the measurement data of the whole measuring areas have been jointed perfectly and there is no mismatch in the figure especially in the hole measuring areas. This experiment has verified the rationality of the system scheme, the correctness and effectiveness of the relevant methods.

  10. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A Study on the Education Assistant System Using Smartphones and Service Robots for Children

    Directory of Open Access Journals (Sweden)

    Gu-Min Jeong

    2014-04-01

    Full Text Available In this paper, we propose a new education assistant system model using both smartphones and service robots for children's learning. Through the interaction between a smartphone and a robot, various use cases can be derived. For example, we can control the movement of the robot remotely, watch the status of the children using real-time streaming, or read the answer on the smartphone while only the question is displayed on the robot. Considering these facts, we present three use cases, namely ‘remote control’, ‘streaming’ and ‘N-screen’ for robot-based learning with smartphones. The proposed learning model is implemented in Android-based smartphones and a service robot using the OPRoS platform, and we show that the proposed model works well.1

  12. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots.

    Science.gov (United States)

    Cacucciolo, Vito; Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia; Maeda, Shingo

    2017-09-01

    Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter-scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail-boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics.

  13. A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system

    Science.gov (United States)

    Ko, Youngho; Na, Sungyoung; Lee, Youngwoo; Cha, Kyoungrae; Ko, Seong Young; Park, Jongoh; Park, Sukho

    2012-05-01

    Among the various kinds of actuations for biomimetic robots, the electromagnetic actuation (EMA) method has been regarded as the one with the most potential. This paper proposes a jellyfish-like swimming mini-robot actuated by an EMA system in three-dimensional (3D) space. The jellyfish-like mini-robot has four flexible fins, each of which is equipped with a permanent magnet for electromagnetic actuation; the robot’s body is 17 mm long and 0.5 mm thick. Our EMA system was able to generate a uniform magnetic field in a desired direction in 3D space, which could bend the fins of the jellyfish-like mini-robot. Therefore, a cyclic change in the uniform magnetic field, in the EMA system, would synchronize the fluctuation of the fins and could generate a propulsion force for the robot, in the desired direction. In order to maximize the propulsion force of the jellyfish-like mini-robot, the waveform and frequency of the input current in the EMA system are optimized. Consequently, our jellyfish-like mini-robot was able to generate maximum propulsion force when a square waveform input current (13 A magnitude and 10 Hz frequency) was applied to the EMA system. Finally, the jellyfish-like mini-robot with the EMA system was able to perform various 3D swimming motions.

  14. Mission and system concepts for Mars robotic precursor missions

    Science.gov (United States)

    Scoon, George E. N.; Hechler, Martin

    1993-01-01

    Mission and system design concepts reflecting the status at about the midpoint of the Marsnet phase A study are reported. The objective of Marsnet is to place three to four small stations (approximately 80 kg) on the surface of Mars to perform scientific measurements in the areas of geophysics (seismology), geology, geochemistry, mineralogy, meteorology, and exobiology. The ESA Landers will constitute part of a global network to which NASA is planning to contribute up to 16 other stations. The Mars Global Network may be seen as a precursor to the exploration of Mars by mobile vehicles in terms of its scientific measurements. But, also, some aspects of mission and system design addressed may be applicable to more complex robotic missions to Mars, for example, the development and testing of feasible probe delivery concepts; the design of low mass, low power components, and solar arrays suited for the Mars environment; and the development of a low complexity mobile instrument deployment device.

  15. Robotic system and method for manufacturing of objects

    DEFF Research Database (Denmark)

    2017-01-01

    to and extending between the two end effectors (1), the method comprising the steps of: defining at least one surface (8) representing the inner surface of the mould (17); dividing the surface (8) into a number of segments represented by planar curves (9, 11, 12) on the surface (8); for each planar curve......The present disclosure relates to a method and a system for manufacturing a mould (17) for creation of complex objects, such as concrete objects, by controlling and moving two end effectors (1) of a robotic system, the two end effectors (1) having a flexible cutting element (3) attached......, calculating at least one elastic curve representing the planar curve; for each calculated elastic curve, calculating a set of data corresponding to placement and direction of the two end effectors (1) for configuring the flexible cutting element to a shape corresponding to the calculated elastic curve...

  16. SAFIRE - a robotic inspection system for CANDU feeders

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R. [OC Robotics, Bristol (United Kingdom)

    2011-07-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience

  17. Cooperating mobile robots

    Science.gov (United States)

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  18. Space-time modeling using environmental constraints in a mobile robot system

    Science.gov (United States)

    Slack, Marc G.

    1990-01-01

    Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.

  19. [RESEARCH PROGRESS OF PERIPHERAL NERVE SURGERY ASSISTED BY Da Vinci ROBOTIC SYSTEM].

    Science.gov (United States)

    Shen, Jie; Song, Diyu; Wang, Xiaoyu; Wang, Changjiang; Zhang, Shuming

    2016-02-01

    To summarize the research progress of peripheral nerve surgery assisted by Da Vinci robotic system. The recent domestic and international articles about peripheral nerve surgery assisted by Da Vinci robotic system were reviewed and summarized. Compared with conventional microsurgery, peripheral nerve surgery assisted by Da Vinci robotic system has distinctive advantages, such as elimination of physiological tremors and three-dimensional high-resolution vision. It is possible to perform robot assisted limb nerve surgery using either the traditional brachial plexus approach or the mini-invasive approach. The development of Da Vinci robotic system has revealed new perspectives in peripheral nerve surgery. But it has still been at the initial stage, more basic and clinical researches are still needed.

  20. The use of computer graphic simulation in the development of robotic systems

    Science.gov (United States)

    Fernandez, Ken

    1988-01-01

    The use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems is described. Use of this technology will result in greatly improved systems and reduced development costs. The major design issues in developing effective robotic systems are discussed and the use of ROBOSIM, a NASA developed simulation tool, to address these issues is presented. Three representative simulation case studies are reviewed: off-line programming of the robotic welding development cell for the Space Shuttle Main Engine; the integration of a sensor to control the robot used for removing the Thermal Protection System from the Solid Rocket Booster; and the development of a teleoperator/robot mechanism for the Orbital Maneuvering Vehicle.

  1. Survey of modeling, planning, and ground verification of space robotic systems

    Science.gov (United States)

    Xu, Wenfu; Liang, Bin; Xu, Yangsheng

    2011-06-01

    Space robotic systems are expected to play an increasingly important role in future space activities. Nevertheless, dynamics modeling and motion planning of a space robot are much more complex than those of a fixed-base robot, due to the dynamic coupling between the manipulator and its base. On the other hand, in order to assure the success of on-orbital missions, many experiments are required to verify the key algorithms on the ground before the space robot is launched. In this paper, the main research achievements on dynamics modeling, path planning, and ground verification are reviewed, and future studies are recommended. Firstly, we summarize the essential modeling concepts, and deduce the kinematics and dynamics equations of a space robot. Secondly, the main motion planning approaches are discussed. Then, different ground verification systems, including the air-bearing table, neutral buoyancy, airplane flying, free-falling motion, suspension system, and hybrid system, are introduced. Finally, the future research trends are forecasted.

  2. BOA: Asbestos pipe insulation removal robot system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  3. Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests.

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Tita, Ralf; Pedraza-Ortega, Jesús Carlos; Gorrostieta, Efren; Kalender, Willi A

    2011-06-01

    A needle placement system using a serial robot arm for manipulation of biopsy and/or treatment needles is introduced. A method for fast calibration of the robot and the preliminary accuracy tests of the robotic system are presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction mounted on a mobile platform, a robot-driven angiographic C-arm system and a navigation system. Calibration of the robot with the navigation system has a residual error of 0.23 mm (rms) with a standard deviation of ± 0.1 mm. Needle targeting accuracy with different trajectories was 1.2 mm (rms) with a standard deviation of ± 0.4 mm. Robot absolute positioning accuracy was reduced to the navigation camera accuracy. The approach includes control strategies that may be very useful for interventional applications. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Exact Linearization of Nonholonomic System Dynamics Applied to Control of Differentially Driven Soccer Robot

    Czech Academy of Sciences Publication Activity Database

    Grepl, Robert; Lee, B.; Kratochvíl, Ctirad; Šolc, F.; Hrabec, J.

    2008-01-01

    Roč. 15, č. 5 (2008), s. 311-318 ISSN 1802-1484 R&D Projects: GA ČR GA101/06/0063 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonholonomic system dynamics * soccer robot Subject RIV: JD - Computer Applications, Robot ics

  5. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    National Research Council Canada - National Science Library

    Cheng-Chang Chiu; Wen-Teng Wang; Wan-Shan Yin

    2017-01-01

    ...-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  6. Designing, developing, and deploying systems to support human-robot teams in disaster response

    NARCIS (Netherlands)

    Kruijff, G.J.M.; Kruijff-Korbayová, I.; Keshavdas, S.; Larochelle, B.; Janíček, M.; Colas, F.; Liu, M.; Pomerleau, F.; Siegwart, R.; Neerincx, M.A.; Looije, R.; Smets, N.J.J.M.; Mioch, T.; Diggelen, J. van; Pirri, F.; Gianni, M.; Ferri, F.; Menna, M.; Worst, R.; Linder, T.; Tretyakov, V.; Surmann, H.; Svoboda, T.; Reinštein, M.; Zimmermann, K.; Petříček, T.; Hlaváč, V.

    2014-01-01

    This paper describes our experience in designing, developing and deploying systems for supporting human-robot teams during disaster response. It is based on R&D performed in the EU-funded project NIFTi. NIFTi aimed at building intelligent, collaborative robots that could work together with humans in

  7. An aerial–ground robotic system for navigation and obstacle mapping in large outdoor areas.

    Science.gov (United States)

    Garzón, Mario; Valente, João; Zapata, David; Barrientos, Antonio

    2013-01-21

    There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning) require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  8. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    Science.gov (United States)

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  9. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  10. TRUST MODEL FOR INFORMATION SECURITY OF MULTI-AGENT ROBOTIC SYSTEMS WITH A DECENTRALIZED MANAGEMENT

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-03-01

    Full Text Available The paper deals with the issues on protection of multi-agent robotic systems against attacks by robots-saboteurs. The operation analysis of such systems with decentralized control is carried out. Concept of harmful information impact (attack from a robot-saboteur to the multi-agent robotic system is given. The class of attacks is considered using interception of messages, formation and transfer of misinformation to group of robots, and also carrying out other actions with vulnerabilities of multiagent algorithms without obviously identified signs of invasion of robots-saboteurs. The model of information security is developed, in which robots-agents work out trust levels to each other analyzing the events occurring in the system. The idea of trust model consists in the analysis of transferred information by each robot and the executed actions of other members in a group, comparison of chosen decision on iteration step k with objective function of the group. Distinctive feature of the trust model in comparison with the closest analogue - Buddy Security Model in which the exchange between the agents security tokens is done — is involvement of the time factor during which agents have to "prove" by their actions the usefulness in achievement of a common goal to members of the group. Variants of this model realization and ways of an assessment of trust levels for agents in view of the security policy accepted in the group are proposed.

  11. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  12. Stormram 3: A Magnetic Resonance Imaging-Compatible Robotic System for Breast Biopsy

    NARCIS (Netherlands)

    Groenhuis, Vincent; Veltman, Jeroen; Siepel, Françoise Jeanette; Stramigioli, Stefano

    2017-01-01

    Stormram 3 is an MRI-compatible robotic system that can perform MR guided breast biopsies of suspicious lesions. The base of the robot measures 160x180x90 mm and it is actuated by five custom pneumatic linear stepper motors, driven by a valve manifold outside the Faraday cage of the MRI scanner. All

  13. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  15. Fuzzy System of Distribution of Braking Forces on the Engines of a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Bobyr Maxim

    2016-01-01

    Full Text Available The article presents a fuzzy system of distribution of braking forces on the engines of a mobile robot during its lifting and going down.The block diagram of the system of distribution of braking forces and location of sensors on a mobile robot is given in the paper. Also, fuzzy mathematical model of redistribution of braking forces depending on the conditions of the movement a mobile robot is shown in the article. The result of the simulation of control parameters are presented in the article. The control system of a mobile robot is demonstrated on the example of an autonomous mini-robot on platform Pirate under the control of microprocessor Arduino Mega 2560.

  16. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.

    Science.gov (United States)

    Hu, X L; Tong, K Y; Li, R; Xue, J J; Ho, S K; Chen, P

    2012-06-01

    An electromyography (EMG)-driven electromechanical robot system integrated with neuromuscular electrical stimulation (NMES) was developed for wrist training after stroke. The performance of the system in assisting wrist flexion/extension tracking was evaluated on five chronic stroke subjects, when the system provided five different schemes with or without NMES and robot assistance. The tracking performances were measured by range of motion (ROM) of the wrist and root mean squared error (RMSE). The performance is better when both NMES and robot assisted in the tracking than those with either NMES or robot only (Probot helped improve the movement accuracy; and the NMES helped increase the muscle activation for the wrist joint and suppress the excessive muscular activities from the elbow joint. The NMES-robot assisted wrist training could improve the hand, wrist, and elbow functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Temporal Heterogeneity and the Value of Slowness in Robotic Systems

    Science.gov (United States)

    2015-11-01

    Abstract— Robot teaming is a well-studied area, but little research to date has been conducted on the fundamental benefits of heterogeneous... establish it through theoretical analysis and experimental results conducted in simulation and actual robotic platforms. REFERENCES [1] J.D. Madden...with an Ecological Augmented Virtuality Interface, Proceedings of AISB-HRI Symposium: New Frontiers in Human- Robot Interaction, Scotland , 2009. [18

  18. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  19. The role of robotic surgical system in the management of vascular disease.

    Science.gov (United States)

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA.Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  1. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA. Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  2. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  3. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  4. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    Science.gov (United States)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  5. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  6. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  7. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots.

    Science.gov (United States)

    Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui

    2017-05-28

    Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  8. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.

    Science.gov (United States)

    Zhang, Linan; Zhou, Ningxin; Wang, Shuxin

    2014-12-01

    Robotic-assisted minimally invasive surgery (MIS) can benefit both patients and surgeons. However, the learning curve for robotically assisted procedures can be long and the total system costs are high. Therefore, there is considerable interest in new methods and lower cost controllers for a surgical robotic system. In this study, a knife-master and a forceps-master, shaped similarly to a surgical knife and forceps, were developed as input devices for control of a master-slave surgical robotic system. In addition, a safety strategy was developed to eliminate the master-slave orientation difference and stabilize the surgical system. Master-slave tracking experiments and a ring-and-bar experiment showed that the safety tracking strategy could ensure that the robot system moved stably without any tremor in the tracking motion. Subjects could manipulate the surgical tool to achieve the master-slave operation with less training compared to a mechanical master. Direct manipulation of the small, light and low-cost surgical tools to control a robotic system is a possible operating mode. Surgeons can operate the robotic system in their own familiar way, without long training. The main potential safety issues can be solved by the proposed safety control strategy. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Energy Technology Data Exchange (ETDEWEB)

    Mann, R.C.; Fujimura, K.; Unseren, M.A.

    1991-01-01

    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.

  10. Pilot clinical application of an adaptive robotic system for young children with autism.

    Science.gov (United States)

    Bekele, Esubalew; Crittendon, Julie A; Swanson, Amy; Sarkar, Nilanjan; Warren, Zachary E

    2014-07-01

    It has been argued that clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders. This pilot feasibility study evaluated the application of a novel adaptive robot-mediated system capable of both administering and automatically adjusting joint attention prompts to a small group of preschool children with autism spectrum disorders (n = 6) and a control group (n = 6). Children in both groups spent more time looking at the humanoid robot and were able to achieve a high level of accuracy across trials. However, across groups, children required higher levels of prompting to successfully orient within robot-administered trials. The results highlight both the potential benefits of closed-loop adaptive robotic systems as well as current limitations of existing humanoid-robotic platforms. © The Author(s) 2013.

  11. A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment.

    Science.gov (United States)

    Zhao, Jingchao; Gao, Junyao; Zhao, Fangzhou; Liu, Yi

    2017-10-23

    This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems.

  12. From embodied mind to embodied robotics: humanities and system theoretical aspects.

    Science.gov (United States)

    Mainzer, Klaus

    2009-01-01

    After an introduction (1) the article analyzes the evolution of the embodied mind (2), the innovation of embodied robotics (3), and finally discusses conclusions of embodied robotics for human responsibility (4). Considering the evolution of the embodied mind (2), we start with an introduction of complex systems and nonlinear dynamics (2.1), apply this approach to neural self-organization (2.2), distinguish degrees of complexity of the brain (2.3), explain the emergence of cognitive states by complex systems dynamics (2.4), and discuss criteria for modeling the brain as complex nonlinear system (2.5). The innovation of embodied robotics (3) is a challenge of future technology. We start with the distinction of symbolic and embodied AI (3.1) and explain embodied robots as dynamical systems (3.2). Self-organization needs self-control of technical systems (3.3). Cellular neural networks (CNN) are an example of self-organizing technical systems offering new avenues for neurobionics (3.4). In general, technical neural networks support different kinds of learning robots (3.5). Finally, embodied robotics aim at the development of cognitive and conscious robots (3.6).

  13. A Vision-Based Emergency Response System with a Paramedic Mobile Robot

    Science.gov (United States)

    Jeong, Il-Woong; Choi, Jin; Cho, Kyusung; Seo, Yong-Ho; Yang, Hyun Seung

    Detecting emergency situation is very important to a surveillance system for people like elderly live alone. A vision-based emergency response system with a paramedic mobile robot is presented in this paper. The proposed system is consisted of a vision-based emergency detection system and a mobile robot as a paramedic. A vision-based emergency detection system detects emergency by tracking people and detecting their actions from image sequences acquired by single surveillance camera. In order to recognize human actions, interest regions are segmented from the background using blob extraction method and tracked continuously using generic model. Then a MHI (Motion History Image) for a tracked person is constructed by silhouette information of region blobs and model actions. Emergency situation is finally detected by applying these information to neural network. When an emergency is detected, a mobile robot can help to diagnose the status of the person in the situation. To send the mobile robot to the proper position, we implement mobile robot navigation algorithm based on the distance between the person and a mobile robot. We validate our system by showing emergency detection rate and emergency response demonstration using the mobile robot.

  14. Learning to Role-Switch in Multi-Robot Systems

    National Research Council Canada - National Science Library

    Martinson, Eric; Arkin, Ronald C

    2006-01-01

    ... have to be relearned. Each robot starts out with the same set of possible roles to play, the same perceptual hardware for coordination, and no contact other than perception regarding other members of the team. Over the course of training, a team of Q-learning robots will converge to solutions that best the performance of a well-designed handcrafted homogeneous team.

  15. Unmanned Systems: A Lab-Based Robotic Arm for Grasping

    Science.gov (United States)

    2015-06-01

    A LAB-BASED ROBOTIC ARM FOR GRASPING by Arturo Jacinto II June 2015 Thesis Advisor: Richard M. Harkins Second Reader: Peter Crooker......learning opportunities for various student experiments including the initial selection, startup and development of the Robotic arm and glove controller

  16. THE SIMULATION OF WELDING OPERATIONS IN ROBOTIZED PRODUCTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Victor-Adrian ENACHE

    2011-11-01

    Full Text Available In this paper it was made a study concerning the possibilities of off-line programming for an industrial robot used in arc welding operations. We tried to optimize the trajectory of an articulated arm robots for positing the welding device in the specific point on the body car parts using DELMIA V5.

  17. Assistance System for Disabled People: A Robot Controlled by Blinking and Wireless Link

    Science.gov (United States)

    Del Val, Lara; Jiménez, María I.; Alonso, Alonso; de La Rosa, Ramón; Izquierdo, Alberto; Carrera, Albano

    Disabled people already profit from a lot of technical assistance that improves their quality of life. This article presents a system which will allow interaction between a physically disabled person and his environment. This system is controlled by voluntary muscular movements, particularly those of face muscles. These movements will be translated into machine-understandable instructions, and they will be sent by means of a wireless link to a mobile robot that will execute them. Robot includes a video camera, in order to show the user the environment of the route that the robot follows. This system gives a greater personal autonomy to people with reduced mobility.

  18. NASA's Robotic Mining Competition Provides Undergraduates Full Life Cycle Systems Engineering Experience

    Science.gov (United States)

    Stecklein, Jonette

    2017-01-01

    NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.

  19. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  20. Speech Recognition System For Robotic Control And Movement

    Directory of Open Access Journals (Sweden)

    Biraja Nalini Rout

    2015-08-01

    Full Text Available Abstract In a current scenario voice and data recognition is one of the most sought after field in the area of artificial intelligence and robotic 1 engineering. The idea specializes on deriving a voice to voice intelligent system which operates purely on audiovoice instructions using a specialized voice recognition module a micro controller a set of wheels and a movable arm to operate. The working involves real time voice inputs feeded to the VR module which equivalently processes the audio signals and produces the output in audio format. It consists an IDE for both Windows and UNIX based operating system for manipulating and processing instructions both at software and hardware levels. The system also can perform a basic set of manual operations decides through the expert system. The VR module processes the data using multilayer perceptron to generate the required result. Movable arm operates to pick and place objects as per the given voice instructions. Its usability involves substituting manual work at both personal and professional levels.

  1. Object oriented design of the Liverpool Telescope Robotic Control System

    Science.gov (United States)

    Fraser, Stephen N.; Steele, Iain A.

    2002-12-01

    In the traditional, manned observatory, an astronomer must continually be weighing together many factors during the course of an observing run in order to make an appropriate decision on the course of action at that time. Weather conditions may force suspension of the observing program to protect the telescope, later to be resumed when conditions improve. Power outages may force controlled shutdown of computers and other hardware. Changes in sky condition may require on-the-fly changes to the scheduled program. For the Liverpool Telescope (LT), the Robotic Control System (RCS) is designed to act as a replacement for the duty astronomer. The system is required to be robust, reliable and adaptable e.g. to future instrument configurations and varying operational objectives. Consequently, object-oriented techniques which promote modularity and code re-use have been employed throughout the design of this system to facilitate maintainance and future upgrading. This paper describes the task management architecture (TMA) - a configurable, pattern based object model defining the cognitive functionality of the RCS, the environment monitoring architecture (EMA) - a configurable, rule-based decision making paradigm and the use of our proprietary Java message system (JMS) communications architecture to control the telescope and associated instrumentation.

  2. Electronic system for floor surface type detection in robotics applications

    Science.gov (United States)

    Tarapata, Grzegorz; Paczesny, Daniel; Tarasiuk, Łukasz

    2016-11-01

    The paper reports a recognizing method base on ultrasonic transducers utilized for the surface types detection. Ultra-sonic signal is transmitted toward the examined substrate, then reflected and scattered signal goes back to another ultra-sonic receiver. Thee measuring signal is generated by a piezo-electric transducer located at specified distance from the tested substrate. The detector is a second piezo-electric transducer located next to the transmitter. Depending on thee type of substrate which is exposed by an ultrasonic wave, the signal is partially absorbed inn the material, diffused and reflected towards the receiver. To measure the level of received signal, the dedicated electronic circuit was design and implemented in the presented systems. Such system was designed too recognize two types of floor surface: solid (like concrete, ceramic stiles, wood) and soft (carpets, floor coverings). The method will be applied in electronic detection system dedicated to autonomous cleaning robots due to selection of appropriate cleaning method. This work presents the concept of ultrasonic signals utilization, the design of both the measurement system and the measuring stand and as well number of wide tests results which validates correctness of applied ultrasonic method.

  3. Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance.

    Science.gov (United States)

    Li, Ming; Kapoor, Ankur; Mazilu, Dumitru; Horvath, Keith A

    2011-02-01

    We present a pneumatic actuated robotic assistant system for transapical aortic valve replacement under MRI guidance in a beating heart. This is a minimally invasive procedure that is currently performed manually inside the MRI bore. A robotic assistance system that integrates an interactive real-time MRI system, a robotic arm with a newly developed robotic valve delivery module, as well as user interfaces for the physician to plan the procedure and manipulate the robot, would be advantageous for the procedure. An Innomotion arm with hands-on cooperative interface was used as a device holder. A compact MRI compatible robotic delivery module was developed for delivering both balloon-expandable and self-expanding prostheses. A compact fiducial that can be placed close to the volume of interest and requires a single image plane was used for image-based robot registration. The system provides different user interfaces at various stages of the procedure. We present the development and evaluation of the components and the system in ex-vivo experiments.

  4. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata

    2010-07-01

    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  5. Multi-agent System for Off-line Coordinated Motion Planning of Multiple Industrial Robots

    Directory of Open Access Journals (Sweden)

    Shital S. Chiddarwar

    2011-03-01

    Full Text Available This article presents an agent based framework for coordinated motion planning of multiple robots. The emerging paradigm of agent based systems is implemented to address various issues related to safe and fast task execution when multiple robots share a common workspace. In the proposed agent based framework, each issue vital for coordinated motion planning of multiple robots and every robot participating in coordinated task is considered as an agent. The identified agents are interfaced with each other in order to incorporate the desired flexibility in the developed framework. This framework gives a complete strategy for determination of optimal trajectories of robots working in coordination with due consideration to their kinematic, dynamic and payload constraint. The complete architecture of the proposed framework and the detailed discussion on various modules are covered in this paper.

  6. Multi-Agent System for Off-Line Coordinated Motion Planning of Multiple Industrial Robots

    Directory of Open Access Journals (Sweden)

    Shital S. Chiddarwar

    2011-03-01

    Full Text Available This article presents an agent based framework for coordinated motion planning of multiple robots. The emerging paradigm of agent based systems is implemented to address various issues related to safe and fast task execution when multiple robots share a common workspace. In the proposed agent based framework, each issue vital for coordinated motion planning of multiple robots and every robot participating in coordinated task is considered as an agent. The identified agents are interfaced with each other in order to incorporate the desired flexibility in the developed framework. This framework gives a complete strategy for determination of optimal trajectories of robots working in coordination with due consideration to their kinematic, dynamic and payload constraint. The complete architecture of the proposed framework and the detailed discussion on various modules are covered in this paper.

  7. The development of robotic system for the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Jae Kyung; Kim, Ki Ho; Jung, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Yeoung; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong

    1996-07-01

    This project focuses on the development of a heavy-duty telerobotic system (HDTS) and a light-duty mobile robotic system (LDMRS) for use in nuclear power plants. HDTS has been developed for performing tasks such as the installation and removal of nozzle dam inside of water chamber of steam generator. HDTS that is remotely controlled could eliminate or significantly reduce human exposure to hazardous nuclear environment. HDTS has four major subsystems : a 6 degree of freedom master-slave manipulator, a guiding device, a monitoring device and a remote control center. Functional connections of each subsystems has resulted in HDTS that exhibits a high level of dexterity and a broad range of capabilities. LDMRS has been developed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. LDMRS equipped with four-omnidirectional planetary wheels is capable of ascending and descending stairs by employing a automatic stair climbing algorithm. A force-reflective algorithm developed enables LDMRS to be navigated flat surface with zero turning radius without collision by giving an operator a sense of force. The significance of developments is in providing both HDTS and LDMRS that can be operated from remote locations to perform tasks such as the maintenance of nozzle dam and the video surveillance of the nuclear facilities efficiently and without endangering human workers. This report describes the mechanical design, features, control system, and capabilities of both HDTS and LDMRS. (author). 59 refs., 38 tabs., 132 figs.

  8. Reliability of robotic system during general surgical procedures in a university hospital.

    Science.gov (United States)

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Morel, Philippe

    2014-01-01

    Data concerning the reliability of robotic systems are scarce, especially for general surgery. The aim of this study was to assess the incidence and consequences of robotic malfunction in a teaching institution. From January 2006 to September 2012, 526 consecutive robotic general surgical procedures were performed. All failures were prospectively recorded in a computerized database and reviewed retrospectively. Robotic malfunctions occurred in 18 cases (3.4%). These dysfunctions concerned the robotic instruments in 9 cases, the robotic arms in 4 cases, the surgical console in 3 cases, and the optical system in 2 cases. Two malfunctions were considered critical, and 1 led to a laparoscopic conversion (conversion rate due to malfunction, .2%). Overall, there were more dysfunctions at the beginning of the study period (2006 to 2010) than more recently (2011 to 2012) (4.2% vs 2.6%, P = .35). The robotic system malfunction rate was low. Most malfunctions could be resolved during surgery, allowing the procedures to be completed safely. With increased experience, the system malfunction rate seems to be reduced. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Rafael Barea

    2013-01-01

    Full Text Available Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot’s back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  10. Interventional robotic systems: Applications and technology state-of-the-art

    Science.gov (United States)

    CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN

    2011-01-01

    Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193

  11. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    Directory of Open Access Journals (Sweden)

    Shibin Yin

    2013-12-01

    Full Text Available A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system.

  12. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  13. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.

    Science.gov (United States)

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-02-14

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  14. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  15. Effect of Islanding and Telecontrolled Switches on Distribution System Reliability Considering Load and Green-Energy Fluctuations

    Directory of Open Access Journals (Sweden)

    Stefania Conti

    2016-05-01

    Full Text Available To improve electrical distribution network reliability, some portions of the network could operate in autonomous mode, provided that the related technical issues are addressed. More specifically, when there is not a path from those portions to the primary substation due to a fault in the network, such portions could be disconnected from the main network and supplied by local generation only. Such a mode of operation is known as “intentional islanding” and its effectiveness, in terms of adequacy, depends on the ability of the local generation to meet the island’s load. In fact, the ratio between the available local generation and load demand can frequently change during islanding due to load variations and, especially, due to the strongly irregular behavior of the primary energy sources of renewable generators. This paper proposes an analytical formulation to assess local generation adequacy during intentional islanding, accounting for the aforementioned variations. More specifically, the fluctuations of load and green-energy generators during islanding are modeled by means of Markov chains, whose output quantities are encompassed in the proposed analytical formulation. Such a formulation is used by the analytical equations of load points’ outage rate and duration. The evaluation of the reliability indices accounts for a protection scheme based on an appropriate communication infrastructure. Therefore, a brief overview on the telecommunications technologies has been presented with reference to their suitability for the specific application. In particular, distribution network safety issues have been considered as the main concern. The results show that neglecting load and generation fluctuations leads to a strong overestimation of the ability of distributed generators to meet the island load. Through a case study it is observed that the error on the load point outage rate is greater than the one affecting the outage duration.

  16. Improving energy efficiency of a robotic system based on multiple analytical solutions for inverse kinematics

    Directory of Open Access Journals (Sweden)

    Iakovlev Roman

    2017-01-01

    Full Text Available The paper presents the results of a study devoted to the problem of improving the energy efficiency of mechanical motion of anthropomorphic robotic systems. Achieving higher energy efficiency is largely due to the implementation of improvements directly in the algorithms that ensure the movement of a robotic system. For this purpose, several existing analytical methods for solving the inverse kinematics problem for robotic walking platforms were analyzed. According to the survey, key areas where modification can improve the energy efficiency of mechanical motion in various RS are identified. The paper discusses the algorithm developed to optimize the solutions of the inverse kinematics problem in terms of energy consumption.

  17. The First Korean Experience of Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using the da Vinci System

    Science.gov (United States)

    Kang, Chang Moo; Chi, Hoon Sang; Hyeung, Woo Jin; Kim, Kyung Sik; Choi, Jin Sub; Kim, Byong Ro

    2007-01-01

    With the advancement of laparoscopic instruments and computer sciences, complex surgical procedures are expected to be safely performed by robot assisted telemanipulative laparoscopic surgery. The da Vinci system (Intuitive Surgical, Mountain View, CA, USA) became available at the many surgical fields. The wrist like movements of the instrument's tip, as well as 3-dimensional vision, could be expected to facilitate more complex laparoscopic procedure. Here, we present the first Korean experience of da Vinci robotic assisted laparoscopic cholecystectomy and discuss the introduction and perspectives of this robotic system. PMID:17594166

  18. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.

    Science.gov (United States)

    Marcus, Hani J; Seneci, Carlo A; Payne, Christopher J; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong

    2014-03-01

    Over the past decade, advances in image guidance, endoscopy, and tube-shaft instruments have allowed for the further development of keyhole transcranial endoscope-assisted microsurgery, utilizing smaller craniotomies and minimizing exposure and manipulation of unaffected brain tissue. Although such approaches offer the possibility of shorter operating times, reduced morbidity and mortality, and improved long-term outcomes, the technical skills required to perform such surgery are inevitably greater than for traditional open surgical techniques, and they have not been widely adopted by neurosurgeons. Surgical robotics, which has the ability to improve visualization and increase dexterity, therefore has the potential to enhance surgical performance. To evaluate the role of surgical robots in keyhole transcranial endoscope-assisted microsurgery. The technical challenges faced by surgeons utilizing keyhole craniotomies were reviewed, and a thorough appraisal of presently available robotic systems was performed. Surgical robotic systems have the potential to incorporate advances in augmented reality, stereoendoscopy, and jointed-wrist instruments, and therefore to significantly impact the field of keyhole neurosurgery. To date, over 30 robotic systems have been applied to neurosurgical procedures. The vast majority of these robots are best described as supervisory controlled, and are designed for stereotactic or image-guided surgery. Few telesurgical robots are suitable for keyhole neurosurgical approaches, and none are in widespread clinical use in the field. New robotic platforms in minimally invasive neurosurgery must possess clear and unambiguous advantages over conventional approaches if they are to achieve significant clinical penetration.

  19. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  20. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  1. Consensus Formation Control for a Class of Networked Multiple Mobile Robot Systems

    Directory of Open Access Journals (Sweden)

    Long Sheng

    2012-01-01

    for investigating the sufficient conditions to linear control gain design for the system with constant time delays. Simulation results as well as experimental studies on Pioneer 3 series mobile robots are shown to verify the effectiveness of the proposed approach.

  2. From First Contact to Close Encounters: A Developmentally Deep Perceptual System for a Humanoid Robot

    National Research Council Canada - National Science Library

    Fitzpatrick, Paul M

    2003-01-01

    ... those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little...

  3. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  4. A remote telepresence robotic system for inspection and maintenance of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C.D. III; Tulenko, J.S.

    1993-02-01

    Progress in reported in the areas of environmental hardening; database/world modeling; man-machine interface; development of the Advanced Liquid Metal Reactor (ALMR) maintenance inspection robot design; and Articulated Transporter/Manipulator System (ATMS) development.

  5. Person-like intelligent systems architectures for robotic shared control and automated operations

    Science.gov (United States)

    Erickson, Jon D.; Aucoin, Paschal J., Jr.; Ossorio, Peter G.

    1992-01-01

    An approach to rendering robotic systems as 'personlike' as possible to achieve needed capabilities is outlined. Human characteristics such as knowledge, motivation, know-how, performance, achievement and individual differences corresponding to propensities and abilities can be supplied, within limits, with computing software and hardware to robotic systems provided with sufficiently rich sensory configurations. Pushing these limits is the developmental path for more and more personlike robotic systems. The portions of the Person Concept that appear to be most directly relevant to this effort are described in the following topics: reality concepts (the state-of-affairs system and descriptive formats, behavior as intentional action, individual persons (person characteristics), social patterns of behavior (social practices), and boundary conditions (status maxims). Personlike robotic themes and considerations for a technical development plan are also discussed.

  6. JL-2: A Mobile Multi-robot System with Docking and Manipulating Capabilities

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2010-03-01

    Full Text Available This paper presents a new version of the JL series reconfigurable multi-robot system called JL-2. By virtue of the docking manipulator composed of a parallel mechanism and a cam gripper, every mobile robot in the JL-2 system is able to not only perform tasks in parallel, e.g. moving and grasping, but also dock with each other even if there are large misalignments between two robots. A motorized spherical joint is formed between two docked robots to enhance the locomotion capability of JL-2. To fulfill the demands of reconfiguration, a distributed control system and sonar based docking guidance system are designed for the JL-2 prototype. Based on the above design, the JL-2 prototype has been built and successfully demonstrated to confirm the validity and functionality of the proposed capabilities.

  7. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  8. Position Control Method For Pick And Place Robot Arm For Object Sorting System

    Directory of Open Access Journals (Sweden)

    Khin Moe Myint

    2015-08-01

    Full Text Available The more increase the number of industries in developing countries the more require labourers or workers in that. To reduce the cost of labour force and to increase the manufacturing capacity of industries the advanced robot arms are more needed. The aim of this journal is to eliminate the manual control for object sorting system.Robot arm design in this research uses two joints three links and servo motors to drive. Microcontroller is used to generate required PWM signal for servo motors. In this research the position control of robot arm was designed by using kinematic control methods. There are two types of kinematic control methods which are forward and reverse kinematic methods. In forward kinematic method the input parameters are the joint angles and link length of robot arm and then the output is the position at XYZ coordinate of tool or gripper. In inverse kinematic the input parameters are position at XYZ coordinate of gripper and the link length of robot arm and then the output parameters are the joint angles. So kinematic methods can explain the analytical description of the geometry motion of the manipulator with reference to a robot coordinate system fixed to a frame without consideration of the forces or the moments causing the movements. For sorting system Metal detector is used to detect the metal or non-metal. This position control of pick and place robot arm is fully tested and the result is obtained more precisely.

  9. TRUST AND REPUTATION MODEL DESIGN FOR OBJECTS OF MULTI-AGENT ROBOTICS SYSTEMS WITH DECENTRALIZED CONTROL

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-03-01

    Full Text Available The problem of mechanisms design for protection of multi-agent robotics systems from attacks of robots-saboteurs is considered. Functioning analysis of these systems with decentralized control is carried out. The type of the so-called soft attacks using interception of messages, misinformation formation and transmission to group of robots which are also realizing other actions without identified signs of invasion of robots-saboteurs. Analysis of existing information security models of the system based on the trust level computation, calculated in the process of agents’ interaction is carried out. Information security model is offered in which robots-agents produce the trust levels to each other on the basis of situation analysis emerging on a certain step of iterative algorithm with usage of onboard sensor devices. On the basis of calculated trust levels, recognition of “saboteur” objects in the group of legitimate robots-agents is done. For measure of likeness (adjacency increase for objects from the same category (“saboteur” or “legitimate agent”, calculation algorithm for agents reputation is offered as a measure of public opinion about qualities of this or that agent-subject. Implementation alternatives of the algorithms for detection of saboteurs on the example of the basic algorithm for distribution of purposes in the group of robots are considered.

  10. KNOWLEDGE-BASED ROBOT VISION SYSTEM FOR AUTOMATED PART HANDLING

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses an algorithm incorporating a knowledge-based vision system into an industrial robot system for handling parts intelligently. A continuous fuzzy controller was employed to extract boundary information in a computationally efficient way. The developed algorithm for on-line part recognition using fuzzy logic is shown to be an effective solution to extract the geometric features of objects. The proposed edge vector representation method provides enough geometric information and facilitates the object geometric reconstruction for gripping planning. Furthermore, a part-handling model was created by extracting the grasp features from the geometric features.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf ‘n kennis-gebaseerde visiesisteemalgoritme wat in ’n industriёle robotsisteem ingesluit word om sodoende intelligente komponenthantering te bewerkstellig. ’n Kontinue wasige beheerder is gebruik om allerlei objekinligting deur middel van ’n effektiewe berekeningsmetode te bepaal. Die ontwikkelde algoritme vir aan-lyn komponentherkenning maak gebruik van wasige logika en word bewys as ’n effektiewe metode om geometriese inligting van objekte te bepaal. Die voorgestelde grensvektormetode verskaf voldoende inligting en maak geometriese rekonstruksie van die objek moontlik om greepbeplanning te kan doen. Voorts is ’n komponenthanteringsmodel ontwikkel deur die grypkenmerke af te lei uit die geometriese eienskappe.

  11. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  12. Design and implementation of wormlike creeping mobile robot for EAST remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang, E-mail: zhangqiang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Department of Automation, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Ling [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Zengfu, E-mail: zfwang@ustc.edu.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Department of Automation, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-05-15

    Highlights: • Wormlike creeping robot walking on the V-shaped circular slot in EAST fusion vessel. • Mobile platform to carry equipments or assist manipulators for maintenance tasks. • Chain structure design with n(n ≥ 2) creeping units each of which has three segments. • Creeping gait planning to construct a multi-axis coordinating control scheme. • Evaluation and verification of basic motion performance and mechanical properties. - Abstract: Maintenance for nuclear fusion vessel is crucial, yet it faces great difficulty due to the complex internal physical and geometric conditions. Since the limitation on inherent strength, load, size, etc, a manipulator robot can only complete very limited tasks. Robotic arm systems for remote operation such as JET and MPD can carry certain tools to complete a variety of operating tasks, but it is difficult to achieve the system which is very complex. Therefore, if the inherent idea of using a single robot to complete the specified functions can change, it is possible to make the problems simpler and easier to solve by adding auxiliary robots working together with the robotic arm systems to complete the assigned tasks. Under the above background, based on the deeply analyzing and refining the functional requirements of the vessel operation robot, proceeding from the perspective of ability to move and carry a certain operating device, this paper presents a wormlike creeping mobile robot walking on the V-shaped circular slot inside a nuclear fusion vessel such as EAST (Experimental Advanced Superconducting Tokamak). We have designed and implemented the principle prototype of the robot which has chain structure with n (n ≥2) creeping units. Each creeping unit is of three-part structure, which consists of fore segment, mid segment and back segment connected by bidirectional universal joint. The fore and back segments stretch the paws to contact the surface of V-shaped slot, while the mid segment realizes the overall

  13. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    Science.gov (United States)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  14. Robotics and autonomous systems in the 50th anniversary of artificial intelligence

    OpenAIRE

    Casals, Alicia; Fernández Caballero, Antonio

    2007-01-01

    The special issue on ?Robotics and Autonomous Systems in the 50th Anniversary of Artificial Intelligence? collects a subset of the best papers in the fields of Robotics and Autonomous Systems presented at the Campus Multidisciplinary in Perception and Intelligence, CMPI-2006. The CMPI-2006 international conference, held in Albacete, Spain, from July 10 to 14, 2006, resulted in a forum for scientists in commemoration of the 50th Anniversary of Artificial Intelligence, which successfully report...

  15. Modified Denavit-Hartenberg Coordinate System for Robot Actuating Mechanisms with Tree-like Kinematic Structure

    Directory of Open Access Journals (Sweden)

    A. K. Kovalchuk

    2015-01-01

    Full Text Available To build mathematical models of actuating mechanisms (AM of robots with linear kinematic structure, J. Denavit and R.S. Hartenberg (D-H proposed to use a special coordinate system (CS. It uses a matrix of homogeneous transformation and provides clear and unambiguous rules to build mathematical models of robot actuating mechanisms. Developers widely use this approach because of its clarity and binding to AM design parameters. However, its use to describe robots the AM of which has a spatial tree-like kinematic structure revealed the certain hardship.The paper offers a method for building a modified D-H coordinate system. Its using allows to create mathematical models of robot AM, having spatial kinematic structure. The method is based on using both the graphs theory and the known D-H coordinate system jointly.The paper defines concepts of main and auxiliary coordinate systems and the order of their location on the tree-like AM. The values of the modified parameters of D-H are obtained. There its known parameters are complemented by parameters f(i, which determine the father number of the link i, and ns(i, that shows, which son in succession is the link i for the link f(i. An algorithm to form the matrix of reachability and the graph of reachability of the tree-like AM is proposed.It is proved that the use of the modified D-H coordinate system allows us to record in a block-matrix form both kinematic and dynamic equations for all links of the tree-like AM of robot. The use of these equations together with D'Alembert principle allowed us to write the equations of the tree-like AM dynamics of robot in the form traditional for recording the AM dynamics equations with open kinematic structure.Via examples of mathematically described kinematics and dynamics of tree-like AM of specific robots (robot-dog, robot-crab, anthropomorphic walking robot, etc. the paper shows efficiency of modified D-H coordinate system.Obtained research results of the medical

  16. Robotic Arm and Rover Actuator Systems for Mars Exploration

    Science.gov (United States)

    Reid, L.; Brawn, D.; Noon, D.

    1999-01-01

    Missions such as the Sojourner Rover, the Robotic Arm for Mars Polar Lander, and the 2003 Mars Rover, Athena, use numerous actuators that must operate reliably in extreme environments for long periods of time.

  17. Distributed Robotics Education

    OpenAIRE

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distributed educational system as a valuable tool for introducing students to interactive parallel and distributed processing programming as the foundation for distributed robotics and human-robot interaction...

  18. An Unmanned Aerial Vehicle as Human-Assistant Robotics System

    OpenAIRE

    Chingtham, Tejbanta Singh; G. Sahoo; Ghose, M.K.

    2011-01-01

    According to the American Heritage Dictionary [1],Robotics is the science or study of the technology associated with the design, fabrication, theory, and application of Robots. The term Hoverbot is also often used to refer to sophisticated mechanical devices that are remotely controlled by human beings even though these devices are not autonomous. This paper describes a remotely controlled hoverbot by installing a transmitter and receiver on both sides that is the control computer (PC) and th...

  19. Robot arm system for automatic satellite capture and berthing

    Science.gov (United States)

    Nishida, Shinichiro; Toriu, Hidetoshi; Hayashi, Masato; Kubo, Tomoaki; Miyata, Makoto

    1994-01-01

    Load control is one of the most important technologies for capturing and berthing free flying satellites by a space robot arm because free flying satellites have different motion rates. The performance of active compliance control techniques depend on the location of the force sensor and the arm's structural compliance. A compliance control technique for the robot arm's structural elasticity and a consideration for an end-effector appropriate for it are presented in this paper.

  20. A networked modular hardware and software system for MRI-guided robotic prostate interventions

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.

    2012-02-01

    Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.

  1. Development and Field Testing of the FootFall Planning System for the ATHLETE Robots

    Science.gov (United States)

    SunSpiral, Vytas; Wheeler, D. W.; Chavez-Clementa, Daniel; Mittman, David

    2011-01-01

    The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness.

  2. Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M. [Samsung Electronics Co., Ltd., Seoul (Korea); Lim, M.S. [Kyonggi Institute of Technology, Shihung (Korea); Lim, J.H. [Hanyang University, Seoul (Korea)

    2002-05-01

    This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments. (author). 13 refs., 13 figs., 1 tab.

  3. A novel optimal coordinated control strategy for the updated robot system for single port surgery.

    Science.gov (United States)

    Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen

    2017-09-01

    Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.

  4. User needs, benefits, and integration of robotic systems in a space station laboratory

    Science.gov (United States)

    Dodd, W. R.; Badgley, M. B.; Konkel, C. R.

    1989-01-01

    The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.

  5. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  6. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  7. R-MASTIF: robotic mobile autonomous system for threat interrogation and object fetch

    Science.gov (United States)

    Das, Aveek; Thakur, Dinesh; Keller, James; Kuthirummal, Sujit; Kira, Zsolt; Pivtoraiko, Mihail

    2013-01-01

    Autonomous robotic "fetch" operation, where a robot is shown a novel object and then asked to locate it in the field, re- trieve it and bring it back to the human operator, is a challenging problem that is of interest to the military. The CANINE competition presented a forum for several research teams to tackle this challenge using state of the art in robotics technol- ogy. The SRI-UPenn team fielded a modified Segway RMP 200 robot with multiple cameras and lidars. We implemented a unique computer vision based approach for textureless colored object training and detection to robustly locate previ- ously unseen objects out to 15 meters on moderately flat terrain. We integrated SRI's state of the art Visual Odometry for GPS-denied localization on our robot platform. We also designed a unique scooping mechanism which allowed retrieval of up to basketball sized objects with a reciprocating four-bar linkage mechanism. Further, all software, including a novel target localization and exploration algorithm was developed using ROS (Robot Operating System) which is open source and well adopted by the robotics community. We present a description of the system, our key technical contributions and experimental results.

  8. Infrared sensor system for mobile-robot positioning in intelligent spaces.

    Science.gov (United States)

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  9. Stereoscopic Augmented Reality System for Supervised Training on Minimal Invasive Surgery Robots

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Thøgersen, Mikkel; Galsgaard, Bo

    2014-01-01

    Training in the use of robot-assisted surgery systems is necessary before a surgeon is able to perform procedures using these systems because the setup is very different from manual procedures. In addition, surgery robots are highly expensive to both acquire and maintain --- thereby entailing...... the need for efficient training. When training with the robot, the communication between the trainer and the trainee is limited, since the trainee often cannot see the trainer. To overcome this issue, this paper proposes an Augmented Reality (AR) system where the trainer is controlling two virtual robotic...... arms. These arms are virtually superimposed on the video feed to the trainee, and can therefore be used to demonstrate and perform various tasks for the trainee. Furthermore, the trainer is presented with a 3D image through a stereoscopic display. Because of the added depth perception, this enables...

  10. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Directory of Open Access Journals (Sweden)

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  11. The design and realization of a sort of robot vision measure system

    Science.gov (United States)

    Ren, Yong-jie; Zhu, Ji-gui; Yang, Xue-you; Ye, Sheng-hua

    2006-06-01

    The robot vision measure system based on stereovision is a very meaningful research realm within the engineering application. In this system, the industry robot is the movable carrier of the stereovision sensor, not only extending the work space of the sensor, but also reserving the characteristics of vision measure technology such as non-contact, quickness, etc. Controlling the pose of the robot in space, the stereovision sensor can arrive at the given point to collect the image signal of the given point one by one, and then obtain the 3D coordinate data after computing the image data. The method based on the technique of binocular stereovision sensor, which uses two transit instruments and one precision drone to carry out the whole calibration, is presented. At the same time, the measurement program of the robot and the computer was written in different program language. In the end, the system was tested carefully, and the feasibility was proved simultaneously.

  12. Improvement of the insertion axis for cochlear implantation with a robot-based system.

    Science.gov (United States)

    Torres, Renato; Kazmitcheff, Guillaume; De Seta, Daniele; Ferrary, Evelyne; Sterkers, Olivier; Nguyen, Yann

    2017-02-01

    It has previously reported that alignment of the insertion axis along the basal turn of the cochlea was depending on surgeon' experience. In this experimental study, we assessed technological assistances, such as navigation or a robot-based system, to improve the insertion axis during cochlear implantation. A preoperative cone beam CT and a mastoidectomy with a posterior tympanotomy were performed on four temporal bones. The optimal insertion axis was defined as the closest axis to the scala tympani centerline avoiding the facial nerve. A neuronavigation system, a robot assistance prototype, and software allowing a semi-automated alignment of the robot were used to align an insertion tool with an optimal insertion axis. Four procedures were performed and repeated three times in each temporal bone: manual, manual navigation-assisted, robot-based navigation-assisted, and robot-based semi-automated. The angle between the optimal and the insertion tool axis was measured in the four procedures. The error was 8.3° ± 2.82° for the manual procedure (n = 24), 8.6° ± 2.83° for the manual navigation-assisted procedure (n = 24), 5.4° ± 3.91° for the robot-based navigation-assisted procedure (n = 24), and 3.4° ± 1.56° for the robot-based semi-automated procedure (n = 12). A higher accuracy was observed with the semi-automated robot-based technique than manual and manual navigation-assisted (p robot-based system reduces both the error and the variability of the alignment with a defined optimal axis.

  13. Motion planning and coordination for robot systems based on representation space.

    Science.gov (United States)

    Su, Jianbo; Xie, Wenlong

    2011-02-01

    This paper proposes a general motion planning and coordination strategy for robot systems. The representation space (RS) of a robot system is constructed to describe the distributions of system attributes. The reachable area in the RS, denoting the attribute set that the system can be of, indicates the system's ability to accomplish tasks. Moreover, it also describes the influences of the internal and external constraints on the system's capability. Task realization is transformed to finding a trajectory in the RS for the system attributes to transit along under constraints. Meanwhile, the realizable conditions of a prescribed task by the robot system of specific configurations are discussed. If the task is realizable, the optimal strategy for task execution could further be figured out. Otherwise, it could be transformed to be realizable via task reassignment or system reconfigurations so that a connected path could be found for the transition of the system attributes from the starting point to the goal in the RS. The proposed scheme contributes to designing, planning, and coordination of the robotic tasks. Experiments on path planning of a robot manipulator and formation movement of a multirobot system, as well as coordination of a mobile manipulator system, are conducted to show the validity and generalization of the proposed method.

  14. Design of multifunction anti-terrorism robotic system based on police dog

    Science.gov (United States)

    You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie

    2007-11-01

    Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.

  15. Accuracy Analysis of a Robot System for Closed Diaphyseal Fracture Reduction

    Directory of Open Access Journals (Sweden)

    Changsheng Li

    2014-10-01

    Full Text Available We have developed a robot system for closed diaphyseal fracture reduction. Because accuracy is essential for the treatment effects of the robot system and for the safety of both the patients and surgeons, we analysed accuracy in a systematic way. Both the structure of the robot and the operation procedure are described. Using the transfer model of errors in series and the error differential solving method for parallel mechanisms, an error model was established, and the main influencing factors of errors were considered. The Monte Carlo method was used to perform the simulation based on the error model. Experiments of image registration, of the mechanism and of the whole robot system were tested in different aspects to verify that the results of the simulation are correct. The system accuracy was compared with clinical standards to show that the robot system fulfilled the requirements for closed diaphyseal fracture reduction. The accuracy analysis method also provides an efficient path for other medical robots.

  16. Design and Application of The Painting Material Supply System of The Painting Robot for Steel Products

    Science.gov (United States)

    Miyawaki, Kunio; Hisayasu, Azuma; Mori, Tsunehito; Miyazaki, Tatsuo; Nakashima, Yoshio

    With the increase of painting works and the decrease of skilled workers, the demand for robot painting of the large-scale steel product is rapidly increasing. But there are many technical problems in the development of the painting robot for this use. The collision between a robot and a work-piece is one of the most important problems, because the robot operates in a small space of a work-piece. Above all, the collision of the painting material supply hose with painted film on a work-piece is very serious. To avoid the hose collision, we propose an in-line type of paint supply mechanism using swivel joints. The key point in this system is the sealing performance and its durability, and we propose the piping system with compliance to strengthen the sealing performance. In this paper, the design method of this system is discussed on the basis of the analysis of the fluctuatinal elastic deformation of a O-ring in the swivel joint. We produced a prototype of the painting robot with the in-line system designed by this method. Application of this robot to the painting of ship-hull block is also discussed. Results from this application show the effectiveness of the in-line system.

  17. Feasibility study of intraocular robotic surgery with the da Vinci surgical system.

    Science.gov (United States)

    Bourla, Dan H; Hubschman, Jean Pierre; Culjat, Martin; Tsirbas, Angelo; Gupta, Anurag; Schwartz, Steven D

    2008-01-01

    To assess the feasibility of performing intraocular robotic surgery with the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA). Using modified robotic instruments, 25-gauge pars plana vitrectomy, intraocular foreign body removal, and anterior capsulorhexis were performed with the da Vinci system on porcine eyes. We assessed the surgical system's ability to provide the control, dexterity, maneuverability, and visualization necessary for intraocular surgery. Control of the robotic wristlike instruments allowed for full range of movement. The dexterity of the robotic arms was excellent, with steady instrument motion. Controlling the robotic arms was not as intuitive as moving the wrist. A high stable point of rotation induced motion-related stress at the site of instrument insertion. Visualization of the external operative field during intraocular procedures required camera realignment, and absent retroillumination made anterior segment surgery hard to perform. The da Vinci Surgical System provided adequate dexterity for performing delicate intraocular manipulations. In the current design, the kinematics of the robotic arms was found to be insufficient for standard intraocular surgery. The system's endoscope did not did not yield the same detail acquired by an ophthalmic microscope.

  18. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  19. Simulation of a dead reckoning embedded system security patrol robot for deployment inside structures and buildings

    Science.gov (United States)

    Tickle, Andrew J.; Meng, Yan; Smith, Jeremy S.

    2010-10-01

    Dead Reckoning (DR) is the process of estimating a robot's current position based upon a previously determined position, and advancing that position based upon known speed and direction over time. It is therefore a simple way for an autonomous mobile robot to navigation within a known environment such as a building where measurements have been taken and a predetermined route planned based upon which doors (or areas) the robot would have enough force to enter. Discussed here is the design of a DR navigation system in Altera's DSP Builder graphical design process. The wheel circumference to the step size of stepper motor used to drive the robot are related and so this ratio can be easily changed to easily accommodate changes to the physical design of a robot with minimal changes to the software. The robot calculates its position in relation to the DR map by means of the number of revolutions of the wheels via odometry, in this situation there is no assumed wheel slippage that would induce an accumulative error in the system overtime. The navigation works by using a series of counters, each corresponding to a measurement taken from the environment, and are controlled by a master counter to trigger the correct counter at the appropriate time given the position of robot in the DR map. Each counter has extra safeguards built into them on their enables and outputs to ensure they only count at the correct time and to avoid clashes within the system. The accuracy of the navigation is discussed after the virtual route is plotted in MATLAB as a visual record in addition to how feedback loops, identification of known objects (such as fire safety doors that it would navigate through), and visual object avoidance could later be added to augment the system. The advantages of such a system are that it has the potential to upload different DR maps so that the end robot for can be used in new environments easily.

  20. Intra-Abdominal Cooling System Limits Ischemia-Reperfusion Injury During Robot-Assisted Renal Transplantation.

    Science.gov (United States)

    Meier, R P H; Piller, V; Hagen, M E; Joliat, C; Buchs, J-B; Nastasi, A; Ruttimann, R; Buchs, N C; Moll, S; Vallée, J-P; Lazeyras, F; Morel, P; Bühler, L

    2018-01-01

    Robot-assisted kidney transplantation is feasible; however, concerns have been raised about possible increases in warm ischemia times. We describe a novel intra-abdominal cooling system to continuously cool the kidney during the procedure. Porcine kidneys were procured by standard open technique. Groups were as follows: Robotic renal transplantation with (n = 11) and without (n = 6) continuous intra-abdominal cooling and conventional open technique with intermittent 4°C saline cooling (n = 6). Renal cortex temperature, magnetic resonance imaging, and histology were analyzed. Robotic renal transplantation required a longer anastomosis time, either with or without the cooling system, compared to the open approach (70.4 ± 17.7 min and 74.0 ± 21.5 min vs. 48.7 ± 11.2 min, p-values < 0.05). The temperature was lower in the robotic group with cooling system compared to the open approach group (6.5 ± 3.1°C vs. 22.5 ± 6.5°C; p = 0.001) or compared to the robotic group without the cooling system (28.7 ± 3.3°C; p < 0.001). Magnetic resonance imaging parenchymal heterogeneities and histologic ischemia-reperfusion lesions were more severe in the robotic group without cooling than in the cooled (open and robotic) groups. Robot-assisted kidney transplantation prolongs the warm ischemia time of the donor kidney. We developed a novel intra-abdominal cooling system that suppresses the noncontrolled rewarming of donor kidneys during the transplant procedure and prevents ischemia-reperfusion injuries. © 2017 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.