WorldWideScience

Sample records for robot intelligence kernel

  1. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  2. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  3. Reflection on robotic intelligence

    NARCIS (Netherlands)

    Bartneck, C.

    2006-01-01

    This paper reflects on the development or robots, both their physical shape as well as their intelligence. The later strongly depends on the progress made in the artificial intelligence (AI) community which does not yet provide the models and tools necessary to create intelligent robots. It is time

  4. Special Issue on Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Genci Capi

    2013-08-01

    Full Text Available The research on intelligent robots will produce robots that are able to operate in everyday life environments, to adapt their program according to environment changes, and to cooperate with other team members and humans. Operating in human environments, robots need to process, in real time, a large amount of sensory data—such as vision, laser, microphone—in order to determine the best action. Intelligent algorithms have been successfully applied to link complex sensory data to robot action. This editorial briefly summarizes recent findings in the field of intelligent robots as described in the articles published in this special issue.

  5. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  6. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  7. Intelligent robot action planning

    Energy Technology Data Exchange (ETDEWEB)

    Vamos, T; Siegler, A

    1982-01-01

    Action planning methods used in intelligent robot control are discussed. Planning is accomplished through environment understanding, environment representation, task understanding and planning, motion analysis and man-machine communication. These fields are analysed in detail. The frames of an intelligent motion planning system are presented. Graphic simulation of the robot's environment and motion is used to support the planning. 14 references.

  8. Intelligent robotics can boost America's economic growth

    Science.gov (United States)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  9. Intelligent robot trends for 1998

    Science.gov (United States)

    Hall, Ernest L.

    1998-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.

  10. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  11. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  12. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  13. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  14. 1st International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter

    2013-01-01

    In recent years, robots have been built based on cognitive architecture which has been developed to model human cognitive ability. The cognitive architecture can be a basis for intelligence technology to generate robot intelligence. In this edited book the robot intelligence is classified into six categories: cognitive intelligence, social intelligence, behavioral intelligence, ambient intelligence, collective intelligence and genetic intelligence. This classification categorizes the intelligence of robots based on the different aspects of awareness and the ability to act deliberately as a result of such awareness. This book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 1st International Conference on Robot Intelligence Technology and Applications (RiTA), held in Gwangju, Korea, December 16-18, 2012. For a better readability, this edition has the total 101 ...

  15. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  16. Intelligent lead: a novel HRI sensor for guide robots.

    Science.gov (United States)

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  17. 4th International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Karray, Fakhri; Jo, Jun; Sincak, Peter; Myung, Hyun

    2017-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 4th International Conference on Robot Intelligence Technology and Applications (RiTA), held in Bucheon, Korea, December 14 - 16, 2015. For better readability, this edition has the total of 49 article...

  18. 3rd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Yang, Weimin; Jo, Jun; Sincak, Peter; Myung, Hyun

    2015-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 3rd International Conference on Robot Intelligence Technology and Applications (RiTA), held in Beijing, China, November 6 - 8, 2014. For better readability, this edition has the total 74 papers group...

  19. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  20. 2nd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter; Karray, Fakhri

    2014-01-01

    We are facing a new technological challenge on how to store and retrieve knowledge and manipulate intelligence for autonomous services by intelligent systems which should be capable of carrying out real world tasks autonomously. To address this issue, robot researchers have been developing intelligence technology (InT) for “robots that think” which is in the focus of this book. The book covers all aspects of intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving resear...

  1. Intelligent robots: Do we need them and can they be built?

    International Nuclear Information System (INIS)

    Mann, R.C.

    1993-01-01

    For avid watchers of science fiction movies, the mention of robotics and artificial intelligence conjures up images of humanlike machines. Often, news reports of scientific advances that enable machines to behave in a flexible manner for a limited set of tests draw parallels to science fiction robots. The effect of this unfortunate kind of publicity is that the scientific disciplines of robotics and artificial intelligence are sometimes regarded as a playground for slightly crazed scientists trying to create artificial humans. In reality, the fields of robotics and artificial intelligence can best be described by answering a few commonly asked questions: What is an intelligent robot, anyway? Why would we need things like that? Could we build them and make them reliable for certain uses? An example of an intelligent machine, or robot is presented and the question of whether intelligent robots are needed is addressed. The impact of ORNL research on uses for intelligent machines is described

  2. Architecture for robot intelligence

    Science.gov (United States)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  3. AIonAI: a humanitarian law of artificial intelligence and robotics.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  4. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  5. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  6. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  7. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  8. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  9. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    OpenAIRE

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  10. Intelligent monitoring-based safety system of massage robot

    Institute of Scientific and Technical Information of China (English)

    胡宁; 李长胜; 王利峰; 胡磊; 徐晓军; 邹雲鹏; 胡玥; 沈晨

    2016-01-01

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  11. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    Directory of Open Access Journals (Sweden)

    Chunmei Liu

    2016-01-01

    Full Text Available This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.

  12. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    Science.gov (United States)

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  13. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA

  14. ROBOT LITERACY AN APPROACH FOR SHARING SOCIETY WITH INTELLIGENT ROBOTS

    Directory of Open Access Journals (Sweden)

    Hidetsugu Suto

    2013-12-01

    Full Text Available A novel concept of media education called “robot literacy” is proposed. Here, robot literacy refers to the means of forming an appropriate relationship with intelligent robots. It can be considered a kind of media literacy. People who were born after the Internet age can be considered “digital natives” who have new morals and values and behave differently than previous generations in Internet societies. This can cause various problems among different generations. Thus, the necessity of media literacy education is increasing. Internet technologies, as well as robotics technologies are growing rapidly, and people who are born after the “home robot age,” whom the author calls “robot natives,” will be expected to have a certain degree of “robot literacy.” In this paper, the concept of robot literacy is defined and an approach to robot literacy education is discussed.

  15. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  16. Artificial intelligence and robot responsibilities: innovating beyond rights.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  17. Intelligent robot trends and predictions for the first year of the new millennium

    Science.gov (United States)

    Hall, Ernest L.

    2000-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor. In factory automation, industrial robots can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. Today's robotic machines are faster, cheaper, more repeatable, more reliable and safer than ever. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has more than a billion-dollar market in the U.S. and is growing. Feasibility studies show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society. The fearful robot stories may help us prevent future disaster. The inspirational robot ideas may inspire the scientists of tomorrow. However, the intelligent robot ideas, which can be reduced to practice, will change the world.

  18. A Multidisciplinary Artificial Intelligence Model of an Affective Robot

    Directory of Open Access Journals (Sweden)

    Hooman Aghaebrahimi Samani

    2012-03-01

    Full Text Available A multidisciplinary approach to a novel artificial intelligence system for an affective robot is presented in this paper. The general objective of the system is to develop a robotic system which strives to achieve a high level of emotional bond between humans and robot by exploring human love. Such a relationship is a contingent process of attraction, affection and attachment from humans towards robots, and the belief of the vice versa from robots to humans. The advanced artificial intelligence of the system includes three modules, namely Probabilistic Love Assembly (PLA, based on the psychology of love, Artificial Endocrine System (AES, based on the physiology of love, and Affective State Transition (AST, based on emotions. The PLA module employs a Bayesian network to incorporate psychological parameters of affection in the robot. The AES module employs artificial emotional and biological hormones via a Dynamic Bayesian Network (DBN. The AST module uses a novel transition method for handling affective states of the robot. These three modules work together to manage emotional behaviours of the robot.

  19. Intelligent robots for nuclear power plant inspection and surveillance

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  20. Intelligent robot trends and predictions for the new millennium

    Science.gov (United States)

    Hall, Ernest L.; Mundhenk, Terrell N.

    1999-08-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor but little funding. In factory automation such robotics machines can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. In honor of the new millennium, this paper will present a discussion of futuristic trends and predictions. However, in keeping with technical tradition, a new technique for 'Follow the Leader' will also be presented in the hope of it becoming a new, useful and non-obvious technique.

  1. Architecture for Multiple Interacting Robot Intelligences

    Science.gov (United States)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  2. An intelligent space for mobile robot localization using a multi-camera system.

    Science.gov (United States)

    Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel

    2014-08-15

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  3. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Mariana Rampinelli

    2014-08-01

    Full Text Available This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  4. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  5. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  6. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  7. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    Science.gov (United States)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  8. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  9. Maximizing Function through Intelligent Robot Actuator Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing Function through Intelligent Robot Actuator Control Successful missions to Mars and beyond will only be possible with the support of high-performance...

  10. State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Xue-Bo Jin

    2018-03-01

    Full Text Available Mobility is a significant robotic task. It is the most important function when robotics is applied to domains such as autonomous cars, home service robots, and autonomous underwater vehicles. Despite extensive research on this topic, robots still suffer from difficulties when moving in complex environments, especially in practical applications. Therefore, the ability to have enough intelligence while moving is a key issue for the success of robots. Researchers have proposed a variety of methods and algorithms, including navigation and tracking. To help readers swiftly understand the recent advances in methodology and algorithms for robot movement, we present this survey, which provides a detailed review of the existing methods of navigation and tracking. In particular, this survey features a relation-based architecture that enables readers to easily grasp the key points of mobile intelligence. We first outline the key problems in robot systems and point out the relationship among robotics, navigation, and tracking. We then illustrate navigation using different sensors and the fusion methods and detail the state estimation and tracking models for target maneuvering. Finally, we address several issues of deep learning as well as the mobile intelligence of robots as suggested future research topics. The contributions of this survey are threefold. First, we review the literature of navigation according to the applied sensors and fusion method. Second, we detail the models for target maneuvering and the existing tracking based on estimation, such as the Kalman filter and its series developed form, according to their model-construction mechanisms: linear, nonlinear, and non-Gaussian white noise. Third, we illustrate the artificial intelligence approach—especially deep learning methods—and discuss its combination with the estimation method.

  11. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    Science.gov (United States)

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  12. Amooty, a stair climbing intelligent maintenance robot

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants.

  13. Amooty, a stair climbing intelligent maintenance robot

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants. (author)

  14. The perception of animacy and intelligence based on a robot's embodiment

    NARCIS (Netherlands)

    Bartneck, C.; Kanda, T.; Mubin, O.; Al Mahmud, A.

    2007-01-01

    Robots exhibit life-like behavior by performing intelligent actions. To enhance human-robot interaction it is necessary to investigate and understand how end-users perceive such animate behavior. In this paper, we report an experiment to investigate how people perceived different robot embodiments

  15. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  16. A Contest-Oriented Project for Learning Intelligent Mobile Robots

    Science.gov (United States)

    Huang, Hsin-Hsiung; Su, Juing-Huei; Lee, Chyi-Shyong

    2013-01-01

    A contest-oriented project for undergraduate students to learn implementation skills and theories related to intelligent mobile robots is presented in this paper. The project, related to Micromouse, Robotrace (Robotrace is the title of Taiwanese and Japanese robot races), and line-maze contests was developed by the embedded control system research…

  17. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  18. Design and implementation of self-balancing coaxial two wheel robot based on HSIC

    Science.gov (United States)

    Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo

    2007-12-01

    This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.

  19. PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS (PAIR

    Directory of Open Access Journals (Sweden)

    Editorial, Foreword

    2016-11-01

    Full Text Available September 18th, 2016Deggendorf, Germanyhttp://robotics.fel.cvut.cz/pair16/Organized by: Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in PragueTechnicka 2, Prague 6, 166 27, Czech RepublicGuest editors:Jan Faigl (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueJiří Vokřínek (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueScientific comittee:D. Belter (Poznań University of Technology, PolandW. Dorner (Technische Hochschule Deggendorf, GermanyJ. Faigl (Czech Technical University in PragueT. Krajník (University of Lincoln, United KingdomA. Komenda (Czech Technical University in PragueG. Kupris (Technische Hochschule Deggendorf, GermanyM. Rollo (Czech Technical University in PragueM. Saska (Czech Technical University in PragueJ. Vokřínek (Czech Technical University in PragueV. Vonásek (Czech Technical University in PragueK. Walas (Poznań University of Technology, Poland Foreword:The third year of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR continues in joining young researchers and students interested in robotics and artificial intelligence. In 2016, we follow the schema of the last year as a joint event with the RoboTour competition in Deggendorf, Germany. Thanks to the great collaboration with Gerald Kupris and Wolfgang Donner from Technische Hochschule Deggendorf and support from Czech Technical University under project No. SVK 26/16/F3 and Bayerisches Staatsministerium der Finanzen, für Landesentwicklung und Heimat, we have been able to provide accommodations and travel support to participants and an invited speaker. Fourteen papers have accepted and listed in the conference program. The papers have been authored by students from Central Europe

  20. Low-Resolution Tactile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-01-01

    Full Text Available In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA is applied to transform the features into ones with better discriminating ability, which is the kernel PCA-based feature fusion. The transformed features are fed into the third layer for classification. In this paper, we design a classifier by combining the multiple kernel learning (MKL algorithm and support vector machine (SVM. We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements. Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors. Also, the designed MKL-SVM outperforms the regular SVM in terms of recognition accuracy. The proposed recognition scheme is able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

  1. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Science.gov (United States)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  2. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    Science.gov (United States)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  3. Does the design of a robot influence its animacy and perceived intelligence?

    NARCIS (Netherlands)

    Bartneck, C.; Kanda, T.; Mubin, O.; Al Mahmud, A.

    2009-01-01

    Robots exhibit life-like behavior by performing intelligent actions. To enhance human-robot interaction it is necessary to investigate and understand how end-users perceive such animate behavior. In this paper, we report an experiment to investigate how people perceived different designs of robot

  4. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  5. Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Science.gov (United States)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.

  6. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  7. Robot-aided electrospinning toward intelligent biomedical engineering.

    Science.gov (United States)

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  8. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X.

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research. PMID:26819582

  9. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  10. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2016-01-01

    Full Text Available Bioinspired intelligent algorithm (BIA is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  11. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  12. Basic research on intelligent robotic systems operating in hostile environments: New developments at ORNL

    International Nuclear Information System (INIS)

    Barhen, J.; Babcock, S.M.; Hamel, W.R.; Oblow, E.M.; Saridis, G.N.; deSaussure, G.; Solomon, A.D.; Weisbin, C.R.

    1984-01-01

    Robotics and artificial intelligence research carried out within the Center for Engineering Systems Advanced Research (CESAR) is presented. Activities focus on the development and demonstration of a comprehensive methodological framework for intelligent machines operating in unstructured hostile environments. Areas currently being addressed include mathematical modeling of robot dynamics, real-time control, ''world'' modeling, machine perception and strategy planning

  13. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    Science.gov (United States)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  14. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    Directory of Open Access Journals (Sweden)

    Xianfeng Yuan

    2015-01-01

    presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel support vector machine (SVM and Dempster-Shafer (D-S fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  15. Intelligent, self-contained robotic hand

    Science.gov (United States)

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  16. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  17. Intelligent assistive robots recent advances in assistive robotics for everyday activities

    CERN Document Server

    Moreno, Juan; Kong, Kyoungchul; Amirat, Yacine

    2015-01-01

    This book deals with the growing challenges of using assistive robots in our everyday activities along with providing intelligent assistive services. The presented applications concern mainly healthcare and wellness such as helping elderly people, assisting dependent persons, habitat monitoring in smart environments, well-being, security, etc. These applications reveal also new challenges regarding control theory, mechanical design, mechatronics, portability, acceptability, scalability, security, etc.  

  18. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  19. The 17th Annual Intelligent Ground Vehicle Competition: Intelligent Robots Built by Intelligent Students

    Science.gov (United States)

    2009-11-23

    intelligent mobile robots. The competition has been highly praised by faculty advisors as an excellent multidisciplinary design experience for...States Naval Academy Robo -Goat 60 0:54 21 Oakland University Moonwalker 54 0:22 22 Tennessee Technological University Andros 53 1:06 23 California...Naval Academy Robo -Goat 622.00 20 University of Michigan – Dearborn Rhino 568.50 21 Georgia Institute of Technology Candiii 533.00 22 Rose-Hulman

  20. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  1. Implementation and Validation of Artificial Intelligence Techniques for Robotic Surgery

    OpenAIRE

    Aarshay Jain; Deepansh Jagotra; Vijayant Agarwal

    2014-01-01

    The primary focus of this study is implementation of Artificial Intelligence (AI) technique for developing an inverse kinematics solution for the Raven-IITM surgical research robot [1]. First, the kinematic model of the Raven-IITM robot was analysed along with the proposed analytical solution [2] for inverse kinematics problem. Next, The Artificial Neural Network (ANN) techniques was implemented. The training data for the same was careful selected by keeping manipulability constraints in mind...

  2. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    Science.gov (United States)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  3. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  4. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network

    Directory of Open Access Journals (Sweden)

    Widodo Budiharto

    2015-01-01

    Full Text Available For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system.

  5. A novel modification of the Turing test for artificial intelligence and robotics in healthcare.

    Science.gov (United States)

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2015-03-01

    The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Associative learning for a robot intelligence

    CERN Document Server

    Andreae, John H

    1998-01-01

    The explanation of brain functioning in terms of the association of ideas has been popular since the 17th century. Recently, however, the process of association has been dismissed as computationally inadequate by prominent cognitive scientists. In this book, a sharper definition of the term "association" is used to revive the process by showing that associative learning can indeed be computationally powerful. Within an appropriate organization, associative learning can be embodied in a robot to realize a human-like intelligence, which sets its own goals, exhibits unique unformalizable behaviou

  7. The Modular Design and Production of an Intelligent Robot Based on a Closed-Loop Control Strategy.

    Science.gov (United States)

    Zhang, Libo; Zhu, Junjie; Ren, Hao; Liu, Dongdong; Meng, Dan; Wu, Yanjun; Luo, Tiejian

    2017-10-14

    Intelligent robots are part of a new generation of robots that are able to sense the surrounding environment, plan their own actions and eventually reach their targets. In recent years, reliance upon robots in both daily life and industry has increased. The protocol proposed in this paper describes the design and production of a handling robot with an intelligent search algorithm and an autonomous identification function. First, the various working modules are mechanically assembled to complete the construction of the work platform and the installation of the robotic manipulator. Then, we design a closed-loop control system and a four-quadrant motor control strategy, with the aid of debugging software, as well as set steering gear identity (ID), baud rate and other working parameters to ensure that the robot achieves the desired dynamic performance and low energy consumption. Next, we debug the sensor to achieve multi-sensor fusion to accurately acquire environmental information. Finally, we implement the relevant algorithm, which can recognize the success of the robot's function for a given application. The advantage of this approach is its reliability and flexibility, as the users can develop a variety of hardware construction programs and utilize the comprehensive debugger to implement an intelligent control strategy. This allows users to set personalized requirements based on their needs with high efficiency and robustness.

  8. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  9. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Directory of Open Access Journals (Sweden)

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  10. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  11. Robotic and artificial intelligence for keyhole neurosurgery: the ROBOCAST project, a multi-modal autonomous path planner.

    Science.gov (United States)

    De Momi, E; Ferrigno, G

    2010-01-01

    The robot and sensors integration for computer-assisted surgery and therapy (ROBOCAST) project (FP7-ICT-2007-215190) is co-funded by the European Union within the Seventh Framework Programme in the field of information and communication technologies. The ROBOCAST project focuses on robot- and artificial-intelligence-assisted keyhole neurosurgery (tumour biopsy and local drug delivery along straight or turning paths). The goal of this project is to assist surgeons with a robotic system controlled by an intelligent high-level controller (HLC) able to gather and integrate information from the surgeon, from diagnostic images, and from an array of on-field sensors. The HLC integrates pre-operative and intra-operative diagnostics data and measurements, intelligence augmentation, multiple-robot dexterity, and multiple sensory inputs in a closed-loop cooperating scheme including a smart interface for improved haptic immersion and integration. This paper, after the overall architecture description, focuses on the intelligent trajectory planner based on risk estimation and human criticism. The current status of development is reported, and first tests on the planner are shown by using a real image stack and risk descriptor phantom. The advantages of using a fuzzy risk description are given by the possibility of upgrading the knowledge on-field without the intervention of a knowledge engineer.

  12. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    Science.gov (United States)

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  13. Social Intelligence for a Robot Engaging People in Cognitive Training Activities

    Directory of Open Access Journals (Sweden)

    Jeanie Chan

    2012-10-01

    Full Text Available Current research supports the use of cognitive training interventions to improve the brain functioning of both adults and children. Our work focuses on exploring the potential use of robot assistants to allow for these interventions to become more accessible. Namely, we aim to develop an intelligent, socially assistive robot that can engage individuals in person-centred cognitively stimulating activities. In this paper, we present the design of a novel control architecture for the robot Brian 2.0, which enables the robot to be a social motivator by providing assistance, encouragement and celebration during an activity. A hierarchical reinforcement learning approach is used in the architecture to allow the robot to: 1 learn appropriate assistive behaviours based on the structure of the activity, and 2 personalize an interaction based on user states. Experiments show that the control architecture is effective in determining the robot's optimal assistive behaviours during a memory game interaction.

  14. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  15. From responsible robotics towards a human rights regime oriented to the challenges of robotics and artificial intelligence

    DEFF Research Database (Denmark)

    Liu, Hin-Yan; Zawieska, Karolina

    2017-01-01

    impulse by proposing a complementary set of human rights directed specifically against the harms arising from robotic and artificial intelligence (AI) technologies. The relationship between responsibilities of the agent and the rights of the patient suggest that a rights regime is the other side...... to act responsibly. This subsists within a larger phenomenon where the difference between humans and non-humans, be it animals or artificial systems, appears to be increasingly blurred, thereby disrupting orthodox understandings of responsibility. This paper seeks to supplement the responsible robotics...

  16. Intelligent Interaction for Human-Friendly Service Robot in Smart House Environment

    Directory of Open Access Journals (Sweden)

    Z. Zenn Bien

    2008-01-01

    Full Text Available The smart house under consideration is a service-integrated complex system to assist older persons and/or people with disabilities. The primary goal of the system is to achieve independent living by various robotic devices and systems. Such a system is treated as a human-in-the loop system in which human- robot interaction takes place intensely and frequently. Based on our experiences of having designed and implemented a smart house environment, called Intelligent Sweet Home (ISH, we present a framework of realizing human-friendly HRI (human-robot interaction module with various effective techniques of computational intelligence. More specifically, we partition the robotic tasks of HRI module into three groups in consideration of the level of specificity, fuzziness or uncertainty of the context of the system, and present effective interaction method for each case. We first show a task planning algorithm and its architecture to deal with well-structured tasks autonomously by a simplified set of commands of the user instead of inconvenient manual operations. To provide with capability of interacting in a human-friendly way in a fuzzy context, it is proposed that the robot should make use of human bio-signals as input of the HRI module as shown in a hand gesture recognition system, called a soft remote control system. Finally we discuss a probabilistic fuzzy rule-based life-long learning system, equipped with intention reading capability by learning human behavioral patterns, which is introduced as a solution in uncertain and time-varying situations.

  17. The development of advanced robotic technology. A study on the tele-existence and intelligent control of a robot system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Byun, Jueng Nam; Kim, Jong Hwan; Lee, Ju Jang; Bang, Seok Won; Chu, Gil Hwan; Park, Jong Cheol; Choi, Jong Seok; Yang, Jung Min; Hong, Sun Ki [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    To increase the efficiency of human intelligence it is required to develop an intelligent monitoring and system. In this research, we develop intelligent control methods related with tele-operation, tele-existence, real-time control technique, and intelligent control technique. Those are key techniques in tele-operation, especially for the repair and maintenance of nuclear power plants. The objective of this project is to develop of the tele-existence and intelligent control system for a robot used in the nuclear power plants. (author). 20 refs.

  18. Artificial Intelligence techniques for mission planning for mobile robots

    International Nuclear Information System (INIS)

    Martinez, J.M.; Nomine, J.P.

    1990-01-01

    This work focuses on Spatial Modelization Techniques and on Control Software Architectures, in order to deal efficiently with the Navigation and Perception problems encountered in Mobile Autonomous Robotics. After a brief survey of the current various approaches for these techniques, we expose ongoing simulation works for a specific mission in robotics. Studies in progress used for Spatial Reasoning are based on new approaches combining Artificial Intelligence and Geometrical techniques. These methods deal with the problem of environment modelization using three types of models: geometrical topological and semantic models at different levels. The decision making processes of control are presented as the result of cooperation between a group of decentralized agents that communicate by sending messages. (author)

  19. Creating robots with personality : the effect of personality on social intelligence

    NARCIS (Netherlands)

    Mileounis, A.; Cuijpers, R.H.; Barakova, E.I.

    2015-01-01

    This study investigates the effect of two personality traits, dominance and extroversion, on social intelligence. To test these traits, a NAO robot was used, which was teleoperated through a computer using a Wizard of Oz technique. A within-subject design was conducted with extroversion as

  20. Intelligent mechatronics; Intelligent mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1995-10-01

    Intelligent mechatronics (IM) was explained as follows: a study of IM essentially targets realization of a robot namely, but in the present stage the target is a creation of new values by intellectualization of machine, that is, a combination of the information infrastructure and the intelligent machine system. IM is also thought to be constituted of computers positively used and micromechatronics. The paper next introduces examples of IM study, mainly those the author is concerned with as shown below: sensor gloves, robot hands, robot eyes, tele operation, three-dimensional object recognition, mobile robot, magnetic bearing, construction of remote controlled unmanned dam, robot network, sensitivity communication using neuro baby, etc. 27 figs.

  1. JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 1

    Science.gov (United States)

    1989-03-16

    Robots 43064062 Tokyo 4TH INTELLIGENT ROBOTS SYMPOSIUM PAPERS in Japanese 13/14 Jun 88 No 106 pp 39-44 [Article by H. Kimura , I. Shimoyama, and H. Miura...pp 237-239. 3. K. Kondo and F. Kimura , "High-Speed Orbit Planning Based on Labyrinthine Method," Ibid., pp 261-262. 4. T. Hasegawa, "Planning of...Satoshi Okada, Kazuhiro Tsumura, Hisashi Hozeki, Katsumi Kubo, and Akira Abe, Toshiba Corporation] [Text] 1. Introduction In recent years, the

  2. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  3. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  4. The DelFly design, aerodynamics, and artificial intelligence of a flapping wing robot

    CERN Document Server

    de Croon, G C H E; Remes, B D W; Ruijsink, R; De Wagter, C

    2016-01-01

    This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Expl...

  5. Autonomous construction using scarce resources in unknown environments - Ingredients for an intelligent robotic interaction with the physical world

    OpenAIRE

    Magnenat, Stéphane; Philippsen, Roland; Mondada, Francesco

    2012-01-01

    The goal of creating machines that autonomously perform useful work in a safe, robust and intelligent manner continues to motivate robotics research. Achieving this autonomy requires capabilities for understanding the environment, physically interacting with it, predicting the outcomes of actions and reasoning with this knowledge. Such intelligent physical interaction was at the centre of early robotic investigations and remains an open topic. In this paper, we build on the fruit of decades ...

  6. Selective Snapshot of State-of-the-Art Artificial Intelligence & Robotics with Reference to the Icarus Starship

    Science.gov (United States)

    Ellery, A.

    Since the remarkable British Interplanetary Society starship study of the late 1970s - Daedalus - there have been significant developments in the areas of artificial intelligence and robotics. These will be critical technologies for any starship as indeed they are for the current generation of exploratory spacecraft and in-situ planetary robotic explorers. Although early visions of truly intelligent robots have yet to materialize (reasons for which will be outlined), there are nonetheless revolutionary developments which have attempted to address at least some of these earlier unperceived deficiencies. The current state of the art comprises a number of separate strands of research which provide components of robotic intelligence though no over- arching approach has been forthcoming. The first question to be considered is the level of intelligent functionality required to support a long-duration starship mission. This will, at a minimum, need to be extensive imposed by the requirement for complex reconfigurability and repair. The second question concerns the tools that we have at our disposal to implement the required intelligent functions of the starship. These are based on two very different approaches - good old-fashioned artificial intelligence (GOFAI) based on logical theorem-proving and knowledge-encoding recently augmented by modal, temporal, circumscriptive and fuzzy logics to address the well-known “frame problem”; and the more recent soft computing approaches based on artificial neural networks, evolutionary algorithms and immunity models and their variants to implement learning. The former has some flight heritage through the Remote Agent architecture whilst the latter has yet to be deployed on any space mission. However, the notion of reconfigurable hardware of recent interest in the space community warrants the use of evolutionary algorithms and neural networks implemented on field programmable gate array technology, blurring the distinction between

  7. Intelligent Hybrid Control Strategy for Trajectory Tracking of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2008-01-01

    Full Text Available We address the problem of robust tracking control using a PD-plus-feedforward controller and an intelligent adaptive robust compensator for a rigid robotic manipulator with uncertain dynamics and external disturbances. A key feature of this scheme is that soft computer methods are used to learn the upper bound of system uncertainties and adjust the width of the boundary layer base. In this way, the prior knowledge of the upper bound of the system uncertainties does need not to be required. Moreover, chattering can be effectively eliminated, and asymptotic error convergence can be guaranteed. Numerical simulations and experiments of two-DOF rigid robots are presented to show effectiveness of the proposed scheme.

  8. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  9. Artefact: the division of artificial intelligence, robotics and expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferber, J

    1983-06-01

    The history of artificial intelligence is traced from its beginnings in 1956 to its current coverage of the areas of problem-solving, expert systems and games, natural-language processing, robotics, picture and speech recognition, automatic programming, and computer-aided design and instruction. Each area is reviewed in turn, programming languages and techniques are discussed, and both apocalyptic forecasts and underestimates of future developments are criticised.

  10. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Ran; Zhang, You Yun; Zhu, Yong Sheng [Xi' an Jiaotong Univ., Xi' an (China)

    2012-09-15

    Intelligent fault diagnosis benefits from efficient feature selection. Neighborhood rough sets are effective in feature selection. However, determining the neighborhood value accurately remains a challenge. The wrapper feature selection algorithm is designed by combining the kernel method and neighborhood rough sets to self-adaptively select sensitive features. The combination effectively solves the shortcomings in selecting the neighborhood value in the previous application process. The statistical features of time and frequency domains are used to describe the characteristic of the rolling bearing to make the intelligent fault diagnosis approach work. Three classification algorithms, namely, classification and regression tree (CART), commercial version 4.5 (C4.5), and radial basis function support vector machines (RBFSVM), are used to test UCI datasets and 10 fault datasets of rolling bearing. The results indicate that the diagnostic approach presented could effectively select the sensitive fault features and simultaneously identify the type and degree of the fault.

  11. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features

    International Nuclear Information System (INIS)

    Zhu, Xiao Ran; Zhang, You Yun; Zhu, Yong Sheng

    2012-01-01

    Intelligent fault diagnosis benefits from efficient feature selection. Neighborhood rough sets are effective in feature selection. However, determining the neighborhood value accurately remains a challenge. The wrapper feature selection algorithm is designed by combining the kernel method and neighborhood rough sets to self-adaptively select sensitive features. The combination effectively solves the shortcomings in selecting the neighborhood value in the previous application process. The statistical features of time and frequency domains are used to describe the characteristic of the rolling bearing to make the intelligent fault diagnosis approach work. Three classification algorithms, namely, classification and regression tree (CART), commercial version 4.5 (C4.5), and radial basis function support vector machines (RBFSVM), are used to test UCI datasets and 10 fault datasets of rolling bearing. The results indicate that the diagnostic approach presented could effectively select the sensitive fault features and simultaneously identify the type and degree of the fault

  12. The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm

    Science.gov (United States)

    Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.

    2018-04-01

    Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.

  13. i-SAIRAS '90; Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kobe, Japan, Nov. 18-20, 1990

    Science.gov (United States)

    1990-01-01

    The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.

  14. Survey of the state of art in robotics and artificial intelligence, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, G; Lux, P; Knappmann, R J; Schmidt, U

    1981-07-01

    This survey presents the state of the art in robotics and AI with emphasis on control and intelligence. It gives an introduction and summary description of robots and AI, identifies main application areas in space and benefits of the new technologies. Basic methods and concepts are illustrated. The state of the art, evolution trends and problem areas are described for industrial robots and space systems. Two reference missions are used to identify space opportunities. The potential application of existing know-how to space usage is identified. Recommendations for future research and development are given to overcome the problem areas. The survey comprises inventories of relevant publications, firms and institutions and know-how.

  15. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2008-11-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion..

  16. New Intelligent Transmission Concept for Hybrid Mobile Robot Speed Control

    Directory of Open Access Journals (Sweden)

    Nazim Mir-Nasiri

    2005-09-01

    Full Text Available This paper presents a new concept of a mobile robot speed control by using two degree of freedom gear transmission. The developed intelligent speed controller utilizes a gear box which comprises of epicyclic gear train with two inputs, one coupled with the engine shaft and another with the shaft of a variable speed dc motor. The net output speed is a combination of the two input speeds and is governed by the transmission ratio of the planetary gear train. This new approach eliminates the use of a torque converter which is otherwise an indispensable part of all available automatic transmissions, thereby reducing the power loss that occurs in the box during the fluid coupling. By gradually varying the speed of the dc motor a stepless transmission has been achieved. The other advantages of the developed controller are pulling over and reversing the vehicle, implemented by intelligent mixing of the dc motor and engine speeds. This approach eliminates traditional braking system in entire vehicle design. The use of two power sources, IC engine and battery driven DC motor, utilizes the modern idea of hybrid vehicles. The new mobile robot speed controller is capable of driving the vehicle even in extreme case of IC engine failure, for example, due to gas depletion.

  17. PAIR'14 / PAIR'15 STUDENT CONFERENCES ON PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS

    Directory of Open Access Journals (Sweden)

    Editorial Foreword

    2015-12-01

    Full Text Available Dear Readerthe original idea of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR is to join young researchers from particular laboratories in Czech Republic, where planning problems are investigated from artificial intelligence (AI or robotics points of view. The first year of PAIR has been organized at the Dept. of Computer Science, Faculty Electrical Engineering, Czech Technical University in 2014.At PAIR 2014, laboratories from Prague and Brno were presented. In particular, students and researchers from Charles University, Czech Technical University in Prague, Brno University of Technology, and Central European Institute of Technology participated at the event. Beside an introduction of the particular research groups and their topics, students presented contributions on their current research results. Ten papers were presented on topics ranging from domain–independent planning, trajectory planning to applications for unmanned aerial and legged robots. This first event provides us an initial experience with the community of young researchers in Czech Republic that are working planning in robotic or AI. Based on the success of PAIR 2014, we decided to continue with our effort to establish a suitable fora for students that are geographically very close, but usually do not meet, because of participation on different Robotics and AI events.The second student conference on Planning in Artificial Intelligence and Robotics (PAIR 2015 successfully continues the tradition of the first year of the conference organized in Prague. This year, the conference was collocated with 10th anniversary of RoboTour contest in Písek. This format enable us to extend the impact of the PAIR conference and improve the visibility of the growing student community. The conference reached a good amount of interesting papers focused on image processing for mobile robots, swarm control, driving simulation, robot control, or domain

  18. Robotics and artificial intelligence: Jewish ethical perspectives.

    Science.gov (United States)

    Rappaport, Z H

    2006-01-01

    In 16th Century Prague, Rabbi Loew created a Golem, a humanoid made of clay, to protect his community. When the Golem became too dangerous to his surroundings, he was dismantled. This Jewish theme illustrates some of the guiding principles in its approach to the moral dilemmas inherent in future technologies, such as artificial intelligence and robotics. Man is viewed as having received the power to improve upon creation and develop technologies to achieve them, with the proviso that appropriate safeguards are taken. Ethically, not-harming is viewed as taking precedence over promoting good. Jewish ethical thinking approaches these novel technological possibilities with a cautious optimism that mankind will derive their benefits without coming to harm.

  19. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  20. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    Science.gov (United States)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  1. Steerability of Hermite Kernel

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2013-01-01

    Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387. pdf

  2. The Oak Ridge National Laboratory's Robotics and Intelligent Systems Program

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1987-01-01

    The goals of the newly formed Robotics and Intelligent Systems Program are discussed. The application of the remote systems technology developed by the Consolidated Fuel Reprocessing Program for the Department of Energy is presented. The activities (satellite refueling and space station truss assembly) with the National Aeronautics and Space Administration are presented in a videotape format with narration by the presenter. The goals of technology transfer to the private sector and the potential positive impact on the community conclude the oral presentation

  3. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    Science.gov (United States)

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  4. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)

  5. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  6. Skill Learning for Intelligent Robot by Perception-Action Integration: A View from Hierarchical Temporal Memory

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2017-01-01

    Full Text Available Skill learning autonomously through interactions with the environment is a crucial ability for intelligent robot. A perception-action integration or sensorimotor cycle, as an important issue in imitation learning, is a natural mechanism without the complex program process. Recently, neurocomputing model and developmental intelligence method are considered as a new trend for implementing the robot skill learning. In this paper, based on research of the human brain neocortex model, we present a skill learning method by perception-action integration strategy from the perspective of hierarchical temporal memory (HTM theory. The sequential sensor data representing a certain skill from a RGB-D camera are received and then encoded as a sequence of Sparse Distributed Representation (SDR vectors. The sequential SDR vectors are treated as the inputs of the perception-action HTM. The HTM learns sequences of SDRs and makes predictions of what the next input SDR will be. It stores the transitions of the current perceived sensor data and next predicted actions. We evaluated the performance of this proposed framework for learning the shaking hands skill on a humanoid NAO robot. The experimental results manifest that the skill learning method designed in this paper is promising.

  7. EUROPEAN UNION POLICY-MAKING ON ROBOTICS AND ARTIFICIAL INTELLIGENCE: SELECTED ISSUES

    OpenAIRE

    Kirchberger, Thomas

    2017-01-01

    Summary: This article uses the recently issued report on civil law rules on robotics by the European Parliament’s Committee on Legal Affairs as an anchoring point. After a brief overview of the topic’s socio-economical background, it contains an attempt to define and explain artificial intelligence. By examining the role of autonomous machines in the workforce, it gives an overview of the most pressing questions the future of labour might bring. One closely connected issue is the ...

  8. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System.

    Science.gov (United States)

    Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan

    2017-09-10

    In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.

  9. Open source hardware and software platform for robotics and artificial intelligence applications

    Science.gov (United States)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  10. Open source hardware and software platform for robotics and artificial intelligence applications

    International Nuclear Information System (INIS)

    Liang, S Ng; Tan, K O; Clement, T H Lai; Ng, S K; Mohammed, A H Ali; Mailah, Musa; Yussof, Wan Azhar; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-01-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots. (paper)

  11. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    Science.gov (United States)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  12. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  13. The Effects O Artificial Intelligence And Robotic Systems On Librarianship

    Directory of Open Access Journals (Sweden)

    Müslüm Yıldız

    2018-03-01

    Full Text Available With Industry 4.0, smart robots will be involved in all areas of our lives, and systems using technology control instead of work force will dominate. In this way, there will be a more qualified workforce with a high level of education, rather than workers with low-skilled jobs. According to recent studies, librarianship has been identified as one of the professions that could disappear in the near future due to this rapidly advancing technology. In this study, the possible effects of artificial intelligence and robotic systems on the profession of librarianship/information and document management were evaluated considering the findings of research conducted at Oxford University in 2017 and it was emphasized that in the near future, the only way to continue in this profession would be to keep the professional knowledge up to date as well as to follow the technological developments in areas such as computers, communication, and the internet.

  14. Intelligent automated control of robotic systems for environmental restoration

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1992-01-01

    The US Department of Energy's Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to remote system control. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. The objective of the GISC development project is to support these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs

  15. A kernel adaptive algorithm for quaternion-valued inputs.

    Science.gov (United States)

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.

  16. Who Are Afraid of Losing Their Jobs to Artificial Intelligence and Robots? Evidence from a Survey

    OpenAIRE

    Morikawa, Masayuki

    2017-01-01

    This study, using original survey data of 10,000 individuals, analyzes the possible impacts of artificial intelligence (AI) and robotics on employment. The first interest of this study is to ascertain, from the viewpoint of workers, what types of worker characteristics are associated with the perception of risk of jobs being replaced by the development of AI and robotics. The second interest is to identify, from the viewpoint of consumers, what types of services are likely to be replaced by A...

  17. Intelligent control and cooperation for mobile robots

    Science.gov (United States)

    Stingu, Petru Emanuel

    The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation

  18. Based on Intelligent Robot of E-business Distribution Center Operation Mode Research

    Directory of Open Access Journals (Sweden)

    Li Juntao

    2016-01-01

    Full Text Available According to E-business distribution center operation mode in domestic and advanced experience drawing lessons at home and abroad, this paper based on intelligent robot researches E-business distribution center operation mode. And it proposes the innovation logistics storage in E-business and sorting integration system, and elaborates its principle, characteristics, as well as studies its business mode and logistics process, and its parameters and working mode of AGV equipment.

  19. Accelerating Robot Development through Integral Analysis of Human-Robot Interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2007-01-01

    The development of interactive robots is a complicated process, involving a plethora of psychological, technical, and contextual influences. To design a robot capable of operating "intelligently" in everyday situations, one needs a profound understanding of human-robot interaction (HRI). We propose

  20. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  1. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  2. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  3. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  4. An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators.

    Science.gov (United States)

    Xiao, Bing; Yin, Shen

    2018-02-01

    This paper investigates a difficult problem of reconstructing actuator faults for robotic manipulators. An intelligent approach with fast reconstruction property is developed. This is achieved by using observer technique. This scheme is capable of precisely reconstructing the actual actuator fault. It is shown by Lyapunov stability analysis that the reconstruction error can converge to zero after finite time. A perfect reconstruction performance including precise and fast properties can be provided for actuator fault. The most important feature of the scheme is that, it does not depend on control law, dynamic model of actuator, faults' type, and also their time-profile. This super reconstruction performance and capability of the proposed approach are further validated by simulation and experimental results.

  5. An Intention-Driven Semi-autonomous Intelligent Robotic System for Drinking

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2017-09-01

    Full Text Available In this study, an intention-driven semi-autonomous intelligent robotic (ID-SIR system is designed and developed to assist the severely disabled patients to live independently. The system mainly consists of a non-invasive brain–machine interface (BMI subsystem, a robot manipulator and a visual detection and localization subsystem. Different from most of the existing systems remotely controlled by joystick, head- or eye tracking, the proposed ID-SIR system directly acquires the intention from users’ brain. Compared with the state-of-art system only working for a specific object in a fixed place, the designed ID-SIR system can grasp any desired object in a random place chosen by a user and deliver it to his/her mouth automatically. As one of the main advantages of the ID-SIR system, the patient is only required to send one intention command for one drinking task and the autonomous robot would finish the rest of specific controlling tasks, which greatly eases the burden on patients. Eight healthy subjects attended our experiment, which contained 10 tasks for each subject. In each task, the proposed ID-SIR system delivered the desired beverage container to the mouth of the subject and then put it back to the original position. The mean accuracy of the eight subjects was 97.5%, which demonstrated the effectiveness of the ID-SIR system.

  6. Kernel Temporal Differences for Neural Decoding

    Science.gov (United States)

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  7. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  8. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  9. Humanlike Robots - The Upcoming Revolution in Robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  10. Humanlike robots: the upcoming revolution in robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  11. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  12. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  13. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  14. 25th Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    Borangiu, Theodor

    2017-01-01

    This book presents the proceedings of the 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 held in Belgrade, Serbia, on June 30th–July 2nd, 2016. In keeping with the tradition of the event, RAAD 2016 covered all the important areas of research and innovation in new robot designs and intelligent robot control, with papers including Intelligent robot motion control; Robot vision and sensory processing; Novel design of robot manipulators and grippers; Robot applications in manufacturing and services; Autonomous systems, humanoid and walking robots; Human–robot interaction and collaboration; Cognitive robots and emotional intelligence; Medical, human-assistive robots and prosthetic design; Robots in construction and arts, and Evolution, education, legal and social issues of robotics. For the first time in RAAD history, the themes cloud robots, legal and ethical issues in robotics as well as robots in arts were included in the technical program. The book is a valuable resource f...

  15. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  16. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Research and development of polisher robot system using intelligent force control; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Intelligent ryoku seigyo wo mochiita kenma robot system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort aims to automatize the manufacture of wooden furniture by robotizing the polishing work in the field of wooden furniture manufacturing, making use of the seeds provided by intelligent force control technologies. The intelligent force control technologies ('Delicate control of force for the open architecture type industrial robot' and 'Method for target orbit generation not requiring joystick teaching') of Saga University and the interior laboratory of Fukuoka Prefectural Industrial Research Institute are evolved and applied, and are integrated with the 3-dimensional object modelling technology developed by the mechanical and electronic laboratory, Fukuoka Prefectural Industrial Research Institute, and the CAD (computer aided design) data conversion technology developed by ASA Systems Inc. The result was a polisher robot system experimentally fabricated to satisfy the need of an automated polishing process in the wooden furniture manufacturing industry. The robot was tested, and achieved a surface coarseness level of 5{mu}m or less. As for the manufacturing rate, it attained a rate of approximately 100mm/s which was two times higher than the rate to be expected from a skilled worker. (NEDO)

  17. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  18. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  19. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  20. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  1. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  2. Modelling and Intelligent Control of an Elastic Link Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Malik Loudini

    2013-01-01

    Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.

  3. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  4. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  5. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  6. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  7. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  8. Fuzzy Behaviors for Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  9. Robot Programming.

    Science.gov (United States)

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  10. Cognitive Coordination for Cooperative Multi-Robot Teamwork

    NARCIS (Netherlands)

    Wei, C.

    2015-01-01

    Multi-robot teams have potential advantages over a single robot. Robots in a team can serve different functionalities, so a team of robots can be more efficient, robust and reliable than a single robot. In this dissertation, we are in particular interested in human level intelligent multi-robot

  11. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  12. Artificial Intelligence Base Telemedicine Robotic

    OpenAIRE

    Hakika, Kisti; TS, Hendra Yunianto; Afriyanti, Liza

    2009-01-01

    Telemedicine atau pelayanan kesehatan jarak jauh bukan hal yang baru lagi dalam dunia kesehatan.Penggunaan teknologi sangat membantu dalam mengimplementasikan telemedicine. Namun perkembangantelemedicine mengalami kemajuan seiring dengan perkembangan teknologi informasi. Salah satu perkembanganteknologi adalah robot. Secara umum kegunaan robot adalah untuk menggantikan tugas manusia. Padamakalah ini, akan dibuat simulasi telemedicine berupa konsultasi antara dokter dan pasien menggunakansebua...

  13. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  14. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    Science.gov (United States)

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical

  15. Ideas from Developmental Robotics and Embodied AI on the Questions of Ethics in Robots

    OpenAIRE

    Pitti , Alexandre

    2017-01-01

    Advances in Artificial Intelligence and robotics are currently questioning theethical framework of their applications to deal with potential drifts, as well as the way inwhich these algorithms learn because they will have a strong impact on the behavior ofrobots and the type of robots. interactions with people. We would like to highlight someprinciples and ideas from cognitive neuroscience and development sciences based on theimportance of the body for intelligence, contrary to the theory of ...

  16. Ideas from Developmental Robotics and Embodied AI on the Questions of Ethics in Robots

    OpenAIRE

    Pitti, Alexandre

    2018-01-01

    Advances in Artificial Intelligence and robotics are currently questioning theethical framework of their applications to deal with potential drifts, as well as the way inwhich these algorithms learn because they will have a strong impact on the behavior ofrobots and the type of robots. interactions with people. We would like to highlight someprinciples and ideas from cognitive neuroscience and development sciences based on theimportance of the body for intelligence, contrary to the theory of ...

  17. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  18. Simulation of Intelligent Single Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    Maki K. Rashid

    2008-11-01

    Full Text Available Stabilization of a single wheel mobile robot attracted researcher attentions in robotic area. However, the budget requirements for building experimental setups capable in investigating isolated parameters and implementing others encouraged the development of new simulation methods and techniques that beat such limitations. In this work we have developed a simulation platform for testing different control tactics to stabilize a single wheel mobile robot. The graphic representation of the robot, the dynamic solution, and, the control scheme are all integrated on common computer platform using Visual Basic. Simulation indicates that we can control such robot without knowing the detail of it's internal structure or dynamics behaviour just by looking at it and using manual operation tactics. Twenty five rules are extracted and implemented using Takagi-Sugeno's fuzzy controller with significant achievement in controlling robot motion during the dynamic simulation. The resulted data from the successful implementation of the fuzzy model are used to utilize and train a neurofuzzy controller using ANFIS scheme to produce further improvement in robot performance

  19. Artificial Intelligence Research at the Artificial Intelligence Laboratory, Massachusetts Institute of Technology

    OpenAIRE

    Winston, Patrick H.

    1983-01-01

    The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on computer robotics and vision, expert systems, learning and commonsense reasoning, natural language understanding, and computer architecture.

  20. Future Challenges of Robotics and Artificial Intelligence in Nursing: What Can We Learn from Monsters in Popular Culture?

    Science.gov (United States)

    Erikson, Henrik; Salzmann-Erikson, Martin

    It is highly likely that artificial intelligence (AI) will be implemented in nursing robotics in various forms, both in medical and surgical robotic instruments, but also as different types of droids and humanoids, physical reinforcements, and also animal/pet robots. Exploring and discussing AI and robotics in nursing and health care before these tools become commonplace is of great importance. We propose that monsters in popular culture might be studied with the hope of learning about situations and relationships that generate empathic capacities in their monstrous existences. The aim of the article is to introduce the theoretical framework and assumptions behind this idea. Both robots and monsters are posthuman creations. The knowledge we present here gives ideas about how nursing science can address the postmodern, technologic, and global world to come. Monsters therefore serve as an entrance to explore technologic innovations such as AI. Analyzing when and why monsters step out of character can provide important insights into the conceptualization of caring and nursing as a science, which is important for discussing these empathic protocols, as well as more general insight into human knowledge. The relationship between caring, monsters, robotics, and AI is not as farfetched as it might seem at first glance.

  1. Future uses of machine intelligence and robotics for the Space Station and implications for the U.S. economy

    Science.gov (United States)

    Cohen, A.; Erickson, J. D.

    1985-01-01

    The exciting possibilities for advancing the technologies of artificial intelligence, robotics, and automation on the Space Station is summarized. How these possibilities will be realized and how their realization can benefit the U.S. economy are described. Plans, research programs and preliminary designs that will lead to the realization of many of these possibilities are being formulated.

  2. Beyond adaptive-critic creative learning for intelligent mobile robots

    Science.gov (United States)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it

  3. Robust Kernel (Cross-) Covariance Operators in Reproducing Kernel Hilbert Space toward Kernel Methods

    OpenAIRE

    Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping

    2016-01-01

    To the best of our knowledge, there are no general well-founded robust methods for statistical unsupervised learning. Most of the unsupervised methods explicitly or implicitly depend on the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). They are sensitive to contaminated data, even when using bounded positive definite kernels. First, we propose robust kernel covariance operator (robust kernel CO) and robust kernel crosscovariance operator (robust kern...

  4. Robotic Services at Home: An Initialization System Based on Robots' Information and User Preferences in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Nor Nur Safwati Mohd

    2014-07-01

    Full Text Available One important issue in robotic services is the construction of the robotic system in the actual environment. In other words, robots must perform environment sensing or have information on real objects, such as location and 3D dimensions, in order to live together with humans. It is crucial to have a mechanism to create an actual robotic system (intelligent space such that there is no initialization framework for the objects in the environment, or we have to perform SLAM and object recognition as well as mapping to generate a useful environmental database. In intelligent space research, normally the objects are attached to various sensors in order to extract the necessary information. However, that approach will highly depend on sensor accuracy and the robotic system will be burdened if there are too many sensors in an environment. Therefore, in this paper we present a system in which a robot can obtain information about an object and even create the furniture layout map for an unknown environment. Our approach is intended to improve home-based robotic services by taking into account the user or individual preferences for the Intelligent Space (IS. With this information, we can create an informational map of the home-based environment for the realization of robot assistance of humans in their daily activities at home, especially for disabled people. The result shows the system design and development in our approach by using model-based system engineering.

  5. The internet and intelligent machines: search engines, agents and robots

    International Nuclear Information System (INIS)

    Achenbach, S.; Alfke, H.

    2000-01-01

    The internet plays an important role in a growing number of medical applications. Finding relevant information is not always easy as the amount of available information on the Web is rising quickly. Even the best Search Engines can only collect links to a fraction of all existing Web pages. In addition, many of these indexed documents have been changed or deleted. The vast majority of information on the Web is not searchable with conventional methods. New search strategies, technologies and standards are combined in Intelligent Search Agents (ISA) an Robots, which can retrieve desired information in a specific approach. Conclusion: The article describes differences between ISAs and conventional Search Engines and how communication between Agents improves their ability to find information. Examples of existing ISAs are given and the possible influences on the current and future work in radiology is discussed. (orig.) [de

  6. The Mobile Robot "Little Helper"

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Madsen, Ole

    2009-01-01

    Increased customer needs and intensified global competition require intelligent and flexible automation. The interaction technology mobile robotics addresses this, so it holds great potential within the industry. This paper presents the concepts, ideas and working principles of the mobile robot...... this show promising results regarding industrial integration, exploitation and maturation of mobile robotics....

  7. To kill a mockingbird robot

    NARCIS (Netherlands)

    Bartneck, C.; Verbunt, M.N.C.; Mubin, O.; Al Mahmud, A.

    2007-01-01

    Robots are being introduced in our society but their social status is still unclear. A critical issue is if the robot's exhibition of intelligent life-like behavior leads to the users' perception of animacy. The ultimate test for the life-likeness of a robot is to kill it. We therefore conducted an

  8. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    Science.gov (United States)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  9. FY 1999 project on the development of new industry support type international standards. Standardization of a method to evaluate the performance of open robot use communication interface in production system, etc.; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Seisan system nado ni okeru open robot yo tsushin interface no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of standardizing the communication interface system between personal computers and robots, the R and D were conducted on ORiN (Open Robot Interface for the Network), and the FY 1999 results were summed up. ORiN is composed of the provider part, kernel part and application logic part. The provider absorbs differences in expression and protocols of robot controller data of each company and conveys them to the kernel part. The kernel part is composed of RAO and RDF. RAO adopts the disperse object model DCOM technology and supplies the network transparency and common access method to robot. RDF supplies files with expansion of robot structure models using XML. By this, ORiN was made adoptable for future, permitting differences in each robot. In the International Robot Exhibition held in October 26-29, 1999, the prototype of ORiN was jointly demonstrated by each company. (NEDO)

  10. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1994-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low-level nuclear waste. This article describes the technology and how it could be used. 3 refs., 3 figs

  11. The conceptual design of the sensing system for patrolling and inspecting a nuclear facility by the intelligent robot

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    1993-11-01

    Supposing that an intelligent robot, instead of a human worker, patrols and inspects nuclear facilities, it is indispensable for such robot to be capable of moving with avoiding obstacles and recognizing various abnormal conditions, carrying out some ordered works based on information from sensors mounted on the robot. The present robots being practically used in nuclear facilities, however, have the limited capability such as identifying a few specific abnormal conditions using data detected by specific sensors on them. Hence, a conceptual design of a sensor-fusion-based system, which is named 'sensing system', has been performed to collect various kinds of information required for patrol and inspection. This sensing system combines a visual sensor, which consists of a monocular camera and a range finder by the active stereopsis method, an olfactory, acoustic and dose sensors. This report describes the hardware configuration and the software function for processing sensed data. An idea of sensor fusion and the preliminary consideration in respect of applying the neural network to image data processing are also described. (author)

  12. International Conference on Intelligent Unmanned Systems (ICIUS)

    CERN Document Server

    Kartidjo, Muljowidodo; Yoon, Kwang-Joon; Budiyono, Agus; Autonomous Control Systems and Vehicles : Intelligent Unmanned Systems

    2013-01-01

    The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers ...

  13. Robotics and artificial intelligence for hazardous environments

    International Nuclear Information System (INIS)

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics

  14. Computer Vision for Artificially Intelligent Robotic Systems

    Science.gov (United States)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main

  15. 12th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Cho, Hyungsuck; Yoon, Kwang-Joon; Lee, Jangmyung

    2013-01-01

    Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of “Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security ...

  16. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Science.gov (United States)

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  17. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    International Nuclear Information System (INIS)

    Jiang Li; Shi Tielin; Xuan Jianping

    2012-01-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  18. 5th International Conference on Automation, Robotics and Applications (ICARA 2011)

    CERN Document Server

    Bailey, Donald; Demidenko, Serge; Carnegie, Dale; Recent Advances in Robotics and Automation

    2013-01-01

    There isn’t a facet of human life that has not been touched and influenced by robots and automation. What makes robots and machines versatile is their computational intelligence. While modern intelligent sensors and powerful hardware capabilities have given a huge fillip to the growth of intelligent machines, the progress in the development of algorithms for smart interaction, collaboration and pro-activeness will result in the next quantum jump. This book deals with the recent advancements in design methodologies, algorithms and implementation techniques to incorporate intelligence in robots and automation systems. Several articles deal with navigation, localization and mapping of mobile robots, a problem that engineers and researchers are grappling with all the time. Fuzzy logic, neural networks and neuro-fuzzy based techniques for real world applications have been detailed in a few articles. This edited volume is targeted to present the latest state-of-the-art computational intelligence techniques in Rob...

  19. 2nd International Conference on Advanced Intelligent Systems and Informatics

    CERN Document Server

    Shaalan, Khaled; Gaber, Tarek; Azar, Ahmad; Tolba, M

    2017-01-01

    This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.

  20. W. Grey Walter, pioneer in the electroencephalogram, robotics, cybernetics, artificial intelligence.

    Science.gov (United States)

    Bladin, Peter F

    2006-02-01

    With the announcement by William Lennox at the 1935 London International Neurology Congress of the use of electroencephalography in the study of epilepsy, it became evident that a new and powerful technique for the investigation of seizures had been discovered. William Grey Walter, a young researcher finishing his post-graduate studies at Cambridge, was selected to construct and study the EEG in clinical neurology at the Maudsley Hospital, London. His hugely productive pioneering career in the use of EEG would eventually lead to groundbreaking work in other fields --the emerging sciences of robotics, cybernetics, and early work in artificial intelligence. In this historical note his pioneering work in the fields of clinical neurophysiology is documented, both in the areas of epileptology and tumour detection. His landmark contributions to clinical neurophysiology are worthy of documentation.

  1. Human-Robot Teams for Unknown and Uncertain Environments

    Science.gov (United States)

    Fong, Terry

    2015-01-01

    Man-robot interaction is the study of interactions between humans and robots. It is often referred as HRI by researchers. Human-robot interaction is a multidisciplinary field with contributions from human-computer interaction, artificial intelligence.

  2. Near infrared face recognition using Zernike moments and Hermite kernels

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  3. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    Science.gov (United States)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  4. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  5. 2015 Chinese Intelligent Systems Conference

    CERN Document Server

    Du, Junping; Li, Hongbo; Zhang, Weicun; CISC’15

    2016-01-01

    This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC’15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

  6. Intelligent mobile robots

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoo, Makoto

    1984-01-01

    For the purpose of the application to remote working apparatuses in nuclear power plants and others, the software and moving mechanism of mobile robots that automatically accomplish the movement by only specifying the destination were manufactured for trial. The software has the function of searching a path to determine the quasi-shortest path and the function of controlling execution to control the action of the robots and guide to the destination. By taking heuristics into the method of searching a path and utilizing ultrasonic waves for the function of sight as they can easily detect distance though the information quantity is small, the execution was accelerated. By the simulation examination and the experiment using a mobile apparatus made for trial, it was confirmed that the route plan was able to be made almost in real time, and the appearance of an unknown obstacle was detected before collision and able to be reasonably avoided by the revision of the plan. An environment model, a route planner, the program for controlling execution, the makeup and control of moving function and the experiment on the movement are reported. The shortening of the processing time by dealing with unconfirmed echo and simplifying the writing in a map is a future problem. (Kako, I.)

  7. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  8. Mobile Robots in Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael

    intelligent mobile robotic devices capable of being a more natural and sociable actor in a human environment. More specific the emphasis is on safe and natural motion and navigation issues. First part of the work focus on developing a robotic system, which estimates human interest in interacting......, lawn mowers, toy pets, or as assisting technologies for care giving. If we want robots to be an even larger and more integrated part of our every- day environments, they need to become more intelligent, and behave safe and natural to the humans in the environment. This thesis deals with making...... as being able to navigate safely around one person, the robots must also be able to navigate in environments with more people. This can be environments such as pedestrian streets, hospital corridors, train stations or airports. The developed human-aware navigation strategy is enhanced to formulate...

  9. Humanoid Robot Head Design Based on Uncanny Valley and FACS

    Directory of Open Access Journals (Sweden)

    Jizheng Yan

    2014-01-01

    Full Text Available Emotional robots are always the focus of artificial intelligence (AI, and intelligent control of robot facial expression is a hot research topic. This paper focuses on the design of humanoid robot head, which is divided into three steps to achieve. The first step is to solve the uncanny valley about humanoid robot, to find and avoid the relationship between human being and robot; the second step is to solve the association between human face and robot head; compared with human being and robots, we analyze the similarities and differences and explore the same basis and mechanisms between robot and human analyzing the Facial Action Coding System (FACS, which guides us to achieve humanoid expressions. On the basis of the previous two steps, the third step is to construct a robot head; through a series of experiments we test the robot head, which could show some humanoid expressions; through human-robot interaction, we find people are surprised by the robot head expression and feel happy.

  10. Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2012-02-01

    Full Text Available In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL, for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI. Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD. Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces.

  11. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    Tsunemi, T.; Takehara, K.; Hayashi, T.; Okano, H.; Sugiyama, S.

    1993-01-01

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  12. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    Directory of Open Access Journals (Sweden)

    Chiu Cheng-Chang

    2017-01-01

    Full Text Available Roughing and cementing are very essential to the process of bonding shoe uppers and the corresponding soles; however, for shoes with complicated design, such as sport shoes, roughing and cementing greatly relied on manual operation. Recently, shoe industry is progressing to 3D design, thus 3D model of the shoe upper and sole will be created before launching into mass production. Taking advantage of the 3D model, this study developed a plug-in program on Rhino 3D CAD platform, which realized the complicated roughing and cementing route planning to be performed by the plug-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  13. Advanced intelligent systems

    CERN Document Server

    Ryoo, Young; Jang, Moon-soo; Bae, Young-Chul

    2014-01-01

    Intelligent systems have been initiated with the attempt to imitate the human brain. People wish to let machines perform intelligent works. Many techniques of intelligent systems are based on artificial intelligence. According to changing and novel requirements, the advanced intelligent systems cover a wide spectrum: big data processing, intelligent control, advanced robotics, artificial intelligence and machine learning. This book focuses on coordinating intelligent systems with highly integrated and foundationally functional components. The book consists of 19 contributions that features social network-based recommender systems, application of fuzzy enforcement, energy visualization, ultrasonic muscular thickness measurement, regional analysis and predictive modeling, analysis of 3D polygon data, blood pressure estimation system, fuzzy human model, fuzzy ultrasonic imaging method, ultrasonic mobile smart technology, pseudo-normal image synthesis, subspace classifier, mobile object tracking, standing-up moti...

  14. Safety issues in robotic handling of nuclear weapon parts

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.

    1993-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems

  15. Robots Are Taking Over--Who Does What.

    Science.gov (United States)

    Garrison, H. Don

    Robots are machines designed to replace human labor. A fear of vast unemployment due to robots seems unfounded, however, since industrialization creates many more jobs and automation requires technologists to build, program, maintain, and operate sophisticated equipment. Robots possess an intelligence unit, a manipulator, and an end effector.…

  16. Trends in ambient intelligent systems the role of computational intelligence

    CERN Document Server

    Khan, Mohammad; Abraham, Ajith

    2016-01-01

    This book demonstrates the success of Ambient Intelligence in providing possible solutions for the daily needs of humans. The book addresses implications of ambient intelligence in areas of domestic living, elderly care, robotics, communication, philosophy and others. The objective of this edited volume is to show that Ambient Intelligence is a boon to humanity with conceptual, philosophical, methodical and applicative understanding. The book also aims to schematically demonstrate developments in the direction of augmented sensors, embedded systems and behavioral intelligence towards Ambient Intelligent Networks or Smart Living Technology. It contains chapters in the field of Ambient Intelligent Networks, which received highly positive feedback during the review process. The book contains research work, with in-depth state of the art from augmented sensors, embedded technology and artificial intelligence along with cutting-edge research and development of technologies and applications of Ambient Intelligent N...

  17. Robotics — Inspired from Nature

    Directory of Open Access Journals (Sweden)

    Huosheng Hu

    2012-04-01

    Full Text Available It is my great pleasure to welcome you to a new open access journal, Robotics, which is dedicated to both the foundations of artificial intelligence, bio-mechanics, mechatronics and control theories, and the real-world applications of robotic perception, cognition and actions. This includes the innovative scientific trends, and discovery resulting from solving new challenges in the field of robotics. Its open access and rapid dissemination are the unique features separating this journal from all existing journals dedicated to robotics. [...

  18. A study on an autonomous pipeline maintenance robot, 8

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Niitsu, Shunichi; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the path planning and sensing planning expert system with learning functions for the pipeline inspection and maintenance robot, Mark IV. The robot can carry out inspection tasks to autonomously detect malfunctions in a plant pipeline system. Furthermore, the robot becomes more intelligent by adding the following functions: (1) the robot, Mark IV, is capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces; (2) in path planning, the robot has a learning function using information generated in the past such as a moving path, task level and control commands of the robot; (3) in inspecting a pipeline system with plant equipment such as valves, franges, T- and L-joints, the robot is capable of inspecting continuous surfaces in pipeline. Thus, together with the improved path planning expert system (PPES) and the sensing planning expert system (SPES), the Mark IV robot becomes intelligent enough to automatically carry out given inspection tasks. (author)

  19. Intelligent Vision System for Door Sensing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-08-01

    Full Text Available Wheeled Mobile Robots find numerous applications in the Indoor man made structured environments. In order to operate effectively, the robots must be capable of sensing its surroundings. Computer Vision is one of the prime research areas directed towards achieving these sensing capabilities. In this paper, we present a Door Sensing Mobile Robot capable of navigating in the indoor environment. A robust and inexpensive approach for recognition and classification of the door, based on monocular vision system helps the mobile robot in decision making. To prove the efficacy of the algorithm we have designed and developed a ‘Differentially’ Driven Mobile Robot. A wall following behavior using Ultra Sonic range sensors is employed by the mobile robot for navigation in the corridors.  Field Programmable Gate Arrays (FPGA have been used for the implementation of PD Controller for wall following and PID Controller to control the speed of the Geared DC Motor.

  20. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  1. 7th International Symposium on Intelligent Distributed Computing

    CERN Document Server

    Jung, Jason; Badica, Costin

    2014-01-01

    This book represents the combined peer-reviewed proceedings of the Seventh International Symposium on Intelligent Distributed Computing - IDC-2013, of the Second Workshop on Agents for Clouds - A4C-2013, of the Fifth International Workshop on Multi-Agent Systems Technology and Semantics - MASTS-2013, and of the International Workshop on Intelligent Robots - iR-2013. All the events were held in Prague, Czech Republic during September 4-6, 2013. The 41 contributions published in this book address many topics related to theory and applications of intelligent distributed computing and multi-agent systems, including: agent-based data processing, ambient intelligence, bio-informatics, collaborative systems, cryptography and security, distributed algorithms, grid and cloud computing, information extraction, intelligent robotics, knowledge management, linked data, mobile agents, ontologies, pervasive computing, self-organizing systems, peer-to-peer computing, social networks and trust, and swarm intelligence.  .

  2. Navigation control of a multi-functional eye robot

    International Nuclear Information System (INIS)

    Ali, F.A.M.; Hashmi, B.; Younas, A.; Abid, B.

    2016-01-01

    The advancement in robotic field is enhanced rigorously in the past Few decades. Robots are being used in different fields of science as well as warfare. The research shows that in the near future, robots would be able to serve in fighting wars. Different countries and their armies have already deployed several military robots. However, there exist some drawbacks of robots like their inefficiency and inability to work under abnormal conditions. Ascent of artificial intelligence may resolve this issue in the coming future. The main focus of this paper is to provide a low cost and long range most efficient mechanical as well as software design of an Eye Robot. Using a blend of robotics and image processing with an addition of artificial intelligence path navigation techniques, this project is designed and implemented by controlling the robot (including robotic arm and camera) through a 2.4 GHz RF module manually. Autonomous function of the robot includes navigation based on the path assigned to the robot. The path is drawn on a VB based application and then transferred to the robot wirelessly or through serial port. A Wi-Fi based Optical Character Recognition (OCR) implemented video streaming can also be observed at remote devices like laptops. (author)

  3. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  4. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Sohn, Surg Won; Yoon, Tae Seob; Lee, Yong Bum; Kim, Woong Ki

    1988-02-01

    A mutiprocessor system that is essential to A.I. (Artificial Intelligence) robot control was developed. A.I. robot control needs very complex real time control. The multiprocessor system interconnecting many SBC's (Single Board Computer) is much faster and accurater than using only one SBC. Various multiprocessor systems and their applications were compared and discussed. The multiprocessor architecture system is specially designed to be used in nuclear environments. The main functions are job distribution, multitasking, and intelligent remote control by SDLC protocol using optical fiber. The system can be applied to position control for locomotion and manipulation, data fusion system, and image processing. (Author)

  5. A study on intelligent nuclear systems, (HASP: human acts simulation program)

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Uenaka, Junji; Kambayashi, Shaw; Higuchi, Kenji; Kume, Etsuo; Fujisaki, Masahide; Fujii, Minoru; Yokokawa, Mitsuo

    1989-03-01

    In 1987 Japan Atomic Energy Research Institute has started a ten-years program named HASP, i.e., Human Acts Simulation Program, for artificial intelligence and robotics research. In the HASP, a human-shaped robot reads and understands orders written in natural language, planning and producing a required sequence of actions, accesses to a device or an instrument recognizing its entity and dose the ordered work for plant maintenance. All of these processes including calculation of the radiation exposure of the robot are simulated by logical and numerical computations. The simulated actions of the robot in three-dimensional environments are displayed using a high speed computer for graphics. The aim of the HASP project is threefold, i.e., (1) to develop fundamental technologies for design of intelligent robots, (2) to develop technologies for automated and/or intelligent plants, (3) to provide researchers and engineers in nuclear field with basic and systematized artificial intelligence techniques. The research items are natural language understanding, goal planning by LISP calculus, pattern recognitions by neural network methods, plant modelling by solid modeller, biped robot simulations, graphic display of the robot motion, and a study of design concept of a Monte Carlo vector processor for high speed calculation of the radiation exposure. In this report research results attained in the second year of the HASP project are described. (author)

  6. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  7. Seventh Scandinavian Conference on Artificial Intelligence

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John

    2001-01-01

    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  8. Is Intelligence Artificial?

    OpenAIRE

    Greer, Kieran

    2014-01-01

    Our understanding of intelligence is directed primarily at the level of human beings. This paper attempts to give a more unifying definition that can be applied to the natural world in general. The definition would be used more to verify a degree of intelligence, not to quantify it and might help when making judgements on the matter. A version of an accepted test for AI is then put forward as the 'acid test' for Artificial Intelligence itself. It might be what a free-thinking program or robot...

  9. SOCIAL ROBOT: DEFINING THE CONCEPT

    Directory of Open Access Journals (Sweden)

    Nadezhda Nikolaevna Zilberman

    2016-11-01

    Practical implications. The results of the study contribute toьthe theoretical basis of the cross-disciplinary research field of social robotics and may be used by researchers. They may also be used as educational aid in teaching academic courses in social studies, robotics, ethics of technology, artificial intelligence, etc.

  10. Human-directed local autonomy for motion guidance and coordination in an intelligent manufacturing system

    Science.gov (United States)

    Alford, W. A.; Kawamura, Kazuhiko; Wilkes, Don M.

    1997-12-01

    This paper discusses the problem of integrating human intelligence and skills into an intelligent manufacturing system. Our center has jointed the Holonic Manufacturing Systems (HMS) Project, an international consortium dedicated to developing holonic systems technologies. One of our contributions to this effort is in Work Package 6: flexible human integration. This paper focuses on one activity, namely, human integration into motion guidance and coordination. Much research on intelligent systems focuses on creating totally autonomous agents. At the Center for Intelligent Systems (CIS), we design robots that interact directly with a human user. We focus on using the natural intelligence of the user to simplify the design of a robotic system. The problem is finding ways for the user to interact with the robot that are efficient and comfortable for the user. Manufacturing applications impose the additional constraint that the manufacturing process should not be disturbed; that is, frequent interacting with the user could degrade real-time performance. Our research in human-robot interaction is based on a concept called human directed local autonomy (HuDL). Under this paradigm, the intelligent agent selects and executes a behavior or skill, based upon directions from a human user. The user interacts with the robot via speech, gestures, or other media. Our control software is based on the intelligent machine architecture (IMA), an object-oriented architecture which facilitates cooperation and communication among intelligent agents. In this paper we describe our research testbed, a dual-arm humanoid robot and human user, and the use of this testbed for a human directed sorting task. We also discuss some proposed experiments for evaluating the integration of the human into the robot system. At the time of this writing, the experiments have not been completed.

  11. The AAAI 2006 Mobile Robot Competition and Exhibition

    OpenAIRE

    Rybski, Paul E.; Forbes, Jeffrey; Burhans, Debra; Dodds, Zach; Oh, Paul; Scheutz, Matthias; Avanzato, Bob

    2007-01-01

    The Fifteenth Annual AAAI Robot Competition and Exhibition was held at the Twenty-First National Conference on Artificial Intelligence in Boston, Massachusetts, in July 2006. This article describes the events that were held at the conference, including the Scavenger Hunt, Human Robot Interaction, and Robot Exhibition.

  12. A Semi-Open Learning Environment for Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Enrique Sucar

    2007-05-01

    Full Text Available We have developed a semi-open learning environment for mobile robotics, to learn through free exploration, but with specific performance criteria that guides the learning process. The environment includes virtual and remote robotics laboratories, and an intelligent virtual assistant the guides the students using the labs. A series of experiments in the virtual and remote labs are designed to gradually learn the basics of mobile robotics. Each experiment considers exploration and performance aspects, which are evaluated by the virtual assistant, giving feedback to the user. The virtual laboratory has been incorporated to a course in mobile robotics and used by a group of students. A preliminary evaluation shows that the intelligent tutor combined with the virtual laboratory can improve the learning process.

  13. 13th International Conference Intelligent Autonomous Systems

    CERN Document Server

    Michael, Nathan; Berns, Karsten; Yamaguchi, Hiroaki

    2016-01-01

    This book describes the latest research accomplishments, innovations, and visions in the field of robotics as presented at the 13th International Conference on Intelligent Autonomous Systems (IAS), held in Padua in July 2014, by leading researchers, engineers, and practitioners from across the world. The contents amply confirm that robots, machines, and systems are rapidly achieving intelligence and autonomy, mastering more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision making. A wide range of research results and applications are covered, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions have been selected through a rigorous peer-review process and contain many exciting and visionary ideas that will further galvanize the research community, spurring novel research directions. The series of biennial IAS conferences ...

  14. Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Science.gov (United States)

    Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.

    1990-01-01

    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.

  15. Will robots replace us? : an Empirical analysis of the impacts of robotization on employment in the Norwegian manufacturing industry

    OpenAIRE

    Grøndahl, Fredrik; Eriksen, Gina Hegland

    2017-01-01

    Rapid advances in robotics, artificial intelligence, and digital technologies have introduced renewed concern that labor will become redundant. The aim of this thesis is to assess whether there exists a relationship between robotization and employment in the time periods 1996-2005 and 2008-2015 in Norwegian manufacturing industries. We exploit data on operational robots from the International Federation of Robotics and individual level data from the Norwegian Labour Force Surve...

  16. Can Artificial Intelligences Suffer from Mental Illness? A Philosophical Matter to Consider.

    Science.gov (United States)

    Ashrafian, Hutan

    2017-04-01

    The potential for artificial intelligences and robotics in achieving the capacity of consciousness, sentience and rationality offers the prospect that these agents have minds. If so, then there may be a potential for these minds to become dysfunctional, or for artificial intelligences and robots to suffer from mental illness. The existence of artificially intelligent psychopathology can be interpreted through the philosophical perspectives of mental illness. This offers new insights into what it means to have either robot or human mental disorders, but may also offer a platform on which to examine the mechanisms of biological or artificially intelligent psychiatric disease. The possibility of mental illnesses occurring in artificially intelligent individuals necessitates the consideration that at some level, they may have achieved a mental capability of consciousness, sentience and rationality such that they can subsequently become dysfunctional. The deeper philosophical understanding of these conditions in mankind and artificial intelligences might therefore offer reciprocal insights into mental health and mechanisms that may lead to the prevention of mental dysfunction.

  17. To Err Is Robot: How Humans Assess and Act toward an Erroneous Social Robot

    Directory of Open Access Journals (Sweden)

    Nicole Mirnig

    2017-05-01

    Full Text Available We conducted a user study for which we purposefully programmed faulty behavior into a robot’s routine. It was our aim to explore if participants rate the faulty robot different from an error-free robot and which reactions people show in interaction with a faulty robot. The study was based on our previous research on robot errors where we detected typical error situations and the resulting social signals of our participants during social human–robot interaction. In contrast to our previous work, where we studied video material in which robot errors occurred unintentionally, in the herein reported user study, we purposefully elicited robot errors to further explore the human interaction partners’ social signals following a robot error. Our participants interacted with a human-like NAO, and the robot either performed faulty or free from error. First, the robot asked the participants a set of predefined questions and then it asked them to complete a couple of LEGO building tasks. After the interaction, we asked the participants to rate the robot’s anthropomorphism, likability, and perceived intelligence. We also interviewed the participants on their opinion about the interaction. Additionally, we video-coded the social signals the participants showed during their interaction with the robot as well as the answers they provided the robot with. Our results show that participants liked the faulty robot significantly better than the robot that interacted flawlessly. We did not find significant differences in people’s ratings of the robot’s anthropomorphism and perceived intelligence. The qualitative data confirmed the questionnaire results in showing that although the participants recognized the robot’s mistakes, they did not necessarily reject the erroneous robot. The annotations of the video data further showed that gaze shifts (e.g., from an object to the robot or vice versa and laughter are typical reactions to unexpected robot behavior

  18. On the link between partial meet, kernel, and infra contraction and its application to horn logic

    CSIR Research Space (South Africa)

    Booth, R

    2011-09-01

    Full Text Available Intelligence Research 42 (2011) 31-53 Submitted 4/11; published 9/11 On the Link between Partial Meet, Kernel, and Infra Contraction and its Application to Horn Logic Richard Booth richard.booth@uni.lu Universit e du Luxembourg Luxembourg Thomas Meyer... tommie.meyer@meraka.org.za Centre for Arti cial Intelligence Research University of KwaZulu-Natal and CSIR Meraka Institute South Africa Ivan Varzinczak ivan.varzinczak@meraka.org.za Centre for Arti cial Intelligence Research University of Kwa...

  19. A study on intelligent nuclear systems (HASP: Human Acts Simulation Program)

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Fujii, Minoru; Higuchi, Kenji; Kume, Etsuo; Ohtani, Takayuki; Far, B.H.; Kambayashi, Shaw; Akimoto, Masayuki

    1991-06-01

    The fourth year progress of the Human Acts Simulation Program HASP in short, has been presented in this report. The HASP started in 1987 at JAERI as a ten-year research and development program of underlying technologies for intelligent robots, intelligent nuclear plants and so on. It consists of the research and development of technologies of a knowledge-base system, robot vision, robot kinematics/kinetics, plant geometry database, dose evaluation and high speed Monte Carlo machine. (author)

  20. Robot Tracking of Human Subjects in Field Environments

    Science.gov (United States)

    Graham, Jeffrey; Shillcutt, Kimberly

    2003-01-01

    Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.

  1. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  2. Engineering Evaluation and Assessment (EE and A) Report for the Symbolic and Sub-symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    2018-04-01

    ARL-TR-8352 ● APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub...APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub-symbolic Robotics...Intelligence Control System (SS-RICS) by Troy Dale Kelley and Eric Avery Human Research and Engineering Directorate, ARL Sean McGhee STG Inc

  3. Intelligent autonomy for unmanned marine vehicles robotic control architecture based on service-oriented agents

    CERN Document Server

    Insaurralde, Carlos C

    2015-01-01

    This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.

  4. Designing and implementing transparency for real time inspection of autonomous robots

    Science.gov (United States)

    Theodorou, Andreas; Wortham, Robert H.; Bryson, Joanna J.

    2017-07-01

    The EPSRC's Principles of Robotics advises the implementation of transparency in robotic systems, however research related to AI transparency is in its infancy. This paper introduces the reader of the importance of having transparent inspection of intelligent agents and provides guidance for good practice when developing such agents. By considering and expanding upon other prominent definitions found in literature, we provide a robust definition of transparency as a mechanism to expose the decision-making of a robot. The paper continues by addressing potential design decisions developers need to consider when designing and developing transparent systems. Finally, we describe our new interactive intelligence editor, designed to visualise, develop and debug real-time intelligence.

  5. A Multi-Agent Framework for Coordination of Intelligent Assistive Technologies

    DEFF Research Database (Denmark)

    Valente, Pedro Ricardo da Nova; Hossain, S.; Groenbaek, B.

    2010-01-01

    Intelligent care for the future is the IntelliCare project's main priority. This paper describes the design of a generic multi-agent framework for coordination of intelligent assistive technologies. The paper overviews technologies and software systems suitable for context awareness...... and housekeeping tasks, especially for performing a multi-robot cleaning-task activity. It also describes conducted work in the design of a multi-agent platform for coordination of intelligent assistive technologies. Instead of using traditional robot odometry estimation methods, we have tested an independent...

  6. Unix Philosophy and the Real World: Control Software for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Neil Thomas Dantam

    2016-03-01

    Full Text Available Robot software combines the challenges of general purpose and real-time software, requiring complex logic and bounded resource use. Physical safety, particularly for dynamic systems such as humanoid robots, depends on correct software. General purpose computation has converged on unix-like operating systems -- standardized as POSIX, the Portable Operating System Interface -- for devices from cellular phones to supercomputers. The modular, multi-process design typical of POSIX applications is effective for building complex and reliable software. Absent from POSIX, however, is an interproccess communication mechanism that prioritizes newer data as typically desired for control of physical systems. We address this need in the Ach communication library which provides suitable semantics and performance for real-time robot control. Although initially designed for humanoid robots, Ach has broader applicability to complex mechatronic devices -- humanoid and otherwise -- that require real-time coupling of sensors, control, planning, and actuation. The initial user space implementation of Ach was limited in the ability to receive data from multiple sources. We remove this limitation by implementing Ach as a Linux kernel module, enabling Ach's high-performance and latest-message-favored semantics within conventional POSIX communication pipelines. We discuss how these POSIX interfaces and design principles apply to robot software, and we present a case study using the Ach kernel module for communication on the Baxter robot.

  7. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  8. Research and development of service robot platform based on artificial psychology

    Science.gov (United States)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  9. Robotic aortic surgery.

    Science.gov (United States)

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  10. 1st Iberian Robotics Conference

    CERN Document Server

    Sanfeliu, Alberto; Ferre, Manuel; ROBOT2013; Advances in robotics

    2014-01-01

    This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organised by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GT...

  11. 14th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Hosoda, Koh; Menegatti, Emanuele; Shimizu, Masahiro; Wang, Hesheng

    2017-01-01

    This book describes the latest research advances, innovations, and visions in the field of robotics as presented by leading researchers, engineers, and practitioners from around the world at the 14th International Conference on Intelligent Autonomous Systems (IAS-14), held in Shanghai, China in July 2016. The contributions amply demonstrate that robots, machines and systems are rapidly achieving intelligence and autonomy, attaining more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision-making. They cover a wide range of research results and applications, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions were selected by means of a rigorous peer-review process and highlight many exciting and visionary ideas that will further galvanize the research community and spur novel research directions. The series of biennial IAS ...

  12. Games and Entertainment in Ambient Intelligence Environments

    NARCIS (Netherlands)

    Nijholt, Antinus; Reidsma, Dennis; Poppe, Ronald Walter; Aghajan, H.; López-Cózar Delgado, R.; Augusto, J.C.

    2009-01-01

    In future ambient intelligence (AmI) environments we assume intelligence embedded in the environment and its objects (floors, furniture, mobile robots). These environments support their human inhabitants in their activities and interactions by perceiving them through sensors (proximity sensors,

  13. Instruction understanding for intelligent robots in nuclear facilities

    International Nuclear Information System (INIS)

    Kambayashi, Shaw; Abe, Yasuaki

    1993-01-01

    As a first step to realize an autonomous mobile robot for plant maintenance, where the robot is capable to understand instructions written in natural languages, we have developed a prototype of instruction understanding system which makes the robot construct its motion sequences to approach instrumentations and inspect them from input sentences written in Japanese. In the prototype system, the instruction understanding and planning capabilities are integrated by an inference engine which consists of a cyclic operation of three processings, i.e., sensing, decision, and execution. Based on environmental data and current states of the robot, a proper process such as natural language processing is triggered by the decision part of the inference engine to accomplish the input instructions. The multiple- and dynamic-planning capabilities, which are necessary to cope with dynamic changes of environments surrounding the robot, are achieved by utilizing the cyclic inference engine together with a set of the inference packets which keep intermediate results of natural language processing and planning for respective input instructions. (orig.)

  14. A systematic approach to the application of Automation, Robotics, and Machine Intelligence Systems /ARAMIS/ to future space projects

    Science.gov (United States)

    Smith, D. B. S.

    1982-01-01

    The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are

  15. Artificial Intelligence and Robotics

    OpenAIRE

    Perez, Javier Andreu; Deligianni, Fani; Ravi, Daniele; Yang, Guang-Zhong

    2018-01-01

    The recent successes of AI have captured the wildest imagination of both the scientific communities and the general public. Robotics and AI amplify human potentials, increase productivity and are moving from simple reasoning towards human-like cognitive abilities. Current AI technologies are used in a set area of applications, ranging from healthcare, manufacturing, transport, energy, to financial services, banking, advertising, management consulting and government agencies. The global AI mar...

  16. Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; McGhee, S.

    2013-05-01

    This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.

  17. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    National Research Council Canada - National Science Library

    Sights, B; Everett, H. R; Pacis, E. B; Kogut, G; Thompson, M

    2005-01-01

    High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact...

  18. Intelligent control and automation technology for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Kim, Ko Ryeo; Lee, Jae Cheol; Eom, Heung Seop; Lee, Jang Soo

    1994-01-01

    Using recently established intelligent mobile robot theory and high technologies in computer science, we have designed an inspection automation system for welded parts of the reactor vessel, and we intend to establish basic technologies. The recent status of those technologies is surveyed for various application areas, and the characteristics and availability of those techniques such as intelligent mobile robot, digital computer control, intelligent user interface, realtime data processing, ultrasonic signal processing, intelligent user interface, intelligent defect recognition, are studied and examined at first. The high performance and compact size inspection system is designed, and if implemented, it is expected to be very efficient in economic point of view. In addition, the use of integrated SW system leads to the reduction of human errors. Through the analysis results and experiences, we investigated the further feasibility of basic technology applications to the various similar operation systems in NPP. (Author)

  19. Conference on Space and Military Applications of Automation and Robotics

    Science.gov (United States)

    1988-01-01

    Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.

  20. Robot Wars: US Empire and geopolitics in the robotic age

    Science.gov (United States)

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  1. Applications of artificial intelligence in safe human-robot interactions.

    Science.gov (United States)

    Najmaei, Nima; Kermani, Mehrdad R

    2011-04-01

    The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.

  2. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  3. Present and Future of Nuclear Robotics

    International Nuclear Information System (INIS)

    Bielza Ciaz-Caneja, M.; Carmena Servet, P.; Gomez Santamaria, J.; Gonzalez Fernandez, J.; Izquierdo Mendoza, J.A.; Linares Pintos, F.; Martinez Gonzalez; Muntion Ruesgas, A.; Serna Oliveira, M.A.

    1997-01-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs

  4. Survey of utility robotic applications (1990)

    International Nuclear Information System (INIS)

    1991-08-01

    This special report presents the results of a survey to identify areas of usage where utilities have found robotics to be most beneficial. The survey, which was conducted by U/M RUG, an ad hoc robotics group, should be of interest to all utilities interested in proven applications. The survey shows that robotics are finding increasing use in maintenance tasks, and in cleanup applications. Extended usage of precision positioning, dexterity, intelligence and mobility is not yet apparent. Improvements in these areas would greatly aid maintenance applications of robotics. 7 figs

  5. Affect in Human-Robot Interaction

    Science.gov (United States)

    2014-01-01

    Werry, I., Rae, J., Dickerson, P., Stribling, P., & Ogden, B. (2002). Robotic Playmates: Analysing Interactive Competencies of Children with Autism ...WE-4RII. IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada. 35. Moravec, H. (1988). Mind Children : The Future of...and if so when and where? • What approaches, theories , representations, and experimental methods inform affective HRI research? Report Documentation

  6. Robots that can adapt like animals.

    Science.gov (United States)

    Cully, Antoine; Clune, Jeff; Tarapore, Danesh; Mouret, Jean-Baptiste

    2015-05-28

    Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles

  7. Robot Advanced Intelligent Control developed through Versatile ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... environments of human life exposed to great dangers such as support and repair in .... intelligent control interfaces, network quality of service, shared resources and ..... Artificial Intelligence series, volume 6556, p. 336-349 ...

  8. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  9. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  10. Robotics & artificial intelligence : The future of surgeons & surgery

    Directory of Open Access Journals (Sweden)

    K I Mathai

    2016-01-01

    Robots have evolved as dextrous, fatigue and tremor free surgical tools. The data crunching capability of computers is improving in speed and in capability for machine learning. Human surgical maturity on the other hand is attained and matures through phases of information assimilation, knowledge consolidation and attainment of surgical wisdom. Human surgeons at the helm will, in this decade harness robotic capabilities and information template paradigms to fine tune many procedures and to augment surgical reach. Quantum leaps and paradigm shifts towards robotic surgical autonomy may be neither desirable nor practical.

  11. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  12. Robotics and remote systems for hazardous environments

    International Nuclear Information System (INIS)

    Jamshidi, M.; Eicker, P.

    1993-01-01

    This is the first volume in a series of books to be published by Prentice Hall on Environmental and Intelligent Manufacturing Systems. The editors have assembled an interdisciplinary collection of authors from industry, government, and academia, that provide a broad range of expertise on robotics and remote systems. Readily accessible to practicing engineers, the book provides case studies and introduces new technology applicable to remote operations in unstructured and/or hazardous environments. Chapter 1 gives an overview of the US Environmental Protection Agency's efforts to apply robotic technology to assist in the operations at hazardous waste sites. The next chapter focuses on the theory and implementation of robust impedance control for robotic manipulators. Chapter 3 presents a discussion on the integration of failure tolerance into robotic systems. The next two chapters address the issue of sensory feedback and its indispensable role in remote and/or hazardous environments. Chapter 6 presents numerous examples of robots and telemanipulators that have been applied for various tasks at the DOE's Savannah River Site. The following chapter picks up on this theme and discusses the fundamental paradigm shifts that are required in artificial intelligence for robots to deal with hazardous, unstructured, and dynamic environments. Chapter 8 returns to the issue of impedance control first raised in Chapter 2. While the majority of the applications discussed in this book are related to the nuclear industry, chapter 9 considers applying telerobotics for the control of traditional heavy machinery that is widely used in forestry, mining, and construction. The final chapter of the book returns to the topic of artificial intelligence's role in producing increased autonomy for robotic systems and provides an interesting counterpoint to the philosophy of reactive control discussed earlier

  13. Locally linear approximation for Kernel methods : the Railway Kernel

    OpenAIRE

    Muñoz, Alberto; González, Javier

    2008-01-01

    In this paper we present a new kernel, the Railway Kernel, that works properly for general (nonlinear) classification problems, with the interesting property that acts locally as a linear kernel. In this way, we avoid potential problems due to the use of a general purpose kernel, like the RBF kernel, as the high dimension of the induced feature space. As a consequence, following our methodology the number of support vectors is much lower and, therefore, the generalization capab...

  14. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  15. Il circolo tecnologico: dall’uomo al robot e ritorno

    Directory of Open Access Journals (Sweden)

    BONITO OLIVA, ROSSELLA

    2017-12-01

    Full Text Available The technological Circle: from Man to Robot and return Robotics raised new questions in the already complex relationship between technology and ethics. Robots, more than any other machine, come close to human abilities of acting and interacting. Robots are created by human intelligence, they are perceived however through the collective imagery of post-humanistic culture. To reflect on the relation between robot and man means to investigate whether robots are a reflection of mankind, or if technologic ideology has slowly molded the subject: the man of the present is a robot.

  16. Towards Light‐guided Micro‐robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ‐dimensional microstructures. Furthermore, we exploit the light shaping capabilities available in the workstation to demonstrate a new strategy for controlling microstructures that goes beyond the typical refractive light deflections that are exploited in conventional optical trapping and manipulation e.g. of micro......Robotics in the macro‐scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro‐scale regime creates opportunities for exploiting optical forces...... and torques in micro‐robotic actuation and control. Indeed, the literature on optical trapping and micro‐manipulation attests to the possibilities for optical micro‐robotics. Advancing light‐driven micro‐robotics requires the optimization of optical force and optical torque that, in turn, requires...

  17. Morphologically intelligent underactuated robot for underwater hull cleaning

    DEFF Research Database (Denmark)

    Souto, Daniel; Faina, Andres; López-Peña, Fernando

    2015-01-01

    In this paper we discuss a new type of robot for underwater hull cleaning on ships with non-magnetic hulls. This robot is based on the concept that cleaning hulls regularly, without waiting to take them out of the water, will improve the efficiency of the ships and will permit a reduction...... in the use of the chemicals that are usually employed to prevent the growth of marine life on the hull and which are generally harmful to the environment. The robot described in this paper is an underactuated morphologically adapted robot that through an appropriate morphology and making use of the forces...... and constraints of the environment solves the most difficult problems that arise when moving along hulls. Some of these are changing planes, negotiating appendices, avoiding portholes, passing corners, and other elements. This greatly simplifies the control mechanisms that are required for its operation making...

  18. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  19. Autonomous Assembly of Solar Array Modules by a Team of Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate the hypothesis that Intelligent Precision Jigging Robots (IPJRs) and auxiliary robotic manipulators can autonomously perform the local...

  20. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  1. An Extreme Learning Machine Based on the Mixed Kernel Function of Triangular Kernel and Generalized Hermite Dirichlet Kernel

    Directory of Open Access Journals (Sweden)

    Senyue Zhang

    2016-01-01

    Full Text Available According to the characteristics that the kernel function of extreme learning machine (ELM and its performance have a strong correlation, a novel extreme learning machine based on a generalized triangle Hermitian kernel function was proposed in this paper. First, the generalized triangle Hermitian kernel function was constructed by using the product of triangular kernel and generalized Hermite Dirichlet kernel, and the proposed kernel function was proved as a valid kernel function of extreme learning machine. Then, the learning methodology of the extreme learning machine based on the proposed kernel function was presented. The biggest advantage of the proposed kernel is its kernel parameter values only chosen in the natural numbers, which thus can greatly shorten the computational time of parameter optimization and retain more of its sample data structure information. Experiments were performed on a number of binary classification, multiclassification, and regression datasets from the UCI benchmark repository. The experiment results demonstrated that the robustness and generalization performance of the proposed method are outperformed compared to other extreme learning machines with different kernels. Furthermore, the learning speed of proposed method is faster than support vector machine (SVM methods.

  2. Integration of Robotic Resources into FORCEnet

    National Research Council Canada - National Science Library

    Nguyen, Chinh; Carroll, Daniel; Nguyen, Hoa

    2006-01-01

    The Networked Intelligence Surveillance, and Reconnaissance (NISR) project integrates robotic resources into Composeable FORCEnet to control and exploit unmanned systems over extremely long distances...

  3. Automatic Supervision of Temperature, Humidity, and Luminance with an Assistant Personal Robot

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2017-01-01

    Full Text Available Smart environments and Ambient Intelligence (AmI technologies are defining the future society where energy optimization and intelligent management are essential for a sustainable advance. Mobile robotics is also making an important contribution to this advance with the integration of sensors and intelligent processing algorithms. This paper presents the application of an Assistant Personal Robot (APR as an autonomous agent for temperature, humidity, and luminance supervision in human-frequented areas. The robot multiagent capabilities allow gathering sensor information while exploring or performing specific tasks and then verifying human comfortability levels. The proposed methodology creates information maps with the distribution of temperature, humidity, and luminance and interprets such information in terms of comfort and warns about corrective actuations if required.

  4. Systematic approach to the application of automation, robotics, and machine intelligence systems (aramis) to future space projects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D B.S.

    1983-01-01

    The potential applications of automation, robotics and machine intelligence systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are identified for space project tasks. General conclusions and recommendations for further study are also presented. 6 references.

  5. Development of dog-like retrieving capability in a ground robot

    Science.gov (United States)

    MacKenzie, Douglas C.; Ashok, Rahul; Rehg, James M.; Witus, Gary

    2013-01-01

    This paper presents the Mobile Intelligence Team's approach to addressing the CANINE outdoor ground robot competition. The competition required developing a robot that provided retrieving capabilities similar to a dog, while operating fully autonomously in unstructured environments. The vision team consisted of Mobile Intelligence, the Georgia Institute of Technology, and Wayne State University. Important computer vision aspects of the project were the ability to quickly learn the distinguishing characteristics of novel objects, searching images for the object as the robot drove a search pattern, identifying people near the robot for safe operations, correctly identify the object among distractors, and localizing the object for retrieval. The classifier used to identify the objects will be discussed, including an analysis of its performance, and an overview of the entire system architecture presented. A discussion of the robot's performance in the competition will demonstrate the system's successes in real-world testing.

  6. Haptic Control with a Robotic Gripper

    OpenAIRE

    Rody, Morgan

    2011-01-01

    The Novint Falcon is a low cost, 3-axis, haptic device primarily designed and built for the gaming industry. Meant to replace the conventional mouse, the Novint Falcon has sub- millimeter accuracy and is capable of real time updates. The device itself has the potential to be used in telerobotics applications when coupled with a robotic gripper for example. Recently, the Intelligent Control Lab at Örebro University in Sweden built such a robotic gripper. The robotic gripper has three fingers a...

  7. Novel robotic systems and future directions

    Directory of Open Access Journals (Sweden)

    Ki Don Chang

    2018-01-01

    Full Text Available Robot-assistance is increasingly used in surgical practice. We performed a nonsystematic literature review using PubMed/MEDLINE and Google for robotic surgical systems and compiled information on their current status. We also used this information to predict future about the direction of robotic systems based on various robotic systems currently being developed. Currently, various modifications are being made in the consoles, robotic arms, cameras, handles and instruments, and other specific functions (haptic feedback and eye tracking that make up the robotic surgery system. In addition, research for automated surgery is actively being carried out. The development of future robots will be directed to decrease the number of incisions and improve precision. With the advent of artificial intelligence, a more practical form of robotic surgery system can be introduced and will ultimately lead to the development of automated robotic surgery system.

  8. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  9. Intelligent viewing control for robotic and automation systems

    Science.gov (United States)

    Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.

    1994-10-01

    We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.

  10. Development of a robot system for converter relining; Tenro chikuro robot system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y; Kurahashi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1995-09-12

    In steelmaking plants, the relining work of converters requires plenty of manpower and time. Recently, the number of expert brick workers has decreased, and it has been difficult to get together the necessary number of workers for the converter relining. To solve these problems, a robot system has been developed and realized for the converter relining. The system consists of two intelligent robots and an automatic brick conveying machine. With visual function and flexibly controlled hands, the robot enables to heap up bricks in the same manner as expert workers do. The automatic brick conveying machine consists of roller conveyers and a cage lifter that convey bricks on palettes to the suitable position for the robot to easily handle. This robot system has enabled to save much labor for the converter relining. 8 figs.

  11. Robotics research at Electrotechnical Laboratory-R and D program for advanced robot technology

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, S; Akahori, H; Shirai, Y; Kakikura, M

    1983-01-01

    The purposes of this paper are both to introduce the outline of robotics researches at Electrotechnical Laboratory and to describe the relation between those researches and the national project so called robotics for critical work. The authors first describe the robotics researches and related topics historically which have been continued from the latter half of 1960s as a part of researches on artificial intelligence at Electrotechnical Laboratory. Secondly, they mention the present aspects of our researches, its relation with past results, and changes of basic concepts on robotics systems. Finally, as an extension of our researches, they propose some approaches to establish the following techniques which make very important roles for the success of the national project; (1) manipulation techniques, (2) sensor techniques, (3) autonomous robot control techniques, (4) advanced tele-operation techniques and, (5) system totalizing techniques. 15 references.

  12. Kernel Machine SNP-set Testing under Multiple Candidate Kernels

    Science.gov (United States)

    Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.

    2013-01-01

    Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868

  13. Artificial Intelligence Applications for Education: Promise, ...Promises.

    Science.gov (United States)

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  14. BRAIN. Broad Research in Artificial Intelligence and Neuroscience-Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety

    OpenAIRE

    Utku Köse

    2018-01-01

    Nowadays, there is a serious anxiety on the existence of dangerous intelligent systems and it is not just a science-fiction idea of evil machines like the ones in well-known Terminator movie or any other movies including intelligent robots – machines threatening the existence of humankind. So, there is a great interest in some alternative research works under the topics of Machine Ethics, Artificial Intelligence Safety and the associated research topics like Future of Artificial I...

  15. From Autonomous Robots to Artificial Ecosystems

    Science.gov (United States)

    Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato

    During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.

  16. Intelligent Decision Technologies : Proceedings of the 4th International Conference on Intelligent Decision Technologies

    CERN Document Server

    Watanabe, Toyohide; Phillips-Wren, Gloria; Howlett, Robert; Jain, Lakhmi

    2012-01-01

    The Intelligent Decision Technologies (IDT) International Conference encourages an interchange of research on intelligent systems and intelligent technologies that enhance or improve decision making. The focus of IDT is interdisciplinary and includes research on all aspects of intelligent decision technologies, from fundamental development to real applications. IDT has the potential to expand their support of decision making in such areas as finance, accounting, marketing, healthcare, medical and diagnostic systems, military decisions, production and operation, networks, traffic management, crisis response, human-machine interfaces, financial and stock market monitoring and prediction, and robotics. Intelligent decision systems implement advances in intelligent agents, fuzzy logic, multi-agent systems, artificial neural networks, and genetic algorithms, among others.  Emerging areas of active research include virtual decision environments, social networking, 3D human-machine interfaces, cognitive interfaces,...

  17. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  18. Merging the fields of swarm robotics and new media: Perceiving swarm robotics as new media

    Directory of Open Access Journals (Sweden)

    Monika O. Ivanova

    2014-06-01

    Full Text Available The aim of this paper is to provide evidence that swarm robotic systems can be perceived as new media objects. A thorough description of the five principles of new media proposed by Lev Manovich in “The Language of New Media” is presented. This is complemented by a state of the art on swarm robotics with an in-depth comparison of the characteristics of both fields. Also presented are examples of swarm robotics used in new media installations in order to illustrate the cutting-edge applications of robotics and artificial intelligence achieved through the unity of bothfields. The hypothesis of this research is that a novel point of view would be introduced by examining the field of swarm robotics through the scope of new media, which would benefit thework of both new media and swarm robotic researchers.

  19. Educational robotics as an Innovative teaching practice using technology: minimization of risks

    Science.gov (United States)

    Kvesko, S. B.; Kvesko, N. G.; Korniyenko, A. A.; Kabanova, N. N.

    2018-05-01

    This research is focused on studying educational robotics, specifically robots which provide functions of educational activity. We have considered the questions of intelligent agents’ behavior and have studied their educational opportunities. Educational robotics is a powerful tool of developing person’s skills and abilities in various fields of technical creativity and professional activity. The evolutionary development of robotics is connected with development of artificial intelligence, where emotions play a great role in operations. Nowadays the main thing is to form the ability and skills of optimum interaction with social environment when a person, based on gained knowledge, is capable to put goals of the activity in strict accordance with laws and society conditions and using current technology.

  20. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.

    Science.gov (United States)

    Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.

  1. Artificial Intelligence (AI) Studies in Water Resources

    OpenAIRE

    Ay, Murat; Özyıldırım, Serhat

    2018-01-01

    Artificial intelligence has been extensively used in many areas such as computer science,robotics, engineering, medicine, translation, economics, business, and psychology. Variousstudies in the literature show that the artificial intelligence in modeling approaches give closeresults to the real data for solution of linear, non-linear, and other systems. In this study, wereviewed the current state-of-the-art and progress on the modelling of artificial intelligence forwater variables: rainfall-...

  2. Applications of artificial intelligence in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, D; Adey, R

    1986-01-01

    This book presents the papers given at a conference on the use of artificial intelligence in engineering. Topics considered at the conference included Prolog logic, expert systems, knowledge representation and acquisition, knowledge bases, machine learning, robotics, least-square algorithms, vision systems for robots, natural language, probability, mechanical engineering, civil engineering, and electrical engineering.

  3. Probabilistic approaches to robotic perception

    CERN Document Server

    Ferreira, João Filipe

    2014-01-01

    This book tries to address the following questions: How should the uncertainty and incompleteness inherent to sensing the environment be represented and modelled in a way that will increase the autonomy of a robot? How should a robotic system perceive, infer, decide and act efficiently? These are two of the challenging questions robotics community and robotic researchers have been facing. The development of robotic domain by the 1980s spurred the convergence of automation to autonomy, and the field of robotics has consequently converged towards the field of artificial intelligence (AI). Since the end of that decade, the general public’s imagination has been stimulated by high expectations on autonomy, where AI and robotics try to solve difficult cognitive problems through algorithms developed from either philosophical and anthropological conjectures or incomplete notions of cognitive reasoning. Many of these developments do not unveil even a few of the processes through which biological organisms solve thes...

  4. A Game Theoretic Approach to Swarm Robotics

    Directory of Open Access Journals (Sweden)

    S. N. Givigi

    2006-01-01

    Full Text Available In this article, we discuss some techniques for achieving swarm intelligent robots through the use of traits of personality. Traits of personality are characteristics of each robot that, altogether, define the robot's behaviours. We discuss the use of evolutionary psychology to select a set of traits of personality that will evolve due to a learning process based on reinforcement learning. The use of Game Theory is introduced, and some simulations showing its potential are reported.

  5. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  6. Intelligent automated control of robotic systems for environmental restoration

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1992-01-01

    Remote systems are needed to accomplish many tasks, such as the cleanup of waste sites in which the exposure of personnel to radiation, chemical, explosive, and other hazardous constituents is unacceptable. In addition, hazardous operations, which in the past have been completed by technicians, are under scrutiny because of the high costs and low productivity associated with providing protective clothing and environments. Traditional remote operations have, unfortunately, proven to also have very low productivity when compared with unencumbered human operators. However, recent advances in the integration of sensors and computing into the control of remotely operated equipment has shown great promise for reducing the cost of remote systems by providing faster and safer remote systems. The US Department of Energy's Office of Technology Development (OTD) has sponsored the development of the generic intelligent system controller (GISC) for application to remote system control. The GISC employs a highly modular architecture employing distributed real-time computing resources for speed and efficiency of computation. Currently, the graphics interface of GISC has been implemented on a Unix-based Silicon Graphics computer using commercial animation graphics software modified for real-time updating from sensory systems. A first implementation of GISC has been completed and is currently in use at Hanford, Washington, as part of the underground storage tank robotics technology development program

  7. The future of artificial intelligence in nuclear plant maintenance

    International Nuclear Information System (INIS)

    Norgate, G.

    1984-01-01

    Robots with vision and force sensing capability, performing tasks under computer control, will offer new opportunities to reduce human exposure to radiation. Such machines do not yet exist and even simple maintenance tasks challenge current robot technology. Recently increased priority for research on artificial intelligence and fifth generation computer technology is likely to bring useful maintenance robots closer to reality

  8. Towards Distributed Intelligence: A High Level Definition

    Science.gov (United States)

    2004-12-01

    Some of the first research in multi-robot systems came in the foraging /sorting area by Parker [77] and Beckers [9] and was likely fueled by the bio...chapter 24, pages 28–39. Artificial Intelligence at MIT. The MIT Press, 1989. 15. R.A. Brooks. Robotic Science, chapter 11, The Whole Iguana , pages 432

  9. Supporting robotics technology requirements through research in intelligent machines

    Energy Technology Data Exchange (ETDEWEB)

    Mann, R.C.

    1995-02-01

    {open_quotes}Safer, better, cheaper{close_quotes} are recurring themes in many robot development efforts. Significant improvements are being accomplished with existing technology, but basic research sets the foundations for future improvements and breakthrough discoveries. Advanced robots represent systems that integrate the three basic functions of sensing, reasoning, and acting (locomotion and manipulation) into one functional unit. Depending on the application requirements, some of these functions are implemented at a more or less advanced level than others. For example, some navigation tasks can be accomplished with purely reactive control and do not require sophisticated reasoning and planning methodologies. Robotics work at the Oak Ridge National Laboratory (ORNL) spans the spectrum from basic research to application-specific development and rapid prototyping of systems. This presentation summarizes recent highlights of the robotics research activities at ORNL.

  10. The role of automation and artificial intelligence

    Science.gov (United States)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  11. ROMO - The Robotic Electric Vehicle

    OpenAIRE

    Brembeck, Jonathan; Ho, Lok Man; Schaub, Alexander; Satzger, Clemens; Tobolar, Jakub; Bals, Johann; Hirzinger, Gerhard

    2011-01-01

    This paper outlines the development of the ROboMObil, an innovative electro-mobility concept based on intelligent central control of four Wheel Robots, which integrate the drivetrain, brakes, steering and dampers. The motivation behind the Wheel Robot concept, the implementation details together with the suspension design are described. The electric power system, consisting of a Li-Ion battery cluster to provide high-voltage power for propulsion and a low-voltage supply for vehicle control, i...

  12. International Conference on Computational Vision and Robotics

    CERN Document Server

    2015-01-01

    Computer Vision and Robotic is one of the most challenging areas of 21st century. Its application ranges from Agriculture to Medicine, Household applications to Humanoid, Deep-sea-application to Space application, and Industry applications to Man-less-plant. Today’s technologies demand to produce intelligent machine, which are enabling applications in various domains and services. Robotics is one such area which encompasses number of technology in it and its application is widespread. Computational vision or Machine vision is one of the most challenging tools for the robot to make it intelligent.   This volume covers chapters from various areas of Computational Vision such as Image and Video Coding and Analysis, Image Watermarking, Noise Reduction and Cancellation, Block Matching and Motion Estimation, Tracking of Deformable Object using Steerable Pyramid Wavelet Transformation, Medical Image Fusion, CT and MRI Image Fusion based on Stationary Wavelet Transform. The book also covers articles from applicati...

  13. Problems in software development for nuclear robotics

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni

    1986-01-01

    Major technical problems in developing softwares for intelligent robots for future nuclear applications are explained briefly. In order that a robot can perform various kinds of complex works, it must be equipped with a high level of artificial intelligence which includes sensing functions such as visiual, auditory, tactile, proximity sensing, cognitive functions such as recognition of objects and understanding of working environment, decision-making functions such as work planning and control functions such as manipulator and locomotion controls. A large amount of various kinds of signals and informations must be processed with a high speed for an integrated control of these functions. It will be desirable that the computer program for controlling a robot which must run in a real-time will have a functionally hierarchical and distributed structure from the view point of software development. Parallel processing will be required from the view point of computation time. (author)

  14. Artificial intelligence: the future in nuclear plant maintenance

    International Nuclear Information System (INIS)

    Norgate, G.

    1984-01-01

    The role of robotics and remote handling equipment in future nuclear power plant maintenance activities is discussed in the context of artificial intelligence applications. Special requirements manipulators, control systems, and man-machine interfaces for nuclear applications are noted. Tasks might include inspection with cameras, eddy current probes, and leak detectors; the collection of material samples; radiation monitoring; and the disassembly, repair and reassembly of a variety of system components. A robot with vision and force sensing and an intelligent control system that can access a knowledge base is schematically described. Recent advances in image interpretation systems are also discussed

  15. Personal robots, appearance and the Good: A methodological reflection on roboethics.

    OpenAIRE

    Coeckelbergh, Mark

    2009-01-01

    The development of pet robots, toy robots, and sex robots suggests a near-future scenario of habitual living with ‘personal’ robots. How should we evaluate their potential impact on the quality of our lives and existence? In this paper, I argue for an approach to ethics of personal robots that advocates a methodological turn from robots to humans, from mind to interaction, from intelligent thinking to social-emotional being, from reality to appearance, from right to good, from external criter...

  16. Light robotics: a new field of research

    DEFF Research Database (Denmark)

    Engay, Einstom; Chouliara, Manto; Bañas, Andrew

    2018-01-01

    After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics - Light Robotics - which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and information optics. In the Summer 2017 we are publishing a 482 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics...

  17. An Informationally Structured Room for Robotic Assistance

    Directory of Open Access Journals (Sweden)

    Tokuo Tsuji

    2015-04-01

    Full Text Available The application of assistive technologies for elderly people is one of the most promising and interesting scenarios for intelligent technologies in the present and near future. Moreover, the improvement of the quality of life for the elderly is one of the first priorities in modern countries and societies. In this work, we present an informationally structured room that is aimed at supporting the daily life activities of elderly people. This room integrates different sensor modalities in a natural and non-invasive way inside the environment. The information gathered by the sensors is processed and sent to a centralized management system, which makes it available to a service robot assisting the people. One important restriction of our intelligent room is reducing as much as possible any interference with daily activities. Finally, this paper presents several experiments and situations using our intelligent environment in cooperation with our service robot.

  18. Artificial intelligence in conceptual design of intelligent manufacturing systems: A state of the art review

    OpenAIRE

    Petrović, Milica M.; Miljković, Zoran Đ.; Babić, Bojan R.

    2013-01-01

    Intelligent manufacturing systems (IMS), as the highest class of flexible manufacturing systems, are able to adapt to market changes applying methods of artificial intelligence. This paper presents a detailed review of the following IMS functions: (i) process planning optimization, (ii) scheduling optimization, (iii) integrated process planning and scheduling, and (iv) mobile robot scheduling for internal material transport tasks. The research presented in this paper shows that improved perfo...

  19. Artificial Intelligence and Virology - quo vadis.

    Science.gov (United States)

    Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T

    2017-01-01

    Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.

  20. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  1. Cognitive logical systems with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liss, E

    1983-09-01

    The simulation of cognitive processes for the purpose of the technical development of learning systems with intelligent behavior is a basic object of the young interdisciplinary cognition science which is based upon artificial intelligence, cognitive psychology, computer science, linguistics and pedagogics. Cognitive systems may be described as knowledge-based logical systems. Based on structural and functional principles of intelligent automata and elementary information processing systems with structural learning capability the future process, machine and robot controls, advising units and fifth generation computers may be developed.

  2. Multi-Robot FastSLAM for Large Domains

    Science.gov (United States)

    2007-03-01

    Derr, D. Fox, A.B. Cremers , Integrating global position estimation and position tracking for mobile robots: The dynamic markov localization approach...Intelligence (AAAI), 2000. 53. Andrew J. Davison and David W. Murray. Simultaneous Localization and Map- Building Using Active Vision. IEEE...Wyeth, Michael Milford and David Prasser. A Modified Particle Filter for Simultaneous Robot Localization and Landmark Tracking in an Indoor

  3. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    Science.gov (United States)

    Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari

    2014-01-01

    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491

  4. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    Science.gov (United States)

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  5. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    Science.gov (United States)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the

  6. An Internal Data Non-hiding Type Real-time Kernel and its Application to the Mechatronics Controller

    Science.gov (United States)

    Yoshida, Toshio

    For the mechatronics equipment controller that controls robots and machine tools, high-speed motion control processing is essential. The software system of the controller like other embedded systems is composed of three layers software such as real-time kernel layer, middleware layer, and application software layer on the dedicated hardware. The application layer in the top layer is composed of many numbers of tasks, and application function of the system is realized by the cooperation between these tasks. In this paper we propose an internal data non-hiding type real-time kernel in which customizing the task control is possible only by change in the program code of the task side without any changes in the program code of real-time kernel. It is necessary to reduce the overhead caused by the real-time kernel task control for the speed-up of the motion control of the mechatronics equipment. For this, customizing the task control function is needed. We developed internal data non-cryptic type real-time kernel ZRK to evaluate this method, and applied to the control of the multi system automatic lathe. The effect of the speed-up of the task cooperation processing was able to be confirmed by combined task control processing on the task side program code using an internal data non-hiding type real-time kernel ZRK.

  7. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  8. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  9. Towards a science of integrated AI and Robotics

    OpenAIRE

    Rajan, Kanna; Saffiotti, Alessandro

    2017-01-01

    The early promise of the impact of machine intelligence did not involve the partitioning of the nascent field of Artificial Intelligence. The founders of AI envisioned the notion of embedded intelligence as being conjoined between perception, reasoning and actuation. Yet over the years the fields of AI and Robotics drifted apart. Practitioners of AI focused on problems and algorithms abstracted from the real world. Roboticists, generally with a background in mechanical and electrical engineer...

  10. Intelligence Level Performance Standards Research for Autonomous Vehicles.

    Science.gov (United States)

    Bostelman, Roger B; Hong, Tsai H; Messina, Elena

    2015-01-01

    United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV's). However, performance standards for AGV's and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance.

  11. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    OpenAIRE

    Straub, Jeremy; Huber, Justin

    2013-01-01

    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  12. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System), is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum

  13. An intelligent inspection and survey robot

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S. [Univ. of South Carolina, Columbia, SC (United States)

    1995-10-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum.

  14. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum

  15. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  16. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    Science.gov (United States)

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  17. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  18. Robot Rights? Towards a Social-Relational Justification of Moral Consideration.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2010-01-01

    Should we grant rights to artificially intelligent robots? Most current and near-future robots do not meet the hard criteria set by deontological and utilitarian theory. Virtue ethics can avoid this problem with its indirect approach. However, both direct and indirect arguments for moral

  19. 3rd International Asia Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Informatics in Control, Automation and Robotics

    2012-01-01

    Session 2 includes 110 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China.   As we all know, the ever growing technology in robotics and automation will help build a better human society. This session will provide a unique opportunity for the academic and industrial communities to address new challenges, share solutions, and discuss research directions for the future. Robotics research emphasizes intelligence and adaptability to cope with unstructured environments. Automation research emphasizes efficiency, productivity, quality, and reliability, focusing on systems that operate autonomously. The main focus of this session is on the autonomous acquisition of semantic information in intelligent robots and systems, as well as the use of semantic knowledge to guide further acquisition of information.

  20. Herbert: A Second Generation Mobile Robot.

    Science.gov (United States)

    1988-01-01

    PROJECT. TASK S Artificial Inteligence Laboratory AREA A WORK UNIT NUMBERS ’ ~ 545 Technology Square Cambridge, MA 02139 11. CONTROLLING OFFICE NAME...AD-AI93 632 WMRT: A SECOND GENERTION MOBILE ROWT(U) / MASSACHUSETTS IMST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB R BROOKS ET AL .JAN l8 Al-M...MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 1016 January, 1988 HERBERT: A SECOND GENERATION MOBILE ROBOT Rodney A

  1. International Conference on Computational Intelligence 2015

    CERN Document Server

    Saha, Sujan

    2017-01-01

    This volume comprises the proceedings of the International Conference on Computational Intelligence 2015 (ICCI15). This book aims to bring together work from leading academicians, scientists, researchers and research scholars from across the globe on all aspects of computational intelligence. The work is composed mainly of original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of computational intelligence. Specifically, the major topics covered include classical computational intelligence models and artificial intelligence, neural networks and deep learning, evolutionary swarm and particle algorithms, hybrid systems optimization, constraint programming, human-machine interaction, computational intelligence for the web analytics, robotics, computational neurosciences, neurodynamics, bioinspired and biomorphic algorithms, cross disciplinary topics and applications. The contents of this volume will be of use to researchers and professionals alike....

  2. An overview of the program to place advanced automation and robotics on the Space Station

    Science.gov (United States)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  3. Exploring cultural factors in human-robot interaction : A matter of personality?

    NARCIS (Netherlands)

    Weiss, Astrid; Evers, Vanessa

    2011-01-01

    This paper proposes an experimental study to investigate task-dependence and cultural-background dependence of the personality trait attribution on humanoid robots. In Human-Robot Interaction, as well as in Human-Agent Interaction research, the attribution of personality traits towards intelligent

  4. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  5. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  6. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  7. Field Tested Service Oriented Robotic Architecture: Case Study

    Science.gov (United States)

    Flueckiger, Lorenzo; Utz, Hanz

    2012-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.

  8. Aida-CMK multi-algorithm optimization kernel applied to analog IC sizing

    CERN Document Server

    Lourenço, Ricardo; Horta, Nuno

    2015-01-01

    This work addresses the research and development of an innovative optimization kernel applied to analog integrated circuit (IC) design. Particularly, this works describes the modifications inside the AIDA Framework, an electronic design automation framework fully developed by at the Integrated Circuits Group-LX of the Instituto de Telecomunicações, Lisbon. It focusses on AIDA-CMK, by enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new multi-objective multi-constraint optimization module that constructs a base for multiple algorithm implementations. The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA. Moreover, the implemented structure allows the easy hybridization between kernels transforming the previous simple NSGAII optimization module into a more evolved and versatile module supporting multiple s...

  9. R&D Plan for Army Applications of AI/Robotics.

    Science.gov (United States)

    1982-05-01

    Unilever , Philips, Toshiba, and Hamamatsu. Also emerging are companies that are developing artificial intelligence and/or robotics products. U.S...ROBOTICS.. . . . ..... 83 3.1. Introduction. . . . . ...... ... ... ... . .... 83 3.2. Background .. . . . . ...... ... ... . . .... 84 3.3. A Unified...Honeywell Systems and Research Center Hughes Research Laboratories Lockheed Missiles and Space Company Martin Marietta Corporation The Rand Corporation

  10. Research on wheelchair robot control system based on EOG

    Science.gov (United States)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  11. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    Science.gov (United States)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  12. An intelligent inspection and survey robot. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.

  13. An intelligent inspection and survey robot. Volume 2

    International Nuclear Information System (INIS)

    1995-01-01

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified

  14. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  15. Robot, human and communication; Robotto/ningen/comyunikeshon

    Energy Technology Data Exchange (ETDEWEB)

    Suehiro, T.

    1996-04-10

    Recently, some interests on the robots working with human beings under the same environment as the human beings and living with the human beings were promoting. In such robots, more suitability for environment and more robustness of system are required than those in conventional robots. Above all, communication of both the human beings and the robots on their cooperations is becoming a new problem. Hitherto, for the industrial robot, cooperation between human beings and robot was limited on its programming. As this was better for repeated operation of the same motion, its adoptable work was limited to some comparatively simpler one in factory and was difficult to change its content partially or to apply the other work. Furthermore, on the remote-controlled intelligent work robot represented by the critical work robot, its cooperation between the human beings and the robot can be conducted with the operation at remote location. In this paper, the communication of the robots lived with the human beings was examined. 17 refs., 1 fig.

  16. Learning motor skills from algorithms to robot experiments

    CERN Document Server

    Kober, Jens

    2014-01-01

    This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which wo...

  17. Robots in Elderly Care

    Directory of Open Access Journals (Sweden)

    Alessandro Vercelli

    2018-03-01

    Full Text Available Low birth rate and the long life expectancy represent an explosive mixture, resulting in the rapid aging of population. The costs of healthcare in the grey society are increasing dramatically, and soon there will be not enough resources and people for care. This context requires conceptually new elderly care solutions progressively reducing the percentages of the human-based care. Research on robot-based solutions for elderly care and active ageing aims to answer these needs. From a general perspective, robotics has the power to completely reshape the landscape of healthcare both in its structure and its operation. In fact, the long-term sustainability of healthcare systems could be addressed by automation powered by digital health technologies, such as artificial intelligence, 3D-printing or robotics. The latter could take over monotonous work from healthcare workers, which would allow them to focus more on patients and to have lesser workload. Robots might be used in elder care with several different aims. (i Robots may act as caregivers, i.e. assist the elderly, (ii they can provide remainders and instructions for activities of daily life and safety, and/or assist their carers in daily tasks; (iii they can help monitor their behaviour and health; and (iv provide companionship, including entertainment and hobbies, reminiscence and social contact. The use of Robots with human subjects/patients raise several sensitive questions. First of all, robots may represent information hubs, and can collect an incredible amount of data about the subjects and their environment. In fact, they record habits such as sleeping, exercising, third persons entering in the house, appointments. Communications may be continuously recorded. Moreover, by connecting with medical devices, they can store medical data. On one hand, this represents a very powerful tool to collect information about the single subject (precision medicine, about disease (thus eventually finding

  18. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Directory of Open Access Journals (Sweden)

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  19. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    Science.gov (United States)

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Robots as Imagined in the Television Series Humans.

    Science.gov (United States)

    Wicclair, Mark R

    2018-07-01

    Humans is a science fiction television series set in what appears to be present-day London. What makes it science fiction is that in London and worldwide, there are robots that look like humans and can mimic human behavior. The series raises several important ethical and philosophical questions about artificial intelligence and robotics, which should be of interest to bioethicists.

  1. Designing the Mind of a Social Robot

    Directory of Open Access Journals (Sweden)

    Nicole Lazzeri

    2018-02-01

    Full Text Available Humans have an innate tendency to anthropomorphize surrounding entities and have always been fascinated by the creation of machines endowed with human-inspired capabilities and traits. In the last few decades, this has become a reality with enormous advances in hardware performance, computer graphics, robotics technology, and artificial intelligence. New interdisciplinary research fields have brought forth cognitive robotics aimed at building a new generation of control systems and providing robots with social, empathetic and affective capabilities. This paper presents the design, implementation, and test of a human-inspired cognitive architecture for social robots. State-of-the-art design approaches and methods are thoroughly analyzed and discussed, cases where the developed system has been successfully used are reported. The tests demonstrated the system’s ability to endow a social humanoid robot with human social behaviors and with in-silico robotic emotions.

  2. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  3. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. University of Michigan workscope for 1991 DOE University program in robotics for advanced reactors

    International Nuclear Information System (INIS)

    Wehe, D.K.

    1990-01-01

    The University of Michigan (UM) is a member of a team of researchers, including the universities of Florida, Texas, and Tennessee, along with Oak Ridge National Laboratory, developing robotic for hazardous environments. The goal of this research is to develop the intelligent and capable robots which can perform useful functions in the new generation of nuclear reactors currently under development. By augmenting human capabilities through remote robotics, increased safety, functionality, and reliability can be achieved. In accordance with the established lines of research responsibilities, our primary efforts during 1991 will continue to focus on the following areas: radiation imaging; mobile robot navigation; three-dimensional vision capabilities for navigation; and machine-intelligence. This report discuss work that has been and will be done in these areas

  5. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  6. Classification With Truncated Distance Kernel.

    Science.gov (United States)

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  7. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  8. Interactions between Humans and Robots

    DEFF Research Database (Denmark)

    Vlachos, Evgenios; Schärfe, Henrik

    2013-01-01

    ), and explains the relationships and dependencies that exist between them. The four main factors that define the properties of a robot, and therefore the interaction, are distributed in two dimensions: (1) Intelligence (Control - Autonomy), and (2) Perspective (Tool - Medium). Based on these factors, we...

  9. Autonomous intelligent cars: proof that the EPSRC Principles are future-proof

    Science.gov (United States)

    de Cock Buning, Madeleine; de Bruin, Roeland

    2017-07-01

    Principle 2 of the EPSRC's principles of robotics (AISB workshop on Principles of Robotics, 2016) proves to be future proof when applied to the current state of the art of law and technology surrounding autonomous intelligent cars (AICs). Humans, not AICS, are responsible agents. AICs should be designed; operated as far as is practicable to comply with existing laws and fundamental rights and freedoms, including privacy by design. It will show that some legal questions arising from autonomous intelligent driving technology can be answered by the technology itself.

  10. A Profound Survey on Swarm Intelligence

    OpenAIRE

    Manish Mahant; Bharat Choudhary; Abhishek Kesharwani; Kalyani Singh Rathore

    2012-01-01

    Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The inspiration often comes from nature, especially biological systems. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems. SI systems are typically made up of a population of simple agents or boids interacting locally with one another and their environment. T...

  11. A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry

    OpenAIRE

    Jongchan Kim; Joonhyuck Lee; Gabjo Kim; Sangsung Park; Dongsik Jang

    2016-01-01

    A humanoid, which refers to a robot that resembles a human body, imitates a human’s intelligence, behavior, sense, and interaction in order to provide various types of services to human beings. Humanoids have been studied and developed constantly in order to improve their performance. Humanoids were previously developed for simple repetitive or hard work that required significant human power. However, intelligent service robots have been developed actively these days to provide necessary info...

  12. 12th International Conference on Intelligent Autonomous Systems (IAS-12)

    CERN Document Server

    Yoon, Kwang-Joon; Lee, Jangmyung; Frontiers of Intelligent Autonomous Systems

    2013-01-01

    This carefully edited volume aims at providing readers with the most recent progress on intelligent autonomous systems, with its particular emphasis on intelligent autonomous ground, aerial and underwater vehicles as well as service robots for home and healthcare under the context of the aforementioned convergence. “Frontiers of Intelligent Autonomous Systems” includes thoroughly revised and extended papers selected from the 12th International Conference on Intelligent Autonomous Systems (IAS-12), held in Jeju, Korea, June 26-29, 2012. The editors chose 35 papers out of the 202 papers presented at IAS-12 which are organized into three chapters: Chapter 1 is dedicated to autonomous navigation and mobile manipulation, Chapter 2 to unmanned aerial and underwater vehicles and Chapter 3 to service robots for home and healthcare. To help the readers to easily access this volume, each chapter starts with a chapter summary introduced by one of the editors: Chapter 1 by Sukhan Lee, Chapter 2 by Kwang Joon Yoon and...

  13. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.

    Science.gov (United States)

    van Dijk, W; van der Kooij, H; Koopman, B; van Asseldonk, E H F; van der Kooij, H

    2013-06-01

    To promote active participation of neurological patients during robotic gait training, controllers, such as "assist as needed" or "cooperative control", are suggested. Apart from providing support, these controllers also require that the robot should be capable of resembling natural, unsupported, walking. This means that they should have a transparent mode, where the interaction forces between the human and the robot are minimal. Traditional feedback-control algorithms do not exploit the cyclic nature of walking to improve the transparency of the robot. The purpose of this study was to improve the transparent mode of robotic devices, by developing two controllers that use the rhythmic behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-linear filters. Kernelbased non-linear filters can be used to estimate signals and their time derivatives, as a function of the gait phase. The first controller learns the motor angle, associated with a certain joint angle pattern, and acts as a feed-forward controller to improve the torque tracking (including the zero-torque mode). The second controller learns the state of the mechanical system and compensates for the dynamical effects (e.g. the acceleration of robot masses). Both controllers have been tested separately and in combination on a small subject population. Using the feedforward controller resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the knee joint. When both controllers were active simultaneously, the interaction power between the robot and the human leg was reduced by at least 40 percent at the thigh, and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the torque tracking and transparency can be improved by exploiting the predictions of adaptive frequency oscillator and kernel-based nonlinear filters.

  14. Vision-Based Recognition of Activities by a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Mounîm A. El-Yacoubi

    2015-12-01

    Full Text Available We present an autonomous assistive robotic system for human activity recognition from video sequences. Due to the large variability inherent to video capture from a non-fixed robot (as opposed to a fixed camera, as well as the robot's limited computing resources, implementation has been guided by robustness to this variability and by memory and computing speed efficiency. To accommodate motion speed variability across users, we encode motion using dense interest point trajectories. Our recognition model harnesses the dense interest point bag-of-words representation through an intersection kernel-based SVM that better accommodates the large intra-class variability stemming from a robot operating in different locations and conditions. To contextually assess the engine as implemented in the robot, we compare it with the most recent approaches of human action recognition performed on public datasets (non-robot-based, including a novel approach of our own that is based on a two-layer SVM-hidden conditional random field sequential recognition model. The latter's performance is among the best within the recent state of the art. We show that our robot-based recognition engine, while less accurate than the sequential model, nonetheless shows good performances, especially given the adverse test conditions of the robot, relative to those of a fixed camera.

  15. Building technology platform aimed to develop service robot with embedded personality and enhanced communication with social environment

    Directory of Open Access Journals (Sweden)

    Aleksandar Rodić

    2015-04-01

    Full Text Available The paper is addressed to prototyping of technology platform aimed to develop of ambient-aware human-centric indoor service robot with attributes of emotional intelligence to enhance interaction with social environment. The robot consists of a wheel-based mobile platform with spinal (segmented torso, bi-manual manipulation system with multi-finger robot hands and robot head. Robot prototype was designed to see, hear, speak and use its multimodal interface for enhanced communication with humans. Robot is capable of demonstrating its affective and social behavior by using audio and video interface as well as body gestures. Robot is equipped with advanced perceptive system based on heterogeneous sensorial system, including laser range finder, ultrasonic distance sensors and proximity detectors, 3-axis inertial sensor (accelerometer and gyroscope, stereo vision system, 2 wide-range microphones, and 2 loudspeakers. The device is foreseen to operate autonomously but it may be also operated remotely from a host computer through wireless communication link as well as by use of a smart-phone based on advanced client-server architecture. Robot prototype has embedded attributes of artificial intelligence and utilizes advanced cognitive capabilities such as spatial reasoning, obstacle and collision avoidance, simultaneous localization and mapping, etc. Robot is designed in a manner to enable uploading of new or changing existing algorithms of emotional intelligence that should provide to robot human-like affective and social behavior. The key objective of the project presented in the paper regards to building advanced technology platform for research and development of personal robots aimed to use for different purpose, e.g. robot-entertainer, battler, robot for medical care, security robot, etc. In a word, the designed technology platform is expected to help in development human-centered service robots to be used at home, in the office, public institutions

  16. Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM

    Directory of Open Access Journals (Sweden)

    Chenchao Zhao

    2018-01-01

    Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.

  17. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Zanela, S; Santini, A; Nanni, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  18. The 1997 AAAI Mobile Robot Competition and Exhibition

    OpenAIRE

    Arkin, Ronald C.

    1998-01-01

    In July 1997, the Sixth Annual Association for the Advancement of Artificial Intelligence (AAAI) Mobile Robot Competition and Exhibition was held. The competition consisted of four new events: (1) Find Life on Mars; (2) Find the Remote; (3) Home Vacuum; and (4) Hors d'Oeuvres, Anyone? The robot exhibition was the largest in AAAI history. This article presents the history, motivation, and contributions for the event.

  19. Not such a dumb robot

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L N

    1983-03-01

    The author discusses second generation robots. The second generation is attempting to overcome unawareness by equipping machines with senses and applying artificial intelligence techniques in order that the senses may be used in a human-like manner. The most critical element in robotics is the interface with the environment, both in sensing (input) and manipulating (output). Until recently the curent technology offered much on the output side but was lacking considerably on the input interface. Obviously the direction for research and development is in the application of sensors, the question therefore is how.

  20. System for intelligent teleoperation research

    International Nuclear Information System (INIS)

    Orlando, N.E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system, termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned

  1. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  2. An overview of current situations of robot industry development

    Directory of Open Access Journals (Sweden)

    Wu Qiong

    2018-01-01

    Full Text Available As an industry of emerging technology, robot industry has become one of important signs to evaluate a country’s level in science and technology innovation and high-end manufacturing, and an important strategic field to take the preemptive opportunities in development of intelligent society. Developed countries such as the USA, Germany, France and Japan have formulated their robot R&D strategies and planning in succession. China boasts good industrial foundation and has made encouraging progress in the course of development of robot technology. This paper briefly discusses the application type of robot industry and current situations of robot industry development in countries around the world, and makes detailed explanation of current situations of robot industry development in China.

  3. Developing concepts for improved efficiency of robot work preparation

    OpenAIRE

    Essers, M.S.; Vaneker, Thomas H.J.

    2013-01-01

    SInBot[1] is a large research project that focuses on maximizing the efficient use of mobile industrial robots during medium sized production runs. The system that will be described in this paper will focusses on the development and validation of concepts for efficient work preparation for cells of intelligent mobile robots that execute medium sized production runs. For a wide range of products, the machining tasks will be defined on an appropriate level, enabling control over the robots beha...

  4. The Fourth Law of Robotics.

    Science.gov (United States)

    Markoff, John

    1994-01-01

    Discusses intelligent software agents, or knowledge robots (knowbots), and the impact they have on the Internet. Topics addressed include ethical dilemmas; problems created by rapid growth on the Internet; new technologies that are amplifying growth; and a shift to a market economy and resulting costs. (LRW)

  5. Experiences with a Barista Robot, FusionBot

    Science.gov (United States)

    Limbu, Dilip Kumar; Tan, Yeow Kee; Wong, Chern Yuen; Jiang, Ridong; Wu, Hengxin; Li, Liyuan; Kah, Eng Hoe; Yu, Xinguo; Li, Dong; Li, Haizhou

    In this paper, we describe the implemented service robot, called FusionBot. The goal of this research is to explore and demonstrate the utility of an interactive service robot in a smart home environment, thereby improving the quality of human life. The robot has four main features: 1) speech recognition, 2) object recognition, 3) object grabbing and fetching and 4) communication with a smart coffee machine. Its software architecture employs a multimodal dialogue system that integrates different components, including spoken dialog system, vision understanding, navigation and smart device gateway. In the experiments conducted during the TechFest 2008 event, the FusionBot successfully demonstrated that it could autonomously serve coffee to visitors on their request. Preliminary survey results indicate that the robot has potential to not only aid in the general robotics but also contribute towards the long term goal of intelligent service robotics in smart home environment.

  6. Autonomous intelligent cars: proof that the EPSRC Principles are future-proof

    NARCIS (Netherlands)

    de Bruin, R.W.; de Cock Buning, M.

    2017-01-01

    Principle 2 of the EPSRC’s principles of robotics (AISB workshop on PrinciplesofRobotics, 2016) proves to be future proof when applied to the current state of the art of law and technology surrounding autonomous intelligent cars (AICs). Humans, not AICS, are responsible agents. AICs should be

  7. Reasoning robots the art and science of programming robotic agents

    CERN Document Server

    Thielscher, Michael

    2005-01-01

    The book provides an in-depth and uniform treatment of a mathematical model for reasoning robotic agents. The book also contains an introduction to a programming method and system based on this model. The mathematical model, known as the "Fluent Calculus,'' describes how to use classical first-order logic to set up symbolic models of dynamic worlds and to represent knowledge of actions and their effects. Robotic agents use this knowledge and their reasoning facilities to make decisions when following high-level, long-term strategies. The book covers the issues of reasoning about sensor input, acting under incomplete knowledge and uncertainty, planning, intelligent troubleshooting, and many other topics. The mathematical model is supplemented by a programming method which allows readers to design their own reasoning robotic agents. The usage of this method, called "FLUX,'' is illustrated by many example programs. The book includes the details of an implementation of FLUX using the standard programming language...

  8. Creating and maintaining chemical artificial life by robotic symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin M.; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  9. Creating and Maintaining Chemical Artificial Life by Robotic Symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  10. Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants

    Directory of Open Access Journals (Sweden)

    Francesco Corucci

    2017-07-01

    Full Text Available In this paper, a comprehensive methodology and simulation framework will be reviewed, designed in order to study the emergence of adaptive and intelligent behavior in generic soft-bodied creatures. By incorporating artificial evolutionary and developmental processes, the system allows to evolve complete creatures (brain, body, developmental properties, sensory, control system, etc. for different task environments. Whether the evolved creatures will resemble animals or plants is in general not known a priori, and depends on the specific task environment set up by the experimenter. In this regard, the system may offer a unique opportunity to explore differences and similarities between these two worlds. Different material properties can be simulated and optimized, from a continuum of soft/stiff materials, to the interconnection of heterogeneous structures, both found in animals and plants alike. The adopted genetic encoding and simulation environment are particularly suitable in order to evolve distributed sensory and control systems, which play a particularly important role in plants. After a general description of the system some case studies will be presented, focusing on the emergent properties of the evolved creatures. Particular emphasis will be on some unifying concepts that are thought to play an important role in the emergence of intelligent and adaptive behavior across both the animal and plant kingdoms, such as morphological computation and morphological developmental plasticity. Overall, with this paper, we hope to draw attention on set of tools, methodologies, ideas and results, which may be relevant to researchers interested in plant-inspired robotics and intelligence.

  11. An intelligent inspection and survey robot. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data

  12. An intelligent inspection and survey robot. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data.

  13. Subsampling Realised Kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger

    2011-01-01

    In a recent paper we have introduced the class of realised kernel estimators of the increments of quadratic variation in the presence of noise. We showed that this estimator is consistent and derived its limit distribution under various assumptions on the kernel weights. In this paper we extend our...... that subsampling is impotent, in the sense that subsampling has no effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels, such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic variance. We also study the performance of subsampled...

  14. Anytime Summarization for Remote Robot Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA plans to use intelligent planetary rovers to improve the productivity and safety of human explorers. A key challenge in using robots to support human...

  15. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.

    Science.gov (United States)

    Wei, Kun; Ren, Bingyin

    2018-02-13

    In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.

  16. Socially intelligent robots that understand and respond to human touch

    NARCIS (Netherlands)

    Jung, Merel Madeleine

    Touch is an important nonverbal form of interpersonal interaction which is used to communicate emotions and other social messages. As interactions with social robots are likely to become more common in the near future these robots should also be able to engage in tactile interaction with humans.

  17. Status and Trends of the Anthropomorphic Robotics

    Directory of Open Access Journals (Sweden)

    S. P. Hurs

    2016-01-01

    Full Text Available The paper considers a number of current developments in the field of anthropomorphic robotics, namely robotic exoskeletons, android platform with copying control systems, android platform with autonomous control systems, avatars, and androids. Highlights the key subsystems of the robotic platform such as sensitization tools, tools of self-diagnostics, security and prioritization, a power subsystem, and computer system. Identifies the most important subsystem of a “future soldier” to represent an equipage as a multifunctional active exoskeleton, completed with the necessary equipment.The paper shows the main problems the developers of anthropomorphic robotics face. For example, many degrees of the human body freedom curb a creation of the actuating mechanisms of robots, which fit the human anatomy as much as possible. For the human sizes the specific characteristics of traditional types of actuators, such as electromechanical, electro-hydraulic and electro-pneumatic are worse than those of the human muscles. Clearly, the greatest prospects in this area are associated with artificial muscles. There is also no so far a solution for the problem of creating the feedbacks in all kinds of senses to ensure that an operator has a feeling that he is in the place of the robot. There is much tension around the issue of creating a perfect remote control system that allows the operator to obtain unambiguous signals to control the robot. There is currently no completely autonomous control system with elements of artificial intelligence. Particular attention is paid to the problems of creating power sources that can provide affordable autonomy for mobile robotic systems. The most, presently, promising power sources are mentioned.The paper considers some development aspects of the control system, which is capable to run in a copier, supervisory, combined and offline modes. Presents the most important functions of the robot sensory system. Shows some aspects

  18. Correlation between crystallographic computing and artificial intelligence research

    Energy Technology Data Exchange (ETDEWEB)

    Feigenbaum, E A [Stanford Univ., CA; Engelmore, R S; Johnson, C K

    1977-01-01

    Artificial intelligence research, as a part of computer science, has produced a variety of programs of experimental and applications interest: programs for scientific inference, chemical synthesis, planning robot control, extraction of meaning from English sentences, speech understanding, interpretation of visual images, and so on. The symbolic manipulation techniques used in artificial intelligence provide a framework for analyzing and coding the knowledge base of a problem independently of an algorithmic implementation. A possible application of artificial intelligence methodology to protein crystallography is described. 2 figures, 2 tables.

  19. Autonomy in robots and other agents.

    Science.gov (United States)

    Smithers, T

    1997-06-01

    The word "autonomous" has become widely used in artificial intelligence, robotics, and, more recently, artificial life and is typically used to qualify types of systems, agents, or robots: we see terms like "autonomous systems," "autonomous agents," and "autonomous robots." Its use in these fields is, however, both weak, with no distinctions being made that are not better and more precisely made with other existing terms, and varied, with no single underlying concept being involved. This ill-disciplined usage contrasts strongly with the use of the same term in other fields such as biology, philosophy, ethics, law, and human rights, for example. In all these quite different areas the concept of autonomy is essentially the same, though the language used and the aspects and issues of concern, of course, differ. In all these cases the underlying notion is one of self-law making and the closely related concept of self-identity. In this paper I argue that the loose and varied use of the term autonomous in artificial intelligence, robotics, and artificial life has effectively robbed these fields of an important concept. A concept essentially the same as we find it in biology, philosophy, ethics, and law, and one that is needed to distinguish a particular kind of agent or robot from those developed and built so far. I suggest that robots and other agents will have to be autonomous, i.e., self-law making, not just self-regulating, if they are to be able effectively to deal with the kinds of environments in which we live and work: environments which have significant large scale spatial and temporal invariant structure, but which also have large amounts of local spatial and temporal dynamic variation and unpredictability, and which lead to the frequent occurrence of previously unexperienced situations for the agents that interact with them.

  20. Investigation and study on each technique and example of intelligent planning; Intelligent planning no kakushu shuho to jirei ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-11

    Various problems on intelligent planning (IP) and the tendency of basic technology were investigated. For each technique of IP, a Petri net and mark graph have been widely used as the modeling and analysis methods of a discrete event system. Moreover, various planning problems were modeled by a traveling salesman problem, and the efficient solution of the traveling salesman problem has been studied simultaneously. The tendency of the basic technology and application system viewed from an example of intelligent plant planning was investigated as an applied field of planning technology, with importance attached to the production system and robot planning. In the scheduling technology of the production system, the activation of an AI study and a new theory (i.e., architecture study) based on natural science information was investigated with the transition in the world as a trigger. A robot system has been planned in a wide range such as the environmental information acquisition planning of a robot. 202 refs., 69 figs., 4 tabs.

  1. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  2. ReACT!: An Interactive Educational Tool for AI Planning for Robotics

    Science.gov (United States)

    Dogmus, Zeynep; Erdem, Esra; Patogulu, Volkan

    2015-01-01

    This paper presents ReAct!, an interactive educational tool for artificial intelligence (AI) planning for robotics. ReAct! enables students to describe robots' actions and change in dynamic domains without first having to know about the syntactic and semantic details of the underlying formalism, and to solve planning problems using…

  3. Experiments in Competence Acquisition for Autonomous Mobile Robots

    OpenAIRE

    Nehmzow, Ulrich

    1992-01-01

    This thesis addresses the problem of intelligent control of autonomous mobile robots, particularly under circumstances unforeseen by the designer.As the range of applications for autonomous robots widens and increasingly includes operation in unknown environments (exploration) and tasks which are not clearly specifiable a priori (maintenance work), this question is becoming more and more important. It is argued that in order to achieve such flexibility in unforeseen situations it is necess...

  4. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  5. Anytime Summarization for Remote Robot Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA plans to use intelligent planetary rovers to improve the productivity and safety of human explorers. A key challenge in using robots for human exploration is...

  6. SIMON [Semi-Intelligent Mobile Observing Navigator] combines radiation hardness with computer power

    International Nuclear Information System (INIS)

    Weber, P.J.; Vanecek, C.W.

    1990-01-01

    SIMON - the Semi-Intelligent Mobile Observing Navigator - has been under development at the US Department of Energy's (DoE's) Savannah River Laboratory for four years. The robot's on-board intelligence units are designed to be radiation-resistant, making it able to function for extended periods within a remotely operated facility. In its current form, SIMON is being developed by the laboratory's Robotics Group for use in the site's production reactors, but it can be adapted for use in any nuclear facility, including commercial reactors. The challenge for Savannah River Laboratory engineers was to eliminate the need for human inspection of certain components. To do this, they designed a robot that could do three things for reactor operators: measure radiation; measure temperature; and provide televised views inside the reactor facility. To be useful, the robot has to be extremely mobile, and its components had to be able to survive months without maintenance in the radiation, temperature and humidity encountered in nuclear facilities. The robot also had to be cost-effective. (author)

  7. Kernel abortion in maize. II. Distribution of 14C among kernel carboydrates

    International Nuclear Information System (INIS)

    Hanft, J.M.; Jones, R.J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14 C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35 0 C were transferred to [ 14 C]sucrose media 10 days after pollination. Kernels cultured at 35 0 C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on [ 14 C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35 0 C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35 0 C compared to kernels cultured at 30 0 C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35 0 C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30 0 C (89%). Kernels cultured at 35 0 C had a correspondingly higher proportion of 14 C in endosperm fructose, glucose, and sucrose

  8. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  9. Future of robots in nuclear plants and processes

    International Nuclear Information System (INIS)

    Fisher, J.J.; Byrd, J.S.

    1985-01-01

    The role of robotics at the Savannah River Plant and Laboratory is reviewed. The site's remote process areas are described briefly, and existing remote handling equipment and robots are discussed. Three technology areas under development and relating to process automation are reviewed. These are: inspection systems to detect and evaluate process problems or to determine equipment integrity, process monitoring systems to analyze plant operations and to supply information in the event of an unusual occurrence, and remote manipulator systems and controls to handle instruments and tools. A technique is presented for employing future intelligent robots through process networks. These networks will represent the integration of robotic technology with dedicated process knowledge bases

  10. Progress toward EAP actuators for biomimetic social robots

    Science.gov (United States)

    Hanson, D.

    2013-04-01

    Social robotics and artificial intelligence have progressed steadily in recent years, appearing in a variety of useful applications and products as well as breakthrough research. However, limitations in conventional motors continue to limit the possibilities of bio-inspired robotics. Such motors are needed for locomotion, grasping and manipulation, and social expressions and gestures. EAP actuators, being more like biological muscle in key regards, could revolutionize the hardware for such robots, if made robust, powerful, and manufacturable at reasonable prices. The author presents a survey of the progress and opportunities for EAP actuators in these fields, and discusses the latest work of his team in developing and manufacturing social robots that could benefit from EAP actuators.

  11. The universal robot

    Science.gov (United States)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  12. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A working group (WG) study was conducted aiming at realizing human type robots. The following six working groups in the basement field were organized to study in terms mostly of items of technical development and final technical targets: platform, and remote attendance control in the basement field, maintenance of plant, etc., home service, disaster/construction, and entertainment in the application field. In the platform WG, a robot of human like form is planning which walks with two legs and works with two arms, and the following were discussed: a length of 160cm, weight of 110kg, built-in LAN, actuator specifications, modulated structure, intelligent driver, etc. In the remote attendance control WG, remote control using working function, stabilized movement, stabilized control, and network is made possible. Studied were made on the decision on a remote control cockpit by open architecture added with function and reformable, problems on the development of the standard language, etc. 77 ref., 82 figs., 21 tabs.

  13. CMMAD Usability Case Study in Support of Countermine and Hazard Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Victor G. Walker; David I. Gertman

    2010-04-01

    During field trials, operator usability data were collected in support of lane clearing missions and hazard sensing for two robot platforms with Robot Intelligence Kernel (RIK) software and sensor scanning payloads onboard. The tests featured autonomous and shared robot autonomy levels where tasking of the robot used a graphical interface featuring mine location and sensor readings. The goal of this work was to provide insights that could be used to further technology development. The efficacy of countermine systems in terms of mobility, search, path planning, detection, and localization were assessed. Findings from objective and subjective operator interaction measures are reviewed along with commentary from soldiers having taken part in the study who strongly endorse the system.

  14. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  15. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://intranet.cern.ch/Microcosm/LundisDecouverte/

  16. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://cern.ch/lundisdecouverte

  17. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  18. Spline-based automatic path generation of welding robot

    Institute of Scientific and Technical Information of China (English)

    Niu Xuejuan; Li Liangyu

    2007-01-01

    This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of communication with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.

  19. Report on the actual situations of the commercially applied, industrial robots; Sangyoyo robot ni kansuru kigyo jittai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-08-01

    Described herein are the actual situations of industrial robots as the FY 1991 questionnaire survey results. The questionnaires were sent to 541 factories, and 74% thereof were recovered. The major machine types fall into categories of manual manipulator, stationary sequence manipulator, remote controlling robot, sequence robot, playback robot, numerically controlling robot and intelligent robot. They are mainly driven by hydraulic, pneumatic, or electrical power. Their mechanism types cover polar coordinate, cylindrical coordinate, rectangular coordinate and articulation types, among others. They are mainly controlled by electronically, electrically (hydraulic or relay), or pneumatically. The major purposes for general works include casting, forging, resin processing, heat treatment, pressing, welding, coating, machining, cutting, assembling, reception/delivery of goods, and testing/inspection. The special works they are in service include those for power/gas/water services, construction works, and research and development. By work step, they are in service, e.g., for loading/unloading goods, palletising/packing goods, supporting, screening, welding, spraying/coating, grinding, clamping, assembling, and riveting. (NEDO)

  20. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low level nuclear waste. The project is being performed by a team under the SCUREF (South Carolina University Research and Education Foundation) comprised of the University of South Carolina, and Clemson University, and their industrial partner Cybermotion Inc., with funding from METC, Morgantown, WV. The ARIES program is unusual in the level of cooperation between the universities and Cybermotion. By maintaining daily communications via telephone and E-Mall, participating in frequent meetings with each other and the end users, and by developing an open flow of (sometimes sensitive) technical information, the team has been able to build on a very broad base of intellectual strengths and existing technology without wasteful duplication. This base includes all of the navigation and control software and hardware developed by Cybermotion over nearly a decade and the deep technology resources of the university partners. It is anticipated that the result will be a technically advanced system that is much closer to a deployable configuration than is typical for this stage of research. In this decade of shrinking budgets, such relationships can provide a crucial advantage for all participants

  1. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  2. iPathology: Robotic Applications and Management of Plants and Plant Diseases

    Directory of Open Access Journals (Sweden)

    Yiannis Ampatzidis

    2017-06-01

    Full Text Available The rapid development of new technologies and the changing landscape of the online world (e.g., Internet of Things (IoT, Internet of All, cloud-based solutions provide a unique opportunity for developing automated and robotic systems for urban farming, agriculture, and forestry. Technological advances in machine vision, global positioning systems, laser technologies, actuators, and mechatronics have enabled the development and implementation of robotic systems and intelligent technologies for precision agriculture. Herein, we present and review robotic applications on plant pathology and management, and emerging agricultural technologies for intra-urban agriculture. Greenhouse advanced management systems and technologies have been greatly developed in the last years, integrating IoT and WSN (Wireless Sensor Network. Machine learning, machine vision, and AI (Artificial Intelligence have been utilized and applied in agriculture for automated and robotic farming. Intelligence technologies, using machine vision/learning, have been developed not only for planting, irrigation, weeding (to some extent, pruning, and harvesting, but also for plant disease detection and identification. However, plant disease detection still represents an intriguing challenge, for both abiotic and biotic stress. Many recognition methods and technologies for identifying plant disease symptoms have been successfully developed; still, the majority of them require a controlled environment for data acquisition to avoid false positives. Machine learning methods (e.g., deep and transfer learning present promising results for improving image processing and plant symptom identification. Nevertheless, diagnostic specificity is a challenge for microorganism control and should drive the development of mechatronics and robotic solutions for disease management.

  3. Electroactive polymer (EAP) actuators for future humanlike robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  4. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  5. Optimized Kernel Entropy Components.

    Science.gov (United States)

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  6. INDUSTRIAL ROBOT ARM SIMULATION SOFTWARE DEVELOPMENT USING JAVA-3D AND MATLAB SIMULINK PROGRAMMING LANGUAGE

    OpenAIRE

    Wirabhuana, Arya

    2011-01-01

    Robot Arms Simulation Software development using Structured Programming Languages, Third Party Language, and Artificial Intelligence Programming Language are the common techniques in simulating robot arms movement. Those three techniques are having its strengths and weaknesses depend on several constraints such as robot type, degree of operation complexity to be simulated, operator skills, and also computer capability. This paper will discuss on Robot Arms Simulation Software (RSS) developmen...

  7. Real Time Indoor Robot Localization Using a Stationary Fisheye Camera

    OpenAIRE

    Delibasis , Konstantinos ,; Plagianakos , Vasilios ,; Maglogiannis , Ilias

    2013-01-01

    Part 7: Intelligent Signal and Image Processing; International audience; A core problem in robotics is the localization of a mobile robot (determination of the location or pose) in its environment, since the robot’s behavior depends on its position. In this work, we propose the use of a stationary fisheye camera for real time robot localization in indoor environments. We employ an image formation model for the fisheye camera, which is used for accelerating the segmentation of the robot’s top ...

  8. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s...

  9. The internet and intelligent machines: search engines, agents and robots; Radiologische Informationssuche im Internet: Datenbanken, Suchmaschinen und intelligente Agenten

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, S; Alfke, H [Marburg Univ. (Germany). Abt. fuer Strahlendiagnostik

    2000-04-01

    The internet plays an important role in a growing number of medical applications. Finding relevant information is not always easy as the amount of available information on the Web is rising quickly. Even the best Search Engines can only collect links to a fraction of all existing Web pages. In addition, many of these indexed documents have been changed or deleted. The vast majority of information on the Web is not searchable with conventional methods. New search strategies, technologies and standards are combined in Intelligent Search Agents (ISA) an Robots, which can retrieve desired information in a specific approach. Conclusion: The article describes differences between ISAs and conventional Search Engines and how communication between Agents improves their ability to find information. Examples of existing ISAs are given and the possible influences on the current and future work in radiology is discussed. (orig.) [German] Das Internet findet zunehmend in medizinischen Anwendungen Verbreitung, jedoch ist das Auffinden relevanter Informationen nicht immer leicht. Die Anzahl der verfuegbaren Dokumente im World wide web nimmt so schnell zu, dass die Suche zunehmend Probleme bereitet: Auch gute Suchmaschinen erfassen nur einige Prozent der vorhandenen Seiten in Ihren Datenbanken. Zusaetzlich sorgen staendige Veraenderungen dafuer, dass nur ein Teil dieser durchsuchbaren Dokumente ueberhaupt noch existiert. Der Grossteil des Internets ist daher mit konventionellen Methoden nicht zu erschliessen. Neue Standards, Suchstrategien und Technologien vereinen sich in den Suchagenten und Robots, die gezielter und intelligenter Inhalte ermitteln koennen. Schlussfolgerung: Der Artikel stellt dar, wie sich ein Intelligent search agent (ISA) von einer Suchmaschine unterscheidet und durch Kooperation mit anderen Agenten die Anforderungen der Benutzer besser erfuellen kann. Neben den Grundlagen werden exemplarische Anwendungen gezeigt, die heute im Netz existieren, und ein Ausblick

  10. Performance Evaluation Methods for Assistive Robotic Technology

    Science.gov (United States)

    Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.

    Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.

  11. Apparatus for multiprocessor-based control of a multiagent robot

    Science.gov (United States)

    Peters, II, Richard Alan (Inventor)

    2009-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  12. Adaptive Behavior for Mobile Robots

    Science.gov (United States)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  13. Intelligent navigation and accurate positioning of an assist robot in indoor environments

    Science.gov (United States)

    Hua, Bin; Rama, Endri; Capi, Genci; Jindai, Mitsuru; Tsuri, Yosuke

    2017-12-01

    Intact robot's navigation and accurate positioning in indoor environments are still challenging tasks. Especially in robot applications, assisting disabled and/or elderly people in museums/art gallery environments. In this paper, we present a human-like navigation method, where the neural networks control the wheelchair robot to reach the goal location safely, by imitating the supervisor's motions, and positioning in the intended location. In a museum similar environment, the mobile robot starts navigation from various positions, and uses a low-cost camera to track the target picture, and a laser range finder to make a safe navigation. Results show that the neural controller with the Conjugate Gradient Backpropagation training algorithm gives a robust response to guide the mobile robot accurately to the goal position.

  14. Extending Mechanical Construction Kits to Incorporate Passive and Compliant Elements for Educational Robotics

    DEFF Research Database (Denmark)

    Assaf, Dorit; Larsen, Jørgen Christian; Reichardt, Markus

    2012-01-01

    artificial intelligence and biomechanics to students with different backgrounds. The robots we use both for research and education are usually built incorporating compliant materials as well as passive dynamics. These kind of properties are often not available in classical robot kits or mechanical...... construction kits. In this paper we describe some of the robots we use for education. So far we built the robots using 3D printing technology which is convenient but too expensive for class use. Our aim is to find cheaper, commercially available solutions. After a short review on educational robot kits...

  15. A computer architecture for intelligent machines

    Science.gov (United States)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  16. Image-robot coupling for the prostate brachytherapy

    International Nuclear Information System (INIS)

    Coelen, V.; Lartigau, E.; Merzouki, R.

    2009-01-01

    The results allows to contemplate a robot use in the prostate brachytherapy but equally in other applications such prostate biopsy. The tests to come are going to be directed towards on the use of a prostate phantom in order to calibrate the ultrasonography. thereafter, we contemplate the conception of an intelligent gripping system placed on the robot arm and allowing a good control in closed loop of the brachytherapy needle placement and allowing the setting up of an online monitoring. (N.C.)

  17. A real time tracking vision system and its application to robotics

    International Nuclear Information System (INIS)

    Inoue, Hirochika

    1994-01-01

    Among various sensing channels the vision is most important for making robot intelligent. If provided with a high speed visual tracking capability, the robot-environment interaction becomes dynamic instead of static, and thus the potential repertoire of robot behavior becomes very rich. For this purpose we developed a real-time tracking vision system. The fundamental operation on which our system based is the calculation of correlation between local images. Use of special chip for correlation and the multi-processor configuration enable the robot to track more than hundreds cues in full video rate. In addition to the fundamental visual performance, applications for robot behavior control are also introduced. (author)

  18. A Kinect-sensor-based Tracked Robot for Exploring and Climbing Stairs

    OpenAIRE

    I-Hsum Li; Wei-Yen Wang; Chien-Kai Tseng

    2014-01-01

    This paper focuses on the stair-climbing problem for a tracked robot. The tracked robot designed in this paper has the ability to explore stairs in an unknown indoor environment, climbing up and down the stairs, keeping balance while climbing, and successfully landing on the stair platform. Intelligent algorithms are proposed to explore and align stairs, and a fuzzy controller is introduced to stabilize the tracked robot's movement during the exploration. An inexpensive Kinect depth sensor is...

  19. Evolving and Controlling Perimeter, Rendezvous, and Foraging Behaviors in a Computation-Free Robot Swarm

    Science.gov (United States)

    2016-04-01

    in extreme environments. Categories and Subject Descriptors I.2.11 [ Artificial Intelligence ]: Distributed Artificial In- telligence—multiagent systems...coherence and coordination; I.2.9 [ Artificial Intelligence ]: Robotics— intelligent vehi- cles Keywords swarm robotics, evolutionary algorithms...collective behaviors. Rubenstein et al. [12] studied how to collectively transport items using a simple control signals and behaviors. Others have looked

  20. Designing, developing, and deploying systems to support human-robot teams in disaster response

    NARCIS (Netherlands)

    Kruijff, G.J.M.; Kruijff-Korbayová, I.; Keshavdas, S.; Larochelle, B.; Janíček, M.; Colas, F.; Liu, M.; Pomerleau, F.; Siegwart, R.; Neerincx, M.A.; Looije, R.; Smets, N.J.J.M.; Mioch, T.; Diggelen, J. van; Pirri, F.; Gianni, M.; Ferri, F.; Menna, M.; Worst, R.; Linder, T.; Tretyakov, V.; Surmann, H.; Svoboda, T.; Reinštein, M.; Zimmermann, K.; Petříček, T.; Hlaváč, V.

    2014-01-01

    This paper describes our experience in designing, developing and deploying systems for supporting human-robot teams during disaster response. It is based on R&D performed in the EU-funded project NIFTi. NIFTi aimed at building intelligent, collaborative robots that could work together with humans in

  1. Light-driven nano-robotics for sub-diffraction probing and sensing

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Palima, Darwin

    On the macro-scale robotics typically uses light for carrying information for machine vision for and feedback in artificially intelligent guidance systems and monitoring. Using the miniscule momentum of light shrinking robots down to the micro- and even nano-scale regime creates opportunities......]. Therefore, a generic approach for optimizing lightmatter interaction involves the combination of optimal light-shaping techniques with the use of optimized nano-featured shapes in light-driven micro-robotics structures. In this work, we designed different three-dimensional micro-structures and fabricated...

  2. A novel adaptive kernel method with kernel centers determined by a support vector regression approach

    NARCIS (Netherlands)

    Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Mulder, J.A.

    2012-01-01

    The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an

  3. Comparative analysis of automation of production process with industrial robots in Asia/Australia and Europe

    Directory of Open Access Journals (Sweden)

    I. Karabegović

    2017-01-01

    Full Text Available The term "INDUSTRY 4.0" or "fourth industrial revolution" was first introduced at the fair in 2011 in Hannover. It comes from the high-tech strategy of the German Federal Government that promotes automation-computerization to complete smart automation, meaning the introduction of a method of self-automation, self-configuration, self-diagnosing and fixing the problem, knowledge and intelligent decision-making. Any automation, including smart, cannot be imagined without industrial robots. Along with the fourth industrial revolution, ‘’robotic revolution’’ is taking place in Japan. Robotic revolution refers to the development and research of robotic technology with the aim of using robots in all production processes, and the use of robots in real life, to be of service to a man in daily life. Knowing these facts, an analysis was conducted of the representation of industrial robots in the production processes on the two continents of Europe and Asia /Australia, as well as research that industry is ready for the introduction of intelligent automation with the goal of establishing future smart factories. The paper gives a representation of the automation of production processes in Europe and Asia/Australia, with predictions for the future.

  4. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  5. A fuzzy logic based navigation for mobile robot

    International Nuclear Information System (INIS)

    Adel Ali S Al-Jumaily; Shamsudin M Amin; Mohamed Khalil

    1998-01-01

    The main issue of intelligent robot is how to reach its goal safely in real time when it moves in unknown environment. The navigational planning is becoming the central issue in development of real-time autonomous mobile robots. Behaviour based robots have been successful in reacting with dynamic environment but still there are some complexity and challenging problems. Fuzzy based behaviours present as powerful method to solve the real time reactive navigation problems in unknown environment. We shall classify the navigation generation methods, five some characteristics of these methods, explain why fuzzy logic is suitable for the navigation of mobile robot and automated guided vehicle, and describe a reactive navigation that is flexible to react through their behaviours to the change of the environment. Some simulation results will be presented to show the navigation of the robot. (Author)

  6. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    ..., and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities...

  7. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    Science.gov (United States)

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  8. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  9. The digitalization of the working environment: the advent of Robotics, Automation and Artificial Intelligence (RAAI) from the employees perspective – a scoping review

    OpenAIRE

    Terminio, Rosanna; Gilabert, Eva

    2017-01-01

    Robotics, automation and artificial intelligence (RAAI) are changing how work gets done, to the point of putting 47% of existing jobs in the USA at risk of becoming redundant in 5 to 15 years. RAAI and their cognitive abilities have a potential impact on employees’ sense of self-worth and career satisfaction and, in turn, on organizations and the society as a whole. In spite of the significant debate on whether there is a real risk of job losses or simply a need of re-skilling, the impa...

  10. Safe robot execution in model-based reinforcement learning

    OpenAIRE

    Martínez Martínez, David; Alenyà Ribas, Guillem; Torras, Carme

    2015-01-01

    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans...

  11. Additive Manufacturing Cloud via Peer-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-05-01

    Full Text Available When building a 3D printing cloud manufacturing platform, self-sensing and collaboration on manufacturing resources present challenging problems. This paper proposes a peer-robot collaboration framework to deal with these issues. Each robot combines heterogeneous additive manufacturing hardware and software, acting as an intelligent agent. Through collaboration with other robots, it forms a dynamic and scalable integration manufacturing system. The entire distributed system is managed by rules that employ an internal rule engine, which supports rule conversion and conflict resolution. Two additive manufacturing service scenarios are designed to analyse the efficiency and scalability of the framework. Experiments show that the presented method performs well in tasks requiring large-scale access to resources and collaboration.

  12. The Development and Real-World Deployment of FROG, the Fun Robotic Outdoor Guide

    NARCIS (Netherlands)

    Evers, Vanessa; Menezes, Nuno; Merino, Luis; Gavrilla, Dariu; Nabais, Fernando; Pantic, Maja; Alvito, Paulo; Karreman, Daphne Eleonora

    2014-01-01

    This video details the development of an intelligent outdoor Guide robot. The main objective is to deploy an innovative robotic guide which is not only able to show information, but to react to the affective states of the users, and to offer location-based services using augmented reality. The

  13. Internet remote control interface for a multipurpose robotic arm

    Directory of Open Access Journals (Sweden)

    Matthew W. Dunnigan

    2008-11-01

    Full Text Available This paper presents an Internet remote control interface for a MITSUBISHI PA10-6CE manipulator established for the purpose of the ROBOT museum exhibition during spring and summer 2004. The robotic manipulator is a part of the Intelligent Robotic Systems Laboratory at Heriot ? Watt University, which has been established to work on dynamic and kinematic aspects of manipulator control in the presence of environmental disturbances. The laboratory has been enriched by a simple vision system consisting of three web-cameras to broadcast the live images of the robots over the Internet. The Interface comprises of the TCP/IP server providing command parsing and execution using the open controller architecture of the manipulator and a client Java applet web-site providing a simple robot control interface.

  14. 7 CFR 981.7 - Edible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...

  15. Object as a model of intelligent robot in the virtual workspace

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    The contemporary industry requires that every element of a production line will fit into the global schema, which is connected with the global structure of business. There is the need to find the practical and effective ways of the design and management of the production process. The term “effective” should be understood in a manner that there exists a method, which allows building a system of nodes and relations in order to describe the role of the particular machine in the production process. Among all the machines involved in the manufacturing process, industrial robots are the most complex ones. This complexity is reflected in the realization of elaborated tasks, involving handling, transporting or orienting the objects in a work space, and even performing simple machining processes, such as deburring, grinding, painting, applying adhesives and sealants etc. The robot also performs some activities connected with automatic tool changing and operating the equipment mounted on the wrist of the robot. Because of having the programmable control system, the robot also performs additional activities connected with sensors, vision systems, operating the storages of manipulated objects, tools or grippers, measuring stands, etc. For this reason the description of the robot as a part of production system should take into account the specific nature of this machine: the robot is a substitute of a worker, who performs his tasks in a particular environment. In this case, the model should be able to characterize the essence of "employment" in the sufficient way. One of the possible approaches to this problem is to treat the robot as an object, in the sense often used in computer science. This allows both: to describe certain operations performed on the object, as well as describing the operations performed by the object. This paper focuses mainly on the definition of the object as the model of the robot. This model is confronted with the other possible descriptions. The

  16. Object as a model of intelligent robot in the virtual workspace

    International Nuclear Information System (INIS)

    Foit, K; Gwiazda, A; Banas, W; Sekala, A; Hryniewicz, P

    2015-01-01

    The contemporary industry requires that every element of a production line will fit into the global schema, which is connected with the global structure of business. There is the need to find the practical and effective ways of the design and management of the production process. The term “effective” should be understood in a manner that there exists a method, which allows building a system of nodes and relations in order to describe the role of the particular machine in the production process. Among all the machines involved in the manufacturing process, industrial robots are the most complex ones. This complexity is reflected in the realization of elaborated tasks, involving handling, transporting or orienting the objects in a work space, and even performing simple machining processes, such as deburring, grinding, painting, applying adhesives and sealants etc. The robot also performs some activities connected with automatic tool changing and operating the equipment mounted on the wrist of the robot. Because of having the programmable control system, the robot also performs additional activities connected with sensors, vision systems, operating the storages of manipulated objects, tools or grippers, measuring stands, etc. For this reason the description of the robot as a part of production system should take into account the specific nature of this machine: the robot is a substitute of a worker, who performs his tasks in a particular environment. In this case, the model should be able to characterize the essence of 'employment' in the sufficient way. One of the possible approaches to this problem is to treat the robot as an object, in the sense often used in computer science. This allows both: to describe certain operations performed on the object, as well as describing the operations performed by the object. This paper focuses mainly on the definition of the object as the model of the robot. This model is confronted with the other possible

  17. Second Annual Workshop on Space Operations Automation and Robotics (SOAR 1988)

    Science.gov (United States)

    Griffin, Sandy (Editor)

    1988-01-01

    Papers presented at the Second Annual Workshop on Space Operation Automation and Robotics (SOAR '88), hosted by Wright State University at Dayton, Ohio, on July 20, 21, 22, and 23, 1988, are documented herein. During the 4 days, approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Panel discussions on Human Factors, Artificial Intelligence, Robotics, and Space Systems were held but are not documented herein. Technical topics addressed included knowledge-based systems, human factors, and robotics.

  18. Intelligent material systems - The dawn of a new materials age

    International Nuclear Information System (INIS)

    Rogers, C.A.

    1993-01-01

    The intelligent material system solution to such engineering problems as the design of a robotic arm borrows directly from biological analogs; materials that behave much as muscles do during contraction can be employed as induced strain actuators which work against the intrinsic structural impedance of the component. Unlike actual human arms, which are jointed, the intelligent structure may be a continuum. The adaptation of structural impedance may be regarded as the most fundamental and consequential concept in the field of intelligent material systems

  19. Planning and decision making for aerial robots

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2014-01-01

    This book provides an introduction to the emerging field of planning and decision making for aerial robots. An aerial robot is the ultimate form of Unmanned Aerial Vehicle, an aircraft endowed with built-in intelligence, requiring no direct human control and able to perform a specific task. It must be able to fly within a partially structured environment, to react and adapt to changing environmental conditions and to accommodate for the uncertainty that exists in the physical world. An aerial robot can be termed as a physical agent that exists and flies in the real 3D world, can sense its environment and act on it to achieve specific goals. So throughout this book, an aerial robot will also be termed as an agent.   Fundamental problems in aerial robotics include the tasks of spatial motion, spatial sensing and spatial reasoning. Reasoning in complex environments represents a difficult problem. The issues specific to spatial reasoning are planning and decision making. Planning deals with the trajectory algori...

  20. Multi-Robot Remote Interaction with FS-MAS

    Directory of Open Access Journals (Sweden)

    Yunliang Jiang

    2013-02-01

    Full Text Available The need to reduce bandwidth, improve productivity, autonomy and the scalability in multi-robot teleoperation has been recognized for a long time. In this article we propose a novel finite state machine mobile agent based on the network interaction service model, namely FS-MAS. This model consists of three finite state machines, namely the Finite State Mobile Agent (FS-Agent, which is the basic service module. The Service Content Finite State Machine (Content-FS, using the XML language to define workflow, to describe service content and service computation process. The Mobile Agent computation model Finite State Machine (MACM-FS, used to describe the service implementation. Finally, we apply this service model to the multi-robot system, the initial realization completing complex tasks in the form of multi-robot scheduling. This demonstrates that the robot has greatly improved intelligence, and provides a wide solution space for critical issues such as task division, rational and efficient use of resource and multi-robot collaboration.

  1. Soft Robotics: from scientific challenges to technological applications

    Science.gov (United States)

    Laschi, C.

    2016-05-01

    Soft robotics is a recent and rapidly growing field of research, which aims at unveiling the principles for building robots that include soft materials and compliance in the interaction with the environment, so as to exploit so-called embodied intelligence and negotiate natural environment more effectively. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. This is stimulating research in many disciplines and many countries, such that a wide community is gathering around initiatives like the IEEE TAS TC on Soft Robotics and the RoboSoft CA - A Coordination Action for Soft Robotics, funded by the European Commission. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. And though the development of the enabling technologies is still a priority, a fruitful loop is growing between basic research and application-oriented research in soft robotics.

  2. Mobile robot for hazardous environments

    International Nuclear Information System (INIS)

    Bains, N.

    1995-01-01

    This paper describes the architecture and potential applications of the autonomous robot for a known environment (ARK). The ARK project has developed an autonomous mobile robot that can move around by itself in a complicated nuclear environment utilizing a number of sensors for navigation. The primary sensor system is computer vision. The ARK has the intelligence to determine its position utilizing open-quotes natural landmarks,close quotes such as ordinary building features at any point along its path. It is this feature that gives ARK its uniqueness to operate in an industrial type of environment. The prime motivation to develop ARK was the potential application of mobile robots in radioactive areas within nuclear generating stations and for nuclear waste sites. The project budget is $9 million over 4 yr and will be completed in October 1995

  3. Kernel versions of some orthogonal transformations

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    Kernel versions of orthogonal transformations such as principal components are based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced...... by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel...... function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA) and kernel minimum noise fraction (MNF) analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function...

  4. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...

  5. Penetuan Bilangan Iodin pada Hydrogenated Palm Kernel Oil (HPKO) dan Refined Bleached Deodorized Palm Kernel Oil (RBDPKO)

    OpenAIRE

    Sitompul, Monica Angelina

    2015-01-01

    Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...

  6. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  7. Compliance control based on PSO algorithm to improve the feeling during physical human-robot interaction.

    Science.gov (United States)

    Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei

    2016-01-01

    Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.

  8. 7 CFR 981.8 - Inedible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...

  9. Multilevel Cognitive Machine-Learning-Based Concept for Artificial Awareness: Application to Humanoid Robot Awareness Using Visual Saliency

    Directory of Open Access Journals (Sweden)

    Kurosh Madani

    2012-01-01

    Full Text Available As part of “intelligence,” the “awareness” is the state or ability to perceive, feel, or be mindful of events, objects, or sensory patterns: in other words, to be conscious of the surrounding environment and its interactions. Inspired by early-ages human skills developments and especially by early-ages awareness maturation, the present paper accosts the robots intelligence from a different slant directing the attention to combining both “cognitive” and “perceptual” abilities. Within such a slant, the machine (robot shrewdness is constructed on the basis of a multilevel cognitive concept attempting to handle complex artificial behaviors. The intended complex behavior is the autonomous discovering of objects by robot exploring an unknown environment: in other words, proffering the robot autonomy and awareness in and about unknown backdrop.

  10. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Zanela, S.; Santini, A.; Nanni, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  11. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  12. 7 CFR 981.408 - Inedible kernel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...

  13. Creativity’s Kernel Development for Conscience Society

    Directory of Open Access Journals (Sweden)

    Dumitru TODOROI

    2012-01-01

    Full Text Available Creativity is man’s (in our opinion not only man’s (Natural Intelligence but an exclusive important computer’s, that is, Artificial Intelligence’s capacity to produce insights, new ideas, inventions or artistic objects, which are accepted of being of social, spiritual, esthetic, or technological value. Creativity is a mental process [1]. The Piirto’s Six Steps of Creativity development (acquire Knowledge, develop Curiosity, become Interested, Passion, Dedication, and Professionalism interference and interaction with Piirto’s 7i features (Inspiration, Imagery, Imagination, Intuition, Insights, Improvisation, and Incubation which characterize highly creative people represents the Base Creativity’s Kernel to be developed in Conscience Society. Tools for Base Creativity’s Kernel’s development are represented by both [2] it’s information (adaptable environment and its operational (adaptable system parts.

  14. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Application of ARAMIS capabilities to space project functional elements

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  15. Autism and social robotics: A systematic review.

    Science.gov (United States)

    Pennisi, Paola; Tonacci, Alessandro; Tartarisco, Gennaro; Billeci, Lucia; Ruta, Liliana; Gangemi, Sebastiano; Pioggia, Giovanni

    2016-02-01

    Social robotics could be a promising method for Autism Spectrum Disorders (ASD) treatment. The aim of this article is to carry out a systematic literature review of the studies on this topic that were published in the last 10 years. We tried to address the following questions: can social robots be a useful tool in autism therapy? We followed the PRISMA guidelines, and the protocol was registered within PROSPERO database (CRD42015016158). We found many positive implications in the use of social robots in therapy as for example: ASD subjects often performed better with a robot partner rather than a human partner; sometimes, ASD patients had, toward robots, behaviors that TD patients had toward human agents; ASDs had a lot of social behaviors toward robots; during robotic sessions, ASDs showed reduced repetitive and stereotyped behaviors and, social robots manage to improve spontaneous language during therapy sessions. Therefore, robots provide therapists and researchers a means to connect with autistic subjects in an easier way, but studies in this area are still insufficient. It is necessary to clarify whether sex, intelligence quotient, and age of participants affect the outcome of therapy and whether any beneficial effects only occur during the robotic session or if they are still observable outside the clinical/experimental context. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Intelligent Garbage Classifier

    Directory of Open Access Journals (Sweden)

    Ignacio Rodríguez Novelle

    2008-12-01

    Full Text Available IGC (Intelligent Garbage Classifier is a system for visual classification and separation of solid waste products. Currently, an important part of the separation effort is based on manual work, from household separation to industrial waste management. Taking advantage of the technologies currently available, a system has been built that can analyze images from a camera and control a robot arm and conveyor belt to automatically separate different kinds of waste.

  17. Towards the Automatic Scanning of Indoors with Robots

    Directory of Open Access Journals (Sweden)

    Antonio Adán

    2015-05-01

    Full Text Available This paper is framed in both 3D digitization and 3D data intelligent processing research fields. Our objective is focused on developing a set of techniques for the automatic creation of simple three-dimensional indoor models with mobile robots. The document presents the principal steps of the process, the experimental setup and the results achieved. We distinguish between the stages concerning intelligent data acquisition and 3D data processing. This paper is focused on the first stage. We show how the mobile robot, which carries a 3D scanner, is able to, on the one hand, make decisions about the next best scanner position and, on the other hand, navigate autonomously in the scene with the help of the data collected from earlier scans. After this stage, millions of 3D data are converted into a simplified 3D indoor model. The robot imposes a stopping criterion when the whole point cloud covers the essential parts of the scene. This system has been tested under real conditions indoors with promising results. The future is addressed to extend the method in much more complex and larger scenarios.

  18. Mobile autonomous robot for radiological surveys

    International Nuclear Information System (INIS)

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1992-01-01

    The robotics development group at the Savannah River Laboratory (SRL) is developing a mobile autonomous robot that performs radiological surveys of potentially contaminated floors. The robot is called SIMON, which stands for Semi-Intelligent Mobile Observing Navigator. Certain areas of SRL are classified as radiologically controlled areas (RCAs). In an RCA, radioactive materials are frequently handled by workers, and thus, the potential for contamination is ever present. Current methods used for floor radiological surveying includes labor-intensive manual scanning or random smearing of certain floor locations. An autonomous robot such as SIMON performs the surveying task in a much more efficient manner and will track down contamination before it is contacted by humans. SIMON scans floors at a speed of 1 in./s and stops and alarms upon encountering contamination. Its environment is well defined, consisting of smooth building floors with wide corridors. The kind of contaminations that SIMON is capable of detecting are alpha and beta-gamma. The contamination levels of interest are low to moderate

  19. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  20. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    Science.gov (United States)

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  1. Robots in the nuclear industry: conference report

    International Nuclear Information System (INIS)

    Kochan, Anna.

    1992-01-01

    Current robotic technology is severely challenged by the conditions which nuclear environments present. In such applications, reliability demands are stringent; the environment is highly unstructured; and the ionizing radiation field is extremely hazardous to equipment. But an international conference, held recently in Marseille, indicated clearly that there is no shortage of robotic solutions adapted to these special needs. Organized by the Institut International de Robotique et d'Intelligence Artificelle in Marseille, the conference focused on telerobotics in hostile environments, including sessions on Perception of Environment; Man/machine Interface; and Technologies and Components. (Author)

  2. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  3. Present and Future of Nuclear Robotics; Presente y futuro de la robotica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bielza Ciaz-Caneja, M [ENDESA, (Spain); Carmena Servet, P [AMYS, (Spain); Gomez Santamaria, J [IBERDROLA, (Spain); Gonzalez Fernandez, J [NUCLENOR, (Spain); Izquierdo Mendoza, J A [C.N. COFRENTES, (Spain); Linares Pintos, F [ENSA, (Spain); Gonzalez, Martinez [CASA, (Spain); Muntion Ruesgas, A [C.N. STA Maria de Garona, (Spain); Serna Oliveira, M A [CEIT, (Spain)

    1997-10-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs.

  4. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  5. Unibot, a Universal Agent Architecture for Robots

    Directory of Open Access Journals (Sweden)

    Saša Mladenović

    2017-01-01

    Full Text Available Today there are numerous robots in different applications domains despite the fact that they still have limitations in perception, actuation and decision process. Consequently, robots usually have limited autonomy, they are domain specific or have difficulty to adapt on new environments. Learning is the property that makes an agent intelligent and the crucial property that a robot should have to proliferate into the human society. Embedding the learning ability into the robot may simplify the development of the robot control mechanism. The motivation for this research is to develop the agent architecture of the universal robot – Unibot. In our approach the agent is the robot i.e. Unibot that acts in the physical world and is capable of learning. The Unibot conducts several simultaneous simulations of a problem of interest like path-finding. The novelty in our approach is the Multi-Agent Decision Support System which is developed and integrated into the Unibot agent architecture in order to execute simultaneous simulations. Furthermore, the Unibot calculates and evaluates between multiple solutions, decides which action should be performed and performs the action. The prototype of the Unibot agent architecture is described and evaluated in the experiment supported by the Lego Mindstorms robot and the NetLogo.

  6. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  7. Cognitive neuroscience robotics A synthetic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume A describes how human cognitive functions can be replicated in artificial systems such as robots, and investigates how artificial systems could acquire intelligent behaviors through interaction with others and their environment.

  8. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    Science.gov (United States)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  9. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  10. Partial Deconvolution with Inaccurate Blur Kernel.

    Science.gov (United States)

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning

  11. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  12. Light Robotics and its potential for integrating with magnetic carriers

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    . After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics – Light Robotics – which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and computational optics. In the Summer 2017 we published a ca. 500 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics. The Elsevier volume is presenting various new functionalities that are enabled by these new designed light-driven micro-robots in addition to various nano-biophotonics applications...

  13. BellBot - A Hotel Assistant System Using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-01-01

    Full Text Available There is a growing interest in applying intelligent technologies to assistant robots. These robots should have a number of characteristics such as autonomy, easy reconfiguration, robust perception systems and they should be oriented towards close interaction with humans. In this paper we present an automatic hotel assistant system based on a series of mobile platforms that interact with guests and service personnel to help them in different tasks. These tasks include bringing small items to customers, showing them different points of interest in the hotel, accompanying the guests to their rooms and providing them with general information. Each robot can also autonomously handle some daily scheduled tasks. Apart from user-initiated and scheduled tasks, the robots can also perform tasks based on events triggered by the building's automation system (BAS. The robots and the BAS are connected to a central server via a local area network. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively in different environments.

  14. Kernel methods for deep learning

    OpenAIRE

    Cho, Youngmin

    2012-01-01

    We introduce a new family of positive-definite kernels that mimic the computation in large neural networks. We derive the different members of this family by considering neural networks with different activation functions. Using these kernels as building blocks, we also show how to construct other positive-definite kernels by operations such as composition, multiplication, and averaging. We explore the use of these kernels in standard models of supervised learning, such as support vector mach...

  15. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  16. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  17. Modeling Leadership Styles in Human-Robot Team Dynamics

    Science.gov (United States)

    Cruz, Gerardo E.

    2005-01-01

    The recent proliferation of robotic systems in our society has placed questions regarding interaction between humans and intelligent machines at the forefront of robotics research. In response, our research attempts to understand the context in which particular types of interaction optimize efficiency in tasks undertaken by human-robot teams. It is our conjecture that applying previous research results regarding leadership paradigms in human organizations will lead us to a greater understanding of the human-robot interaction space. In doing so, we adapt four leadership styles prevalent in human organizations to human-robot teams. By noting which leadership style is more appropriately suited to what situation, as given by previous research, a mapping is created between the adapted leadership styles and human-robot interaction scenarios-a mapping which will presumably maximize efficiency in task completion for a human-robot team. In this research we test this mapping with two adapted leadership styles: directive and transactional. For testing, we have taken a virtual 3D interface and integrated it with a genetic algorithm for use in &le-operation of a physical robot. By developing team efficiency metrics, we can determine whether this mapping indeed prescribes interaction styles that will maximize efficiency in the teleoperation of a robot.

  18. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  19. Computational Intelligence in Image Processing

    CERN Document Server

    Siarry, Patrick

    2013-01-01

    Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the atten­tion of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research prob­lems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can ...

  20. 视觉移动机器人的模糊智能路径规划%Intelligent Path Planning of Vision- Based Mobile Robot with Fuzzy Approach

    Institute of Scientific and Technical Information of China (English)

    张一巍; 黄源清

    2002-01-01

    The path planning problem for intelligent mobile robots inwbves two main problems: the represent of task emionment including obstacles and the development of a strategy to determine a collision - free route. In this paper, new approaches have been developed to solve these problems .The first problem was solve using the fuzzy system approach, which represent obstacles with a circle. The other problem was overcome throughthe use of a strategy selector, which chooses the best stategy between velocity control strategy and direction control strategy.