WorldWideScience

Sample records for robot control robot

  1. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  2. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  3. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  4. Teleautonomous Control on Rescue Robot Prototype

    Directory of Open Access Journals (Sweden)

    Son Kuswadi

    2012-12-01

    Full Text Available Robot application in disaster area can help responder team to save victims. In order to finish task, robot must have flexible movement mechanism so it can pass through uncluttered area. Passive linkage can be used on robot chassis so it can give robot flexibility. On physical experiments, robot is succeeded to move through gravels and 5 cm obstacle. Rescue robot also has specialized control needs. Robot must able to be controlled remotely. It also must have ability to move autonomously. Teleautonomous control method is combination between those methods. It can be concluded from experiments that on teleoperation mode, operator must get used to see environment through robot’s camera. While on autonomous mode, robot is succeeded to avoid obstacle and search target based on sensor reading and controller program. On teleautonomous mode, robot can change control mode by using bluetooth communication for data transfer, so robot control will be more flexible.

  5. CONTROL PREDICTIVO DE UN ROBOT TIPO SCARA PREDICTIVE CONTROL OF A SCARA ROBOT

    Directory of Open Access Journals (Sweden)

    Oscar Andrés Vivas Albán

    2006-08-01

    Full Text Available Este artículo presenta una aplicación eficiente de un control por modelo de referencia sobre un robot de tipo SCARA. El control estudiado es un control predictivo funcional, el que hace uso de un modelo dinámico simplificado del robot. Los ensayos simulados se realizan sobre un robot de cuatro grados de libertad, tipo SCARA. Con el fin de comparar diferentes estrategias de control, se diseña un controlador clásico tipo PID y dos controladores basados en el modelo de referencia. En este último caso el sistema se linealiza y se desacoplada por realimentación, lo que transforma el sistema a controlar en un simple par de integradores. Al sistema lineal y desacoplado resultante se le aplica el control por par calculado y el control predictivo funcional. Los tres controladores estudiados se simulan sobre el robot SCARA con valores numéricos reales. Las pruebas permiten valorar las respuestas de estos controladores en seguimiento de trayectoria, rechazo de perturbaciones y presencia de errores en el modelado con consignas complejas similares a las utilizadas en procesos de fabricación.This paper describes an efficient approach for model based control, applied on a SCARA robot. The studied control is the predictive functional control which uses a simplified dynamical model of the robot. The simulated tests are made on a SCARA type robot, with four DOF. To compare several control strategies, a classical PID control and two model based controllers are designed. In the last case, the model is first linearized and decoupled by feedback, transforming the system into a double set of integrators. Computed torque control and predictive functional control are applied to the linear and decoupled system. The three studied controllers are simulated on the SCARA robot with real numerical values. Tracking performance, disturbance rejection and model robot mismatch are enlightened, using complex machining tasks trajectories and error presence in the modelling

  6. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  7. Vision-Based Robot Following Using PID Control

    OpenAIRE

    Chandra Sekhar Pati; Rahul Kala

    2017-01-01

    Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential) controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to ...

  8. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  9. Controller Design Of Unicycle Mobile Robot

    Directory of Open Access Journals (Sweden)

    Mohd Zamzuri Abd Rashid

    2012-10-01

    Full Text Available ABSTRACT: The ability of unicycle mobile robot to stand and move around using one wheel has attracted a lot of researchers to conduct studies about the system, particularly in the design of the system mechanisms and the control strategies. This paper reports the investigation done on the design of the controller of the unicycle mobile robot system to maintain its stability in both longitudinal and lateral directions. The controller proposed is a Linear Quadratic Controller (LQR type which is based on the linearized model of the system. A thorough simulation studies have been carried out to find out the performance of the LQR controller. The best controller gain, K acquired through the simulation is selected to be implemented and tested in the experimental hardware. Finally, the results obtained from the experimental study are compared to the simulation results to study the controller efficacy. The analysis reveals that the proposed controller design is able to stabilize the unicycle mobile robot.ABSTRAK: Kemampuan robot satu roda untuk berdiri dan bergerak di sekitar telah menarik minat ramai penyelidik untuk mengkaji sistem robot terutamanya didalam bidang rangka mekanikal dan strategi kawalan robot. Kertas kajian ini melaporkan hasil penyelidikan ke atas strategi kawalan robot bagi memastikan sistem robot satu roda dapat distabilkan dari arah sisi dan hadapan. Strategi kawalan yang dicadang, menggunakan teknik kawalan kuadratik sejajar (Linear Quadratic Control yang berdasarkan model robot yang telah dipermudahkan. Kajian simulasi secara terperinci telah dijalankan bagi mengkaji prestasi strategi kawalan yang dicadangkan. Dari kajian simulasi sistem robot, pemilihan faktor konstan, K yang sesuai di dalam strategi kawalan telah dibuat, agar dapat dilaksanakan ke atas sistem robot yang dibangunkan. Keputusan dari kajian simulasi dan tindak balas oleh sistem robot yang dibangunkan akhirnya dibandingkan bagi melihat kesesuaian faktor kostan, K

  10. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  11. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  12. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  13. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  14. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  15. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  16. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  17. Controlling the autonomy of a reconnaissance robot

    Science.gov (United States)

    Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David

    2004-09-01

    In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.

  18. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  19. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  20. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  1. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  2. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  3. Fuzzy Behaviors for Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  4. Kinematic control of robot with degenerate wrist

    Science.gov (United States)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  5. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, John Min; Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Yeong; Lee, Young Bum; Sohn, Suk Won; Kim, Woon Gi

    1990-01-01

    The project of this study is to develop a real time controller applying autonomous robotic systems operated in hostile environment. Developed control system is designed with a multiprocessor to get independency and reliability as well as to extend the system easily. The control system is designed in three distinct subsystems (supervisory control part, functional control part, and remote control part). To review the functional performance of developed controller, a prototype mobile robot, which was installed 4 DOF mainpulator, was designed and manufactured. Initial tests showed that the robot could turn with a radius of 38 cm and a maximum speed of 1.26 km/hr and go over obstacle of 18 cm in height. (author)

  6. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  7. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  8. Controller design for Robotic hand through Electroencephalogram

    OpenAIRE

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  9. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  10. Device for dynamic switching of robot control points

    DEFF Research Database (Denmark)

    2015-01-01

    The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom.......The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom....

  11. Modeling and identification for high-performance robot control : an RRR-robotic arm case study

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Hensen, R.H.A.

    2004-01-01

    We explain a procedure for getting models of robot kinematics and dynamics that are appropriate for robot control design. The procedure consists of the following steps: (i) derivation of robot kinematic and dynamic models and establishing correctness of their structures; (ii) experimental estimation

  12. Controller design for Robotic hand through Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Pandelidis P.

    2016-01-01

    Full Text Available - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the concentration of the brain

  13. Motion control for a walking companion robot with a novel human–robot interface

    Directory of Open Access Journals (Sweden)

    Yunqi Lv

    2016-09-01

    Full Text Available A walking companion robot is presented for rehabilitation from dyskinesia of lower limbs in this article. A new human–robot interface (HRI is designed which adopts one-axis force sensor and potentiometer connector to detect the motion of the user. To accompany in displacement and angle between the user and the robot precisely in real time, the common motions are classified into two elemental motion states. With distinction method of motion states, a classification scheme of motion control is adopted. The mathematical model-based control method is first introduced and the corresponding control systems are built. Due to the unavoidable deviation of the mathematical model-based control method, a force control method is proposed and the corresponding control systems are built. The corresponding simulations demonstrate that the efficiency of the two proposed control methods. The experimental data and paths of robot verify the two control methods and indicate that the force control method can better satisfy the user’s requirements.

  14. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  15. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  16. Quantitative analysis of distributed control paradigms of robot swarms

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2010-01-01

    describe the physical and simulated robots, experiment scenario, and experiment setup. Third, we present our robot controllers based on behaviour based and neural network based paradigms. Fourth, we graphically show their experiment results and quantitatively analyse the results in comparison of the two......Given a task of designing controller for mobile robots in swarms, one might wonder which distributed control paradigms should be selected. Until now, paradigms of robot controllers have been within either behaviour based control or neural network based control, which have been recognized as two...... mainstreams of controller design for mobile robots. However, in swarm robotics, it is not clear how to determine control paradigms. In this paper we study the two control paradigms with various experiments of swarm aggregation. First, we introduce the two control paradigms for mobile robots. Second, we...

  17. Radio Controlled Fish Robot RR-9

    OpenAIRE

    Cifanskis, S; Vība, J; Jakuševičs, V

    2015-01-01

    A remote-controlled underwater robot fish is described. For motion control three actuator drives are used: one actuator is for tail frequency exchange, the second actuator is for the left or right turnings and the third actuator provides neutral swimming or up and down diving. From the robot's center of mass motion theorem (according to the given total mass of robot) the proportional distribution of massesof structural elements is found. Experimental indoor and out...

  18. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  19. Positional control of space robot manipulator

    Science.gov (United States)

    Kurochkin, Vladislav; Shymanchuk, Dzmitry

    2018-05-01

    In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.

  20. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    Science.gov (United States)

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  1. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  2. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  3. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  4. Control of wheeled mobile robot in restricted environment

    Science.gov (United States)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  5. Open core control software for surgical robots.

    Science.gov (United States)

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several

  6. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  7. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  8. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  9. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  10. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  11. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  12. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Aitziber Mancisidor

    2018-03-01

    Full Text Available In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error. Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  13. Review on design and control aspects of ankle rehabilitation robots.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  14. Efficient Control Law Simulation for Multiple Mobile Robots

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.; Kwok, K.S.

    1998-10-06

    In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The time to calculate the control law for each robot at each time step is demonstrated to be O(logN).

  15. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  16. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  17. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  18. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  19. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  20. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  1. Whole-body impedance control of wheeled humanoid robots

    CERN Document Server

    Dietrich, Alexander

    2016-01-01

    Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body ...

  2. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  3. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  4. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  5. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  6. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  7. Applying virtual reality to remote control of mobile robot

    Directory of Open Access Journals (Sweden)

    Chen Chin-Shan

    2017-01-01

    Full Text Available The purpose of this research is based on virtual reality to assisted pick and place tasks. Virtual reality can be utilized to control remote robot for pick and place element. The operator monitored and controlled the situation information of working site by Human Machine Interface. Therefore, we worked in harsh or dangerous environments that thing can be avoided. The procedure to operate mobile robot in virtual reality describes as follow: An experiment site with really experimental equipment is first established. Then, the experimental equipment and scene modeling are input to virtual reality for establishing a environment similar to the reality. Finally, the remote mobile robot is controlled to operate pick and place tasks through wireless communication by the object operation in virtual reality. The robot consists of a movable robot platform and robotic arm. The virtual reality is constructed by EON software; the Human Machine Interface is established by Visual Basic. The wireless connection is equipped the wireless Bluetooth, which is set the PC and PLC controller. With experimental tests to verify the robot in virtual reality and the wireless remote control, the robot could be operated and controlled to successfully complete pick and place tasks in reality by Human Machine Interface.

  8. MPC-Based Path Following Control of an Omnidirectional Mobile Robot with Consideration of Robot Constraints

    Directory of Open Access Journals (Sweden)

    Kiattisin Kanjanawanishkul

    2015-01-01

    Full Text Available In this paper, the path following problem of an omnidirectional mobile robot (OMR has been studied. Unlike nonholonomic mobile robots, translational and rotational movements of OMRs can be controlled simultaneously and independently. However the constraints of translational and rotational velocities are coupled through the OMR's orientation angle. Therefore, a combination of a virtual-vehicle concept and a model predictive control (MPC strategy is proposed in this work to handle both robot constraints and the path following problem. Our proposed control scheme allows the OMR to follow the reference path successfully and safely, as illustrated in simulation experiments. The forward velocity is close to the desired one and the desired orientation angle is achieved at a given point on the path, while the robot's wheel velocities are maintained within boundaries.

  9. Graphical programming: On-line robot simulation for telerobotic control

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.

    1993-01-01

    Sandia has developed an advanced operational control system approach, caged Graphical Programming, to design and operate robotic waste cleanup and other hazardous duty robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. The Graphical Programming approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Progranuning Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, and key features necessary for implementing successful Graphical Programming systems

  10. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  11. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  12. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen

    2017-06-01

    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  13. Navigation control of a multi-functional eye robot

    International Nuclear Information System (INIS)

    Ali, F.A.M.; Hashmi, B.; Younas, A.; Abid, B.

    2016-01-01

    The advancement in robotic field is enhanced rigorously in the past Few decades. Robots are being used in different fields of science as well as warfare. The research shows that in the near future, robots would be able to serve in fighting wars. Different countries and their armies have already deployed several military robots. However, there exist some drawbacks of robots like their inefficiency and inability to work under abnormal conditions. Ascent of artificial intelligence may resolve this issue in the coming future. The main focus of this paper is to provide a low cost and long range most efficient mechanical as well as software design of an Eye Robot. Using a blend of robotics and image processing with an addition of artificial intelligence path navigation techniques, this project is designed and implemented by controlling the robot (including robotic arm and camera) through a 2.4 GHz RF module manually. Autonomous function of the robot includes navigation based on the path assigned to the robot. The path is drawn on a VB based application and then transferred to the robot wirelessly or through serial port. A Wi-Fi based Optical Character Recognition (OCR) implemented video streaming can also be observed at remote devices like laptops. (author)

  14. Haptic Control with a Robotic Gripper

    OpenAIRE

    Rody, Morgan

    2011-01-01

    The Novint Falcon is a low cost, 3-axis, haptic device primarily designed and built for the gaming industry. Meant to replace the conventional mouse, the Novint Falcon has sub- millimeter accuracy and is capable of real time updates. The device itself has the potential to be used in telerobotics applications when coupled with a robotic gripper for example. Recently, the Intelligent Control Lab at Örebro University in Sweden built such a robotic gripper. The robotic gripper has three fingers a...

  15. Teaching Joint-Level Robot Programming with a New Robotics Software Tool

    Directory of Open Access Journals (Sweden)

    Fernando Gonzalez

    2017-12-01

    Full Text Available With the rising popularity of robotics in our modern world there is an increase in the number of engineering programs that offer the basic Introduction to Robotics course. This common introductory robotics course generally covers the fundamental theory of robotics including robot kinematics, dynamics, differential movements, trajectory planning and basic computer vision algorithms commonly used in the field of robotics. Joint programming, the task of writing a program that directly controls the robot’s joint motors, is an activity that involves robot kinematics, dynamics, and trajectory planning. In this paper, we introduce a new educational robotics tool developed for teaching joint programming. The tool allows the student to write a program in a modified C language that controls the movement of the arm by controlling the velocity of each joint motor. This is a very important activity in the robotics course and leads the student to gain knowledge of how to build a robotic arm controller. Sample assignments are presented for different levels of difficulty.

  16. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  17. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  18. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Sohn, Surg Won; Yoon, Tae Seob; Lee, Yong Bum; Kim, Woong Ki

    1988-02-01

    A mutiprocessor system that is essential to A.I. (Artificial Intelligence) robot control was developed. A.I. robot control needs very complex real time control. The multiprocessor system interconnecting many SBC's (Single Board Computer) is much faster and accurater than using only one SBC. Various multiprocessor systems and their applications were compared and discussed. The multiprocessor architecture system is specially designed to be used in nuclear environments. The main functions are job distribution, multitasking, and intelligent remote control by SDLC protocol using optical fiber. The system can be applied to position control for locomotion and manipulation, data fusion system, and image processing. (Author)

  19. Modelling and Control of a Mobile Robot

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1998-01-01

    In order to control a mobile robot, kinematic odels as well as dynamic models are required. This parer describes these basic models for an experimental mobile robot under construction at the Department of Control and Engineering Design. A description of a set of trajectory control rules is given...

  20. Spoken commands control robot that handles radioactive materials

    International Nuclear Information System (INIS)

    Phelan, P.F.; Keddy, C.; Beugelsdojk, T.J.

    1989-01-01

    Several robotic systems have been developed by Los Alamos National Laboratory to handle radioactive material. Because of safety considerations, the robotic system must be under direct human supervision and interactive control continuously. In this paper, we describe the implementation of a voice-recognition system that permits this control, yet allows the robot to perform complex preprogrammed manipulations without the operator's intervention. To provide better interactive control, we connected to the robot's control computer, a speech synthesis unit, which provides audible feedback to the operator. Thus upon completion of a task or if an emergency arises, an appropriate spoken message can be reported by the control computer. The training programming and operation of this commercially available system are discussed, as are the practical problems encountered during operations

  1. Development of a robot Holon using an open modular controller

    DEFF Research Database (Denmark)

    Schnell, Jakob; Andersen, Søren; Sørensen, Christian

    1999-01-01

    System (HoMuCS) architecture and methodology for implementing a HMS. This paper specifically reviews the development of a Robot Holon based on an open controller in the context of the HoMuCS architecture. The paper will describe the results and research work that was involved in developing a robot holon...... for a physical robot. The robot holon was implemented on an existing robot at the department which was upgraded by removing its native control system and replacing it with a new PC-based open controller. The development of the robot holon builds on the notion that a robot holon will be able to performboth......Holonic Manufacturing Systems (HMS) has during the last period presented itself as an advantageous theoretical foundation for the problems that arise in controlling agile manufacturing systems. Previous research, at the Department, has demonstrated how modern shop floor control systems can...

  2. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-11-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called "Oriented Positioning", two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called "Robucar", developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  3. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-09-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called “Oriented Positioning”, two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called “Robucar”, developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  4. Research on wheelchair robot control system based on EOG

    Science.gov (United States)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  5. Research on Robot Pose Control Technology Based on Kinematics Analysis Model

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.

  6. Dynamic Modelling and Adaptive Traction Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    A. Albagul

    2004-09-01

    Full Text Available Mobile robots have received a great deal of research in recent years. A significant amount of research has been published in many aspects related to mobile robots. Most of the research is devoted to design and develop some control techniques for robot motion and path planning. A large number of researchers have used kinematic models to develop motion control strategy for mobile robots. Their argument and assumption that these models are valid if the robot has low speed, low acceleration and light load. However, dynamic modelling of mobile robots is very important as they are designed to travel at higher speed and perform heavy duty work. This paper presents and discusses a new approach to develop a dynamic model and control strategy for wheeled mobile robot which I modelled as a rigid body that roles on two wheels and a castor. The motion control strategy consists of two levels. The first level is dealing with the dynamic of the system and denoted as ‘Low’ level controller. The second level is developed to take care of path planning and trajectory generation.

  7. Decentralized neural control application to robotics

    CERN Document Server

    Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A

    2017-01-01

    This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...

  8. Robot-Arm Dynamic Control by Computer

    Science.gov (United States)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  9. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  10. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  11. [Haptic tracking control for minimally invasive robotic surgery].

    Science.gov (United States)

    Xu, Zhaohong; Song, Chengli; Wu, Wenwu

    2012-06-01

    Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.

  12. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  13. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  14. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  15. Remote controlled data collector robot

    Directory of Open Access Journals (Sweden)

    Jozsef Suto

    2012-06-01

    Full Text Available Today a general need for robots assisting different human activities rises. The goal of the present project is to develop a prototyping robot, which provides facilities for attaching and fitting different kinds of sensors and actuators. This robot provides an easy way to turn a general purpose robot into a special function one.

  16. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  17. R4SA for Controlling Robots

    Science.gov (United States)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  18. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  19. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  20. Method and apparatus for automatic control of a humanoid robot

    Science.gov (United States)

    Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Reiland, Matthew J (Inventor); Sanders, Adam M (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.

  1. Internet remote control interface for a multipurpose robotic arm

    Directory of Open Access Journals (Sweden)

    Matthew W. Dunnigan

    2008-11-01

    Full Text Available This paper presents an Internet remote control interface for a MITSUBISHI PA10-6CE manipulator established for the purpose of the ROBOT museum exhibition during spring and summer 2004. The robotic manipulator is a part of the Intelligent Robotic Systems Laboratory at Heriot ? Watt University, which has been established to work on dynamic and kinematic aspects of manipulator control in the presence of environmental disturbances. The laboratory has been enriched by a simple vision system consisting of three web-cameras to broadcast the live images of the robots over the Internet. The Interface comprises of the TCP/IP server providing command parsing and execution using the open controller architecture of the manipulator and a client Java applet web-site providing a simple robot control interface.

  2. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  3. Design and control of a pneumatic musculoskeletal biped robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

    2016-04-29

    Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

  4. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  5. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  6. Lattice Automata for Control of Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Støy, Kasper

    2015-01-01

    are extreme versatility and robustness. The organisation of self-reconfigurable robots in a lattice structure and the emphasis on local communication between modules mean that lattice automata are a useful basis for control of self-reconfigurable robots. However, there are significant differences which arise...... mainly from the physical nature of self-reconfigurable robots as opposed to the virtual nature of lattice automata. The problems resulting from these differences are mutual exclusion, handling motion constraints of modules, and unrealistic assumption about global, spatial orientation. Despite...... these problems the self-reconfigurable robot community has successfully applied lattice automata to simple control problems. However, for more complex problems hybrid solutions based on lattice automata and distributed algorithms are used. Hence, lattice automata have shown to have potential for the control...

  7. Dynamic control of quadruped robot with hierarchical control structure

    International Nuclear Information System (INIS)

    Wang, Yu-Zhang; Furusho, Junji; Okajima, Yosuke.

    1988-01-01

    For moving on irregular terrain, such as the inside of a nuclear power plant and outer space, it is generally recognized that the multilegged walking robot is suitable. This paper proposes a hierarchical control structure for the dynamic control of quadruped walking robots. For this purpose, we present a reduced order model which can approximate the original higher order model very well. Since this reduced order model does not require much computational time, it can be used in the real-time control of a quadruped walking robot. A hierarchical control experiment is shown in which the optimal control algorithm using a reduced order model is calculated by one microprocessor, and the other control algorithm is calculated by another microprocessor. (author)

  8. Development of constrained motion control for robot handling of hazardous waste

    International Nuclear Information System (INIS)

    Starr, G.P.

    1993-01-01

    Handling and archiving of hazardous waste is an area where automation and robotics can be of significant benefit, by removing the human operator from the workplace and its associated hazards. For reasons of safety, throughput, and reduced setup time, force-controlled robots are well-suited for hazardous materials handling. The focus of this investigation is the development of advanced force control techniques for commercial industrial robots in the surface sampling of hazardous waste containers. Two particular control strategies are considered, (1) preview control, and (2) adaptive control. Preview control uses a sensor which can ''look ahead'' and thereby reduce the effect of surface irregularity on contact force control. Adaptive control allows the robot controller to compensate for changes in the robot characteristics as it changes position, and likewise improves performance. The resulting control algorithms will be applied to a two-dimensional contour-following task using a PUMA robot at the Robotics Research Laboratory at The University of New Mexico. (author) 9 figs., 13 refs

  9. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  10. MODELADO, SIMULACIÓN Y CONTROL DEL ROBOT PARA CIRUGÍA LAPAROSCÓPICA 'LAPBOT' MODELING, SIMULATION AND CONTROL OF SURGICAL LAPAROSCOPIC ROBOT 'LAPBOT'

    Directory of Open Access Journals (Sweden)

    Sergio Alexander Salinas

    2009-12-01

    Full Text Available Este artículo presenta el modelado matemático y estructural, la simulación por computador y el control por par calculado del robot para cirugía laparoscópica ‘LapBot’, que ha sido desarrollado en el Grupo de Investigación de Automática Industrial de la Universidad del Cauca, Colombia. Inicialmente se muestra un resumen de los principales robots utilizados como asistentes para cirugías de laparoscopia en el mundo, y de cómo tratan ellos el problema del paso por la incisión practicada en la cavidad abdominal. Con base en lo anterior se describen los requerimientos que deben cumplir los robots de este tipo y a partir de éstos se diseña el robot LapBot. Se muestra el modelo cinemático y dinámico del robot LapBot, así como el modelo de la restricción espacial que representa el punto de incisión abdominal. Se implementa una estrategia de control basada en el modelo del robot (control por par calculado. Diversas trayectorias en un plano y en un espacio de tres dimensiones son utilizadas para validar tanto el modelo como el controlador.This paper presents the mathematical and structural model, simulation and computed torque control of the LapBot robot, developed by the Group of Investigation of Industrial Automatics, of the University of Cauca, Colombia. First, a summary of the principal surgery assistant robots of the world is presented, and how they solve the problem of passing through the incision into the abdominal cavity. Based on this, the conditions that must be fulfilled by the robots of this type is exposed, and from these conditions the LapBot robot is designed. Its kinematics and dynamics model is shown, as well as the mathematical spatial restriction that incision represents. A control strategy based on the model (computed torque control is implemented. Several trajectories defined in a plane and in a three dimensions space are used to validate the model and the control.

  11. Visual Recognition and Its Application to Robot Arm Control

    Directory of Open Access Journals (Sweden)

    Jih-Gau Juang

    2015-10-01

    Full Text Available This paper presents an application of optical word recognition and fuzzy control to a smartphone automatic test system. The system consists of a robot arm and two webcams. After the words from the control panel that represent commands are recognized by the robot system, the robot arm performs the corresponding actions to test the smartphone. One of the webcams is utilized to capture commands on the screen of the control panel, the other to recognize the words on the screen of the tested smartphone. The method of image processing is based on the Red-Green-Blue (RGB and Hue-Saturation-Luminance (HSL color spaces to reduce the influence of light. Fuzzy theory is used in the robot arm’s position control. The Optical Character Recognition (OCR technique is applied to the word recognition, and the recognition results are then checked by a dictionary process to increase the recognition accuracy. The camera which is used to recognize the tested smartphone also provides object coordinates to the fuzzy controller, then the robot arm moves to the desired positions and presses the desired buttons. The proposed control scheme allows the robot arm to perform different assigned test functions successfully.

  12. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    Science.gov (United States)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  13. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  14. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  15. Mobile robot navigation in unknown static environments using ANFIS controller

    Directory of Open Access Journals (Sweden)

    Anish Pandey

    2016-09-01

    Full Text Available Navigation and obstacle avoidance are the most important task for any mobile robots. This article presents the Adaptive Neuro-Fuzzy Inference System (ANFIS controller for mobile robot navigation and obstacle avoidance in the unknown static environments. The different sensors such as ultrasonic range finder sensor and sharp infrared range sensor are used to detect the forward obstacles in the environments. The inputs of the ANFIS controller are obstacle distances obtained from the sensors, and the controller output is a robot steering angle. The primary objective of the present work is to use ANFIS controller to guide the mobile robot in the given environments. Computer simulations are conducted through MATLAB software and implemented in real time by using C/C++ language running Arduino microcontroller based mobile robot. Moreover, the successful experimental results on the actual mobile robot demonstrate the effectiveness and efficiency of the proposed controller.

  16. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  17. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  18. Live video monitoring robot controlled by web over internet

    Science.gov (United States)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  19. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  20. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  1. Development of Vision Control Scheme of Extended Kalman filtering for Robot's Position Control

    International Nuclear Information System (INIS)

    Jang, W. S.; Kim, K. S.; Park, S. I.; Kim, K. Y.

    2003-01-01

    It is very important to reduce the computational time in estimating the parameters of vision control algorithm for robot's position control in real time. Unfortunately, the batch estimation commonly used requires too murk computational time because it is iteration method. So, the batch estimation has difficulty for robot's position control in real time. On the other hand, the Extended Kalman Filtering(EKF) has many advantages to calculate the parameters of vision system in that it is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm for the robot's vision control in real time. The vision system model used in this study involves six parameters to account for the inner(orientation, focal length etc) and outer (the relative location between robot and camera) parameters of camera. Then, EKF has been first applied to estimate these parameters, and then with these estimated parameters, also to estimate the robot's joint angles used for robot's operation. finally, the practicality of vision control scheme based on the EKF has been experimentally verified by performing the robot's position control

  2. Controlling Kuka Industrial Robots : Flexible Communication Interface JOpenShowVar.

    OpenAIRE

    Sanfilippo, Filippo; Hatledal, Lars Ivar; Zhang, Houxiang; Fago, Massimiliano; Pettersen, Kristin Ytterstad

    2015-01-01

    JOpenShowVar is a Java open-source cross-platform communication interface to Kuka industrial robots. This novel interface allows for read-write use of the controlled manipulator variables and data structures. JOpenShowVar, which is compatible with all the Kuka industrial robots that use KUKA Robot Controller version 4 (KR C4) and KUKA Robot Controller version 2 (KR C2), runs as a client on a remote computer connected with the Kuka controller via TCP/IP. Even though only soft real-time applica...

  3. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  4. Control of complex physically simulated robot groups

    Science.gov (United States)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  5. Kinect-Based Sliding Mode Control for Lynxmotion Robotic Arm

    Directory of Open Access Journals (Sweden)

    Ismail Ben Abdallah

    2016-01-01

    Full Text Available Recently, the technological development of manipulator robot increases very quickly and provides a positive impact to human life. The implementation of the manipulator robot technology offers more efficiency and high performance for several human’s tasks. In reality, efforts published in this context are focused on implementing control algorithms with already preprogrammed desired trajectories (passive robots case or trajectory generation based on feedback sensors (active robots case. However, gesture based control robot can be considered as another channel of system control which is not widely discussed. This paper focuses on a Kinect-based real-time interactive control system implementation. Based on LabVIEW integrated development environment (IDE, a developed human-machine-interface (HMI allows user to control in real time a Lynxmotion robotic arm. The Kinect software development kit (SDK provides a tool to keep track of human body skeleton and abstract it into 3-dimensional coordinates. Therefore, the Kinect sensor is integrated into our control system to detect the different user joints coordinates. The Lynxmotion dynamic has been implemented in a real-time sliding mode control algorithm. The experimental results are carried out to test the effectiveness of the system, and the results verify the tracking ability, stability, and robustness.

  6. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  7. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  9. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  10. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  11. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  12. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  13. Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.

    Science.gov (United States)

    Zhai, Di-Hua; Xia, Yuanqing

    2017-06-06

    This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.

  14. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  15. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  16. Fuzzy Logic and PID control of a 3 DOF Robotic Arm

    Directory of Open Access Journals (Sweden)

    Korhan Kayışlı

    2017-12-01

    Full Text Available The robotic arms are used in many industrial applications at the present time. At this point, high precision control is required for robotics used in fields such as healthcare area. Therefore, the control method applied to robots is also important. In this study, a force was applied to the end function of a three degree-of-freedom robot and the robustness of the controllers are tested. PID and Fuzzy Logic control method are used for this process. The control process of robotic arm which is designed and simulated is obtained by using Fuzzy Logic and classical PID controllers and the results are presented comparatively

  17. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  18. Controlling Tensegrity Robots through Evolution using Friction based Actuation

    Science.gov (United States)

    Kothapalli, Tejasvi; Agogino, Adrian K.

    2017-01-01

    Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.

  19. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  20. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.

    Science.gov (United States)

    Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  1. A Multi-Agent Control Architecture for a Robotic Wheelchair

    Directory of Open Access Journals (Sweden)

    C. Galindo

    2006-01-01

    Full Text Available Assistant robots like robotic wheelchairs can perform an effective and valuable work in our daily lives. However, they eventually may need external help from humans in the robot environment (particularly, the driver in the case of a wheelchair to accomplish safely and efficiently some tricky tasks for the current technology, i.e. opening a locked door, traversing a crowded area, etc. This article proposes a control architecture for assistant robots designed under a multi-agent perspective that facilitates the participation of humans into the robotic system and improves the overall performance of the robot as well as its dependability. Within our design, agents have their own intentions and beliefs, have different abilities (that include algorithmic behaviours and human skills and also learn autonomously the most convenient method to carry out their actions through reinforcement learning. The proposed architecture is illustrated with a real assistant robot: a robotic wheelchair that provides mobility to impaired or elderly people.

  2. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  3. Modeling and identification for robot motion control

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.

    2004-01-01

    This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models

  4. Case studies in configuration control for redundant robots

    Science.gov (United States)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  5. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  6. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  7. Control and robotics remote laboratory for engineering education

    Directory of Open Access Journals (Sweden)

    Gregor Pačnik

    2005-06-01

    Full Text Available The new tools for education of engineering emerged and one of the most promising is a remote rapid control prototyping (RRCP, which is very useful also for control and robotics development in industry and in education. Examples of introductory remote control and simple robotics courses with integrated hands on experiments are presented in the paper. The aim of integration of remote hands on experiments into control and/or robotics course is to minimize the gap between the theory and practice to teach students the use of RRCP and to decrease the education costs. Developed RRCP experiments are based on MATLAB/Simulink, xPC target, custom developed embedded target

  8. Robot modelling; Control and applications with software

    Energy Technology Data Exchange (ETDEWEB)

    Ranky, P G; Ho, C Y

    1985-01-01

    This book provides a ''picture'' of robotics covering both the theoretical aspect of modeling as well as the practical and design aspects of: robot programming; robot tooling and automated hand changing; implementation planning; testing; and software design for robot systems. The authors present an introduction to robotics with a systems approach. They describe not only the tasks relating to a single robot (or arm) but also systems of robots working together on a product or several products.

  9. Robotics, vision and control fundamental algorithms in Matlab

    CERN Document Server

    Corke, Peter

    2017-01-01

    Robotic vision, the combination of robotics and computer vision, involves the application of computer algorithms to data acquired from sensors. The research community has developed a large body of such algorithms but for a newcomer to the field this can be quite daunting. For over 20 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and compu...

  10. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  11. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Thomas Mergner

    2017-04-01

    Full Text Available Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free, scalar equations. This paper investigates whether the EM alternative shows “real-world robustness” against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive (“voluntary” movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  12. Siroco, a configurable robot control system

    International Nuclear Information System (INIS)

    Tejedor, B.G.; Maraggi, G.J.B.

    1988-01-01

    The SIROCO (Configurable Robot Control System) is an electronic system designed to work in applications where mechanized remote control equipment and robots are necessary especially in Nuclear Power Plants. The structure of the system (hardware and software) determines the following user characteristics: a) Reduction in the time spent in NDT and in radiation doses absorbed, due to remote control operation; b) possibility for full automation in NDT, c) the system can simultaneously control up to six axes and can generate movements in remote areas; and d) possibility for equipment unification, due to SIROCO being a configurable system. (author)

  13. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  14. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  15. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  16. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  17. Control desacoplado de un actuador de rigidez variable para robots asistenciales

    Directory of Open Access Journals (Sweden)

    J. Medina

    2016-01-01

    Full Text Available Resumen: Los actuadores de rigidez variable son dispositivos que permiten cambiar la posición y rigidez articular de un robot en forma simultánea. En los últimos años se han diseñado y desarrollado muchos dispositivos de este tipo, con la esperanza de favorecer la seguridad en la interacción humano-robot y mejorar el rendimiento dinámico de los robots. En este artículo se presenta el desarrollo de un controlador para un actuador de rigidez variable de configuración serie. La estrategia de control se basa en la linealización por realimentación y el ajuste de dos controladores lineales. Esta estrategia permite el seguimiento de referencias de posición y rigidez articular de forma simultánea y desacoplada. Además, se realizan simulaciones en las que se incorpora este dispositivo dentro del robot asistencial ASIBOT, a fin de evaluar el desempeño del controlador, los cambios en la dinámica del robot y las posibles ventajas que tendrá la inclusión del mismo a nivel de seguridad en la interacción física humano-robot. Abstract: The variable stiffness actuators are devices that change the position and stiffness of a robot simultaneously. In recent years have been designed and developed many devices of this type, hoping to ensure safety in human-robot interaction and improve the dynamic performance of robots. In this article, we present the control of a variable stiffness actuator with serial configuration. The control strategy is based on feedback linearization and adjustment of two linear controllers. This allows the control, independently, of the stiffness and the equilibrium position of the joint. Finally, the behavior of this device within the assistive robot ASIBOT, is simulated in order to assess: the controller performance, changes in the dynamics of the robot and possible advantages of a level of safety during physical interaction human-robot. Palabras clave: control de robot

  18. Walking Pattern Generation of Dual-Arm Mobile Robot Using Preview Controller

    OpenAIRE

    P. Wu; W. Wu

    2012-01-01

    Based on the stability request of robot’s moving on the ground, the motion planning of dual-arm mobile robot when moving on the ground is studied and the preview control system is applied in the robot walking pattern generation. Direct question of robot kinematics in the extended task space is analyzed according to Degrees of Freedom configuration of the dual-arm mobile robot. It is proved that the preview control system could be used in the generation of robot Center of Mass forward trajecto...

  19. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  20. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  1. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  2. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Yamokoski, John D. (Inventor); Strawser, Philip A. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  3. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    OpenAIRE

    Hamed Navabi; Soroush Sadeghnejad; Sepehr Ramezani; Jacky Baltes

    2017-01-01

    A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC) implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivi...

  4. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape......., significantly simplifying the task of programming self-reconfigurable robots. Our language fully supports programming the ATRON self-reconfigurable robot, and has been used to implement several controllers running both on the physical modules and in simulation.......A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular...

  5. Development of the first force-controlled robot for otoneurosurgery.

    Science.gov (United States)

    Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K

    2003-03-01

    In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.

  6. Torque Control of Underactuated Tendon-driven Robotic Fingers

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  7. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  8. Towards a Unified Representation of Mechanisms for Robotic Control Software

    Directory of Open Access Journals (Sweden)

    Antonio Diaz-Calderon

    2008-11-01

    Full Text Available This article gives an overview of the Mechanism Model paradigm. The mechanism model paradigm provides a framework to modeling mechanisms for robotic control. The emphasis is on the unification of mathematical models of kinematics/dynamics, geometric information and control system parameters for a variety of robotic systems (including serial manipulators, wheeled and legged locomotors, with algorithms that are needed for typical robot control applications.

  9. Control de Tracción en Robots Móviles con Ruedas

    Directory of Open Access Journals (Sweden)

    R. Fernández

    2012-10-01

    Full Text Available Resumen: En este trabajo se presenta una solución para mejorar el rendimiento de los robots móviles con ruedas que se desplacen sobre superficies con un bajo coeficiente de fricción estática. En estas circunstancias, los robots móviles con ruedas pueden experimentar pérdidas de tracción, y por tanto, sufrir deslizamientos a lo largo de la superficie. La solución descrita propone la utilización de una configuración especial para el robot móvil, en la que todas las ruedas son accionadas de forma independiente, y una estructura de control que consta de tres partes bien diferenciadas: un controlador de seguimiento con realimentación de estado basado en el modelo cinemático del robot, una extensión de la ley de control cinemático resultante para incorporar la dinámica del robot móvil utilizando backstepping, y un algoritmo de distribución de la fuerza de tracción global, que calcula las señales de referencia adecuadas para cada una de las ruedas. Con esta estructura se consigue controlar la posición y la velocidad del robot móvil, y al mismo tiempo, distribuir la fuerza de tracción global entre las ruedas, evitando así el deslizamiento del robot. El funcionamiento de los algoritmos de control es evaluado mediante pruebas experimentales. Abstract: This article presents a solution to improve the performance of wheeled mobile robots that move upon surfaces with small coefficient of static friction. In these circumstances the wheeled mobile robots can experience loss of traction and therefore, slide along the surface. The proposed solution implies the use of a special configuration for the mobile robot, in which all the wheels are driven independently, and a control structure which consists of three distinct parts: firstly, a state-feedback tracking controller based on the kinematic model of the mobile robot is derived. Secondly, an extension of the kinematic control law is made to incorporate the dynamics of the wheeled mobile

  10. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  11. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    Science.gov (United States)

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  12. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  13. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  14. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  15. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    Science.gov (United States)

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  16. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  17. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  18. Towards Human-Friendly Efficient Control of Multi-Robot Teams

    Science.gov (United States)

    Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus

    2013-01-01

    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.

  19. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  20. Force control of a robot for surface contamination detection

    International Nuclear Information System (INIS)

    Petterson, B.J.; Jones, J.F.

    1987-01-01

    A system is under development at Sandia National Laboratories for use in understanding the issues relating to automated robotic handling of spent nuclear fuel shipping casks. The goal of robotic handling is reduction of personnel radiation exposure at the proposed geologic repositories. One of the major technology development areas has been the integration of sensors into the control of the robot system to allow operation in semi-structured environments. In particular, a multiaxis force sensor is used to make robot trajectory corrections based on the contact force between the robot and workpiece. This force feedback system allows contact swipes (smears) to be made on the cask surface in a repeatable manner. 8 refs., 3 figs

  1. Multi-robot motion control for cooperative observation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research

    1997-06-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  2. Multi-robot motion control for cooperative observation

    International Nuclear Information System (INIS)

    Parker, L.E.

    1997-01-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems

  3. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  4. Computer-controlled wall servicing robot

    Energy Technology Data Exchange (ETDEWEB)

    Lefkowitz, S. [Pentek, Inc., Corapolis, PA (United States)

    1995-03-01

    After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants during fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.

  5. Contribution to control of robotics structures and dynamic behaviour

    International Nuclear Information System (INIS)

    Gilliot, Jean-Marie

    1990-01-01

    The scope of this thesis is the simulation of the dynamics of complex rigid multi-body systems involved in robotics, in order to control them. In the first stage, methods for obtaining equations and models required for simulation and control purposes are proposed and discussed: - determination of constraint equations using the jacobian matrices, - elaboration of direct and inverse dynamics of manipulators. The second part of this thesis deals with the different concepts and components involved in the setting of simulation systems for Robotics Application Programs: models, emulators and the software development environment. The control algorithms are then introduced as a particular class of robotics application programs. A simulator has been developed, allowing the calculation and the visualisation of robot motions, driven by generalized torques. Some examples of control programs generating such control torques are then presented to illustrate the use of the simulator. (author) [fr

  6. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  7. Fuzzy logic controller for stabilization of biped robot gait

    Directory of Open Access Journals (Sweden)

    Ryadchikov I.V.

    2018-01-01

    Full Text Available The article centers round the problem of stabilization of biped robot gait through smoothing out the jumps of first and second order derivatives of a biped robot control vector using the fuzzy logic approach. The structure of a composite Takagi-Sugeno fuzzy logic controller developed by the authors is presented. The simulation study of a robot gait with climbing an obstacle is carried out and the results provided in the article showed that the developed controller performed significantly better than the analytical formula model in terms of smoothing out the derivatives of the control vector.

  8. Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve

    Science.gov (United States)

    Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.

    2013-01-01

    This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.

  9. Software toolkit for modeling, simulation and control of soft robots

    OpenAIRE

    Coevoet , Eulalie; Morales-Bieze , Thor; Largilliere , Frederick; Zhang , Zhongkai; Thieffry , Maxime; Sanz-Lopez , Mario; Carrez , Bruno; Marchal , Damien; Goury , Olivier; Dequidt , Jeremie; Duriez , Christian

    2017-01-01

    International audience; The technological differences between traditional robotics and soft robotics have an impact on all of the modeling tools generally in use, including direct kinematics and inverse models, Jacobians, and dynamics. Due to the lack of precise modeling and control methods for soft robots, the promising concepts of using such design for complex applications (medicine, assistance, domestic robotics...) cannot be practically implemented. This paper presents a first unified sof...

  10. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  11. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  12. Study of Inverted Pendulum Robot Using Fuzzy Servo Control Method

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2012-09-01

    Full Text Available The inverted pendulum robot is a classical problem in controls. The inherit instabilities in the setup make it a natural target for a control system. Inverted pendulum robot is suitable to use for investigation and verification of various control methods for dynamic systems. Maintaining an equilibrium position of the pendulum pointing up is a challenge as this equilibrium position is unstable. As the inverted pendulum robot system is nonlinear it is well-suited to be controlled by fuzzy logic. In this paper, Lagrange method has been applied to develop the mathematical model of the system. The objective of the simulation to be shown using the fuzzy control method can stabilize the nonlinear system of inverted pendulum robot.

  13. Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Caihong Zhang

    2014-01-01

    Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.

  14. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    Science.gov (United States)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  15. RoMPS concept review automatic control of space robot, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  16. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  17. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  18. Everyday robotic action: Lessons from human action control

    Directory of Open Access Journals (Sweden)

    Roy eDe Kleijn

    2014-03-01

    Full Text Available Robots are increasingly capable of performing everyday human activities such as cooking, cleaning, and doing the laundry. This requires the real-time planning and execution of complex, temporally-extended sequential actions under high degrees of uncertainty, which provides many challenges to traditional approaches to robot action control. We argue that important lessons in this respect can be learned from research on human action control. We provide a brief overview of available psychological insights into this issue and focus on four principles that we think could be particularly beneficial for robot control: the integration of symbolic and subsymbolic planning of action sequences, the integration of feedforward and feedback control, the clustering of complex actions into subcomponents, and the contextualization of action-control structures through goal representations.

  19. Robot trajectory tracking with self-tuning predicted control

    Science.gov (United States)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  20. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    Science.gov (United States)

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  1. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical

  2. Experimental robot gripper control for handling of soft objects

    Science.gov (United States)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  3. Remote control and motion coordination of mobile robots

    NARCIS (Netherlands)

    Alvarez Aguirre, A.

    2011-01-01

    As robots destined for personal and professional applications advance towards becoming part of our daily lives, the importance and complexity of the control algorithms which regulate them should not be underestimated. This thesis is related to two fields within robotics which are of major importance

  4. Control of a high precision macro-micro robotic manipulator system

    International Nuclear Information System (INIS)

    Cho, Whang

    1997-01-01

    A controller for macro-micro robotic manipulator system in which kinematically independent two robotic sub-systems work together to improve the accuracy of the motion is proposed. A nonlinear feedback linearization scheme is employed as basic architecture for the controller and additional formulations about the controller structure are made to assure the robustness of the overall control action and to restrict the motion of micro sub-system close to its nominal position without causing saturation of joint associated with micro-robot. (author)

  5. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  6. Design and Implementation of a New DELTA Parallel Robot in Robotics Competitions

    Directory of Open Access Journals (Sweden)

    Jonqlan Lin

    2015-10-01

    Full Text Available This investigation concerns the design and implementation of the DELTA parallel robot, covering the entire mechatronic process, involving kinematics, control design and optimizing methods. To accelerate the construction of the robot, 3D printing is used to fabricate end-effector parts. The parts are modular, low-cost, reconfigurable and can be assembled in less time than is required for conventionally fabricated parts. The controller, including the control algorithm and human-machine interface (HMI, is coded using the Borland C++ Builder 6 Personal software environment. The integration of the motion controller with image recognition into an opto-mechatronics system is presented. The robot system has been entered into robotic competitions in Taiwan. The experimental results reveal that the proposed DELTA robot completed the tasks in those competitions successfully.

  7. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  8. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Hamed Navabi

    2017-01-01

    Full Text Available A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a regulation with one signal, (b regulation and position control with one signal, (c regulation and position control with two signals, and (d FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.

  9. Self-repairing control for damaged robotic manipulators

    International Nuclear Information System (INIS)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J.

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program

  10. Event-Based Control Strategy for Mobile Robots in Wireless Environments.

    Science.gov (United States)

    Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto

    2015-12-02

    In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  11. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  12. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  13. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    National Research Council Canada - National Science Library

    Sights, B; Everett, H. R; Pacis, E. B; Kogut, G; Thompson, M

    2005-01-01

    High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact...

  14. Optimization in the design and control of robotic manipulators: A survey

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    1989-01-01

    Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics

  15. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  16. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    Science.gov (United States)

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  17. Is Ethics of Robotics about Robots? Philosophy of Robotics Beyond Realism and Individualilsm.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    If we are doing ethics of robotics, what exactly is the object of our inquiry? This paper challenges 'individualist' robot ontology and 'individualist' social philosophy of robots. It is argued that ethics of robotics should not study and evaluate robotics exclusively in terms of individual

  18. Co-Simulation Control of Robot Arm Dynamics in ADAMS and MATLAB

    OpenAIRE

    Luo Haitao; Liu Yuwang; Chen Zhengcang; Leng Yuquan

    2013-01-01

    The main objective of this study is how to quickly establish the virtual prototyping model of robot arm system and effectively solve trajectory tracking control for a given signal. Taking the 2-DOF robot arm as an example, a co-simulation control method is introduced to research multi-body dynamics. Using Newton-Euler and Lagrange method, respectively establish the dynamics model of robot arm and verify the correctness of equations. Firstly, the physical model of robot arm was built by PROE a...

  19. Development of a remote controlled robot system for monitoring nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)

    1996-12-31

    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  20. Traction Control Study for a Scaled Automated Robotic Car

    OpenAIRE

    Morton, Mark A.

    2004-01-01

    This thesis presents the use of sliding mode control applied to a 1/10th scale robotic car to operate at a desired slip. Controlling the robot car at any desired slip has a direct relation to the amount of force that is applied to the driving wheels based on road surface conditions. For this model, the desired traction/slip is maintained for a specific surface which happens to be a Lego treadmill platform. How the platform evolved and the robot car was designed are also covered. To parame...

  1. Automating the Incremental Evolution of Controllers for Physical Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration...... of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range...

  2. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  3. Robotic assisted laparoscopic colectomy.

    LENUS (Irish Health Repository)

    Pandalai, S

    2010-06-01

    Robotic surgery has evolved over the last decade to compensate for limitations in human dexterity. It avoids the need for a trained assistant while decreasing error rates such as perforations. The nature of the robotic assistance varies from voice activated camera control to more elaborate telerobotic systems such as the Zeus and the Da Vinci where the surgeon controls the robotic arms using a console. Herein, we report the first series of robotic assisted colectomies in Ireland using a voice activated camera control system.

  4. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    International Nuclear Information System (INIS)

    Sadegjian, Rasou; Masouleh, Mehdi Tale

    2016-01-01

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time

  5. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-11-15

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.

  6. A Modular Approach to Redundant Robot Control

    International Nuclear Information System (INIS)

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be 'passive control laws', i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust

  7. JACoW A dual arms robotic platform control for navigation, inspection and telemanipulation

    CERN Document Server

    Di Castro, Mario; Ferre, Manuel; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    High intensity hadron colliders and fixed target experiments require an increasing amount of robotic tele-manipulation to prevent excessive exposure of maintenance personnel to the radioactive environment. Telemanipulation tasks are often required on old radioactive devices not conceived to be maintained and handled using standard industrial robotic solutions. Robotic platforms with a level of dexterity that often require the use of two robotic arms with a minimum of six degrees of freedom are instead needed for these purposes. In this paper, the control of a novel robust robotic platform able to host and to carry safely a dual robotic arm system is presented. The control of the arms is fully integrated with the vehicle control in order to guarantee simplicity to the operators during the realization of the robotic tasks. A novel high-level control architecture for the new robot is shown, as well as a novel low level safety layer for anti-collision and recovery scenarios. Preliminary results of the system comm...

  8. Robots as Confederates

    DEFF Research Database (Denmark)

    Fischer, Kerstin

    2016-01-01

    This paper addresses the use of robots in experimental research for the study of human language, human interaction, and human nature. It is argued that robots make excellent confederates that can be completely controlled, yet which engage human participants in interactions that allow us to study...... numerous linguistic and psychological variables in isolation in an ecologically valid way. Robots thus combine the advantages of observational studies and of controlled experimentation....

  9. Robots at Work

    OpenAIRE

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  10. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  11. The development of functional fail-safe control for advanced robots

    International Nuclear Information System (INIS)

    Hosaka, Shigetaka; Shimizu, Yujiro; Hayashi, Tetsuji

    1990-01-01

    Advanced robots for the nuclear power plant maintenance are increasing the complexity in comparison with industrial robots, and severe in condition of use, and are increasing the importance of safety and reliability. In this paper, as a high reliability technology for Advanced Robot, Functional Failsafe control (FFC) is described. FFC isolates the faults, and keeps the minimum function of robot, using the remained potential redundancy of robot, with minimizing of additional parts to robot, at the occurrence of faults. We suggest the three reliability evaluation principles for Advanced robot, then define the FFC in these principles. In the proposed FFC, the method of using an amplifier between two servosystems in common, and the method of stucking the degrees of freedom of robot arm are studied and proved by experiments on the design of FFC. And, a new design method is showed, based on not only the reliability of time, but also the reliability of amount of working. So, we clarified some remained subjects to develop for the FFC. (author)

  12. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  13. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode

    Science.gov (United States)

    Gonenc, Berk; Iordachita, Iulian

    2017-01-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations. PMID:29607442

  14. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  15. Hierarchical coordination control of mobile robots

    NARCIS (Netherlands)

    Adinandra, S.

    2012-01-01

    In the last decade, robotic systems have penetrated human life more than human can imagine. In particular, the multi-mobile robotic systems have faced a fast growing due to the fact that by deploying a large collection of mobile robots the overall system has a high redundancy and offers the

  16. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  17. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  18. Combination of Robot Simulation with Real-time Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Jianyu YANG

    2014-08-01

    Full Text Available The paper mainly focuses in combining virtual reality based operation simulation with remote real-time monitoring and control method for an experimental robot. A system composition framework was designed and relative arm-wheel experimental robot platform was also built. Virtual robots and two virtual environments were developed. To locate the virtual robot within numerical environments, relative mathematical methods is also discussed, including analytic locating methods for linear motion and self-rotation, as well as linear transformation method with homogeneous matrices for turning motion, in order to decrease division calculations. Several experiments were carried out, trajectory errors were found because of relative slides between the wheel and the floor, during the locating experiments. Writing-monitoring experiments were also performed by programming the robotic arm to write a Chinese character, and the virtual robot in monitoring terminal perfectly followed all the movements. All the experiment results confirmed that virtual environment can not only be used as a good supplement to the traditional video monitoring method, but also offer better control experience during the operation.

  19. Dynamics and control of robot for capturing objects in space

    Science.gov (United States)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base

  20. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  1. Project ROBOTICS 2008

    DEFF Research Database (Denmark)

    Conrad, Finn

    Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK.......Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK....

  2. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  3. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  4. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  5. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  6. Faster-than-real-time robot simulation for plan development and robot safety

    International Nuclear Information System (INIS)

    Crane, C.D. III; Dalton, R.; Ogles, J.; Tulenko, J.S.; Zhou, X.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory (ORNL), is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of a faster-than-real-time robotic simulation program for planning and control of mobile robotic operations to ensure the efficient and safe operation of mobile robots in nuclear power plants and other hazardous environments

  7. Kinematic equations for resolved-rate control of an industrial robot arm

    Science.gov (United States)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  8. Design and real-time control of a robotic system for fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  9. Trends in control and decision-making for human-robot collaboration systems

    CERN Document Server

    Zhang, Fumin

    2017-01-01

    This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic ar...

  10. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    Science.gov (United States)

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  11. PD-like controller for delayed bilateral teleoperation of wheeled robots

    Science.gov (United States)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  12. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  13. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    Science.gov (United States)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  14. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Directory of Open Access Journals (Sweden)

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  15. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  16. Reverse control for humanoid robot task recognition.

    Science.gov (United States)

    Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul

    2012-12-01

    Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.

  17. Robust tracking control of two-degrees-of-freedom mobile robots

    NARCIS (Netherlands)

    Oelen, W.; Oelen, W.; van Amerongen, J.

    1994-01-01

    A robust tracking controller for a mobile robot with two degrees of freedom has been developed. It is implemented and tested on a real mobile robot. Where other controllers show decreasing performance for low reference velocities, the performance of this controller depends only on the geometry of

  18. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  19. AssistMe robot, an assistance robotic platform

    Directory of Open Access Journals (Sweden)

    A. I. Alexan

    2012-06-01

    Full Text Available This paper presents the design and implementation of a full size assistance robot. Its main purpose it to assist a person and eventually avoid a life threatening situation. Its implementation revolves around a chipKIT Arduino board that interconnects a robotic base controller with a 7 inch TABLET PC and various sensors. Due to the Android and Arduino combination, the robot can interact with the person and provide an easy development platform for future improvement and feature adding. The TABLET PC is Webcam, WIFI and Bluetooth enabled, offering a versatile platform that is able to process data and in the same time provide the user a friendly interface.

  20. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  1. The psychosocial effects of a companion robot: a randomized controlled trial.

    Science.gov (United States)

    Robinson, Hayley; Macdonald, Bruce; Kerse, Ngaire; Broadbent, Elizabeth

    2013-09-01

    To investigate the psychosocial effects of the companion robot, Paro, in a rest home/hospital setting in comparison to a control group. Randomized controlled trial. Residents were randomized to the robot intervention group or a control group that attended normal activities instead of Paro sessions. Sessions took place twice a week for an hour over 12 weeks. Over the trial period, observations were conducted of residents' social behavior when interacting as a group with the robot. As a comparison, observations were also conducted of all the residents during general activities when the resident dog was or was not present. A residential care facility in Auckland, New Zealand. Forty residents in hospital and rest home care. Residents completed a baseline measure assessing cognitive status, loneliness, depression, and quality of life. At follow-up, residents completed a questionnaire assessing loneliness, depression, and quality of life. During observations, behavior was noted and collated for instances of talking and stroking the dog/robot. In comparison with the control group, residents who interacted with the robot had significant decreases in loneliness over the period of the trial. Both the resident dog and the seal robot made an impact on the social environment in comparison to when neither was present. Residents talked to and touched the robot significantly more than the resident dog. A greater number of residents were involved in discussion about the robot in comparison with the resident dog and conversation about the robot occurred more. Paro is a positive addition to this environment and has benefits for older people in nursing home care. Paro may be able to address some of the unmet needs of older people that a resident animal may not, particularly relating to loneliness. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  2. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  3. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  4. Distributed control of multi-robot teams: Cooperative baton passing task

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, they describe the implementation of this architecture on a team of physical mobile robots performing a cooperative baton passing task. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes during the task.

  5. Optimization-Based Controllers for Robotics Applications (OCRA: The Case of iCub’s Whole-Body Control

    Directory of Open Access Journals (Sweden)

    Jorhabib G. Eljaik

    2018-03-01

    Full Text Available OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented. OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented.

  6. Automating the Incremental Evolution of Controllers for Physical Robots.

    Science.gov (United States)

    Faíña, Andrés; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p. 261] put it, "the evolution of things, rather than just the evolution of digital objects.…" The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range of problems amenable to embodied evolution.

  7. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  8. Continuous path control of a 5-DOF parallel-serial hybrid robot

    International Nuclear Information System (INIS)

    Uchiyama, Takuma; Terada, Hidetsugu; Mitsuya, Hironori

    2010-01-01

    Using the 5-degree of freedom parallel-serial hybrid robot, to realize the de-burring, new forward and inverse kinematic calculation methods based on the 'off-line teaching' method are proposed. This hybrid robot consists of a parallel stage section and a serial stage section. Considering this point, each section is calculated individually. And the continuous path control algorithm of this hybrid robot is proposed. To verify the usefulness, a prototype robot is tested which is controlled based on the proposed methods. This verification includes a positioning test and a pose test. The positioning test evaluates the continuous path of the tool center point. The pose test evaluates the pose on the tool center point. As the result, it is confirmed that this hybrid robot moves correctly using the proposed methods

  9. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen

    2014-09-01

    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  10. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  11. Robot Games for Elderly

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg

    2011-01-01

    improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing....... The robot facilitates interaction, and the study suggests that robot based games potentially can be used for training balance and orientation. The second game consists in an adaptive game algorithm which gradually adjusts the game challenge to the mobility skills of the player based on spatio...

  12. Perspectives of construction robots

    Science.gov (United States)

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  13. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  14. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Philipp Beckerle

    2017-05-01

    Full Text Available Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  15. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  16. Intelligent control and cooperation for mobile robots

    Science.gov (United States)

    Stingu, Petru Emanuel

    The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation

  17. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  18. An assigned responsibility system for robotic teleoperation control.

    Science.gov (United States)

    Small, Nicolas; Lee, Kevin; Mann, Graham

    2018-01-01

    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.

  19. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  20. Design, Modeling and Control of a Biped Line-Walking Robot

    Directory of Open Access Journals (Sweden)

    Ludan Wang

    2010-12-01

    Full Text Available The subject of this paper is the design and analysis of a biped line walking robot for inspection of power transmission lines. With a novel mechanism the centroid of the robot can be concentrated on the axis of hip joint to minimize the drive torque of the hip joint. The mechanical structure of the robot is discussed, as well as forward kinematics. Dynamic model is established in this paper to analyze the inverse kinematics for motion planning. The line-walking cycle of the line-walking robot is composed of a single-support phase and a double-support phase. Locomotion of the line-walking robot is discussed in details and the obstacle-navigation process is planed according to the structure of power transmission line. To fulfill the demands of line-walking, a control system and trajectories generation method are designed for the prototype of the line-walking robot. The feasibility of this concept is then confirmed by performing experiments with a simulated line environment.

  1. Toward semi-autonomous control of mobile robots for constrained environments

    International Nuclear Information System (INIS)

    Mercier, O.; Cara, O.

    1991-01-01

    Drawing from long-time experience in nuclear maintenance robotics, FRAMATOME leads with several partners an important effort with the goal of developing the decision and operator assistance capabilities of mobile robots. Future robots shall be better adapted (in size and configuration) to the operational requirements of nuclear plants work than current demonstrators. Due regards shall be paid to safety aspects and qualification procedure shall be specified soon. Also, dosimetry gains (e.g. as evaluated by DOSIANA) shall be evaluated to establish further the advantages of robotic solutions. Current achievements and plans for the next two years are expected to provide the necessary know-how for semi-autonomous control of various mobile robots in actual missions in nuclear plant environment. These advances in many closely connected disciplines and technologies should put FRAMATOME in a leader position as systems integrator or as developer for future markets in autonomous mobile robotics, not only in the nuclear field but in other domains as well. (author)

  2. Alternative Motion Control for Educational Biped BRAT Robots

    Directory of Open Access Journals (Sweden)

    Levente Barabas

    2015-12-01

    Full Text Available In this paper an alternative control solution will be proposed for an educational biped BRAT robot by replacing its SSC-32 servomotor controller with an Arduino R3 development board. Also we will be approaching the problem of adapting the existing electronic circuit to the new requirements and proposing a new application by adding an ultrasonic distance sensor in order to increase the versatility of the robot and make it capable to interact with its environment.

  3. Thought-Controlled Nanoscale Robots in a Living Host.

    Directory of Open Access Journals (Sweden)

    Shachar Arnon

    Full Text Available We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject's cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat.

  4. Thought-Controlled Nanoscale Robots in a Living Host

    Science.gov (United States)

    Giron, Jonathan; Ben-Ami, Lee; Amir, Yaniv; Hel-Or, Yacov; Friedman, Doron; Bachelet, Ido

    2016-01-01

    We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject’s cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat. PMID:27525806

  5. Fuzzy Logic Supervised Teleoperation Control for Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The supervised teleoperation control is presented for a mobile robot to implement the tasks by using fuzzy logic. The teleoperation control system includes joystick based user interaction mechanism, the high level instruction set and fuzzy logic behaviors integrated in a supervised autonomy teleoperation control system for indoor navigation. These behaviors include left wall following, right wall following, turn left, turn right, left obstacle avoidance, right obstacle avoidance and corridor following based on ultrasonic range finders data. The robot compares the instructive high level command from the operator and relays back a suggestive signal back to the operator in case of mismatch between environment and instructive command. This strategy relieves the operator's cognitive burden, handle unforeseen situations and uncertainties of environment autonomously. The effectiveness of the proposed method for navigation in an unstructured environment is verified by experiments conducted on a mobile robot equipped with only ultrasonic range finders for environment sensing.

  6. Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2016-03-01

    Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.

  7. Integrated mobile robot control

    Science.gov (United States)

    Amidi, Omead; Thorpe, Chuck E.

    1991-03-01

    This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.

  8. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  9. Experiments on co-operating robot arms

    International Nuclear Information System (INIS)

    Arthaya, B.; De Schutter, J.

    1994-01-01

    When two robots manipulate a common object or perform a single task together, a closed-kinematic chain is formed. If both robots are controlled under position control only, at a certain phase during the manipulation, the interaction forces may become unacceptably high. The interaction forces are caused by the kinematic as well as the dynamic errors in the robot position controller. In order to avoid this problem, a synchronized motion between both robots has to be generated, not only by controlling the position (velocity) of the two end-effectors, but also by controlling the interaction forces between them. In order to generate a synchronized motion, the first robot controller continuously modifies the task frame velocity corresponding to the velocity of the other robot. This implies that the velocity of the other robot is used as feed-forward information in order to anticipate its motion. This approach results in a better tracking behaviour

  10. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  11. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  12. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  13. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  14. Sensor based real-time control of robots

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm

    in the sensor to actuation delays in the robot. To that end a method for measuring the actuation and response delay of an industrial robot manipulator, relative to the joint configuration of the robot, is presented. It is also shown how modern machine learning algorithms can be trained to build model based......As robots are becoming more and more widespread in manufacturing, the desire and need for more advanced robotic solutions are increasingly expressed. This is especially the case in Denmark where products with natural variances like agricultural products takes up a large share of the produced goods....... For such production lines, it is often not possible to use primitive preprogrammed industrial robots to handle the otherwise repetitive tasks due to the uniqueness of each product. To handle such products it is necessary to use sensors to determine the size, shape, and position of the product before a proper...

  15. Model identification and controller design of a fish-like robot

    Science.gov (United States)

    Ariyanto, Irfan; Kang, Taesam; Chan, Wai Leung; Lee, Youngjae

    2007-04-01

    Robotic fish is an interesting and prospective subject to develop. The simplest fish swimming mode to be mimicked for fish robots is the ostraciiform mode which only requires caudal fin flapping. An almost submerged ostraciiform fish robot was constructed to study its swimming characteristics. The swimming direction can be controlled by changing the mean angle of caudal fin oscillation. Experiments were conducted to study the behavior of the fish robot and in particular, the transfer function between swimming path angular rate and mean angle of the caudal fin oscillation were identified. Error to signal ratio quantity was used to determine how well the model fits with the experimental data. This identification model was used to design a 2-degree-of-freedom PID controller that meets some specific requirements to improve the steering performance.

  16. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    Science.gov (United States)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  17. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  18. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  19. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  20. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  1. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  2. CPG-based Locomotion Controller Design for a Boxfish-like Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-06-01

    Full Text Available This paper focuses on a Central Pattern Generator (CPG-based locomotion controller design for a boxfish-like robot. The bio-inspired controller is aimed at flexible switching in multiple 3D swimming patterns and exact attitude control of yaw and roll such that the robot will swim more like a real boxfish. The CPG network comprises two layers, the lower layer is the network of coupled linear oscillators and the upper is the transition layer where the lower-dimensional locomotion stimuli are transformed into the higher-dimensional control parameters serving for all the oscillators. Based on such a two-layer framework, flexible switching between multiple three-dimensional swimming patterns, such as swimming forwards/backwards, turning left/right, swimming upwards/downwards and rolling clockwise/counter-clockwise, can be simply realized by inputting different stimuli. Moreover, the stability of the CPG network is strictly proved to guarantee the intrinsic stability of the swimming patterns. As to exact attitude control, based on this open-loop CPG network and the sensory feedback from the Inertial Measurement Unit (IMU, a closed-loop CPG controller is advanced for yaw and roll control of the robotic fish for the first time. This CPG-based online attitude control for a robotic fish will greatly facilitate high-level practical underwater applications. A series of relevant experiments with the robotic fish are conducted systematically to validate the effectiveness and stability of the open-loop and closed-loop CPG controllers.

  3. Robot Tracer with Visual Camera

    Science.gov (United States)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  4. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  5. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  6. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  7. Robust Control Design of Wheeled Inverted Pendulum Assistant Robot

    Institute of Scientific and Technical Information of China (English)

    Magdi S.Mahmoud; Mohammad T.Nasir

    2017-01-01

    This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H2 control and H∞ control. Simulation is performed for all the approaches yielding good performance results.

  8. A review on modeling, identification and servo control of robotic ...

    African Journals Online (AJOL)

    user

    This article reviews modeling, identification, and low level control of the robotic excavator. ... The oil viscosity, oil flow through the spool valves, and variable loading, ..... squares, to identify all the unknown individual parameters for a unmanned ..... Robust low level control of robotic excavation, PhD Thesis, The University of ...

  9. Nonlinear control methods for planar carangiform robot fish locomotion

    OpenAIRE

    Morgansen, Kristi A.; Duindam, Vincent; Mason, Richard J.; Burdick, Joel W.; Murray, Richard M.

    2001-01-01

    Considers the design of motion control algorithms for robot fish. We present modeling, control design, and experimental trajectory tracking results for an experimental planar robotic fish system that is propelled using carangiform-like locomotion. Our model for the fish's propulsion is based on quasi-steady fluid flow. Using this model, we propose gaits for forward and turning trajectories and analyze system response under such control strategies. Our models and predictions are verified by ex...

  10. Robotics for mining control

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In 1982 surveys of the mining industry revealed no applications of robotics existed and none were planned. This report provides a general overview of automation in the mining industry since this point in time. Roof control electronics, gas monitoring, jumbo drill automation, remote and sensor- controlled continuous miners, automated trolley trucks, roof bolting and screening machines are examples of technology available today. The report concludes with recommendations as to six potential research areas. 25 refs.

  11. Control method for biped locomotion robots based on ZMP information

    International Nuclear Information System (INIS)

    Kume, Etsuo

    1994-01-01

    The Human Acts Simulation Program (HASP) started as a ten year program of Computing and Information Systems Center (CISC) at Japan Atomic Energy Research Institute (JAERI) in 1987. A mechanical design study of biped locomotion robots for patrol and inspection in nuclear facilities is being performed as an item of the research scope. One of the goals of our research is to design a biped locomotion robot for practical use in nuclear facilities. So far, we have been studying for several dynamic walking patterns. In conventional control methods for biped locomotion robots, the program control is used based on preset walking patterns, so it dose not have the robustness such as a dynamic change of walking pattern. Therefore, a real-time control method based on dynamic information of the robot states is necessary for the high performance of walking. In this study a new control method based on Zero Moment Point (ZMP) information is proposed as one of real-time control methods. The proposed method is discussed and validated based on the numerical simulation. (author)

  12. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  13. Design and control of five fingered under-actuated robotic hand

    Science.gov (United States)

    Sahoo, Biswojit; Parida, Pramod Kumar

    2018-04-01

    Now a day's research regarding humanoid robots and its application in different fields (industry, household, rehabilitation and exploratory) is going on entire the globe. Among which a challenging topic is to design a dexterous robotic hand which not only can perform as a hand of a robot but also can be used in re habilitation. The basic key concern is a dexterous robot hand which can be able to mimic the function of biological hand to perform different operations. This thesis work is regarding design and control of a under-actuated robotic hand consisting of four under actuated fingers (index finger, middle finger, little finger and ring finger ) , a thumb and a dexterous palm which can copy the motions and grasp type of human hand which having 21degrees of freedom instead of 25Degree Of Freedom.

  14. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Science.gov (United States)

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  15. Control solutions for robots using Android and iOS devices

    Science.gov (United States)

    Evans, A. William, III; Gray, Jeremy P.; Rudnick, Dave; Karlsen, Robert E.

    2012-06-01

    As more Soldiers seek to utilize robots to enhance their mission capabilities, controls are needed which are intuitive, portable, and adaptable to a wide range of mission tasks. Android™ and iOS™ devices have the potential to meet each of these requirements as well as being based on readily available hardware. This paper will focus on some of the ways in which an Android™ or iOS™ device could be used to control specific and varied robot mobility functions and payload tools. Several small unmanned ground vehicle (SUGV) payload tools will have been investigated at Camp Pendleton during a user assessment and mission feasibility study for automatic remote tool changing. This group of payload tools will provide a basis, to researchers, concerning what types of control functions are needed to fully utilize SUGV robotic capabilities. Additional, mobility functions using tablet devices have been used as part of the Safe Operation of Unmanned systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO) which is investigating the safe operation of robotics. Using Android™ and iOS™ hand-held devices is not a new concept in robot manipulation. However, the authors of this paper hope to introduce some novel concepts that may serve to make the interaction between Soldier and machine more fluid and intuitive. By creating a better user experience, Android™ and iOS™ devices could help to reduce training time, enhance performance, and increase acceptance of robotics as valuable mission tools for Soldiers.

  16. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Science.gov (United States)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  17. Controlling maximum evaluation duration in on-line and on-board evolutionary robotics

    NARCIS (Netherlands)

    Atta-ul-Qayyum, A.; Nedev, D.G.; Haasdijk, E.W.

    2014-01-01

    On-line evolution of robot controllers allows robots to adapt while they perform their proper tasks. In our investigations, robots contain their own self-sufficient evolutionary algorithm (known as the encapsulated approach) where individual solutions are evaluated by means of a time sharing scheme:

  18. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    Science.gov (United States)

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  19. Towards Light‐guided Micro‐robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ‐dimensional microstructures. Furthermore, we exploit the light shaping capabilities available in the workstation to demonstrate a new strategy for controlling microstructures that goes beyond the typical refractive light deflections that are exploited in conventional optical trapping and manipulation e.g. of micro......Robotics in the macro‐scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro‐scale regime creates opportunities for exploiting optical forces...... and torques in micro‐robotic actuation and control. Indeed, the literature on optical trapping and micro‐manipulation attests to the possibilities for optical micro‐robotics. Advancing light‐driven micro‐robotics requires the optimization of optical force and optical torque that, in turn, requires...

  20. Semi-manual mastoidectomy assisted by human-robot collaborative control - A temporal bone replica study.

    Science.gov (United States)

    Lim, Hoon; Matsumoto, Nozomu; Cho, Byunghyun; Hong, Jaesung; Yamashita, Makoto; Hashizume, Makoto; Yi, Byung-Ju

    2016-04-01

    To develop an otological robot that can protect important organs from being injured. We developed a five degree-of-freedom robot for otological surgery. Unlike the other robots that were reported previously, our robot does not replace surgeon's procedures, but instead utilizes human-robot collaborative control. The robot basically releases all of the actuators so that the surgeon can manipulate the drill within the robot's working area with minimal restriction. When the drill reaches a forbidden area, the surgeon feels as if the drill hits a wall. When an engineer performed mastoidectomy using the robot for assistance, the facial nerve in the segmented region was always protected with a more than 2.5mm margin, which was almost the same as the pre-set safety margin of 3mm. Semi-manual drilling using human-robot collaborative control was feasible, and may hold a realistic prospect of clinical use in the near future. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. A multifunction editor for programming control sequences for a robot based radiopharmaceutical synthesis system

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.

    1990-01-01

    A Multifunction Editor is a development tool for building control sequences for a robotized production system for positron emitting radiopharmaceuticals. This system consists of SCARA robot and a PC-AT personal computer as a controller together with general and synthesis specific chemistry equipment. The general equipment, which is common for many synthesis, is fixed to the wall of the hotcell, while the specific equipment, dedicated to the given synthesis, is located on a removable tray. The program recognizes commands to move the robot, to control valves and to control the computer screen. From within the editor it is possible to run the control sequence forward or backward to test it and to use the single step feature to debug. The editor commands include insert, replace and delete of commands in the sequence. When programming or editing robot movements the robot may be controlled by the mouse, from the keyboard or from a remote control box. The robot control sequence consists of a succession of stored robot positions. The screen control is used to display dynamic flowchart diagrams. This is achieved by displaying a modified picture on the screen whenever the system state has been changed significantly

  2. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Gusikhin, Oleg; Madani, Kurosh; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2014), held in Vienna, Austria, from 1 to 3 September 2014. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2014 received 301 submissions, from 49 countries, in all continents. After a double blind paper review performed by the Program Committee, 20% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, ba...

  3. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Madani, Kurosh; Gusikhin, Oleg; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2015 received 214 submissions, from 42 countries, in all continents. After a double blind paper review performed by the Program Committee, 14% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based ...

  4. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  5. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  6. SMR-CL, A Real-time Control Language for Mobile Robots

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Ravn, Ole

    2004-01-01

    The paper describes requirements and implementation of a tactical control lan¬guage for mobile robots. Emphasis is given to the real-time issues of the language especially the isolation of the hard real-time and the soft real-time layers of the mobile robot control system. The language may be used...

  7. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    Science.gov (United States)

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  8. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi; Shin, Kyoosik

    2012-01-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. (paper)

  9. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  10. Anatomy-Based Organization of Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Campbell, Jason

    2008-01-01

    This paper presents a novel biologically inspired hierarchical approach to organizing and controlling modular robots. The purpose of our approach is to decompose the complexity of assembling and commanding a functional robot made of numerous simple modules (thousands to millions) by introducing...... a hierarchy of structure and control. The robots we describe incorporate anatomically inspired parts such as muscles, bones and joints, and these parts in turn are assembled from modules. Each of those parts encapsulates one or more functions, e.g. a muscle can contract. Control of the robot can then be cast...... as a problem of controlling its anatomical parts rather than each discrete module. We show simulation results from experiments using gradient-based primitives to control parts of increasingly complex robots, including snake, crawler, cilia-surface, arm-joint-muscle and grasping robots. We conclude...

  11. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  12. Design of Piano -playing Robotic Hand

    Directory of Open Access Journals (Sweden)

    Lin Jen-Chang

    2013-09-01

    Full Text Available Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of keyboard instrument. The piano-playing robot is capable of control linear motor, servo-motor and pneumatic devices in accordance with the notes and rhythm in order to drive the mechanical structure to proper positions for pressing the keys and generating music. The devices used for this robot are mainly crucial components produced by HIWIN Technology Corp. The design of robotic hand is based on the direction of anthropomorphic hand such that five fingers will be used for playing piano. The finger actuations include actions of finger rotation, finger pressing, and finger lifting; time required for these 3 stages must meet the requirement of rhythm. The purpose of entertainment robot can be achieved by playing electric piano with robotic hand, and we hope this research can contribute to the development of domestic entertainment music playing robots.

  13. DARC: Next generation decentralized control framework for robot applications

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper presents DARC, a next generation control framework for robot applications. It is designed to be equally powerful in prototyping research projects and for building serious commercial robots running on low powered embedded hardware, thus closing the gab between research and industry....... It incorporates several new techniques such as a decentralized peer-to-peer architecture, transparent network distribution of the control system, and automatic run-time supervision to guarantee robustness....

  14. Design and evaluation of a motor imagery electroencephalogram-controlled robot system

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available Brain–computer interface provides a new communication channel to control external device by directly translating the brain activity into commands. In this article, as the foundation of electroencephalogram-based robot-assisted upper limb rehabilitation therapy, we report on designing a brain–computer interface–based online robot control system which is made up of electroencephalogram amplifier, acquisition and experimental platform, feature extraction algorithm based on discrete wavelet transform and autoregressive model, linear discriminant analysis classifier, robot control board, and Rhino XR-1 robot. The performance of the system has been tested by 30 participants, and satisfactory results are achieved with an average error rate of 8.5%. Moreover, the advantage of the feature extraction method was further validated by the Graz data set for brain–computer interface competition 2003, and an error rate of 10.0% was obtained. This method provides a useful way for the research of brain–computer interface system and lays a foundation for brain–computer interface–based robotic upper extremity rehabilitation therapy.

  15. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  16. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  17. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  18. 2016 International Symposium on Experimental Robotics

    CERN Document Server

    Nakamura, Yoshihiko; Khatib, Oussama; Venture, Gentiane

    2017-01-01

    Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are...

  19. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  20. Biomimetic vibrissal sensing for robots.

    Science.gov (United States)

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  1. Measurements in Concentrated Sun using a Remote Controlled Robot

    Directory of Open Access Journals (Sweden)

    Dan Floroian

    2013-04-01

    Full Text Available Nowdays, using the concentrated sunlight is a big issue because the amount of energy is very high and the light is concentrated in a very small area. The main problem in this situation is the heating, and in order to make safe measurements a remote controlled robot is needed. After that, a remote controlled robot will assume the duty of protect the measured sample and to expose it for a precise time to the concentrated sun in order to reduce heating of the sample. For easy operating, and for automatize the process, all the duties, starting with initial conditions, continuing with triggering the measurements, and conditioning the signals and finalizing with data saving must be assured by the robot.

  2. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  3. Novel Approach to Control of Robotic Hand Using Flex Sensors

    Directory of Open Access Journals (Sweden)

    Sandesh R.S

    2014-05-01

    Full Text Available This paper discuss about novel design approach to control of a robotic hand using flex sensors which indicates a biomechatronic multi fingered robotic hand. This robotic hand consists of base unit, upper arm, lower arm, palm and five fingers. The aim is to develop an anthropomorphic five fingered robotic hand. The proposed design illustrates the use of 5 micro DC motors with 9 Degrees of Freedom (DOF.Each finger is controlled independently. Further three extra motors were used for the control of wrist elbow and base movement. The study of the DC motor is being carried out using the transfer function model for constant excitation. The micro DC motor performance was analyzed using MATLAB simulation environment. The whole system is implemented using flex sensors. The flex sensors placed on the human hand gloves appear as if they look like real human hand.  89v51 microcontroller was used for all the controlling actions along with RF transmitter/receiver .The performance of the system has been conducted experimentally and studied.

  4. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  5. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Rafael Barea

    2013-01-01

    Full Text Available Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot’s back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  6. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  7. Kinematics, dynamics and control design of 4WIS4WID mobile robots

    Directory of Open Access Journals (Sweden)

    Ming-Han Lee

    2015-01-01

    Full Text Available Kinematic and dynamic modelling and corresponding control design of a four-wheel-independent steering and four-wheel-independent driving (4WIS4WID mobile robot are presented in this study. Different from the differential or car-like mobile robot, the 4WIS4WID mobile robot is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. A trajectory tracking control scheme is developed for the 4WIS4WID mobile robot, where both non-linear kinematic control and dynamic sliding-mode control are designed. All of the stabilities of the kinematic and dynamic control laws are proved by Lyapunov stability analysis. Finally, the feasibility and validity of the proposed trajectory tracking control scheme are confirmed through computer simulations.

  8. Feasibility of interactive gesture control of a robotic microscope

    Directory of Open Access Journals (Sweden)

    Antoni Sven-Thomas

    2015-09-01

    Full Text Available Robotic devices become increasingly available in the clinics. One example are motorized surgical microscopes. While there are different scenarios on how to use the devices for autonomous tasks, simple and reliable interaction with the device is a key for acceptance by surgeons. We study, how gesture tracking can be integrated within the setup of a robotic microscope. In our setup, a Leap Motion Controller is used to track hand motion and adjust the field of view accordingly. We demonstrate with a survey that moving the field of view over a specified course is possible even for untrained subjects. Our results indicate that touch-less interaction with robots carrying small, near field gesture sensors is feasible and can be of use in clinical scenarios, where robotic devices are used in direct proximity of patient and physicians.

  9. Self-organized control in cooperative robots using a pattern formation principle

    International Nuclear Information System (INIS)

    Starke, Jens; Ellsaesser, Carmen; Fukuda, Toshio

    2011-01-01

    Self-organized modular approaches proved in nature to be robust and optimal and are a promising strategy to control future concepts of flexible and modular manufacturing processes. We show how this can be applied to a model of flexible manufacturing based on time-dependent robot-target assignment problems where robot teams have to serve manufacturing targets such that an objective function is optimized. Feasibility of the self-organized solutions can be guaranteed even for unpredictable situations like sudden changes in the demands or breakdowns of robots. As example an uncrewed space mission is visualized in a simulation where robots build a space station. - Highlights: → Adapting a pattern formation principle to control cooperative robots in a robust way. → Flexible manufacturing systems are modelled by time-dependent assignment problems. → Coupled selection equations guarantee feasibility of solutions. → Solution structure (permutations) is not destroyed by inhomogeneous growth rates. → Example of an uncrewed space mission shows effectivity and robustness.

  10. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  11. Modelling of industrial robot in LabView Robotics

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  12. Intelligent robot trends for 1998

    Science.gov (United States)

    Hall, Ernest L.

    1998-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.

  13. Just-In-Time predictive control for a two-wheeled robot

    OpenAIRE

    Nakpong, Nuttapun; Yamamoto, Shigeru

    2012-01-01

    In this paper, we introduce the use of Just-In-Time predictive control to enhance the stability of a two-wheeled robot. Just-In-Time predictive control uses a database which includes a huge amounts of input-output data of the two-wheeled robot and predicts its future movements based on a Just-In-Time algorithm. © 2012 IEEE.

  14. The Development of Control System Design for 5 DOF Nuclear Malaysia Robot Arm v2

    International Nuclear Information System (INIS)

    Mohd Zaid Hassan; Anwar Abdul Rahman; Rosli Darmawan; Mohd Arif Hamzah

    2011-01-01

    This paper describes a general design and implementation approach used for programming and controlling robotic systems such as remotely operated robotic manipulator systems. A hierarchical approach to control system design is adopted. The hierarchical design is translated into a component-based software design. A low-cost robotic arm and controller system is presented. The controller is a modular model of the robotic arm with the same degrees of freedom whose joints are equipped with sensors. The system takes advantage of the low cost and wide availability of control components and uses a low-cost, easy-to-program microprocessor. Furthermore, it presents the design and the construction of electronic systems for the control of an articulated robot developed for research and development related with instrumentation and control. The system is simple but it is designed the motor to move the robot arm to proper angular position according to the input controller. Limitations of the micro controller are discussed, and suggestions for further development of the robot arm and control are made. (author)

  15. Control of articulated snake robot under dynamic active constraints.

    Science.gov (United States)

    Kwok, Ka-Wai; Vitiello, Valentina; Yang, Guang-Zhong

    2010-01-01

    Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.

  16. Toward cognitive robotics

    Science.gov (United States)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  17. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  18. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  19. Control Systems for Hyper-Redundant Robots Based on Artificial Potential Method

    Directory of Open Access Journals (Sweden)

    Mihaela Florescu

    2015-06-01

    Full Text Available This paper presents the control method of hyper-redundant robots based on the artificial potential approach. The principles of this method are shown and a suggestive example is offered. Then, the artificial potential method is applied to the case of a tentacle robot starting from the dynamic model of the robot. In addition, a series of results that are obtained through simulation is presented.

  20. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  1. Design of Piano -playing Robotic Hand

    OpenAIRE

    Lin Jen-Chang; Hsin-Cheng Li; Kuo-Cheng Huang; Shu-Wei Lin

    2013-01-01

    Unlike the market slowdown of industrial robots, service & entertainment robots have been highly regarded by most robotics reseach and market research agencies. In this study we developed a music playing robot (which can also work as a service robot) for public performance. The research is mainly focused on the mechanical and electrical control of piano-playing robot, the exploration of correlations among music theory, rhythm and piano keys, and eventually the research on playing skill of...

  2. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  3. Interface Based on Electrooculography for Velocity Control of a Robot Arm

    Directory of Open Access Journals (Sweden)

    Eduardo Iáñez

    2010-01-01

    Full Text Available This paper describes a technique based on electrooculography to control a robot arm. This technique detects the movement of the eyes, measuring the difference of potential between the cornea and the retina by placing electrodes around the ocular area. The processing algorithm developed to obtain the position of the eye at the blink of the user is explained. The output of the processing algorithm offers, apart from the direction, four different values (zero to three to control the velocity of the robot arm according to how much the user is looking in one direction. This allows controlling two degrees of freedom of a robot arm with the eyes movement. The blink has been used to mark some targets in tests. In this paper, the experimental results obtained with a real robot arm are shown.

  4. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    OpenAIRE

    Lyder, Andreas

    2010-01-01

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a ...

  5. Robotic system for process sampling

    International Nuclear Information System (INIS)

    Dyches, G.M.

    1985-01-01

    A three-axis cartesian geometry robot for process sampling was developed at the Savannah River Laboratory (SRL) and implemented in one of the site radioisotope separations facilities. Use of the robot reduces personnel radiation exposure and contamination potential by routinely handling sample containers under operator control in a low-level radiation area. This robot represents the initial phase of a longer term development program to use robotics for further sample automation. Preliminary design of a second generation robot with additional capabilities is also described. 8 figs

  6. A study on autonomous maintenance robot, 7

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Shimasaka, Naoki; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the new mechanism of a new maintenance robot, Mark IV, following the previous reports on pipeline inspection and maintenance robots of Mark I, II, and III. The Mark IV has a mechanism capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces, which is another capability of the maintenance robots, different from the previous ones. The main features of Mark IV are as follows, (i) The robot has a multijoint structure, so that it has better adaptability to the curvartures of pipelines and storage tanks. (ii) The joint of the robot has SMA actuators to make the robot lighter in weight. Some actuator shape characteristics are also examined for the robot structure and control. (iii) The robot has suckers at both ends so that the robot can climb up along the wall from the ground. (iv) A robot with the inch worm mechanisms has many functional motions, such that it can pass over flanges and T-joints, and transfer to adjacent pipelines with a wider range of pipe diameters. (v) A control method is given for the mobile motion control. Thus, the functional level of the maintenance robot has been greatly improved by the introduction of the Mark IV robot. (author)

  7. DEVELOPMENT OF TRAJECTORY CONTROL SYSTEM FOR THE OMNIDIRECTIONAL MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Y. A. Kapitanyuk

    2014-03-01

    Full Text Available The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.

  8. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  9. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  10. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  11. Transferring human impedance regulation skills to robots

    CERN Document Server

    Ajoudani, Arash

    2016-01-01

    This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

  12. Control of compliant anthropomimetic robot joint

    Directory of Open Access Journals (Sweden)

    Svetozarević Bratislav

    2011-01-01

    Full Text Available In this paper we propose a control strategy for a robot joint which fully mimics the typical human joint structure. The joint drive is based on two actuators (dc motors, agonist and antagonist, acting through compliant tendons and forming a nonlinear multi-input multi-output (MIMO system. At any time, we consider one actuator, the puller, as being responsible for motion control, while the role of the other is to keep its tendon force at some appropriate low level. This human-like and energetically efficient approach requires the control of 'switching', or exchanging roles between actuators. Moreover, an algorithm based on adaptive force reference is used to solve a problem of slacken tendons during the switching and to increase the energy efficiency. This approach was developed and evaluated on increasingly complex robot joint configurations, starting with simple and noncompliant system, and finishing with nonlinear and compliant system.

  13. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Developing and modeling of voice control system for prosthetic robot arm in medical systems

    Directory of Open Access Journals (Sweden)

    Koksal Gundogdu

    2018-04-01

    Full Text Available In parallel with the development of technology, various control methods are also developed. Voice control system is one of these control methods. In this study, an effective modelling upon mathematical models used in the literature is performed, and a voice control system is developed in order to control prosthetic robot arms. The developed control system has been applied on four-jointed RRRR robot arm. Implementation tests were performed on the designed system. As a result of the tests; it has been observed that the technique utilized in our system achieves about 11% more efficient voice recognition than currently used techniques in the literature. With the improved mathematical modelling, it has been shown that voice commands could be effectively used for controlling the prosthetic robot arm. Keywords: Voice recognition model, Voice control, Prosthetic robot arm, Robotic control, Forward kinematic

  15. Unix Philosophy and the Real World: Control Software for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Neil Thomas Dantam

    2016-03-01

    Full Text Available Robot software combines the challenges of general purpose and real-time software, requiring complex logic and bounded resource use. Physical safety, particularly for dynamic systems such as humanoid robots, depends on correct software. General purpose computation has converged on unix-like operating systems -- standardized as POSIX, the Portable Operating System Interface -- for devices from cellular phones to supercomputers. The modular, multi-process design typical of POSIX applications is effective for building complex and reliable software. Absent from POSIX, however, is an interproccess communication mechanism that prioritizes newer data as typically desired for control of physical systems. We address this need in the Ach communication library which provides suitable semantics and performance for real-time robot control. Although initially designed for humanoid robots, Ach has broader applicability to complex mechatronic devices -- humanoid and otherwise -- that require real-time coupling of sensors, control, planning, and actuation. The initial user space implementation of Ach was limited in the ability to receive data from multiple sources. We remove this limitation by implementing Ach as a Linux kernel module, enabling Ach's high-performance and latest-message-favored semantics within conventional POSIX communication pipelines. We discuss how these POSIX interfaces and design principles apply to robot software, and we present a case study using the Ach kernel module for communication on the Baxter robot.

  16. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  17. Dynamic Characterization and Interaction Control of the CBM-Motus Robot for Upper-Limb Rehabilitation

    Directory of Open Access Journals (Sweden)

    Loredana Zollo

    2013-10-01

    Full Text Available This paper presents dynamic characterization and control of an upper-limb rehabilitation machine aimed at improving robot performance in the interaction with the patient. An integrated approach between mechanics and control is the key issue of the paper for the development of a robotic machine with desirable dynamic properties. Robot inertial and acceleration properties are studied in the workspace via a graphical representation based on ellipses. Robot friction is experimentally retrieved by means of a parametric identification procedure. A current-based impedance control is developed in order to compensate for friction and enhance control performance in the interaction with the patient by means of force feedback, without increasing system inertia. To this end, servo-amplifier motor currents are monitored to provide force feedback in the interaction, thus avoiding the need for force sensors mounted at the robot end-effector. Current-based impedance control is implemented on the robot; experimental results in free space as well as in constrained space are provided.

  18. Optimal Control of Holding Motion by Nonprehensile Two-Cooperative-Arm Robot

    Directory of Open Access Journals (Sweden)

    Changan Jiang

    2016-01-01

    Full Text Available Recently, more researchers have focused on nursing-care assistant robot and placed their hope on it to solve the shortage problem of the caregivers in hospital or nursing home. In this paper, a nonprehensile two-cooperative-arm robot is considered to realize holding motion to keep a two-rigid-link object (regarded as a care-receiver stable on the robot arms. By applying Newton-Euler equations of motion, dynamic model of the object is obtained. In this model, for describing interaction behavior between object and robot arms in the normal direction, a viscoelastic model is employed to represent the normal forces. Considering existence of friction between object and robot arms, LuGre dynamic model is applied to describe the friction. Based on the obtained model, an optimal regulator is designed to control the holding motion of two-cooperative-arm robot. In order to verify the effectiveness of the proposed method, simulation results are shown.

  19. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  20. SDRE control strategy applied to a nonlinear robotic including drive motor

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Piccirillo, Vinicius, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Nascimento, Claudinor B., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br [UTFPR-PONTA GROSSA, PR (Brazil); Balthazar, José M., E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Brasil, Reyolando M. L. R. da Fonseca, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.

  1. Operator-centered control of a semi-autonomous industrial robot

    International Nuclear Information System (INIS)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec's Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot's position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments

  2. The quadruped robot adaptive control in trotting gait walking on slopes

    Science.gov (United States)

    Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian

    2017-10-01

    The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.

  3. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.

    Science.gov (United States)

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  4. Control of a mobile robot through brain computer interface

    Directory of Open Access Journals (Sweden)

    Robinson Jimenez Moreno

    2015-07-01

    Full Text Available This paper poses a control interface to command the movement of a mobile robot according to signals captured from the user's brain. These signals are acquired and interpreted by Emotiv EPOC device, a 14-electrode type sensor which captures electroencephalographic (EEG signals with high resolution, which, in turn, are sent to a computer for processing. One brain-computer interface (BCI was developed based on the Emotiv software and SDK in order to command the mobile robot from a distance. Functionality tests are performed with the sensor to discriminate shift intentions of a user group, as well as with a fuzzy controller to hold the direction in case of concentration loss. As conclusion, it was possible to obtain an efficient system for robot movements by brain commands.

  5. Generalized dynamic model and control of ambiguous mono axial vehicle robot

    Directory of Open Access Journals (Sweden)

    Frantisek Duchon

    2016-09-01

    Full Text Available This article deals with the novel concept of ambiguous mono axial vehicle robot. Such robot is a combination of Segway and dicycle, which utilizes the advantages of each chassis. The advantage of dicycle is lower energy consumption during the movement and the higher safety of carried payload. The movable platform inside the ambiguous mono axial vehicle allows using the various sensors or devices. This will change the ambiguous mono axial vehicle to the Segway type robot. Both these modes are necessary to control in the stable mode to ensure the safety of the ambiguous mono axial vehicle’s movement. The main contents of the article contain description of generalized dynamic model of ambiguous mono axial vehicle and related control of ambiguous mono axial vehicle. The proposal is unique in that the same controller is used for both modes. Several simulations verify proposed control schemes and identified parameters. Moreover, the dicycle type of platform has never been used in robotics and that is another novelty.

  6. Virtual reality and telepresence control of robots used in hazardous environments

    International Nuclear Information System (INIS)

    Bronisz, L.E.; Pittman, P.C.

    1996-01-01

    The purpose of this project was to explore the application of teleoperation and telepresence control to robots in hazardous environments at Los Alamos. The primary use of this technology would be in a glove-box type operation potentially allowing operators to work on hazardous materials while being completely removed from the danger of exposure in situations that are difficult to completely automate due to the highly unstructured environments or off-normal conditions. This project focused on determining the most appropriate tools and methods that could be applied in the near future resulting in a reasonably inexpensive working teleoperation or telepresence control system for industrial robots used in the handling of hazardous materials. Several topics had to be addressed to perform this task including input devices, control systems, robot manipulators, and simulation techniques or packages. Much of the work is still in the developmental stage and hardware will follow -- providing a usable tool for glove box robot control

  7. Distributed Circumnavigation Control with Dynamic Spacings for a Heterogeneous Multi-robot System

    OpenAIRE

    Yao, Weijia; Luo, Sha; Lu, Huimin; Xiao, Junhao

    2018-01-01

    Circumnavigation control is useful in real-world applications such as entrapping a hostile target. In this paper, we consider a heterogeneous multi-robot system where robots have different physical properties, such as maximum movement speeds. Instead of equal-spacings, dynamic spacings according to robots' properties, which are termed utilities in this paper, will be more desirable in a scenario such as target entrapment. A distributed circumnavigation control algorithm based on utilities is ...

  8. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  9. Avoiding object by robot using neural network

    International Nuclear Information System (INIS)

    Prasetijo, D.W.

    1997-01-01

    A Self controlling robot is necessary in the robot application in which operator control is difficult. Serial method such as process on the computer of van newman is difficult to be applied for self controlling robot. In this research, Neural network system for robotic control system was developed by performance expanding at the SCARA. In this research, it was shown that SCARA with application at Neural network system can avoid blocking objects without influence by number and density of the blocking objects, also departure and destination paint. robot developed by this study also can control its moving by self

  10. Port-Based Modeling and Control for Efficient Bipedal Walking Robots

    NARCIS (Netherlands)

    Duindam, V.

    2006-01-01

    Research on walking robots has shown that the process of walking, in itself, requires little energy. Indeed, many robots have been built that walk with high efficiency. General analysis and control tools for such efficient walkers, however, are lacking, and many results are based on engineering

  11. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  12. Modelling and Control of the Multi-Stage Cable Pulley-Driven Flexible-Joint Robot

    Directory of Open Access Journals (Sweden)

    Phongsaen Pitakwatchara

    2014-07-01

    Full Text Available This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, the major loss throughout the system elements, and the typical inertial dynamics of the robot. Next, a task space impedance controller based on limited information about the angle and the current of the motors is designed. The motor current is used to infer the transmitted torque, by which the motor inertia may be modulated. The motor angle is employed to estimate the stationary distal robot link angle and the robot joint velocity. They are used in the controller to generate the desired damping force and to shape the potential energy of the flexible joint robot system to the desired configuration. Simulation and experimental results of the controlled system signify the competency of the proposed control law.

  13. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    OpenAIRE

    C. S. George Lee; Hsien-I Lin

    2013-01-01

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp ) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an...

  14. Hand Gesture Based Wireless Robotic Arm Control for Agricultural Applications

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Bandhyopadhyay, Shiva; Vamsy Vivek, Gedela; Juned Rahi, Muhammad

    2017-08-01

    One of the major challenges in agriculture is harvesting. It is very hard and sometimes even unsafe for workers to go to each plant and pluck fruits. Robotic systems are increasingly combined with new technologies to automate or semi automate labour intensive work, such as e.g. grape harvesting. In this work we propose a semi-automatic method for aid in harvesting fruits and hence increase productivity per man hour. A robotic arm fixed to a rover roams in the in orchard and the user can control it remotely using the hand glove fixed with various sensors. These sensors can position the robotic arm remotely to harvest the fruits. In this paper we discuss the design of hand glove fixed with various sensors, design of 4 DoF robotic arm and the wireless control interface. In addition the setup of the system and the testing and evaluation under lab conditions are also presented in this paper.

  15. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    Science.gov (United States)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  16. Watching elderly and disabled person's physical condition by remotely controlled monorail robot

    Science.gov (United States)

    Nagasaka, Yasunori; Matsumoto, Yoshinori; Fukaya, Yasutoshi; Takahashi, Tomoichi; Takeshita, Toru

    2001-10-01

    We are developing a nursing system using robots and cameras. The cameras are mounted on a remote controlled monorail robot which moves inside a room and watches the elderly. It is necessary to pay attention to the elderly at home or nursing homes all time. This requires staffs to pay attention to them at every time. The purpose of our system is to help those staffs. This study intends to improve such situation. A host computer controls a monorail robot to go in front of the elderly using the images taken by cameras on the ceiling. A CCD camera is mounted on the monorail robot to take pictures of their facial expression or movements. The robot sends the images to a host computer that checks them whether something unusual happens or not. We propose a simple calibration method for positioning the monorail robots to track the moves of the elderly for keeping their faces at center of camera view. We built a small experiment system, and evaluated our camera calibration method and image processing algorithm.

  17. Web Environment for Programming and Control of a Mobile Robot in a Remote Laboratory

    Science.gov (United States)

    dos Santos Lopes, Maísa Soares; Gomes, Iago Pacheco; Trindade, Roque M. P.; da Silva, Alzira F.; de C. Lima, Antonio C.

    2017-01-01

    Remote robotics laboratories have been successfully used for engineering education. However, few of them use mobile robots to to teach computer science. This article describes a mobile robot Control and Programming Environment (CPE) and its pedagogical applications. The system comprises a remote laboratory for robotics, an online programming tool,…

  18. Exploiting Child-Robot Aesthetic Interaction for a Social Robot

    OpenAIRE

    Lee, Jae-Joon; Kim, Dae-Won; Kang, Bo-Yeong

    2012-01-01

    A social robot interacts and communicates with humans by using the embodied knowledge gained from interactions with its social environment. In recent years, emotion has emerged as a popular concept for designing social robots. Several studies on social robots reported an increase in robot sociability through emotional imitative interactions between the robot and humans. In this paper conventional emotional interactions are extended by exploiting the aesthetic theories that the sociability of ...

  19. Smooth transition for CPG-based body shape control of a snake-like robot

    International Nuclear Information System (INIS)

    Nor, Norzalilah Mohamad; Ma, Shugen

    2014-01-01

    This paper presents a locomotion control based on central pattern generator (CPG) of a snake-like robot. The main point addressed in this paper is a method that produces a smooth transition of the body shape of a snake-like robot. Body shape transition is important for snake-like robot locomotion to adapt to different space widths and also for obstacle avoidance. By manipulating the phase difference of the CPG outputs instantly, it will results in a sharp point or discontinuity which lead to an unstable movement of the snake-like robot. To tackle the problem, we propose a way of controlling the body shape: by incorporating activation function in the phase oscillator CPG model. The simplicity of the method promises an easy implementation and simple control. Simulation results and torque analysis confirm the effectiveness of the proposed control method and thus, can be used as a locomotion control in various potential applications of a snake-like robot. (paper)

  20. Adaptive Robot Control – An Experimental Comparison

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2012-11-01

    Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.

  1. Design and Development of Mechanical Structure and Control System for Tracked Trailing Mobile Robot

    OpenAIRE

    Hongchuan Xu; Jianxing Ren; Rui Zhu; Zhiwei Chen

    2013-01-01

    Along with the science and technology unceasing progress, the uses of tracing robots become more and more widely. Tracked tracing robot was adopted as the research object in this paper, mechanical structure and control system of robot was designed and developmented. In mechanical structure design part, structure designed and positioned  were completed, including design of robot body, wheel, underpan, transmission structure and the positioning of batteries, control panel, sensors, etc, and the...

  2. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.

    Science.gov (United States)

    Lin, Hsien-I; Lee, C S George

    2013-07-02

    Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  3. Fuzzy control in robot-soccer, evolutionary learning in the first layer of control

    Directory of Open Access Journals (Sweden)

    Peter J Thomas

    2003-02-01

    Full Text Available In this paper an evolutionary algorithm is developed to learn a fuzzy knowledge base for the control of a soccer playing micro-robot from any configuration belonging to a grid of initial configurations to hit the ball along the ball to goal line of sight. The knowledge base uses relative co-ordinate system including left and right wheel velocities of the robot. Final path positions allow forward and reverse facing robot to ball and include its physical dimensions.

  4. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real-time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten-Maru. Additionally, we have developed a user-friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  5. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  6. Introduction to humanoid robotics

    CERN Document Server

    Kajita, Shuuji; Harada, Kensuke; Yokoi, Kazuhito

    2014-01-01

    This book is for researchers, engineers, and students who are willing to understand how humanoid robots move and be controlled. The book starts with an overview of the humanoid robotics research history and state of the art. Then it explains the required mathematics and physics such as kinematics of multi-body system, Zero-Moment Point (ZMP) and its relationship with body motion. Biped walking control is discussed in depth, since it is one of the main interests of humanoid robotics. Various topics of the whole body motion generation are also discussed. Finally multi-body dynamics is presented to simulate the complete dynamic behavior of a humanoid robot. Throughout the book, Matlab codes are shown to test the algorithms and to help the reader´s understanding.

  7. Prototype of Remote Controlled Robot Vehicle to Scan Radioactive Contaminated Areas

    International Nuclear Information System (INIS)

    Ratongasoandrazana, J.B.; Raoelina Andriambololona; Rambolamanana, G.; Andrianiaina, H.; Rajaobelison, J.

    2016-01-01

    The ionizing radiations are not directly audible by the organs of sense of the human being. Maintenance and handling of sources of such ionizing radiations present some risks of very serious and often irreversible accident for human organism. The works of experimentation and maintenance in such zone also present the risks requiring some minimum of precaution. Thus, the main objective of this work is to design and develop (hard- and software) a prototype of educational semi-autonomous Radio Frequency controlled robot-vehicle based on 8-bit AVR-RISC Flash microcontroller system (ATmega128L) able to detect, identify and map the radioactive contaminated area. An integrated video camera coupled with a UHF video transmitter module, placed in front of the robot, will be used as visual feedback control to well direct it toward a precise place to reach. The navigation information and the data collected are transmitted from the robot toward the Computer via 02 Radio Frequency Transceivers for peer-to-peer serial data transfer in half-duplex mode. A Joystick module which is connected to the Computer parallel port allows full motion control of the platform. Robot-vehicle user interface program for the PC has been designed to allow full control of all functions of the robot vehicles.

  8. R and D on robots for nuclear power plants in 'advanced robot technology' project

    International Nuclear Information System (INIS)

    Ando, Hiroaki

    1987-01-01

    The project aims at developing a safe man-robot system of high mobility and workability, highly adaptable to the working environment, and readily and reliably remote-controlled. The plan is to develop 'multi-purpose robots' that can do monitoring, inspection and light work quickly and correctly in areas where access of humans is difficult (e.g. hot spots and the inner space of the primary containment vessel), and 'robots used exclusively for valves, pumps, and other equipment, multi-functional to be used only for specific purposes'. This can be expected to be completed on the basis of results in research and development for the multi-purpose robots. R and D on the total system means manufacturing an optimum system with sufficient functions and performance required for the robot by combining existing technologies most adequately on the basis of the results of research and development on the project. After conceptual drawing and conceptual design, the system will be manufactured and demonstration tests will be completed by fiscal 1987 or 1988. This report describes the total image of the robots concerning the shape, locomotion, manipulation, perception, communication, control management, reliability and environmental durability, and then outlines the research and development activities regarding locomotion, manipulator, tectile sensor, actuator, single-eye three-dimensional measurement, visual data processing, optical spacial transmission, failure repair controller, functional reduction, robot health care and radiation resistance. (Nogami, K.)

  9. Intelligent control system Cellular Robotics Approach to Nuclear Plant control and maintenance

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Sekiyama, Kousuke; Xue Guoqing; Ueyama, Tsuyoshi.

    1994-01-01

    This paper presents the concept of Cellular Robotic System (CEBOT) and describe the strategy of a distributed sensing, control and planning as a Cellular Robotics Approach to the Nuclear Plant control and maintenance. Decentralized System is effective in large plant and The CEBOT possesses desirable features for realization of Nuclear Plant control and maintenance because of its flexibility and adaptability. Also, as related on going research work, self-organizing manipulator and communication issues are mentioned. (author)

  10. Landing Control of Foot with Springs for Walking Robots on Rough Terrain

    Directory of Open Access Journals (Sweden)

    Moyuru Yamada

    2009-09-01

    Full Text Available Landing control is one of the important issues for biped walking robot, because robots are expected to walk on not only known flat surfaces but also unknown and uneven terrain for working at various fields. This paper presents a new controller design for a robotic foot to land on unknown terrain. The robotic foot considered in this study equips springs to reduce the impact force at the foot landing. There are two objectives in the landing control; achieving the desired ground reaction force and positioning the foot on unknown terrain. To achieve these two objectives simultaneously by adjusting the foot position, we propose a PI force controller with a desired foot position, which guarantees the robust stability of control system with respect to terrain variance, and exact positioning of the foot to unknown terrain. Simulation results using the Open Dynamics Engine demonstrate the effectiveness of the proposed controller.

  11. Adaptive heterogeneous multi-robot teams

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  12. Myoelectric Control Techniques for a Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Alan Smith

    2011-01-01

    Full Text Available This work examines two different types of myoelectric control schemes for the purpose of rehabilitation robot applications. The first is a commonly used technique based on a Gaussian classifier. It is implemented in real time for healthy subjects in addition to a subject with Central Cord Syndrome (CCS. The myoelectric control scheme is used to control three degrees of freedom (DOF on a robot manipulator which corresponded to the robot's elbow joint, wrist joint, and gripper. The classes of motion controlled include elbow flexion and extension, wrist pronation and supination, hand grasping and releasing, and rest. Healthy subjects were able to achieve 90% accuracy. Single DOF controllers were first tested on the subject with CCS and he achieved 100%, 96%, and 85% accuracy for the elbow, gripper, and wrist controllers respectively. Secondly, he was able to control the three DOF controller at 68% accuracy. The potential applications for this scheme are rehabilitation and teleoperation. To overcome limitations in the pattern recognition based scheme, a second myoelectric control scheme is also presented which is trained using electromyographic (EMG data derived from natural reaching motions in the sagittal plane. This second scheme is based on a time delayed neural network (TDNN which has the ability to control multiple DOF at once. The controller tracked a subject's elbow and shoulder joints in the sagittal plane. Results showed an average error of 19° for the two joints. This myoelectric control scheme has the potential of being used in the development of exoskeleton and orthotic rehabilitation applications.

  13. Robotic Arm Control Algorithm Based on Stereo Vision Using RoboRealm Vision

    Directory of Open Access Journals (Sweden)

    SZABO, R.

    2015-05-01

    Full Text Available The goal of this paper is to present a stereo computer vision algorithm intended to control a robotic arm. Specific points on the robot joints are marked and recognized in the software. Using a dedicated set of mathematic equations, the movement of the robot is continuously computed and monitored with webcams. Positioning error is finally analyzed.

  14. Japan's ARTRA robot moves forward

    International Nuclear Information System (INIS)

    Takehara, Ken

    1992-01-01

    Work on the Japanese ARTRA robot has progressed to the point where a demonstration robot has been built. However, much work remains before ARTRA can realize its goal of developing a highly sophisticated remotely-controlled robot to replace the human maintenance worker in a radioactive environment. (author)

  15. End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-12-01

    Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.

  16. State Estimation for Tensegrity Robots

    Science.gov (United States)

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  17. Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

    OpenAIRE

    V. K. Banga; R. Kumar; Y. Singh

    2009-01-01

    In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimizatio...

  18. Analysis of balance control methods based on inverted pendulum for legged robots

    OpenAIRE

    Denisov, A.; Iakovlev, R.; Mamaev, I.; Pavliuk, N.

    2017-01-01

    Methods of balance control for a legged robot, the model of which is presented as a two-section inverted pendulum, are considered. The following balance methods for humanoid robots are analysed: the parallel algorithm of the network operator method; the method of natural synergies; the method of fuzzy control, the spherical inverted pendulum mode, a dual length linear inverted pendulum method. The best of these methods will be used in the development of the Russian anthropomorphic robot Antares.

  19. EXOS research on master controllers for robotic devices

    Science.gov (United States)

    Marcus, Beth A.; An, Ben; Eberman, Brian

    1992-01-01

    Two projects are currently being conducted by EXOS under the Small Business Innovation Research (SBIR) program with NASA. One project will develop a force feedback device for controlling robot hands, the other will develop an elbow and shoulder exoskeleton which can be integrated with other EXOS devices to provide whole robot arm and hand control. Aspects covered are the project objectives, important research issues which have arisen during the developments, and interim results of the projects. The Phase 1 projects currently underway will result in hardware prototypes and identification of research issues required for complete system development and/or integration.

  20. Robot Saltador y Procedimiento para su Control

    OpenAIRE

    Akinfiev, Teodor; Armada, Manuel; Fernández, Roemi; Montes, Héctor

    2005-01-01

    Robot saltador para el movimiento en terrenos con obstáculos, que contiene al menos un resorte (4) con uno de sus extremos unido al cuerpo (1) del robot, y una cadena cinemática entre el motor (5) y el resorte (4) que comprende un cilindro (7) conectado con el eje del motor (5) y una cuerda (8), con uno de sus extremos conectado al cilindro (7) y con el segundo extremo conectado al pie (3). El procedimiento de control se caracteriza porque en el momento en el que el pie (3) pierde el contacto...

  1. Active Tension Control for WT Wheelchair Robot by Using a Novel Control Law for Holonomic or Nonholonomic Systems

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2013-01-01

    Full Text Available Interactional characteristics between WT wheelchair robot and stair environment are analyzed, and possible patterns of WT wheelchair robot during the stair-climbing process are summarized, with the criteria of the wheelchair robot for determining the pattern proposed. Aiming at WT wheelchair robot's complicated mechanism with holonomic constraints and combined with the computed torque method, a novel control law that is called active tension control is presented for holonomic or nonholonomic robotic systems, by which the wheelchair robot with a holonomic or nonholonomic mechanism can track the reference input of the constraint forces of holonomic or nonholonomic constraints as well as tracking the reference input of the generalized coordinate of each joint. A stateflow module of Matlab is used to simulate the entire stair-climbing process for WT wheelchair robot. A comparison of output curve with the reference input curve of each joint is made, with the effectiveness of the presented control law verified.

  2. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  3. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    International Nuclear Information System (INIS)

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-01-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  4. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    Science.gov (United States)

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  5. An Integrated Framework for Human-Robot Collaborative Manipulation.

    Science.gov (United States)

    Sheng, Weihua; Thobbi, Anand; Gu, Ye

    2015-10-01

    This paper presents an integrated learning framework that enables humanoid robots to perform human-robot collaborative manipulation tasks. Specifically, a table-lifting task performed jointly by a human and a humanoid robot is chosen for validation purpose. The proposed framework is split into two phases: 1) phase I-learning to grasp the table and 2) phase II-learning to perform the manipulation task. An imitation learning approach is proposed for phase I. In phase II, the behavior of the robot is controlled by a combination of two types of controllers: 1) reactive and 2) proactive. The reactive controller lets the robot take a reactive control action to make the table horizontal. The proactive controller lets the robot take proactive actions based on human motion prediction. A measure of confidence of the prediction is also generated by the motion predictor. This confidence measure determines the leader/follower behavior of the robot. Hence, the robot can autonomously switch between the behaviors during the task. Finally, the performance of the human-robot team carrying out the collaborative manipulation task is experimentally evaluated on a platform consisting of a Nao humanoid robot and a Vicon motion capture system. Results show that the proposed framework can enable the robot to carry out the collaborative manipulation task successfully.

  6. ROBOT LITERACY AN APPROACH FOR SHARING SOCIETY WITH INTELLIGENT ROBOTS

    Directory of Open Access Journals (Sweden)

    Hidetsugu Suto

    2013-12-01

    Full Text Available A novel concept of media education called “robot literacy” is proposed. Here, robot literacy refers to the means of forming an appropriate relationship with intelligent robots. It can be considered a kind of media literacy. People who were born after the Internet age can be considered “digital natives” who have new morals and values and behave differently than previous generations in Internet societies. This can cause various problems among different generations. Thus, the necessity of media literacy education is increasing. Internet technologies, as well as robotics technologies are growing rapidly, and people who are born after the “home robot age,” whom the author calls “robot natives,” will be expected to have a certain degree of “robot literacy.” In this paper, the concept of robot literacy is defined and an approach to robot literacy education is discussed.

  7. Safety Supervisory Strategy for an Upper-Limb Rehabilitation Robot Based on Impedance Control

    Directory of Open Access Journals (Sweden)

    Lizheng Pan

    2013-02-01

    Full Text Available User security is an important consideration for robots that interact with humans, especially for upper-limb rehabilitation robots, during the use of which stroke patients are often more susceptible to injury. In this paper, a novel safety supervisory control method incorporating fuzzy logic is proposed so as to guarantee the impaired limb's safety should an emergency situation occur and the robustness of the upper-limb rehabilitation robot control system. Firstly, a safety supervisory fuzzy controller (SSFC was designed based on the impaired-limb's real-time physical state by extracting and recognizing the impaired-limb's tracking movement features. Then, the proposed SSFC was used to automatically regulate the desired force either to account for reasonable disturbance resulting from pose or position changes or to respond in adequate time to an emergency based on an evaluation of the impaired-limb's physical condition. Finally, a position-based impedance controller was implemented to achieve compliance between the robotic end-effector and the impaired limb during the robot-assisted rehabilitation training. The experimental results show the effectiveness and potential of the proposed method for achieving safety and robustness for the rehabilitation robot.

  8. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  9. Maximizing Function through Intelligent Robot Actuator Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing Function through Intelligent Robot Actuator Control Successful missions to Mars and beyond will only be possible with the support of high-performance...

  10. The design of robust independence multivariable controller for robot manipulator using inverse dynamics

    International Nuclear Information System (INIS)

    Han, Sung Hyun

    1993-01-01

    This paper proposes a new approach to the design of multivariable control schemes for assembly robot manipulator to achieve accuracy trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and a feedback controller. In this control scheme, the feedback controller is proportional integral-derivative type and is designed to achieve the pole placement. The feedforward controller is the inverse of the linealized model of robot manipulator dynamics. The feedback controller ensures that each joint tracks any reference trajectory. The proposed robot controller scheme has a computationally efficient schemes for either offline gain scheduling or online gain computation to account for variations in the linealized robot dynamic model due to changes in operating point. The simulation results demonstrate that the proposed control schemesperporms remarkably well for parameter uncertainties and load variations. (Author)

  11. Towards Behavior Control for Evolutionary Robot Based on RL with ENN

    Directory of Open Access Journals (Sweden)

    Jingan Yang

    2012-03-01

    Full Text Available This paper proposes a behavior-switching control strategy of anevolutionary robotics based on Artificial NeuralNetwork (ANN and Genetic Algorithms (GA. This method is able not only to construct thereinforcement learning models for autonomous robots and evolutionary robot modules thatcontrol behaviors and reinforcement learning environments, and but also to perform thebehavior-switching control and obstacle avoidance of an evolutionary robotics (ER intime-varying environments with static and moving obstacles by combining ANN and GA.The experimental results on thebasic behaviors and behavior-switching control have demonstrated that ourmethod can perform the decision-making strategy and parameters set opimization ofFNN and GA by learning and can escape successfully from the trap of a localminima and avoid \\emph{"motion deadlock" status} of humanoid soccer robotics agents,and reduce the oscillation of the planned trajectory betweenthe multiple obstacles by crossover and mutation. Some results of the proposed algorithmhave been successfully applied to our simulation humanoid robotics soccer team CIT3Dwhich won \\emph{the 1st prize} of RoboCup Championship and ChinaOpen2010 (July 2010 and \\emph{the $2^{nd}$ place}of the official RoboCup World Championship on 5-11 July, 2011 in Istanbul, Turkey.As compared with the conventional behavior network and the adaptive behavior method,the genetic encoding complexity of our algorithm is simplified, and the networkperformance and the {\\em convergence rate $\\rho$} have been greatlyimproved.

  12. Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-01-01

    Full Text Available Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR with wireless sensor network- (WSN- based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach.

  13. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.

    Science.gov (United States)

    Kinnaird, Catherine R; Ferris, Daniel P

    2009-02-01

    A previous study from our laboratory showed that when soleus electromyography was used to control the amount of plantar flexion assistance from a robotic ankle exoskeleton, subjects significantly reduced their soleus activity to quickly return to normal gait kinematics. We speculated that subjects were primarily responding to the local mechanical assistance of the exoskeleton rather than directly attempting to reduce exoskeleton mechanical power via decreases in soleus activity. To test this observation we studied ten healthy subjects walking on a treadmill at 1.25 m/s while wearing a robotic exoskeleton proportionally controlled by medial gastrocnemius activation. We hypothesized that subjects would primarily decrease soleus activity due to its synergistic mechanics with the exoskeleton. Subjects decreased medial gastrocnemius recruitment by 12% ( p exoskeleton (soleus). These findings indicate that anatomical morphology needs to be considered carefully when designing software and hardware for robotic exoskeletons.

  14. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  15. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    Science.gov (United States)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  16. Quasi-dynamic walk of a quadruped locomotion robot using optimal tracking control

    International Nuclear Information System (INIS)

    Uchida, Hiroaki; Nonami, Kenzo; Chiba, Yasunori; Koyama, Kakutaro.

    1994-01-01

    Recently, many research works of quadruped locomotion robots, which are considered to be operable on irregular terrain, have been carried out. In the case of realizing ideal motion control of the quadruped locomotion robot, it is assumed that hierarchical cooperative control consisting of decentralized control and centralized control is desirable. In the case that the locomotion robot moves at high speed, it is impossible to follow the desired trajectory because using only the feedback control method includes time delay. It is known that feedforward control input is valid for such motion control. In this paper, decentralized control is realized to apply optimal tracking control using feedforward control input to the quadruped locomotion robot, as the first step. As a result, it is determined that the angle variation of the foot and the stride applying optimal tracking control input are large compared with using only feedback control. It is verified that feedforward control input is useful to control the trajectory of the tip of the foot in high speed locomotion. (author)

  17. An Ultralightweight and Living Legged Robot.

    Science.gov (United States)

    Vo Doan, Tat Thang; Tan, Melvin Y W; Bui, Xuan Hien; Sato, Hirotaka

    2018-02-01

    In this study, we describe the most ultralightweight living legged robot to date that makes it a strong candidate for a search and rescue mission. The robot is a living beetle with a wireless electronic backpack stimulator mounted on its thorax. Inheriting from the living insect, the robot employs a compliant body made of soft actuators, rigid exoskeletons, and flexure hinges. Such structure would allow the robot to easily adapt to any complex terrain due to the benefit of soft interface, self-balance, and self-adaptation of the insect without any complex controller. The antenna stimulation enables the robot to perform not only left/right turning but also backward walking and even cessation of walking. We were also able to grade the turning and backward walking speeds by changing the stimulation frequency. The power required to drive the robot is low as the power consumption of the antenna stimulation is in the order of hundreds of microwatts. In contrast to the traditional legged robots, this robot is of low cost, easy to construct, simple to control, and has ultralow power consumption.

  18. Image-based Fuzzy Parking Control of a Car-like Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yin Yin Aye

    2017-03-01

    Full Text Available This paper develops a novel automatic parking system using an image-based fuzzy controller, where in the reasoning the slope and intercept of the desired target line are used for the inputs, and the steering angle of the robot is generated for the output. The objective of this study is that a robot equipped with a camera detects a rectangular parking frame, which is drawn on the floor, based on image processing. The desired target line to be followed by the robot is generated by using Hough transform from a captured image. The fuzzy controller is designed according to experiments of skilled driver, and the fuzzy rules are tuned and the fuzzy membership functions are optimized by experimentally for output. The effectiveness of the proposed method is demonstrated through some experimental results with an actual mobile robot

  19. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.

    Science.gov (United States)

    Vu, Dinh-Son; Allard, Ulysse Cote; Gosselin, Clement; Routhier, Francois; Gosselin, Benoit; Campeau-Lecours, Alexandre

    2017-07-01

    Robotic assistive devices enhance the autonomy of individuals living with physical disabilities in their day-to-day life. Although the first priority for such devices is safety, they must also be intuitive and efficient from an engineering point of view in order to be adopted by a broad range of users. This is especially true for assistive robotic arms, as they are used for the complex control tasks of daily living. One challenge in the control of such assistive robots is the management of the end-effector orientation which is not always intuitive for the human operator, especially for neophytes. This paper presents a novel orientation control algorithm designed for robotic arms in the context of human-robot interaction. This work aims at making the control of the robot's orientation easier and more intuitive for the user, in particular, individuals living with upper limb disabilities. The performance and intuitiveness of the proposed orientation control algorithm is assessed through two experiments with 25 able-bodied subjects and shown to significantly improve on both aspects.

  20. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2017-12-01

    Full Text Available Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  1. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Implementation of Admittance Control on a Construction Robot using Load Cells

    DEFF Research Database (Denmark)

    Bekker, Misha; Pedersen, Rasmus; Bak, Thomas

    2018-01-01

    Physical human-robot interactions (pHRI) must be safe and should feel natural to the human operator. To this end impedance or admittance control is often employed to relate the force applied by the human to the dynamic behavior of the robot. The robot under consideration in this work uses a load...... cell to sense the externally applied force. This paper presents a practical modeling procedure and implementation of admittance control that specifically deal with the undesired non-linearities caused by the use of a load cell. Experiments are performed on a 1-DoF testbed to validate the work done...

  3. Fuzzy Control of Robotic Arm

    Science.gov (United States)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  4. A Comparison of Types of Robot Control for Programming by Demonstration

    DEFF Research Database (Denmark)

    Fischer, Kerstin; Kirstein, Franziska; Jensen, Lars Christian

    2016-01-01

    Programming by Demonstration (PbD) is an efficient way for non-experts to teach new skills to a robot. PbD can be carried out in different ways, for instance, by kinesthetic guidance, teleoperation or by using external controls. In this paper, we compare these three ways of controlling a robot in...

  5. Position Control Method For Pick And Place Robot Arm For Object Sorting System

    Directory of Open Access Journals (Sweden)

    Khin Moe Myint

    2015-08-01

    Full Text Available The more increase the number of industries in developing countries the more require labourers or workers in that. To reduce the cost of labour force and to increase the manufacturing capacity of industries the advanced robot arms are more needed. The aim of this journal is to eliminate the manual control for object sorting system.Robot arm design in this research uses two joints three links and servo motors to drive. Microcontroller is used to generate required PWM signal for servo motors. In this research the position control of robot arm was designed by using kinematic control methods. There are two types of kinematic control methods which are forward and reverse kinematic methods. In forward kinematic method the input parameters are the joint angles and link length of robot arm and then the output is the position at XYZ coordinate of tool or gripper. In inverse kinematic the input parameters are position at XYZ coordinate of gripper and the link length of robot arm and then the output parameters are the joint angles. So kinematic methods can explain the analytical description of the geometry motion of the manipulator with reference to a robot coordinate system fixed to a frame without consideration of the forces or the moments causing the movements. For sorting system Metal detector is used to detect the metal or non-metal. This position control of pick and place robot arm is fully tested and the result is obtained more precisely.

  6. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  7. Robots de servicio

    Directory of Open Access Journals (Sweden)

    Rafael Aracil

    2008-04-01

    Full Text Available Resumen: El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año 2000 las áreas de aplicación de los Robots de Servicios, que se pueden dividir en dos grandes grupos: 1 sectores productivos no manufactureros tales como edificación, agricultura, naval, minería, medicina, etc. y 2 sectores de servicios propiamente dichos: asistencia personal, limpieza, vigilancia, educación, entretenimiento, etc. En este trabajo se hace una breve revisión de los principales conceptos y aplicaciones de los robots de servicio. Palabras clave: Robots de servicio, robots autónomos, robots de exteriores, robots de educación y entretenimiento, robots caminantes y escaladores, robots humanoides

  8. Compliance control based on PSO algorithm to improve the feeling during physical human-robot interaction.

    Science.gov (United States)

    Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei

    2016-01-01

    Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.

  9. Simulation of Intelligent Single Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    Maki K. Rashid

    2008-11-01

    Full Text Available Stabilization of a single wheel mobile robot attracted researcher attentions in robotic area. However, the budget requirements for building experimental setups capable in investigating isolated parameters and implementing others encouraged the development of new simulation methods and techniques that beat such limitations. In this work we have developed a simulation platform for testing different control tactics to stabilize a single wheel mobile robot. The graphic representation of the robot, the dynamic solution, and, the control scheme are all integrated on common computer platform using Visual Basic. Simulation indicates that we can control such robot without knowing the detail of it's internal structure or dynamics behaviour just by looking at it and using manual operation tactics. Twenty five rules are extracted and implemented using Takagi-Sugeno's fuzzy controller with significant achievement in controlling robot motion during the dynamic simulation. The resulted data from the successful implementation of the fuzzy model are used to utilize and train a neurofuzzy controller using ANFIS scheme to produce further improvement in robot performance

  10. Concurrent Path Planning with One or More Humanoid Robots

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor)

    2014-01-01

    A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.

  11. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  12. Teen Sized Humanoid Robot: Archie

    Science.gov (United States)

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  13. Analysis of balance control methods based on inverted pendulum for legged robots

    Directory of Open Access Journals (Sweden)

    Denisov Alexander

    2017-01-01

    Full Text Available Methods of balance control for a legged robot, the model of which is presented as a two-section inverted pendulum, are considered. The following balance methods for humanoid robots are analysed: the parallel algorithm of the network operator method; the method of natural synergies; the method of fuzzy control, the spherical inverted pendulum mode, a dual length linear inverted pendulum method. The best of these methods will be used in the development of the Russian anthropomorphic robot Antares.

  14. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.

    Science.gov (United States)

    Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting

    2015-09-01

    This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.

  15. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  16. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics

    Science.gov (United States)

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645

  17. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    Palmer, “Development of a navigation system for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME Int. Conf. on Mechatronic ...and Embedded Systems and Applications, Suzhou, China, 2012, pp. 257-262. [30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM...OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples

  18. Studying Robots Outside the Lab

    DEFF Research Database (Denmark)

    Blond, Lasse

    and ethnographic studies will enhance understandings of the dynamics of HRI. Furthermore, the paper emphasizes how users and the context of use matters to integration of robots, as it is shown how roboticists are unable to control how their designs are implemented in practice and that the sociality of social...... robots is inscribed by its users in social practice. This paper can be seen as a contribution to studies of long-term HRI. It presents the challenges of robot adaptation in practice and discusses the limitations of the present conceptual understanding of human-robotic relations. The ethnographic data......As more and more robots enter our social world there is a strong need for further field studies of human-robotic interaction. Based on a two-year ethnographic study of the implementation of the South Korean socially assistive robot in Danish elderly care this paper argues that empirical...

  19. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    Science.gov (United States)

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  20. Image-Based Visual Servoing for Robotic Systems: A Nonlinear Lyapunov-Based Control Approach

    International Nuclear Information System (INIS)

    Dixon, Warren

    2002-01-01

    The objective of this project is to enable current and future EM robots with an increased ability to perceive and interact with unstructured and unknown environments through the use of camera-based visual servo controlled robots. The scientific goals of this research are to develop a new visual servo control methodology that: (1) adapts for the unknown camera calibration parameters (e.g., focal length, scaling factors, camera position and orientation) and the physical parameters of the robotic system (e.g., mass, inertia, friction), (2) compensates for unknown depth information (extract 3D information from the 2D image), and (3) enables multi-uncalibrated cameras to be used as a means to provide a larger field-of-view. Nonlinear Lyapunov-based techniques are being used to overcome the complex control issues and alleviate many of the restrictive assumptions that impact current visual servo controlled robotic systems. The potential relevance of this control methodology will be a plug-and-play visual servoing control module that can be utilized in conjunction with current technology such as feature extraction and recognition, to enable current EM robotic systems with the capabilities of increased accuracy, autonomy, and robustness, with a larger field of view (and hence a larger workspace). These capabilities will enable EM robots to significantly accelerate D and D operations by providing for improved robot autonomy and increased worker productivity, while also reducing the associated costs, removing the human operator from the hazardous environments, and reducing the burden and skill of the human operators

  1. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  2. CMS cavern inspection robot

    CERN Document Server

    Ibrahim, Ibrahim

    2017-01-01

    Robots which are immune to the CMS cavern environment, wirelessly controlled: -One actuated by smart materials (Ionic Polymer-Metal Composites and Macro Fiber Composites) -One regular brushed DC rover -One servo-driven rover -Stair-climbing robot

  3. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  4. Review of surgical robotics user interface: what is the best way to control robotic surgery?

    Science.gov (United States)

    Simorov, Anton; Otte, R Stephen; Kopietz, Courtni M; Oleynikov, Dmitry

    2012-08-01

    As surgical robots begin to occupy a larger place in operating rooms around the world, continued innovation is necessary to improve our outcomes. A comprehensive review of current surgical robotic user interfaces was performed to describe the modern surgical platforms, identify the benefits, and address the issues of feedback and limitations of visualization. Most robots currently used in surgery employ a master/slave relationship, with the surgeon seated at a work-console, manipulating the master system and visualizing the operation on a video screen. Although enormous strides have been made to advance current technology to the point of clinical use, limitations still exist. A lack of haptic feedback to the surgeon and the inability of the surgeon to be stationed at the operating table are the most notable examples. The future of robotic surgery sees a marked increase in the visualization technologies used in the operating room, as well as in the robots' abilities to convey haptic feedback to the surgeon. This will allow unparalleled sensation for the surgeon and almost eliminate inadvertent tissue contact and injury. A novel design for a user interface will allow the surgeon to have access to the patient bedside, remaining sterile throughout the procedure, employ a head-mounted three-dimensional visualization system, and allow the most intuitive master manipulation of the slave robot to date.

  5. Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts’s-Law-Inspired Approach

    Directory of Open Access Journals (Sweden)

    C. S. George Lee

    2013-07-01

    Full Text Available Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts’s law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.

  6. Robotics — Inspired from Nature

    Directory of Open Access Journals (Sweden)

    Huosheng Hu

    2012-04-01

    Full Text Available It is my great pleasure to welcome you to a new open access journal, Robotics, which is dedicated to both the foundations of artificial intelligence, bio-mechanics, mechatronics and control theories, and the real-world applications of robotic perception, cognition and actions. This includes the innovative scientific trends, and discovery resulting from solving new challenges in the field of robotics. Its open access and rapid dissemination are the unique features separating this journal from all existing journals dedicated to robotics. [...

  7. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  8. Fuzzy controller for better tennis ball robot | Nguyen | Journal of ...

    African Journals Online (AJOL)

    This paper aims at designing a tennis ball robot as a training facility for tennis players. The robot is built with fuzzy controller which provides proper techniques for the players to gain practical experience as well as technical skills; thus, it can effectively serve the community and train athletes in the high-performance sport.

  9. Locomotor Sub-functions for Control of Assistive Wearable Robots

    OpenAIRE

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated:...

  10. Towards Simulation of Custom Industrial Robots

    OpenAIRE

    Marcu, Cosmin; Robotin, Radu

    2008-01-01

    In order to create a simulator for custom industrial robots, it is very important to know the forward and inverse kinematics equations of the robot structure, the controller output data and the limitations of the robot mechanical components. In this paper we presented the steps for building a simulation program for a custom industrial robot. The first step was the robot modeling where we obtained the forward and inverse kinematics equations used as motion laws both for the simulated and for t...

  11. Fiscal 1997 report on the results of the international standardization R and D. Robot control system; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Robot seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the robot control system was conducted in the following items: 1) integrated open control system, 2) remote control robot manipulation language, 3) human factor robot use built-in LAN system, 4) built-in actuator driver. In 1), there were some problems to be pointed out around the system, but the effectiveness was confirmed as system architecture of each verification item. In 2), development/design were made of RCML(R-Cube Manipulation Language) as a remote robot manipulation language, telecommunication protocol, and the experimental system, and the international standardization was targeted. In 3), the R and D was conducted of the realtime telecommunication protocol which clears the standards for the distributed control required for construction of human factor robot and the advanced realtime micro-controller, ULSI, which is the one that the protocol was made IC. In 4), an intelligent connector for built-in actuator was developed which enables saving of wiring in robot system and plug-in connection. 13 refs., 186 figs., 53 tabs.

  12. Serendipitous Offline Learning in a Neuromorphic Robot

    Directory of Open Access Journals (Sweden)

    Terrence C Stewart

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS, and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker. Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour.

  13. 30 Years of Robotic Surgery.

    Science.gov (United States)

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  14. Tele-operated service robots : ROSE

    NARCIS (Netherlands)

    Osch, van M.P.W.J.; Bera, D.; Hee, van K.M.; Koks, Y.; Zeegers, H.

    2014-01-01

    Service robots are robots that are intended to perform tasks normally done by humans in an environment in which humans work as well. However, they are neither required to accomplish these tasks in the same way as humans nor need to look like a human being. A tele-operated robot is controlled from a

  15. Light-driven robotics for nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2013-01-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires...... and matter for robotically probing at the smallest biological length scales....

  16. Human-Robot Teaming: From Space Robotics to Self-Driving Cars

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    In this talk, I describe how NASA Ames has been developing and testing robots for space exploration. In our research, we have focused on studying how human-robot teams can increase the performance, reduce the cost, and increase the success of space missions. A key tenet of our work is that humans and robots should support one another in order to compensate for limitations of manual control and autonomy. This principle has broad applicability beyond space exploration. Thus, I will conclude by discussing how we have worked with Nissan to apply our methods to self-driving cars, enabling humans to support autonomous vehicles operating in unpredictable and difficult situations.

  17. Laboratory experiments in mobile robot navigation

    International Nuclear Information System (INIS)

    Kar, Asim; Pal, Prabir K.

    1997-01-01

    Mobile robots have potential applications in remote surveillance and operation in hazardous areas. To be effective, they must have the ability to navigate on their own to desired locations. Several experimental navigational runs of a mobile robot developed have been conducted. The robot has three wheels of which the front wheel is steered and the hind wheels are driven. The robot is equipped with an ultrasonic range sensor, which is turned around to get range data in all directions. The range data is fed to the input of a neural net, whose output steers the robot towards the goal. The robot is powered by batteries (12V 10Ah). It has an onboard stepper motor controller for driving the wheels and the ultrasonic setup. It also has an onboard computer which runs the navigation program NAV. This program sends the range data and configuration parameters to the operator''s console program OCP, running on a stationary PC, through radio communication on a serial line. Through OCP, an operator can monitor the progress of the robot from a distant control room and intervene if necessary. In this paper the control modules of the mobile robot, its ways of operation and also results of some of the experimental runs recorded are reported. It is seen that the trained net guides the mobile robot through gaps of 1m and above to its destination with about 84% success measured over a small sample of 38 runs

  18. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  19. Optimizing a mobile robot control system using GPU acceleration

    Science.gov (United States)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  20. A set of decentralized PID controllers for an n–link robot manipulator

    Indian Academy of Sciences (India)

    A class of stabilizing decentralized proportional integral derivative (PID) controllers for an -link robot manipulator system is proposed. The range of decentralized PID controller parameters for an -link robot manipulator is obtained using Kharitonov theorem and stability boundary equations. Basically, the proposed design ...

  1. Robotics On-Board Trainer (ROBoT)

    Science.gov (United States)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  2. WebotsTM: Professional Mobile Robot Simulation

    Directory of Open Access Journals (Sweden)

    Olivier Michel

    2008-11-01

    Full Text Available Cyberbotics Ltd. develops WebotsTM, a mobile robotics simulation software that provides you with a rapid prototyping environment for modelling, programming and simulating mobile robots. The provided robot libraries enable you to transfer your control programs to several commercially available real mobile robots. WebotsTM lets you define and modify a complete mobile robotics setup, even several different robots sharing the same environment. For each object, you can define a number of properties, such as shape, color, texture, mass, friction, etc. You can equip each robot with a large number of available sensors and actuators. You can program these robots using your favorite development environment, simulate them and optionally transfer the resulting programs onto your real robots. WebotsTM has been developed in collaboration with the Swiss Federal Institute of Technology in Lausanne, thoroughly tested, well documented and continuously maintained for over 7 years. It is now the main commercial product available from Cyberbotics Ltd.

  3. System and method for seamless task-directed autonomy for robots

    Science.gov (United States)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas; Walton, Miles

    2012-09-18

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.

  4. Robot Formations Using Only Local Sensing and Control

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Matarić, Maja J

    2001-01-01

    , behaviorbased algorithm that solves the problem for N robots each equipped with sonar, laser, camera, and a radio link for communicating with other robots. The method uses the idea of keeping a single friend at a desired angle (by panning the camera and keeping the friend centered in the image), and only......We study the problem of achieving global behavior in a group of robots using only local sensing and interaction, in the context of formations, where the goal is to have N mobile robots establish and maintain some predetermined geometric shape. We have devised a simple, general, robust, localized...... communicating heartbeat messages. We also developed a general analytical method for evaluating formations and applied it to our algorithm. We validate our algorithm both in simulation and with physical robots....

  5. Research on the inspection robot for cable tunnel

    Science.gov (United States)

    Xin, Shihao

    2017-03-01

    Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.

  6. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  7. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  8. Implementación de un control fuzzy para el control cinemático directo en un robot manipulador Implementation of a fuzzy control for the direct kinematic control of a robot manipulator

    Directory of Open Access Journals (Sweden)

    D.A Tibaduiza

    2011-12-01

    Full Text Available En este artículo se muestra el desarrollo e implementación de la lógica difusa como herramienta de control de posición para cada una de las articulaciones de un robot tipo PUMA. Se hace una descripción general del robot y se muestra el cálculo del volumen de trabajo, el cual es usado para la fuzzificación en el desarrollo del controlador. Finalmente es mostrado el desarrollo y la simulación del controlador usando la toolbox fuzzy de Matlab, así como la descripción de una implementación realizada en un PLC.In this article, the development and implementation of a fuzzy logic system as position control tool of each one of the joints in a PUMA robot is shown. A general description, which include general descriptions about the robot as workspace and therefore the development of the strategy of control with the definition of the rules in the fuzzification process is also included. Finally are shown the development and simulation of the controller using the fuzzy control toolbox of Matlab and the description of a implementation in a PLC.

  9. Are Sex Robots as Bad as Killing Robots

    OpenAIRE

    Richardson, Kathleen

    2016-01-01

    In 2015 the Campaign Against Sex Robots was launched to draw attention to the technological production of new kinds of objects: sex robots of women and children. The campaign was launched shortly after the Future of Life Institute published an online petition: “Autonomous Weapons: An Open Letter From AI and Robotics Researchers” which was signed by leading luminaries in the field of AI and Robotics. In response to the Campaign, an academic at Oxford University opened an ethics thread “Are sex...

  10. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  11. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  12. Innovation in Robotic Surgery: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Suresh V Deshpande

    2015-01-01

    Full Text Available Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  13. Innovation in robotic surgery: the Indian scenario.

    Science.gov (United States)

    Deshpande, Suresh V

    2015-01-01

    Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  14. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  15. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  16. Control of walking robots using virtual springs

    NARCIS (Netherlands)

    van Oort, Gijs; Stramigioli, Stefano; Gevers, M.; Sepulchre, R.

    2009-01-01

    At the Control Engineering group of the University of Twente, we are conducting research on control of bipedal robots. In our search for robust and energy efficient control, we are making extensive use of simulation. In order to facil- itate the development of algorithms, we want to design con-

  17. The Walk-Man Robot Software Architecture

    Directory of Open Access Journals (Sweden)

    Mirko Ferrati

    2016-05-01

    Full Text Available A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot participant at the Darpa Robotics Challenge. The challenge required the robot to execute many different tasks, such as walking, driving a car, and manipulating objects. These tasks need to be solved by robotics specialists in their corresponding research field, such as humanoid walking, motion planning, or object manipulation. The proposed architecture was developed in 10 months, provided boilerplate code for most of the functionalities required to control a humanoid robot and allowed robotics researchers to produce their control modules for DRC tasks in a short time. Additional capabilities of the architecture include firmware and hardware management, mixing of different middlewares, unreliable network management, and operator control station GUI. All the source code related to the architecture and some control modules have been released as open source projects.

  18. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot

    Czech Academy of Sciences Publication Activity Database

    Alexandrov, A.V.; Lippi, V.; Mergner, T.; Frolov, A. A.; Hettich, G.; Húsek, Dušan

    2017-01-01

    Roč. 11, 25 April (2017), č. článku 22. ISSN 1662-5188 Institutional support: RVO:67985807 Keywords : human sensorimotor system * neuromechanics * biorobotics * motor control * eigenmovements Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Robotics and automatic control Impact factor: 1.821, year: 2016

  19. Origami-based earthworm-like locomotion robots.

    Science.gov (United States)

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  20. Robotics research at Electrotechnical Laboratory-R and D program for advanced robot technology

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, S; Akahori, H; Shirai, Y; Kakikura, M

    1983-01-01

    The purposes of this paper are both to introduce the outline of robotics researches at Electrotechnical Laboratory and to describe the relation between those researches and the national project so called robotics for critical work. The authors first describe the robotics researches and related topics historically which have been continued from the latter half of 1960s as a part of researches on artificial intelligence at Electrotechnical Laboratory. Secondly, they mention the present aspects of our researches, its relation with past results, and changes of basic concepts on robotics systems. Finally, as an extension of our researches, they propose some approaches to establish the following techniques which make very important roles for the success of the national project; (1) manipulation techniques, (2) sensor techniques, (3) autonomous robot control techniques, (4) advanced tele-operation techniques and, (5) system totalizing techniques. 15 references.