WorldWideScience

Sample records for river water quality

  1. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  2. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  3. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  4. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  5. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  6. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  7. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  8. Evaluation of Ravi river water quality

    International Nuclear Information System (INIS)

    Ahmed, K.; Ali, W.

    2000-01-01

    Investigation from 1989 to 1998 on river Ravi pollution was carried out to study the effects of wastewater discharges on its water quality in relation to its various water use. The sources of pollution entering the river between Syphon (20 Km upstream) and Balloki Head works (75 Km downstream) includes Upper Chenab Canal (U.C.) which bring industrial effluents through Deg municipal swage from the city of Lahore. Investigation revealed that the flow in the river are highly variable with time during the year U.C. canal with a capacity of 220 m/sup 3//S at the tail and Qadiarabad (Q.B.) Link canal with a capacity of 410 m3/S are mainly responsible for higher flows during dry season. A desecrating trend has been observed in the D.O. Levels indicating increasing pollution. Over times D.O values are above 4 mg/l indicating recovery due to dilution biodegradation and aeration. An increasing trend has been observed in Biochemical Oxygen Demand (BOD), suspended solids, total dissolved solids and indicator organisms. Even with the discharges of pollutions from U.C. canal, Hudiara Nullah and city sewage, BOD at Balloki was unexpectedly low. It was investigated that because of pollution free Q.B. link canal which joins the river just before Balloki Head works makes the water diluted, which accounted for low BOD. Water of river Ravi meet the chemical water quality requirement for irrigation. However the water quality does not meet the coliform and faecal coliform criteria for most water use. (orig../A.B.)

  9. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  10. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  11. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  12. Biomarker as an Indicator of River Water Quality Degradation

    Directory of Open Access Journals (Sweden)

    Dwina Roosmini

    2006-11-01

    Full Text Available Generally physical and chemical methods are use in river water quality monitoring; currently biomarker is developed as alternative biomonitoring method. The aim of this study is to look at the probability using aquatic species in monitoring river water pollutants exposure. This study was done by using Hyposarcus pardalis as biomarker to analyze river water quality in Upstream Citarum River. Hyposarcus pardalis were taken along the river at five sampling point and look at the Cu and Zn concentration. Results from this study show that there was an indication that river water quality has been degrading along the river from upstream to downstream. Zn concentration in Hyposarcus pardalis were increasing as well as Cu concentration. The increase of Zn concentration in Hyposarcus pardalis indicating that the river was polluted by Zn. Secondary data and observation at sampling location shown that textile was the dominant industry which may contribute the Zn concentration in river as they received the effluent. Cu is use in metal coating process, as well as textile industry metal industries were identified at Majalaya, Bantar Panjang, Dayeuh Kolot and Katapang in Bandung-Indonesia. As a receiving water from many activities along the river, upstream Citarum River water quality become degrading as the increasing of heavy metal Zn and Cu concentration in Hyposarcus pardalis.

  13. Evaluation Of Water Quality At River Bian In Merauke Papua

    Science.gov (United States)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  14. Evaluation Of Water Quality At River Bian In Merauke Papua

    Directory of Open Access Journals (Sweden)

    Djaja Irba

    2018-01-01

    Full Text Available River Bian in Merauke Regency has been utilized by local people in Papua (the Marind who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  15. Water quality study of Sunter River in Jakarta, Indonesia

    Science.gov (United States)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  16. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  17. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    Water quality (pH, suspended solids, chlorides, DO, BOD, reactive and total phosphorus, nitrates and boron) of River Damanganga which receives 0.2 mld of industrial waste into its fresh water zone through Pimparia River and 3.7 mld in its tidal zone...

  18. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  19. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  20. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  1. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  2. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  3. Water quality assessment of the Shatt al-Arab River, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Moyel

    2015-06-01

    Full Text Available Objective: To assess suitability of the water quality of Shatt al-Arab River for protection of aquatic life, potable water supply and irrigation uses. Methods: The Shatt al-Arab River was monitored on a monthly basis from July 2009 to June 2010. A water quality index (WQI was calculated to assess the suitability of water for protection of aquatic life, potable water supply and irrigation uses during the dry season from July to December 2009 and the wet season from January until June 2010. Results: The results of the WQI showed that the lowest water quality values were scored during the dry season for all three uses of the river. Marginal water quality values were recorded for protection of aquatic life and fair (upstream to poor (downstream water quality values were recorded for irrigation uses. Moreover, the river water was not suitable for potable water supply without elaborate treatment. Conclusions: Deterioration of the Shatt al-Arab water quality has been attributed to reduced freshwater discharges from Tigris and Euphrates Rivers, low annual precipitations and an advancing salt wedge from the Arabian Gulf. However, a combination of those factors such as low riverine discharge and advancing salt wedge with a continuous discharge of agriculture, oil industry and urban point effluent has polluted the waters and fostered the decline of the Shatt al-Arab River water quality during the study period. The study indicated that application of WQIs was a useful tool to monitor and assess the overall water quality of the Shatt al-Arab River.

  4. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  5. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  6. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  7. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  8. Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)

    Science.gov (United States)

    Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh

    2018-03-01

    Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.

  9. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    FDC analysis showed that over 80% of the time, all rivers in the study area would not meet the target community's water demand, without the dams in place. Water quality assessments show biological contamination as the major water quality problem. Significant seasonal variation in water quality is evident, with the dry ...

  10. Trend analysis of a tropical urban river water quality in Malaysia.

    Science.gov (United States)

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  11. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  12. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  13. Evaluation of water quality index for River Sabarmati, Gujarat, India

    Science.gov (United States)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  14. Historical water-quality data from the Harlem River, New York

    Science.gov (United States)

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  15. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  16. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  17. Water quality in Italy: Po River and its tributaries

    International Nuclear Information System (INIS)

    Crosa, G.; Marchetti, R.

    1993-01-01

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. The principal factors determining the water quality of the Po River and its tributaries are examined. Organic micropollutants, metals and the microbial load are the principal parameters altering the quality of the waters; dilution is the prevailing factor reducing this contamination

  18. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  19. THE WATER QUALITY DEGRADATION OF UPPER AWASH RIVER ...

    African Journals Online (AJOL)

    Osondu

    2013-01-11

    Jan 11, 2013 ... Benthic macroinvertebrate based assessment of water quality in the ... of the upper Awash River had low water quality status which is likely to be ..... Frydenborg, R., McCarron, E., White, J.S. and ... A framework for biological.

  20. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  1. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  2. Survey on monthly variations of water quality in the Tajan River (Sari ...

    African Journals Online (AJOL)

    user

    The aims of the study were to evaluate water quality of Tajan River in Sari in terms of chemical pollution and the impact of pollutant ... qualities of water from Tajan River were within the acceptable limits for agricultural consumptions. In addition, Tajan River water ..... Water and Return Flow Reuse. No. 535. Zazouli et al. 3991.

  3. Water quality index and eutrophication indices of Caiabi River, MT

    Directory of Open Access Journals (Sweden)

    Grasiane Andrietti

    2016-03-01

    Full Text Available The objective of this study was to evaluate the water quality of the Caiabi River based upon the water quality index (WQI and the trophic state index (TSI, considering seasonal and spatial variations, with the aim of determining the most appropriate monitoring design for this study site. Sampling for water quality monitoring was conducted at five points on the Caiabi River from July 2012 to June 2013. Quality parameters quantified were as follows: pH, temperature, conductivity, dissolved oxygen, total and thermotolerant coliforms, turbidity, Kjeldahl nitrogen, nitrite, nitrate, total phosphorus, biochemical oxygen demand, series of solids, and chlorophyll a. Sampling procedures and analysis followed the methods recommended by the Standard Methods for the Examination of Water and Wastewater. The WQI results showed that the quality of the Caiabi River water is good. TSI results demonstrated the low risk of eutrophication in the Caiabi River, indicating an ultra-oligotrophic lotic environment. Analysis of variance showed that 10 of the 16 monitored quality parameters presented differences of means between the dry and rainy seasons or among the monitored points or in the interaction between seasons and points. These results indicate that two annual sampling collections at two points may be sufficient to describe the water quality behavior in the basin, as long as the conditions of land use are stable.

  4. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  5. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  6. seasonal variation in water quality of orle river basin, sw nigeria.

    African Journals Online (AJOL)

    LUCY

    The seasonal variation of water quality of Orle River and its tributatries in S.W. Nigeria was investigated forthnightly or two ... KEYWORD: water quality, river basin, wet and dry seasons; pollution. ..... Environmental Modeling and Software,.

  7. Influence factors analysis of water environmental quality of main rivers in Tianjin

    Science.gov (United States)

    Li, Ran; Bao, Jingling; Zou, Di; Shi, Fang

    2018-01-01

    According to the evaluation results of the water environment quality of main rivers in Tianjin in 1986-2015, this paper analyzed the current situation of water environmental quality of main rivers in Tianjin retrospectively, established the index system and multiple factors analysis through selecting factors influencing the water environmental quality of main rivers from the economy, industry and nature aspects with the combination method of principal component analysis and linear regression. The results showed that water consumption, sewage discharge and water resources were the main factors influencing the pollution of main rivers. Therefore, optimizing the utilization of water resources, improving utilization efficiency and reducing effluent discharge are important measures to reduce the pollution of surface water environment.

  8. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  9. Comparison of index systems for rating water quality in intermittent rivers.

    Science.gov (United States)

    Perrin, Jean-Louis; Salles, Christian; Bancon-Montigny, Chrystelle; Raïs, Naoual; Chahinian, Nanée; Dowse, Lauryan; Rodier, Claire; Tournoud, Marie-George

    2018-01-08

    Water quality indexes (WQI) are a practical way to evaluate and compare the level of chemical contamination of different water bodies and to spatially and temporally compare levels of pollution. The purpose of this study was to check if these indexes are appropriate for intermittent rivers under arid and semi-arid climates. A literature review enabled the comparison of 25 water quality indexes to discern their capability to evaluate spatial (inter and intra catchment) and temporal (high and low water flow conditions) variations in water quality in three Mediterranean intermittent rivers: the River Vène (France) and the Oued Fez and the River Sebou (Morocco). Hierarchical cluster analysis identified groups of WQI with similar behavior and brought to light the 6 most distinguishing indexes. Whatever the hydrological conditions at the two sites, both the ME-MCATUHE and NCS indexes, which were developed for Morocco and Greece, and the CCMEWQI and BCWQI indexes, which were developed for non-arid or semi-arid zones, gave appropriate water quality evaluations.

  10. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  11. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  12. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  13. Studies on the current state of water quality in the Segamat River

    Science.gov (United States)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  14. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  15. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  16. The impact of industries on surface water quality of River Ona and ...

    African Journals Online (AJOL)

    Samples of water from two rivers (River Ona and River Alaro) in Oluyole ... were higher in the industrial zones than those found in the upstream of both rivers. ... Key words: River Ona, River Alaro, industrial discharges, surface water quality.

  17. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  18. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  19. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    Science.gov (United States)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  20. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  1. Water quality of the Chhoti Gandak River using principal component ...

    Indian Academy of Sciences (India)

    ; therefore water samples were collected to analyse its quality along the entire length of Chhoti Gandak. River. The principal components of water quality are controlled by lithology, gentle slope gradient, poor drainage, long residence of water, ...

  2. The derivation of water quality criteria of copper in Biliu River

    Science.gov (United States)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  3. Relationship between land use and water quality in Pesanggrahan River

    Science.gov (United States)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  4. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  5. Managing water quality under drought conditions in the Llobregat River Basin.

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  7. Indices of water quality and metal pollution of Nile River, Egypt

    Directory of Open Access Journals (Sweden)

    Amaal M. Abdel-Satar

    2017-03-01

    Full Text Available Nile River is the valued natural and exclusive source of fresh water in Egypt, where the drinking water supply is limited to the river. The water quality of 24 sites between Aswan and Cairo along the Nile was investigated. To evaluate the suitability of water for aquatic life and drinking purposes, the indices of water quality (WQI, heavy metal pollution (HPI and contamination (Cd were computed. The water quality variations were mainly related to inorganic nutrients and heavy metals, where, the sites affected by intensive load of urban, agricultural and industrial wastewater showed serious deterioration of water quality compared with other sites. The anthropogenic impact sites showed high HPI and Cd values and associated with high risks, where, most of the studied metals often exceeded the drinking water and aquatic life limits. The aquatic WQI indicated that the Nile water quality deteriorated and extended from poor to marginal, while drinking WQI varied from marginal to good. Accordingly, the river becoming unfit for aquatic life and the situation is getting worse by decreases in the water budget from the Nile in Egypt by building of the Grand Ethiopian Renaissance Dam, where the dilution strength of the Nile system will reduce.

  8. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    The high WQI values in all the stations studied which exceeded the benchmark of 100 showed that the water from this river is unfit for drinking purposes and should be treated before consumption by inhabitants of the area. Keywords: Physicochemical parameters, River, Water quality index, Contamination ...

  9. Land Use Impacts on Water Quality of Rivers draining from Mulanje ...

    African Journals Online (AJOL)

    Land Use Impacts on Water Quality of Rivers draining from Mulanje Mountain: A Case of Ruo River in the Southern Malawi. ... The research recommends an integrated water resources management approach where all users and relevant stakeholders should take an active role in the conservation of Ruo River catchment in ...

  10. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    Science.gov (United States)

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  11. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    Science.gov (United States)

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality

  12. The water quality of the river Svratka and its tributaries

    Directory of Open Access Journals (Sweden)

    Jan Grmela

    2013-01-01

    Full Text Available Water quality in river depends on water quality of its tributaries. During the year 2011 nine selected sites downstream under the Vír dam (from 108 to 79 river km were monitored. For observation were chosen tributaries Besének, Loučka, Nedvědička, Chlebský creek, Hodonínka, Vrtěžířský creek and Tresný creek. At the same time samples from the places above and under the whole monitored section of the river were taken. Basic physicochemical parameters were monitored monthly during the vegetation period. Flow velocity and discharge were assessed three times. Based on the water quality evaluation of, the river Svratka and its tributaries Hodonínka, Vrtěžířský creek and Tresný creek belong to the second quality class, tributaries Besének, Loučka, Nedvědička and Chlebský belong to the third quality class. In the monitored section the retention of phosphorus in annual amount about 2.2 tons were occurance. Annual volume of phosphorus at the end of observed section (upstream the Tišnov town was nearly 17.5 tons. Annual total balance of nitrogen at the end of monitored section was 700 tons per year and 6000 tons of carbon per year. The major source of these nutrients is the river Loučka.

  13. Environmental flows and water quality objectives for the River Murray.

    Science.gov (United States)

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  14. How is the River Water Quality Response to Climate Change Impacts?

    Science.gov (United States)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  15. ASSESSMENT OF RIVER WATER QUALITY USING MACRO-INVERTEBRATES AS INDICATORS: A CASE STUDY OF BHALU KHOLA TRIBUTARY, BUDHIGANDAKI RIVER, GORKHA, NEPAL

    Directory of Open Access Journals (Sweden)

    Anju Rana

    2015-08-01

    Full Text Available  Macroinvertebrates are widely considered as indicators of water quality. The present research work was conducted in Bhalu khola, a tributary of Budhigandaki River, Nepal, to identify water quality using macro invertebrates with Nepalese Biotic Score (NEPBIOS, and examine its applicability by comparing with Water Quality Index (WQI.The diversity of macro invertebrates in the studied river was high as depicted by Shannon Wiener Diversity Index. Altogether, 103 macro invertebrates were identified from 11 families and five orders. There were no dominant species, and most of the species were in clumped distribution. According to NEPBIOS index, river water was found to comply with the characteristics of WQ class I-II that means water quality of the river was good. Other indices such as Hilsenhoff and Lincoln quality index (LQI index also supported this result. Similarly, water quality index (WQI also showed similarity with NEPBIOS index, indicating water appropriate for drinking purpose. Thus, it is concluded that the macro invertebrates can be used as economic tools for determining water quality of streams and rivers as efficient water quality indicators.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 55-68

  16. Study of pollution effect on water quality of Grogol River, DKI Jakarta

    Science.gov (United States)

    Amira, S.; Astono, W.; Hendrawan, D.

    2018-01-01

    A study has been conducted to identify the incoming pollutants and assess the water quality in Grogol River, DKI Jakarta, Indonesia, which has a length of 13.35 km and consists of two segments. The water quality assessment is determined by pollution index method, referring to Minister of Environment Decree No. 15/2013 on The Guidelines of Water Quality Status. The samples were taken both in rainy and dry seasons at 7 sampling points. Based on the analyses of 10 key parameters and the calculation of pollution index value, it can be concluded that Grogol River is low polluted in rainy season and moderate polluted in dry season. The information obtained from this research can be used for decision making to improve the water quality of Grogol River.

  17. Modeling of Water Quality 'Almendares River'

    International Nuclear Information System (INIS)

    Domínguez Catasús, Judith

    2005-01-01

    The river Almendares, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the handling of the contamination. In the present work, the advective, steady- state Streeter and Phelps model was validated to simulate the effect of the multiple-point and distributed sources on the carbonaceous oxygen demand, NH4 and dissolved oxygen. For modeling purposes the section of the river located between the point where the waste water treatment station Maria del Carmen discharges to the river and the Bridge El Bosque, was divided in 11 segments. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes. The validated model allows to predict the effect of the sanitary strategies on the water quality of the river. The main conclusions are: 1. The model Streeter and Phelps calibrated and validated in the Almendares between the confluence of the channel 'María del Carmen' and bridge the Forest of Havana, described in more than 90% The behavior of the dissolved oxygen and BODn (in terms of ammonia), and more than 85%, the carbonaceous demand oxygen, which characterizes the process of purification. 2. Model validation Streeter and Phelps, indicates that implicit conceptual model is appropriate. This refers primarily to the considerations relating to the calculation of the kinetic constants and the DOS, the segmentation used, to the location of the discharges and the Standing been about them, to the river morphology and hydrodynamic parameters . 3. The calibration procedure Streeter and Phelps model that determines the least-squares Kr-Kd pair that best fits the OD and uses this Kr to model BOD gets four% increase in

  18. History of water quality parameters - a study on the Sinos River/Brazil.

    Science.gov (United States)

    Konzen, G B; Figueiredo, J A S; Quevedo, D M

    2015-05-01

    Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.

  19. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  20. River water quality in the northern sugarcane-producing regions of ...

    African Journals Online (AJOL)

    Sugarcane is the major irrigated crop with regards to area cultivated in the Crocodile, Komati-Lomati and Pongola River catchments. Increasing demand for and use of water resources in these catchments has led to concerns about deterioration in water quality. In this study, chemical water quality data obtained from the ...

  1. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    Science.gov (United States)

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  2. Effect of community activities on water qualities of the Bangpakong River, Chachoengsao Province

    Directory of Open Access Journals (Sweden)

    Paibulkichakul, C.

    2006-03-01

    Full Text Available The effect of community activities on water qualities of the Bangpakong River were investigated. Water from three different areas, Huasai temple, Thayai market and Sothorn temple, were sampled for quality monitoring for its physical, chemical and biological properties during July-September 2004. Analysis of variance was used for data analysis, and Duncan's Multiple Range Test was applied for means comparison at 95% confidence level.The results showed that ranges of dissolved oxygen, ammonia, nitrite, nitrate and orthophosphatephosphorus in all stations were 4.10-6.35, 0.022-0.156, 0.012-0.050, 0.084-0.299 and 0.004-0.047 mg/L, res the large food market, had the lowest water quality. Sothorn temple, the well-known tourist temple, had water quality in the middle of the three stations. Huasai temple, the agricultural site, had the best water qualities. The differences of water quality may be caused by the differences of community activities. The other parameters of this study could not clearly indicate the resons for the difference on water qualities.However, water quality from three areas met the Surface Water Quality Standard, class 3. Bangpakong River, the main river of Chachoengsao Province, is not only the source of water supply for households consumption as well as agricultural and industrial activities, but also receives untreated waste water from households, markets and industrial estates. Consequently, unless wastewater has been treated properly before discharging into the Bangpakong River, there will be water pollution in the near future.

  3. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    Science.gov (United States)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the

  4. Performance of biotic indices in comparison to chemical-based Water Quality Index (WQI) in evaluating the water quality of urban river.

    Science.gov (United States)

    Wan Abdul Ghani, Wan Mohd Hafezul; Abas Kutty, Ahmad; Mahazar, Mohd Akmal; Al-Shami, Salman Abdo; Ab Hamid, Suhaila

    2018-04-19

    In order to evaluate the water quality of one of the most polluted urban river in Malaysia, the Penchala River, performance of eight biotic indices, Biomonitoring Working Party (BMWP), BMWP Thai , BMWP Viet , Average Score Per Taxon (ASPT), ASPT Thai , BMWP Viet , Family Biotic Index (FBI), and Singapore Biotic Index (SingScore), was compared. The water quality categorization based on these biotic indices was then compared with the categorization of Malaysian Water Quality Index (WQI) derived from measurements of six water physicochemical parameters (pH, BOD, COD, NH 3 -N, DO, and TSS). The river was divided into four sections: upstream section (recreational area), middle stream 1 (residential area), middle stream 2 (commercial area), and downstream. Abundance and diversity of the macroinvertebrates were the highest in the upstream section (407 individual and H' = 1.56, respectively), followed by the middle stream 1 (356 individual and H' = 0.82). The least abundance was recorded in the downstream section (214 individual). Among all biotic indices, BMWP was the most reliable in evaluating the water quality of this urban river as their classifications were comparable to the WQI. BMWPs in this study have strong relationships with dissolved oxygen (DO) content. Our results demonstrated that the biotic indices were more sensitive towards organic pollution than the WQI. BMWP indices especially BMWP Viet were the most reliable and could be adopted along with the WQI for assessment of water quality in urban rivers.

  5. Water quality trends in the Blackwater River watershed, West Virginia

    Science.gov (United States)

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  6. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  7. Human impact on the microbiological water quality of the rivers.

    Science.gov (United States)

    Páll, Emőke; Niculae, Mihaela; Kiss, Timea; Şandru, Carmen Dana; Spînu, Marina

    2013-11-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers.

  8. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  9. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    Science.gov (United States)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  10. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2010-09-01

    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.

  11. Prediction of water quality variation caused by dredging urban river-bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hong-Je; Lee, Byung-Ho; Kim, Jung-Sik [University of Ulsan, Ulsan(Korea); Lee, Kun-Bae [Metropolitan City Hall of Ulsan, Ulsan(Korea)

    2002-04-30

    The purpose of this study was to examine the effect of water quality improvement due to dredging the bottom deposit at the downstream of a urban river. The finite difference method was used to analyze the water quality variations caused by the depths of dredging and intercepting ratios of the goal years. 21 boring points were selected along the 11.2 Km river reach running through a metropolitan city. The pollution levels of the deposits from the bored points were examined by the leaching test. The improvement effect of the water quality, measured as changes of COD, were carried at under drought, minimal, and normal flow. The result indicates that the dredging of the contaminated sludge contributes the improvement of the water quality. (author). 10 refs., 8 tabs., 7 figs.

  12. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  13. Benthic Algae Communities in the Rivers of Different Water Quality in Lithuania

    Directory of Open Access Journals (Sweden)

    Irma Vitonytė

    2011-04-01

    Full Text Available Investigation into benthic algae communities was carried out in the Lithuanian rivers of different water quality during the period 2004–2006. The structure of benthic algae communities in the rivers of different water quality slightly differs. The community of Cladophora glomerata–Vaucheria sessilis–Fontinalis antipyretica mainly dominated in the rivers. Algae communities reiterate in unpolluted rivers (II class, according to biogenes such as Akmena, Babrungas, Bražuolė and Siesartis where Cladophora glomerata–Fontinalis antipyretica, Amblystegium riparium–Cladophora glomerata, and Fontinalis antipyretica–Cladophora glomerata communities predominate. In slightly and moderately polluted rivers, algae communities are unreiteratable. Differences in river water quality could be better determined by frequently appearing algae species in algae communities: in unpolluted rivers – Hildenbrandia rivularis, Audouinella chalybea and A. Hermanii, in slightly polluted – Vaucheria sessilis and Fontinalis antipyretica, and in moderately polluted – Stigeoclonium nanum, S. tenue, Aulacoseira islandica and Melosira varians.The variety of the structure of benthic algae communities could be determined by abiotic environmental factors such as the heterogenity of substratum, stream velocity and depth, the intensity of light and biogenes concentration.Article in Lithuanian

  14. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    Science.gov (United States)

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  15. An Investigation Into The Water Quality Of Buriganga - A River Running Through Dhaka

    Directory of Open Access Journals (Sweden)

    Shaikh Sayed Ahammed

    2015-08-01

    Full Text Available Buriganga river is used for bathing drinking irrigation and industrial purposes and is considered to be the lifeline of Dhaka city. The water quality of Buriganga has become a matter of concern due to serious levels of pollution. The objective of the study was to determine the water quality of the selected section of Buriganga river which passes through Dhaka city. The water quality parameters were sampled during different seasons summer winter and autumn and in 10 different sampling points along the river along the banks of the Buriganga River. The water quality parameters studied for this study were dissolved oxygen DO biochemical oxygen demand BOD chemical oxygen demand COD pH turbidity conductivity total dissolved solids TDS nitrate and phosphate. The results showed that DO BOD COD TDS turbidity nitrate and phosphate are at an alarming level and a discussion on the possible sources of the pollution are presented.

  16. POLLUTION SOURCES AND WATER QUALITY STATE OF THE SUPRAŚL RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-04-01

    Full Text Available The main purpose of the study was to evaluate water quality of the Supraśl river and identify its main pollution sources. On the river and its tributaries, 8 control points were selected, located near Krynica, Gródek, Nowosiółki, Zasady (mouth of the tributary Sokołda, Supraśl, Nowodworce, Dobrzyniewo (mouth of the tributary Biała and Dzikie. The control points were selected in such a way as to take into account the impact of major point sources of analyzed components located along the river and its main tributaries on water quality in the main stream catchment. Water samples were collected once a month during the period from May to November in 2014. In water samples the concentration of dissolved oxygen, Cl-, SO42-, N-NH4+, P-PO43- and the values of pH, BOD5 and electrolytic conductivity were indicated. Based on the obtained results, loads of the individual components in river waters were calculated as a product of concentration and Supraśl waters flow rate in a particular month. Supraśl waters, due to values of most analyzed parameters, should be classified as first quality class. The source of Cl-, SO42-, N-NH4+ in Supraśl waters were treated wastewater and other anthropogenic sources associated with the basin development. Reduced Supraśl water quality is caused by the inflow of organic substances expressed by BZT5 from natural and anthropogenic origin and concentration of PO43-, which were mainly delivered with treated wastewater.

  17. The Influence of Tidal Activities on Water Quality of Marang River, Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Nur Hidayah Ariffin; Haniff Muhamad; Norsyuhada Hairoma

    2015-01-01

    A study was conducted at seven sampling stations to determine water quality condition of Marang River, Terengganu. Each station was 2 km apart from each other, the first sampling was in 13 November 2012 and was repeated in 24 November 2013. The aim of the study is to determine water quality in spatial and temporal variation on different tides based on selected fourteen physicochemical parameters with regard to National Water Quality Standard. Six in-situ parameters such as pH, temperature, salinity, conductivity, DO and TDS were measured by using YSI 556 Multi parameters. Six ex-situ parameters such as sulphate, sodium, nitrate, phosphate, magnesium and turbidity also were measured. Sulphate, nitrate, phosphate and turbidity were analysed according to the standard method of analysis by Portable Data logging Spectrophotometer HACH DR/2010. Sodium and magnesium were analysed using Atomic Absorption Spectrophotometer. One way ANOVA shows that there are no significant changes between first sampling and second sampling, the data were average to give impression of water quality of Marang River in spatial and temporal perspective. Overall, water quality of Marang River was classified as class I to III according to NWQS classification, therefore Marang River needs proper water treatment for tolerant fish species and other aquatic water continuance. (author)

  18. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  19. The monitoring method of water quality in Ciliwung River for post restoration

    Science.gov (United States)

    Diyanti; Saleh Pallu, Muh.; Tahir Lopa, Rita; Arsyad Thaha, M.

    2018-04-01

    Ciliwung River is the biggest river which flows across DKI Jakarta, where the river flows through the city, the settlements, and slums in Jakarta. Problems that occur in the Ciliwung River in Jakarta one of which is the quality of water. This research using some datas, there are secondary and primary data like river dimension and visualization of water quality of Ciliwung River. This research using a descriptive method which describes the comparison between a physical and chemical parameter for the durationn of three (3) years post-restoration. The physical parameters used in this reasearch are temperature and TDS, the chemical parameters are pH dan DO. Based on the result of data analyzing, we get the temperature average parameter pre-restoration is 28.30°C and TDS level is 151.96 mg/L, so the logical of standard quality criteria match with class 3. Post-restoration got the temperature 22.06°C and TDS level 224.20mg/L, so that water quality criteria match with class 2. For the chemical parameters the average pH and DO values pre-restoration are 6.84 and 4mg/L, respectively which match with class 2 category. Post-restoration, the chemical parameter about pH level is 7.41 and DO 8.4 mg/L, so the standard quality criteria match with class 1.

  20. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  1. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  2. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Chittoor Viswanathan, Vidhya [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); Molson, John [Université Laval, Département de Géologie et Génie Géologique, Québec City, Québec (Canada); Schirmer, Mario [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ{sup 18}O-H{sub 2}O) as well as those of nitrate (δ{sup 15}N-NO{sub 3}{sup −} and δ{sup 18}O-NO{sub 3}{sup −}) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological

  3. Water quality dynamics in the Boro-Thamalakane-Boteti river system ...

    African Journals Online (AJOL)

    The quality of water in aquatic systems is subject to temporal and spatial variations due to varying effects of natural and anthropogenic factors. This study assessed the dynamics of water quality in the Boro-Thamalakane-Boteti river system along an upstream–downstream gradient above and below Maun during February, ...

  4. Survey of water quality in Moradbeik river basis on WQI index by GIS

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2015-01-01

    Full Text Available Background: Survey of pollution and evaluation of water quality in rivers with Oregon Water Quality Index (OWQI and GIS are effective tools for management of the impact of environmental water resources. The information in calculating the WQI of Moradbeikriver allowed us to take our tests results and make a scientific conclusion about the quality of water. GIS can be a powerful tool for developing solutions for water resources problems for assessing water quality, determining water availability, preventing flooding, understanding the natural environment, and managing water resources on a local or regional scale. Methods: The WQI of Moradbeikriver consists of nine tests: Fecal Coliform (FC, Biochemical Oxygen Demand (BOD5, Nitrates (NO3, Total Phosphate (PO4, pH, temperature, Dissolved Oxygen (DO, turbidity, and Total Solid (TS. Water quality of Moradbeikriver was investigated for 12 months. Concentrations of these nine variables were normalized on a scale from 0 to 100 and translated into statements of water quality (excellent, good, regular, fair, and poor. Also this data were analyzed with WQI index, and then river basis on water quality was zoning by GIS. Results: The average of WQI was 61.62, which corresponded to ‘‘medium’’ quality water at the sampling point 1 (best station and decreased to around 26.41 (bad quality at sampling point 6. The association between sampling points and water quality indexes was statistically significant (P<0.05. Conclusion: Based on physical, chemical and biological agent monitoring and also with control of water quality indexes of these points, we observed wastewater and other river pollutants.

  5. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Science.gov (United States)

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  6. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas.

    Science.gov (United States)

    Rashid, Irfan; Romshoo, Shakil Ahmad

    2013-06-01

    The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June-August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June-August) is also responsible for the deteriorating water quality of Lidder River.

  7. Hydrologic parameters and land use reflection on water quality at Mun river, Thailand

    International Nuclear Information System (INIS)

    Akter, A.; Babel, M.S.

    2005-01-01

    The 'River Basin' is the land area surrounding one river from its headwaters to its mouth whereas the area drained by a river and its tributaries. So that the land use changes and excessive application of nutrients (Nitrogen and Phosphorus) in predominant agricultural river basins may have a great influence on water quality. Here the study area Mun River Basin is approximately of 69,701 km/sup 2/ and in 1994, out of the total basin area 'about 80 percent was covered by agricultural purposes. Also one of the driest parts of Thailand as well as one of the industrialized provinces in Thailand, Nakhon Ratchasima is situated at the upstream of the river. Accordingly the downstream part Ubon Ratchathani seems totally agricultural based area. To get the water quality changing trends due to land use, there are around forty water quality parameters has considered for the last ten years along with the basins hydrological parameters. For this study based on the fifteen years rainfall data, the whole year divided into two seasons namely wet season (May to October) and dry season (November to April). The result shows: (1) most of the physicochemical parameters are high in wet season; (2) heavy metals moreover appear higher at wet season and (3) although the presences of pesticides are very nominal, the higher values are detected at wet season. The conclusion draws for the water quality by having wet season water sampling and then the testing of water samples for selected seven parameters whereas the water samples are collected at a duration of one-week to three-week from April to October 2004. And this short duration analysis shows that the mean value of the nutrient shows not only higher at wet season (May to October) than April's data also exceed the existing Thailand's surface water quality standard. (author)

  8. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  9. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  10. Water Quality Trends in the Entiat River Subbasin: 2007-2008

    Science.gov (United States)

    Andy Bookter; Richard D. Woodsmith; Frank H. McCormick; Karl M. Polivka

    2009-01-01

    Production of high-quality water is a vitally important ecosystem service in the largely semiarid interior Columbia River basin (ICRB). Communities, tribal governments, and various agencies are concerned about maintenance of this water supply for domestic, agricultural, industrial, recreational, and ecosystem uses. Water quantity and...

  11. Situation analysis of water quality in the Umtata River catchment ...

    African Journals Online (AJOL)

    The Umtata River was characterised by using standard physico-chemical and microbiological methods to assess the present water quality in the river. The results indicated high turbidity, gross microbiological and cadmium pollution. Turbidity values ranged from 0.28 NTU to 1 899 NTU highlighting the known problem of ...

  12. Application of water quality models to rivers in Johor

    Science.gov (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  13. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  14. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    Science.gov (United States)

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  15. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  16. Baseline studies of water quality of Okura River in Kogi State, Nigeria

    African Journals Online (AJOL)

    Water samples from Okura river in kogi state were analysed for some physicochemical parameters and heavy metals to ascertain the water quality. The samples were collected at six sampling points along the river. Results obtained were compared with WHO and other regulatory standard guidelines. Average nitrate and ...

  17. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  18. Real-time management of water quality in the San Joaquin River Basin, California.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  19. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water

  20. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    Science.gov (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  1. Water quality of the rivers Mandovi and Zuari during 1977-78

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Singbal, S.Y.S.

    A study over a period of twelve months for the different indicators of water quality was carried out in the rivers Mandovi and Zuari from October 1977 to September 1978. The study covered observations in both the rivers from close to the source...

  2. Water use practices, water quality, and households' diarrheal encounters in communities along the Boro-Thamalakane-Boteti river system, Northern Botswana.

    Science.gov (United States)

    Tubatsi, G; Bonyongo, M C; Gondwe, M

    2015-11-18

    Some rural African communities residing along rivers use the untreated river water for domestic purposes, making them vulnerable to waterborne diseases such as diarrhea. We determined water use practices and water quality, relating them to prevalence of diarrhea in communities along the Boro-Thamalakane-Boteti river system, northern Botswana. A total of 452 households were interviewed and 196 water samples collected show during February, May, September, and December 2012 in settlements of Boro, Maun, Xobe, Samedupi, Chanoga, and Motopi. Information was sought on water use practices (collection, storage, and handling) and diarrheal experience using questionnaires. Water quality was assessed for physicochemical and microbiological parameters using portable field meters and laboratory analysis, respectively. All (100%) of the river water samples collected were fecally contaminated and unsuitable for domestic use without prior treatment. Samples had Escherichia coli (E.coli) and fecal streptococci levels reaching up to 186 and 140 CFU/100 ml, respectively. Study revealed high dependence on the fecally contaminated river water with low uptake of water treatment techniques. Up to 48% of households indicated that they experience diarrhea, with most cases occurring during the early flooding season (May). Nonetheless, there was no significant relationship between river water quality and households' diarrheal experience across studied settlements (p > 0.05). Failure to treat river water before use was a significant predictor of diarrhea (p = 0.028). Even though the river water was unsafe for domestic use, results imply further recontamination of water at household level highlighting the need for simple and affordable household water treatment techniques.

  3. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    Science.gov (United States)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  4. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  5. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  6. Assessment of water quality of Ikpoba River, Benin City using d.c. ...

    African Journals Online (AJOL)

    ascertaining the quality of the water. The d.c. conductivity of Ikpoba River ranges from 400ms/cm - 500ms/cm. This was compared to that of a popular brand of bottled water in the city which has a d.c conductivity of 180ms/cm (Table 3). The measurements show that a lot of ions are present in the river water. The origin of such ...

  7. The impact of climate change on the water quality of the Rhine river

    NARCIS (Netherlands)

    Van Bokhoven, A.J.

    2006-01-01

    In this research the effect of hydrological extremes on water quality are studied for the Rhine River, in order to assess potential water quality effects of climate change. The water quality of the Rhine was studied for the periods 1975-1977 and 1987-2005. During these periods eight hydrological

  8. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  9. Water quality modelling in the San Antonio River Basin driven by radar rainfall data

    Directory of Open Access Journals (Sweden)

    Almoutaz Elhassan

    2016-05-01

    Full Text Available Continuous monitoring of stream water quality is needed as it has significant impacts on human and ecological health and well-being. Estimating water quality between sampling dates requires model simulation based on the available geospatial and water quality data for a given watershed. Models such as the Soil and Water Assessment Tool (SWAT can be used to estimate the missing water quality data. In this study, SWAT was used to estimate water quality at a monitoring station near the outlet of the San Antonio River. Precipitation data from both rain gauges and weather radar were used to force the SWAT simulations. Virtual rain gauges which were based on weather radar data were created in the approximate centres of the 163 sub-watersheds of the San Antonio River Basin for SWAT simulations. This method was first tested in a smaller watershed in the middle of the Guadalupe River Basin resulting in increased model efficiency in simulating surface run-off. The method was then applied to the San Antonio River watershed and yielded good simulations for surface run-off (R2 = 0.7, nitrate (R2 = 0.6 and phosphate (R2 = 0.5 at the watershed outlet (Goliad, TX – USGS (United States Geological Survey gauge as compared to observed data. The study showed that the proper use of weather radar precipitation in SWAT model simulations improves the estimation of missing water quality data.

  10. The rSPA Processes of River Water-quality Analysis System for Critical Contaminate Detection, Classification Multiple-water-quality-parameter Values and Real-time Notification

    OpenAIRE

    Chalisa VEESOMMAI; Yasushi KIYOKI

    2016-01-01

    The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multip...

  11. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  12. Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. ...

    African Journals Online (AJOL)

    Spatio-Temporal Variation in Water Quality of Orle River Basin, S.W. Nigeria. ... Abstract. The water quality of small streams in Auchi area of Edo State, S.W. Nigeria was investigated with a view to ... and ecosystems. The study was carried out

  13. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  14. Delaware River water quality Bristol to Marcus Hook, Pennsylvania, August 1949 to December 1963

    Science.gov (United States)

    Keighton, Walter B.

    1965-01-01

    During the 14-year period from August 1949 to July 1963, the U.S. Geological Survey, in cooperation with the city of Philadelphia, collected samples of river water once each month in the 43-mile reach of the Delaware River from Bristol to Marcus Hook, Pa., and daily at Trenton, 10 miles upstream from Bristol. This part of the Delaware is an estuary into which salt water is brought by tides; fresh water flows into the estuary at Trenton, NJ, and farther downstream from the Schuylkill River and other tributaries of the Delaware. In March, April, and May, when fresh-water flow is high, the average concentration of dissolved solids in the water at Bristol was 76 ppm (parts per million), and at Marcus Hook 112 PPM In August and September, streamflow is lower, and the average concentration of dissolved solids increased to 117 PPM at Bristol and 804 PPM at Marcus Hook. Major salinity invasions of the Delaware River occurred in 1949, 1953, 1954, 1957, and 1963. In each of these years the fresh-water flow into the tidal river at Trenton was low during the period from July to October. The greatest dissolved-solids concentrations in these monthly samples were 160 PPM at Bristol and 4,000 PPM at Marcus Hook. At times the dissolved-oxygen concentration of the river water has become dangerously low, especially in that reach of the river between Wharton Street and League Island. At the Benjamin Franklin Bridge, one-third of the samples of river water were less than 30 percent saturated with oxygen; however, no trend, either for better or for worse, was apparent during the 14-year period. It is useful now to summarize these monthly analyses for the period 1949-63 even though a much more detailed description of water quality in this reach of the estuary will soon become available through the use of recording instrumental conditions. This compendium of water-quality data is useful as an explicit statement of water quality during the 14-year study period and is valuable for directing

  15. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    Science.gov (United States)

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red

  16. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  17. Surface water quality and deforestation of the Purus river basin, Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio Ríos-Villamizar

    2016-12-01

    Full Text Available Abstract In the last years, deforestation constitutes a threat for the aquatic ecosystems. This paper aims to characterize the water quality of the Purus river in the Brazilian Amazon, and investigate the relations between water quality and deforestation of the Purus river basin over a 9-year period, as well as to quantify the Purus river basin’s land cover changes (% in a 5-year period. Sampling data from upstream to downstream show a decrease in pH-value, dissolved oxygen, electrical conductivity, and total suspended solids. Correlation analysis revealed a significant negative correlation of the accumulated total deforestation values (km2 with the pH-value (in all the study sites, and a significant positive correlation with temperature (only in two sites. However, the deforestation rates (km2/year did not present, in none of the study stations, any significant correlation with water quality parameters. It seems that the effects of deforestation on water quality are related not with the rate but with the total area deforested. It was estimated that the basin’s forested area decreased by 5.17%. Since similar attributes are common in other basins of the whitewater systems of the Brazilian Amazon, this results may be seen as a warning on the effects of deforestation on water quality (reduction in pH and increment in temperature values, in larger areas than those of our study sites. To maintain the conservation and preservation status of the Purus river basin, it is necessary, the implementation of a transboundary watershed management program that could serve as a conservation model for Brazil and other countries of the Amazonian region.

  18. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    Science.gov (United States)

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  19. Improvements in Hudson River Water Quality Create the Need for a new Approach to Monitoring and Management

    Science.gov (United States)

    O'Mullan, G. D.; Juhl, A.; Sambrotto, R.; Lipscomb, J.; Brown, T.

    2008-12-01

    The lower Hudson River is a well-flushed temperate estuary that continues to support diverse wildlife populations although its shores are home to the nation's most populated metropolitan area. Data sets from the last hundred years clearly demonstrate extreme nutrient concentrations, pathogen loading, and periods of persistent hypoxia. These data also show a clear trend of steadily improving water quality in the last thirty years. Recent increases in recreational activity, expanded shoreline parks, and waterfront redevelopment, indicate the return of the people of New York to the River, concomitant with improved water quality. While mean seasonal water quality indicators are now often acceptable for large portions of the River, there remains a lack of information about the finer scale spatial and temporal variability of water quality. A new water quality sampling program was initiated in the Fall of 2006 to address this challenge. Monthly sampling cruises collected continuous underway surface measurements of hydrographic variables in parallel with discrete sampling for nutrients and microbiology. In general, these data indicate that mid-channel locations are often within acceptable water quality standards during dry weather, but that wet weather events deliver large quantities of sewage to the River, leading to short-term deterioration in water quality. In 2006-2007, only 6 of 27 sample sites had geometric mean values for Enterococcus , a sewage-indicating microorganism, that suggest consistently poor water quality. In contrast, single-day exceedances of EPA recommended guidelines for Enterococcus were found at 21 of the 27 sites. Although the mid-channel of the River was relatively homogenous with respect to sewage indicators, large changes were observed at tributary mixing interfaces and along the shallow edges of the River where human contact is most likely. The changing use of the River, together with new information about the importance of episodic and

  20. Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil.

    Science.gov (United States)

    Medeiros, Adaelson Campelo; Faial, Kleber Raimundo Freitas; do Carmo Freitas Faial, Kelson; da Silva Lopes, Iris Danielly; de Oliveira Lima, Marcelo; Guimarães, Raphael Mendonça; Mendonça, Neyson Martins

    2017-10-15

    In this study was to evaluate the waters quality of the Murucupi River, located in urban agglomerate area and intense industrial activity in Barcarena City, Pará State. The Arapiranga River in Abaetetuba City was used as control area (Background), next to Barcarena. Was used the Water Quality Index (WQI) based on nine variables analized. Waters quality of the Arapiranga and Murucupi rivers were regular to good and bad to good, respectively. Anthropogenic influence on the Murucupi River was higher, mainly by the disposal of domestic effluents from the urban agglomerate and of the industrial waste tailing basins upstream of this river. Due to its less inhabited environment and further away from the area urban and industrial, the Arapiranga River was more preserved. Waters pollution of around these area is increasingly intense, and restricted its uses for various purposes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Clinch river breeder reactor plant steam generator water quality

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, D; Lowe, P A

    1975-07-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: (1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; (2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and (3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present.

  2. Clinch river breeder reactor plant steam generator water quality

    International Nuclear Information System (INIS)

    Van Hoesen, D.; Lowe, P.A.

    1975-01-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: 1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; 2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and 3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present

  3. River water quality model no. 1 (RWQM1): I. Modelling approach

    DEFF Research Database (Denmark)

    Shanahan, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    Successful river water quality modelling requires the specification of an appropriate model structure and process formulation. Both must be related to the compartment structure of running water ecosystems including their longitudinal, vertical, and lateral zonation patterns. Furthermore...

  4. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  5. Water Quality Assessment of the Buffalo River, Arkansas, United States

    Science.gov (United States)

    Bolin, K. L.; Ruhl, L. S.

    2017-12-01

    The Buffalo River was established as a National River by the U.S. Congress in 1972, and runs approximately 150 miles from Newton County, Arkansas to Baxter County where it joins the White River. The Buffalo National River is the one of the last free flowing rivers in the continental U.S. with a rich cultural and political history surrounding it. The geology surrounding the river can be characterized by its karst environment, which has led to the many caves, depressions, and sinkholes found along the river. Karst environments are more susceptible to groundwater pollution so drainage from septic systems is a major concern for towns along the river. There are also numerous abandoned mines in the Buffalo River watershed, especially in the Rush area, which was mined for lead and zinc. Additionally, an increase in livestock production in the area is also a concern for increased nitrate and phosphate, along with fertilizer runoff from agricultural areas. The purpose of this study was to determine the water quality changes along the Buffalo River from human and environmental influences. Samples at six different locations along the river were collected along with parameters such as pH, conductivity, salinity, and temperature during several trips in the summer of 2017. Water samples were analyzed for cations and anions by IC, trace metals by ICPMS, and Escherichia coli with agar plate colony counts. The results were used to map geochemical changes in the Buffalo River watershed, and calculate enrichment factors of constituents (like nitrate, phosphate, and trace elements) as the water flowed downstream.

  6. Water quality of Flag Boshielo Dam, Olifants River, South Africa ...

    African Journals Online (AJOL)

    Increasing demands for water, discharge of effluents, and variable rainfall have a negative impact on water quality in the Olifants River. Crocodile and fish mortalities attributed to pansteatitis, in Loskop Dam and downstream in the Kruger National Park (KNP), have highlighted the serious effects these impacts are having on ...

  7. Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents.

    Science.gov (United States)

    David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette

    2013-03-01

    This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.

  8. Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.

    Science.gov (United States)

    Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang

    2010-06-01

    In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.

  9. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  10. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  11. Water quality assessment of the Sinos River – RS, Brazil

    Directory of Open Access Journals (Sweden)

    C. Steffens

    Full Text Available Worldwide environmental pollution is increasing at the same rate as social and economic development. This growth, however, is disorganized and leads to increased degradation of water resources. Water, which was once considered inexhaustible, has become the focus of environmental concerns because it is essential for life and for many production processes. This article describes monitoring of the water quality at three points along the Sinos River (RS, Brazil, one in each of the upper, middle and lower stretches. The points were sampled in 2013 and again in 2014. The water samples were analyzed to determine the following physical and chemical parameters plus genotoxicity to fish: metals (Cr, Fe, Al, chemical oxygen demand, biochemical oxygen demand, chlorides, conductivity, total suspended solids, total phosphorous, total and fecal coliforms, pH, dissolved oxygen, turbidity, total Kjeldahl nitrogen nitrate and ammoniacal nitrogen. Genotoxicity was tested by exposing individuals of the species Astyanax jacuhiensis to water samples and then comparing them with a control group exposed to water from the public water supply. The results confirmed the presence of substances with genotoxic potential at the sample points located in the middle and lower stretches of the river. The results for samples from the upper stretch, at P1, did not exhibit differences in relation to the control group. The physical and chemical analyses did not detect reductions in water quality in the lower stretch, as had been expected in view of the large volumes of domestic and industrial effluents discharged into this part of the river.

  12. Effect of abattoir wastes on the water quality of Aleto River in the ...

    African Journals Online (AJOL)

    The effects of abattoir effluent on the water quality parameters, pH, dissolved oxygen, nitrate (NO3), phosphate (PO4), sulphate (SO4), hardness, conductivity, faecal coliform and the biochemical oxygen demand (BOD), of the receiving surface water of Aleto River in River State (Niger Delta, Nigeria) was monitored monthly ...

  13. Survey on monthly variations of water quality in the Tajan River (Sari ...

    African Journals Online (AJOL)

    The aims of the study were to evaluate water quality of Tajan River in Sari in terms of chemical pollution and the impact of pollutant sources near the river by considering the climate, hydrological and hydraulic condition on it. In this study, 10 critical points of river were selected as sampling stations from dam to sea. Sampling ...

  14. Effect of Lakhara chemical power station (LPTS) effluents on the river Indus water quality

    International Nuclear Information System (INIS)

    Mahar, R.B.; Memon, H.M.; Khushwar, M.Y.

    2000-01-01

    The variation of the quality of river Indus water with respect to the seasonal changes, discharge of water and dilution with the effluents of Lakhra Thermal Power Station (LTPS), has been monitored. The studies were focussed on the river Indus water quality before and after mixing the effluents of the power station. The samples were collected monthly from the representative locations of the river Indus, and analyzed for the residues (total, filterable, non-filterable, volatile and fixed), pH, temperature (air and water), conductance, chloride, hardness, alkalinity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD) /sub 5/- nitrate, phosphate, sulfate, ammonia, ammonium, silicates, magnesium, potassium, calcium and sodium. The results have been compared with the permissible limits of ECC (European Economic Community) standards for drinking and surface water. (author)

  15. Effect of the Cedar River on the quality of the ground-water supply for Cedar Rapids, Iowa

    Science.gov (United States)

    Schulmeyer, P.M.

    1995-01-01

    The Surface Water Treatment Rule under the 1986 Amendment to the Safe Drinking Water Act requires that public-water supplies be evaluated for susceptibility to surface-water effects. The alluvial aquifer adjacent to the Cedar River is evaluated for biogenic material and monitored for selected water-quality properties and constituents to determine the effect of surface water on the water supply for the City of Cedar Rapids, Iowa. Results from monitoring of selected water-quality properties and constituents showed an inverse relation to river stage or discharge. Water-quality properties and constituents of the alluvial aquifer changed as water flowed from the river to the municipal well as a result of drawdown. The values of specific conductance, pH, temperature, and dissolved oxygen at observation well CRM-4 and municipal well Seminole 10 generally follow the trends of values for the Cedar River. Values at observation well CRM-3 and the municipal water-treatment plant showed very little correlation with values from the river. The traveltime of water through the aquifer could be an indication of the susceptibility of the alluvial aquifer to surface-water effects. Estimated traveltimes from the Cedar River to municipal well Seminole 10 ranged from 7 to 17 days.

  16. Human impact on the microbiological water quality of the rivers

    OpenAIRE

    P?ll, Em?ke; Niculae, Mihaela; Kiss, Timea; ?andru, Carmen Dana; Sp?nu, Marina

    2013-01-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human invo...

  17. Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available The present study evaluated the spatial variations of surface water quality in a tropical river using multivariate statistical techniques, including cluster analysis (CA and principal component analysis (PCA. Twenty physicochemical parameters were measured at 30 stations along the Batang Baram and its tributaries. The water quality of the Batang Baram was categorized as “slightly polluted” where the chemical oxygen demand and total suspended solids were the most deteriorated parameters. The CA grouped the 30 stations into four clusters which shared similar characteristics within the same cluster, representing the upstream, middle, and downstream regions of the main river and the tributaries from the middle to downstream regions of the river. The PCA has determined a reduced number of six principal components that explained 83.6% of the data set variance. The first PC indicated that the total suspended solids, turbidity, and hydrogen sulphide were the dominant polluting factors which is attributed to the logging activities, followed by the five-day biochemical oxygen demand, total phosphorus, organic nitrogen, and nitrate-nitrogen in the second PC which are related to the discharges from domestic wastewater. The components also imply that logging activities are the major anthropogenic activities responsible for water quality variations in the Batang Baram when compared to the domestic wastewater discharge.

  18. Assessment of the microbial quality of river water sources in rural ...

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Assessment of the microbial quality of river water sources ... These untreated water sources are used for drinking and domestic purposes and pose a serious threat to ... These diseases cause crippling, devastating and debilitating effects ..... gastrointestinal illness, due mainly by enteric viruses in sewage.

  19. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    Science.gov (United States)

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected

  20. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  1. Effects of logging activities on ecological water quality indicators in the Berasau River, Johor, Malaysia.

    Science.gov (United States)

    Nor Zaiha, A; Mohd Ismid, M S; Salmiati; Shahrul Azri, M S

    2015-08-01

    Influence of deforestation on biodiversity of aquatic organisms was investigated in a stream in the Ulu Sedili Forest Reserve. The stream was monitored five (5) times from December 2011 until December 2012 with 2-month intervals. Sampling of benthic communities was carried out using rectangular dip net while water quality study using a YSI ProPlus meter and the rest were done in the laboratory. Physicochemical parameters and water quality index (WQI) calculation showed no significant difference among the investigated events. WQI classified the Berasau River between Class II (good) to III (moderate) of river water quality. In total, 603 individuals representing 25 taxa that were recorded with Decapods from genus Macrobrabchium were widely distributed. Several intolerant taxa, especially Ephemeroptera and Odonata, were also observed in this river. According to Pearson's correlation analysis, the richness and diversity indices were generally influenced by water quality parameters represented by WQI (P < 0.01). In conclusion, logging activities have strong attributes for variation in benthic macroinvertebrate assemblage.

  2. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  3. Development of water quality objectives and management systems for the lower Athabasca River in the oil sands area

    International Nuclear Information System (INIS)

    Noton, L.; McEachern, P.

    2004-01-01

    This paper addressed environmental concerns related to the increased oil sands activity along the lower Athabasca River in northeastern Alberta. The concerns include potential effects on water quality of the river even though wastewaters do not currently reach the Athabasca River, nor do they have any significant effects. However, as the industry expands, there is concern that releases of wastewater may increase significantly. A multi-stakeholder group called the Cumulative Environmental Management Association (CEMA) has addressed some of these environmental management issues in the Athabasca area by establishing a water quality task group that examines water quality protection and management activities. The task group intends to develop and recommend water quality objectives and management options on the lower Athabasca River. Their 4 part process includes: (1) defining the problem, (2) setting goals, (3) measuring performance, and (4) managing and adapting to potential impacts. The group has identified and defined about 35 water quality variables of potential concern. It has also identified the uses of water it wants to protect and intends to prevent the degradation of water quality. A plan for developing site specific water quality objectives has been established following a review of water quality guidelines. Performance will be measured using water quality models that simulate full development scenarios. The modelling work will be instrumental in designing management schemes for any potential impacts

  4. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    Science.gov (United States)

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  5. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    Science.gov (United States)

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  6. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  7. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  8. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    Science.gov (United States)

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  9. Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia

    Directory of Open Access Journals (Sweden)

    Voza Danijela

    2015-12-01

    Full Text Available The aim of this article is to evaluate the quality of the Danube River in its course through Serbia as well as to demonstrate the possibilities for using three statistical methods: Principal Component Analysis (PCA, Factor Analysis (FA and Cluster Analysis (CA in the surface water quality management. Given that the Danube is an important trans-boundary river, thorough water quality monitoring by sampling at different distances during shorter and longer periods of time is not only ecological, but also a political issue. Monitoring was carried out at monthly intervals from January to December 2011, at 17 sampling sites. The obtained data set was treated by multivariate techniques in order, firstly, to identify the similarities and differences between sampling periods and locations, secondly, to recognize variables that affect the temporal and spatial water quality changes and thirdly, to present the anthropogenic impact on water quality parameters.

  10. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  11. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    Science.gov (United States)

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  12. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-07-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  13. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-01-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  14. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    Science.gov (United States)

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible.

  15. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    Science.gov (United States)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  16. Land use and water quality degradation in the Peixe-Boi River watershed

    Directory of Open Access Journals (Sweden)

    Bruno Wendell de Freitas Pereira

    2016-04-01

    Full Text Available This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage network. The relationship between human disturbance and water quality was analyzed based on observations of land use changes using satellite imagery and in situ collection of water samples. The results show that 46% of the permanent preservation areas have conflicted uses, especially with respect to urban squatters, exposed soil and, most notably, pasture, with over 84 % of the area in conflict. Critical levels of dissolved oxygen reaching 2.14 mg L-1 and pH of 5.12 were observed in some sampling points. These values are below the fresh water standards set by Resolution 357/05 of CONAMA. The poorest water quality may be related to irregular use and occupation of areas within the permanent preservation areas. There is therefore an urgent need to develop a plan for the sustainable use and occupation of catchment area land in the Peixe-Boi River watershed in order to restore the environment and improve water quality.

  17. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  18. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M.; Nieto, J.M.; Sarmiento, A.M.; Ceron, J.C.; Canovas, C.R

    2004-10-15

    This paper intends to analyse seasonal variations of the quality of the water of the Odiel River. This river, together with the Tinto River, drains the Iberian Pyrite Belt (IPB), a region containing an abundance of massive sulphide deposits. Because of mining activity dating back to prehistoric times, these two rivers are heavily contaminated. The Odiel and Tinto Rivers drain into a shared estuary known as the Ria of Huelva. This work studies dissolved contaminant data in water of the Odiel River collected by various organisations, between October 1980 and October 2002, close to the rivers entry into the estuary. Flow data for this location were also obtained. The most abundant metals in the water, in order of abundance, are zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu). Arsenic (As), cadmium (Cd) and lead (Pb) are also present but in much lower quantities. The quality of the river water is linked to precipitation; the maximum sulphate, Fe, Zn, Mn, Cd and Pb concentrations occur during the autumn rains, which dissolve the Fe hydroxysulphates that were precipitated during the summer months. In winter, the intense rains cause an increase in the river flow, producing a dilution of the contaminants and a slight increase in the pH. During spring and summer, the sulphate and metal concentration (except Fe) recover and once again increase. The Fe concentration pattern displays a low value during summer due to increased precipitation of ferric oxyhydroxides. The arsenic concentration displays a different evolution, with maximum values in winter, and minimum in spring and summer as they are strongly adsorbed and/or coprecipitated by the ferric oxyhydroxides. Mn and sulphates are the most conservative species in the water. Relative to sulphate, Mn, Zn and Cd, copper displays greater values in winter and lower ones in summer, probably due to its coprecipitation with hydroxysulphates during the spring and summer months. Cd and Zn also appear to be affected by the same

  19. Cost-effective solutions for water quality improvement in the Dommel river supported by sewer-WWTP-river integrated modelling

    NARCIS (Netherlands)

    Benedetti, L.; Langeveld, J.; Nieuwenhuijzen, van A.F.; Jonge, de J.; Weijers, S.; Klein, de J.J.M.; Nopens, I.; Flameling, T.; Zanten, van O.

    2013-01-01

    This project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the Dommel River (The Netherlands). Within the project, both acute and long-term impacts of the urban wastewater system on the chemical and ecological quality of the river are

  20. Identification of anthropogenic influences on water quality of rivers in Taihu watershed

    NARCIS (Netherlands)

    Wang, X.L.; Lu, Y.L.; Han, Jingyi; He, G.Z.; Wang, T.Y.

    2007-01-01

    Surface water bodies are progressively subjected to stress as a result of anthropogenic activities. This study assessed and examined the impact of human activities on spatial variation in the water quality of 19 rivers in the Taihu watershed. Concentrations of physicochemical parameters of surface

  1. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    calcium bicarbonate type when the specific conductance is less than about 1,000 micromhos per centimeter, but it is of the sodium chloride type when the specific conductance is more than about 1,500 micromhos per centimeter. The water is off the calcium bicarbonate, sodium bicarbonate, or sodium chloride type when the conductance is between 1,000 and 1,500 micromhos per centimeter. Most of the increase in mineralization of the water is caused by inflow of highly mineralized ground water. The ground-water inflow was estimated to be 22 percent of the total streamflow at Tescott in 1948 and 60 percent in 1952. Mineralization increases and water quality deteriorates progressively downstream along nearly the entire Saline River, especially in the part of the area directly underlain by the Dakota Sandstone between the vicinities of Fairport and Wilson: sodium and chloride are the principal constituents of water contributed by the Dakota. The total percentage of the salt in the Saline River that comes from oil-field brines is considered to be small. The water in the upper Saline River is of good quality for domestic use except that it is hard; the water in the lower Saline River is of poor quality for domestic use because most of the time it is highly mineralized, is hard, and contains high concentrations of chloride and sulfate. In the upper reaches of the river, the water is of good quality for irrigation. In the lower reaches, if the water were impounded in a reservoir, it would be of good quality for irrigation during years of high flow and of very poor quality during years of low flow. The water in the lower reaches is of poor quality for industrial use because it is highly mineralized most of the tinge. Relations of suspended-sediment discharge to water discharge were used with the long-term streamflow duration curves to compute the long-term aver age suspended-sediment discharges and concentrations at five indications. Sediment discharge is closely related to runoff. S

  2. Determination of Water Quality Degradation Due to Industrial and Household Wastewater in the Galing River in Kuantan, Malaysia Using Ion Chromatograph and Water Quality Data

    Directory of Open Access Journals (Sweden)

    Daisuke Kozaki

    2017-04-01

    Full Text Available Water quality of the Galing River in Kuantan, Malaysia was examined to understand the anthropogenic environmental load in each administrative section, using water quality monitoring data and land use pattern. The National Physical Plan 2005 identified Kuantan as one of the country’s future growth centers, which has resulted in rapid development and environmental degradation in the past decade. Multiple water quality indexes used by the Department of Environment, Malaysia and concentrations of several ionic species were examined to assess the river’s water quality. The following inferences were drawn in this study: (1 Cl− and Na+ concentrations indicated that the basin area near the eastern urbanized area was subject to lesser human influence and lower environmental burden; (2 the Western side of the Galing River was subject to higher anthropogenic influence and indicated lower class levels of ammoniacal nitrogen, chemical oxygen demand, and dissolved oxygen, compared to the eastern side; (3 Class V or near class V pH values were obtained upstream at the western side of the Galing River in the industrial area; (4 Two types of environmental burden were identified in the western side of the Galing River, namely, inflow of industrial wastewater upstream on the western side and the effect of household wastewater or untreated raw sewage wastewater.

  3. Use of tracer to calibrate water quality models in the river Almendares

    International Nuclear Information System (INIS)

    Dominguez Catasus, Judith; Borroto Portela, Jorge; Perez Machado, Esperanza; Hernandez Garces, Anel

    2003-01-01

    The Almendares river, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the management of wastewater contamination to predict the effectiveness of control options to improve water quality to desired levels. In the present work, the advective, steady- state Streeter and Phelps model was calibrated and validated to simulate the effect of multiple-point and distributed sources on the carbonaceous oxygen demand and dissolved oxygen. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes

  4. The national stream quality accounting network: A flux-basedapproach to monitoring the water quality of large rivers

    Science.gov (United States)

    Hooper, R.P.; Aulenbach, Brent T.; Kelly, V.J.

    2001-01-01

    Estimating the annual mass flux at a network of fixed stations is one approach to characterizing water quality of large rivers. The interpretive context provided by annual flux includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean. Since 1995, the US Geological Survey's National Stream Quality Accounting Network (NASQAN) has employed this approach at a network of 39 stations in four of the largest river basins of the USA: The Mississippi, the Columbia, the Colorado and the Rio Grande. In this paper, the design of NASQAN is described and its effectiveness at characterizing the water quality of these rivers is evaluated using data from the first 3 years of operation. A broad range of constituents was measured by NASQAN, including trace organic and inorganic chemicals, major ions, sediment and nutrients. Where possible, a regression model relating concentration to discharge and season was used to interpolate between chemical observations for flux estimation. For water-quality network design, the most important finding from NASQAN was the importance of having a specific objective (that is, estimating annual mass flux) and, from that, an explicitly stated data analysis strategy, namely the use of regression models to interpolate between observations. The use of such models aided in the design of sampling strategy and provided a context for data review. The regression models essentially form null hypotheses for concentration variation that can be evaluated by the observed data. The feedback between network operation and data collection established by the hypothesis tests places the water-quality network on a firm scientific footing.

  5. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  6. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest

  7. Water quality modeling of the Medellin river in the Aburrá Valley

    OpenAIRE

    Giraldo-B., Lina Claudia; Palacio, Carlos Alberto; Molina, Rubén; Agudelo, Rubén Alberto

    2015-01-01

    Water quality modeling intends to represent a water body in order to assess their status and project the effects of different measures taken for their protection. This paper presents the results obtained from the Qual2kw model implementation in the first 50 kilometers of the Aburrá-Medellín River, in their most critical conditions of water quality, which correspond to low flow rates. After the model calibration, three recovery scenarios (short-term, medium-term and long-term) were evaluated. ...

  8. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  9. Assessment of Water Quality of Subarnarekha River in Balasore Region, Odisha, India

    OpenAIRE

    A. A Karim; R. B Panda

    2014-01-01

    The present study was carried out to determine the water quality status of Subarnarekha River at Balasore region during pre-project period as Kirtania Port is proposed in this area. River water samples were analysed for physico-chemical parameters by following standard methods (APHA 1985) and the results showed their variations as follows: pH 7.3-7.8,Temperature 26.7-28.20C, Electrical Conductivity 392-514 µ mho ,Total suspended solids 118-148 mg/l, Total dissolved solids 241-285 mg/l, Alkali...

  10. Water quality of the Neuse River, North Carolina - Variability, pollution loads, and long-term trends

    Science.gov (United States)

    Harned, Doughlas A.

    1982-01-01

    Interpretation of water-quality data collected by the U.S. Geological Survey for the Neuse River, North Carolina, has identified water-quality variations, charactrized the current condition of the river in reference to water-quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Two sampling stations, Neuse River near Clayton (02087500) and Neuse River at Kinston (02089500) have more than 12 years of water-quality data collected during the period from 1955 to 1978. The Clayton station provides information on the upper fourth of the basin (1,129 mi 2) which includes several urbanized areas, including Raleigh, N.C., and part of Durham, N.C. The Kinston station provides information from the predominantly rural midsection of the basin (2,690 mi2). A network of temporary stations on small rural streams in the Neuse River and adjacent basins provide an estimate of baseline or es- sentially unpolluted water quality. Overall, the water quality of the Neuse River is satisfactory for most uses. However, dissolved-oxygen, iron, and manganese concentrations, pH, and bacterial concentrations often reach undesirable levels. Concentrations of cadmium, and lead also periodically peak at or above criterion levels for domestic water supply sources. Nutrient levels are generally high enough to allow rich algal growth. Sediment concentrations in the Neuse are high in comparison to pristine streams, however, the impacts of these high levels are difficult to quantify. Sediment and nutrient concentrations peak on the leading edge of flood discharges at Clayton. At Kinston, however, the discharge and sediment concentration peak almost simultaneously. Changes in algal dominance, from genera usually associated with organically enriched waters to genera that are less tolerant to organic enrichment, indicate improvement in water qualiy of the Neuse since 1973. These changes, along with a reduction

  11. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  12. The Influence of Tidal Activities on Water Quality of Paka River Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Nadila Abdul Khalid; Haniff Muhamad

    2015-01-01

    A study to determine the water quality at seven stations was carried out on the Paka River, Terengganu between two tides. Sampling begins from the estuary of the Paka River, and ended about 14 km from the mouth by a distance 2 km for each station. Sampling was carried out between two tides (high and low tides) and within two variations of time representing the first sampling (wet period) and the second sampling (dries period). Water quality parameters such as temperature, dissolved oxygen, conductivity, salinity, pH and total dissolved solids (TDS) were measured directly in the field using multiparameter the YSI 556. Analysis of sodium, magnesium sulfate was carried out according to the APHA and HACH methods. Determination of primary data and physicochemical characteristics of the River Paka are measured and analyzed for each sampling station. Physicochemical parameters such as temperature, pH, dissolved oxygen, total dissolved solids, salinity, electrical conductivity, sodium, and magnesium sulphate concentration were used to determine its relationship of the movement of tides and other factors that affect water quality. Station 1 shows the highest reading physicochemical parameters than station 7 during the first and second samplings. The higher reading most of physicochemical parameters was also observed during the dry season, this is because the river flow from upstream was decline due to low rainfall intensity. (author)

  13. Relations of water-quality constituent concentrations to surrogate measurements in the lower Platte River corridor, Nebraska, 2007 through 2011

    Science.gov (United States)

    Schaepe, Nathaniel J.; Soenksen, Philip J.; Rus, David L.

    2014-01-01

    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The U.S. Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebr. [USGS site 06800500]; Salt Creek near Ashland, Nebr. [USGS site 06805000]; and Platte River at Louisville, Nebr. [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions. Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models. Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus

  14. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  15. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    Science.gov (United States)

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  16. Restore Harlem River's Water Quality to Swimmable/Fishable

    Science.gov (United States)

    Wang, J.

    2014-12-01

    Combined sewer overflows (CSOs) discharged untreated sewage into the Harlem River during rainstorms, elevated nutrient and bacteria levels. The river is not safe for swimming, fishing or boating during wet weather conditions. We had collected water samples from CSOs discharge point, analyzed ammonia (NH3-N), phosphate (PO43-), fecal coliform, E.Coli., enteroccus, and polychlorinated biphenyl's (PCBs). On tropical storm Arthur, we had collected CSOs: DO reduced during heavy thunderstorm dropped down from 4 to 2.9 mg/L (49 to 35%); fecal coliform was 5 million MPN/100ml, E.Coli. was 1000-2000 MPN/100ml, enterococcus was 2000-2500 MPN/100ml, turbidity was 882 FAU, ammonia was 2.725 mg/L. Nutrient and bacteria exceeded EPA regulated levels significantly (ammonia: 0.23mg/L; fecal coliform: 200 MPN/100ml, E.Coli.: 126 MPN/100ml, enterococcus: 104 MPN/100ml; turbidity: 0.25-5.25 FAU, DO: 4mg/L). Water sampling of CSOs during heavy rainstorm on 4/30/14 showed turbidity reached 112 FAU, ammonia was 0.839 mg/L, fecal coliform: 5 million MPN/100ml, E.Coli.: 500 MPN/100ml and enterococcus: 10,000 MPN/100ml. CSO collection on June 5, 2014 during morning rainstorm showed ammonia was 2.273 mg/L, turbidity was 37 FAU. New York State Department of Health (NYS DOH) suggested women under 50 & children under 15 do not eat fish such as blue crab meat, carb or lobster tomalley, channel catfish, gizzard shad, white catfish, Atlantic needlefish, bluefish, carp, goldfish, rainbow smelt, striped bass, white perch because chemical concerns (PCBs, cadmium, dioxin). Fish caught in the Harlem River was banned from commercial. Swimming in the river was not safe due to high pathogen levels. CSOs reduction, such as green roof, green wall, and wetland could help reduce stormwater runoff and CSOs. Water quality improvement and ecology restoration will help achieve the goal of swimmable and fishable in the Harlem River.

  17. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    Science.gov (United States)

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  18. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; project description

    Science.gov (United States)

    Stamer, J.K.; Jordan, P.R.; Engberg, R.A.; Dugan, J.T.

    1987-01-01

    In 1986 the U.S. Geological Survey began a National Water-Quality Assessment Program to: (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation 's surface water resources; (2) where possible, define trends in water quality; and (3) identify and describe the relation between water quality and natural and land use factors. This report describes the pilot study of the lower Kansas River basin, which is one of four surface water pilot studies that will be used to test, and modify as necessary, assessment concepts and approaches in preparation for future full implementation of the national program. Water quality issues in the lower Kansas River basin are dominated by possible nonpoint sources of contamination from agricultural land, with issues including: (1) large sediment discharge in the streams and sediment deposition in the reservoirs caused by intensive cultivation of row crops and subsequent erosion; (2) occurrence of pesticides in streams and reservoirs that could impair the suitability of water for aquatic life and has the potential for impairing the water 's suitability for public supply; (3) bacterial contamination caused by runoff from pastureland and feedlot operations and municipal wastewater discharges; and (4) nutrient enrichment of reservoirs. Data from fixed stations will be used to determine frequency distributions of constituent concentrations and mass balances of constituents between stations. Subbasin or river reach studies will provide a better understanding of the origin, movement, and fate of potential contaminants. (Lantz-PTT)

  19. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  20. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  1. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    Science.gov (United States)

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  2. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    Science.gov (United States)

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  3. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  4. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  5. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  6. Effects of pollution in River Krishni on hand pump water quality

    Directory of Open Access Journals (Sweden)

    K. Dhakyanaika

    2010-01-01

    Full Text Available River Krishni is highly polluted. The investigation was “to study the effect of pollution in River Krishni on the quality ofgroundwater abstracted through shallow and deep hand pumps placed in the close vicinity of River Krishni”. One suchaffected Village Chanedna Maal was selected for the study. Water samples were analyzed in terms of physical, chemicaland bacteriological water quality parameters. Range of values of conductivity (1040–2770 μS/cm, TOC (27.79–1365.1mg/L, UV absorbance at 254 nm (0.281–10.34 cm-1, color (1510–5200 CU, and COD (15.82–1062 mg/L indicatedpresence of significant amount of pollution / organics in the river water, total coliform (16x102–46x106 MPN/100mLand fecal coliform (16x102–24x106 MPN/100mL. In case of deeper India Mark-II hand pumps conductivity was foundto range from 443–755 μS/cm, TOC (0.226–9.284 mg/L, UV absorbance (0.0–0.118 cm-1, colour (0.0–119 CU, COD(9.0–113 mg/L and MPN (0.0–93x101/100m L. While in case of shallower hand pumps conductivity (441–1609 μS/cm, TOC (0.015–68.82 mg/L, UV absorbance (0.0–1.094 cm-1, colour (4.0–560 CU, COD (9.72–163 mg/L and MPN(0.0–15x102/100mL. Hand pumps abstracting water from shallow and deep unconfined aquifers have been found to deliverpolluted water in terms of color, organics and coliform bacteria. As the hand pumps are the only source of water supply inVillage Chandena Maal, pollution of the groundwater has adversely affected the day to day life of its 3000 residents.

  7. Geology, Hydrology, and Water Quality of the Little Blackwater River Watershed, Dorchester County, Maryland, 2006-09

    Science.gov (United States)

    Fleming, Brandon J.; DeJong, Benjamin D.; Phelan, Daniel J.

    2011-01-01

    The Little Blackwater River watershed is a low-lying tidal watershed in Dorchester County, Maryland. The potential exists for increased residential development in a mostly agricultural watershed that drains into the Blackwater National Wildlife Refuge. Groundwater and surface-water levels were collected along with water-quality samples to document hydrologic and geochemical conditions within the watershed prior to potential land-use changes. Lithologic logs were collected in the Little Blackwater River watershed and interpreted with existing geophysical logs to conceptualize the shallow groundwater-flow system. A shallow water table exists in much of the watershed as shown by sediment cores and surface geophysical surveys. Water-table wells have seasonal variations of 6 feet, with the lowest water levels occurring in September and October. Seasonally low water-table levels are lower than the stage of the Little Blackwater River, creating the potential for surface-water infiltration into the water table. Two stream gages, each equipped with stage, velocity, specific conductance, and temperature sensors, were installed at the approximate mid-point of the watershed and near the mouth of the Little Blackwater River. The gages recorded data continuously and also were equipped with telemetry. Discharge calculated at the mouth of the Little Blackwater River showed a seasonal pattern, with net positive discharge in the winter and spring months and net negative discharge (flow into the watershed from Blackwater National Wildlife Refuge and Fishing Bay) in the summer and fall months. Continuous water-quality records showed an increase in specific conductance during the summer and fall months. Discrete water-quality samples were collected during 2007--08 from 13 of 15 monitoring wells and during 2006--09 from 9 surface-water sites to characterize pre-development conditions and the seasonal variability of inorganic constituents and nutrients. The highest mean values of

  8. Macroinvetebrate Assemblages as Indicators of Water Quality of the West Seti River, Bajhang, Nepal

    Directory of Open Access Journals (Sweden)

    Mohana Matangulu

    2017-08-01

    Full Text Available Water quality of the West Seti River, a tributary of the Karnali in West Nepal was assessed using macroinvertebrates as bioindicators. The main objective of the study was to assess the ecological water quality of the West Seti River and to generate a baseline data on macroinvertebrate assemblages. The sampling was conducted during December 2015 and a total of 11 sampling sites were selected from the West Seti River and its tributaries. Qualitative samples of macroinvertebrates were collected from different habitats. Selected physico-chemical parameters such as pH and temperature were estimated on-site. Dissolved oxygen (DO was estimated by Winkler’s method. The macroinvertebrate samples were enumerated and identified up to Family level following standard literature. Chi-square test was performed to see whether macroinvertebrate taxa varied significantly along the altitudinal gradient and between the West Seti River and its tributaries. An ecological assessment tool Nepalese Biotic Score/ Average Score Per Taxon (NEPBIOS/ASPT was applied to assess the water quality of the sampling sites. The pH value ranged from 7.9 to 8.7 indicating the alkaline nature of the river. A total of 1666 individuals belonging to 34 Families and 7 Orders of macro-invertebrates were observed. The highest diversity of the macroinvertebrate taxa was observed at site T5 with nineteen Families whereas the lowest taxa diversity was observed at R3 with only five Families. The variation in macroinvertebrate assemblages between the sub-tropical and temperate zones; and the West Seti River and its tributaries were not significant. NEPBIOS/ASPT revealed a score of Water Quality Class of III-IV at Site R3 indicating that the site was polluted. This site was characterized by the abundance of red Chironomids which are considered as the indicators of organic pollution.International Journal of EnvironmentVolume-6, Issue-3, Jun-Aug 2017, page: 25-45

  9. The Influence of Land-Use on the Quality of River Water

    Directory of Open Access Journals (Sweden)

    Andrius Litvinaitis

    2011-04-01

    Full Text Available Water protection is one of the most all-round regulated areas of the EU environmental control. In order to forecast the state of water ecosystem, it is necessary to evaluate changes in water quality. In order to evaluate the influence of changes in the land-use structure on Lithuanian fluvial water, the article looks into the most characteristic Lithuanian watersheds. To reflect the links between the water of all rivers in Lithuania and the land-use structure of their riverside watersheds, there were chosen eight watersheds of Lithuanian rivers as the object of research with the focus on the characteristics of biogenic substance migration in their water-sheds. Cartographic material CORINE (scale 1: 100,000 and CORINE land cover (1995 were used for evaluating changes in the land-use structure. Research contains land-use structure analysis on two spatial levels: 1 200 m zone from the river bed; 2 the entire watershed. A multiple dispersive analysis between nitrate concentrations and the structural elements of land-use has showed that reliability is absent although correlation coefficients exceed 0.63. This may be explained by a rather complex nitrogen circulation and its components including fixation (biologic and industrial, assimilation, nitrification, denitrification, inflow with rainfall, elution etc.Article in Lithuanian

  10. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia

    Science.gov (United States)

    Urushadze, Teo

    2018-01-01

    Water quality contamination by heavy metal pollution has severe effects on public health. In the Mashavera River Basin, an important agricultural area for the national food system in Georgia (e.g., vegetable, dairy and wine production), water contamination has multiple influences on the regional and country-wide health. With new industrial activities in the region, sediment extraction, and discharge of untreated wastewater into the river, its tributaries and irrigation canals, a comprehensive study of water quality was greatly needed. This study examined sediment and water samples from 17 sampling sites in the Mashavera River Basin during the high and low precipitation seasons. The results were characterized utilizing the Geo-accumulation Index (Igeo), Enrichment Factor (EF), Pollution Load index (PLI), Contamination Factor (CF) and Metal Index (MI). According to the CFs, Cu > Cd > Zn > Pb > Fe > Mn > Ni > Cr > Hg is the descending order for the content of all observed heavy metals in sediments collected in both seasons. Fe and As were additionally examined in water samples. Overall, As, Cd and Pb, all highly toxic elements, were found in high concentrations in downstream sample sites. According to these results, comprehensive monitoring with narrow intervals between sampling dates, more sample sites along all waterways, and proximate observation of multiple trace metal elements are highly recommended. Moreover, as the part of the water quality governance system, an immediate and sustainable collective action by all stakeholders to control the pollution level is highly recommended, as this issue is linked to the security of the national food system and poses a local public health risk. PMID:29597320

  11. 76 FR 50188 - Notice of Proposed Methodology for the Delaware River and Bay Integrated List Water Quality...

    Science.gov (United States)

    2011-08-12

    ... Integrated List Water Quality Assessment AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY... Integrated List Water Quality Assessment is available for review and comment. DATES: Comments must be... should have the phrase ``Water Quality Assessment 2012'' in the subject line and should include the name...

  12. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    Science.gov (United States)

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based

  13. Simplifying dynamic river water quality modelling: A case study of inorganic nitrogen dynamics in the Crocodile River (South Africa).

    CSIR Research Space (South Africa)

    Deksissa, T

    2004-06-01

    Full Text Available Quality Model No. 1, which is one of the most comprehensive basic river water quality models available in literature. The applicability of the simplified model in data limited situations was investigated using a case study of inorganic nitrogen (nitrate...

  14. Spatiotemporal Variation and the Role of Wildlife in Seasonal Water Quality Declines in the Chobe River, Botswana.

    Directory of Open Access Journals (Sweden)

    J Tyler Fox

    Full Text Available Sustainable management of dryland river systems is often complicated by extreme variability of precipitation in time and space, especially across large catchment areas. Understanding regional water quality changes in southern African dryland rivers and wetland systems is especially important because of their high subsistence value and provision of ecosystem services essential to both public and animal health. We quantified seasonal variation of Escherichia coli (E. coli and Total Suspended Solids (TSS in the Chobe River using spatiotemporal and geostatistical modeling of water quality time series data collected along a transect spanning a mosaic of protected, urban, and developing urban land use. We found significant relationships in the dry season between E. coli concentrations and protected land use (p = 0.0009, floodplain habitat (p = 0.016, and fecal counts from elephant (p = 0.017 and other wildlife (p = 0.001. Dry season fecal loading by both elephant (p = 0.029 and other wildlife (p = 0.006 was also an important predictor of early wet season E. coli concentrations. Locations of high E. coli concentrations likewise showed close spatial agreement with estimates of wildlife biomass derived from aerial survey data. In contrast to the dry season, wet season bacterial water quality patterns were associated only with TSS (p<0.0001, suggesting storm water and sediment runoff significantly influence E. coli loads. Our data suggest that wildlife populations, and elephants in particular, can significantly modify river water quality patterns. Loss of habitat and limitation of wildlife access to perennial rivers and floodplains in water-restricted regions may increase the impact of species on surface water resources. Our findings have important implications to land use planning in southern Africa's dryland river ecosystems.

  15. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    Science.gov (United States)

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  16. WATER QUALITY INDEX AS AN TOOL FOR RIVER ASSESSMENT IN AGRICULTURAL AREAS IN THE PAMPEAN PLAINS OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Carlos Moscuzza

    2007-01-01

    Full Text Available The contributions of nutrients and xenobiotics by anthropogenic activities developed in riverside deteriorate water quality. In this context, the impact of different agroindustry effluents on the water quality of Salado River in Buenos Aires Province (Argentina was analyzed applying water quality indexes (WQI. Water quality index is an efficient a simple monitoring tool to instrument corrective and remediation policies. Winter and summer samplings were performed. A minimal water quality index (WQImin was calculated using only two parameters which can be easy determined in situ. The use of WQImin may be a useful methodology for river management. Meat industry appears as the most pollutant source. Since it is considered as point pollution source, effluents should be treated previous to its disposal with the available technologies.

  17. Impact-based integrated real-time control for improvement of the Dommel River water quality

    NARCIS (Netherlands)

    Langeveld, J.; Benedetti, L.; Klein, de J.J.M.; Nopens, I.; Amerlinck, Y.; Nieuwenhuijzen, van A.F.; Flameling, T.; Zanten, van O.; Weijers, S.

    2013-01-01

    The KALLISTO project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the river Dommel. Within the project, both acute and long term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied

  18. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E

    2013-01-01

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  19. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    Science.gov (United States)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface

  20. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    Science.gov (United States)

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water-quality

  1. Quality of the river Ibar from Biljanovac to Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2015-01-01

    Full Text Available The water of the Ibar river is used for water supply and other purposes, so monitoring the water quality of the river Ibar of primary importance for the contamination of water ecosystems and protecting human health. This paper is a continuation of the monitoring of the Ibar river of Raska and Kraljevo. Last year, at the 34th international professional scientific meeting at Tara was given the impact of wastewater municipality of Raška and Baljevac the quality of the Ibar river. A goal of this paper is to show the impact of settlements from Biljanovac to Konarevo the water quality of the Ibar river. Total of 15 measurements at three measuring sites separated 50 km are presented. The Ibar river is passing both through urban areas where the industry is developed and through uninhabited places.

  2. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  3. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge National Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods

  4. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    OpenAIRE

    John C. Lehrter; John C. Lehrter; Chengfeng Le

    2017-01-01

    Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011) in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging ...

  5. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  6. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    Science.gov (United States)

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and

  7. Land use and water quality degradation in the Peixe-Boi River watershed

    OpenAIRE

    Bruno Wendell de Freitas Pereira; Maria de Nazaré Martins Maciel; Francisco de Assis Oliveira; Marcelo Augusto Moreno da Silva Alves; Adriana Melo Ribeiro; ; Bruno Monteiro Ferreira; Ellen Gabriele Pinto Ribeiro

    2016-01-01

    This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage networ...

  8. Water quality monitoring of the Pirapó River watershed, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    E. C. Bortoletto

    Full Text Available This study aimed to evaluate the water quality of the Pirapó River watershed in Paraná, Brazil, and identify the critical pollution sites throughout the drainage basin. The water quality was monitored during the period from January 2011 to December 2012. Nine points distributed throughout the main channel of the Pirapó River were sampled for a total of 17 samplings. The water quality was evaluated based on the determination of 14 physical, chemical and microbiological parameters. Analysis of the variables monitored in the Pirapó River watershed using factor analysis/principal components analysis (FA/PCA indicated the formation of three distinct groups of parameters: water temperature (Twater, dissolved oxygen (DO and a group composed of total suspended solids (TSS, turbidity and nitrite (NO2–. The parameters Twater and DO exhibited a relationship with the seasonality, and the TSS, turbidity, and NO2– levels were correlated with surface runoff caused by rainfall events. Principal component analysis (PCA of the sampling points enabled the selection of the 10 most important variables from among the 14 evaluated parameters. The results showed that the nitrate (NO3–, NO2–, TSS, turbidity and total phosphorous (TP levels were related to the soil type, and the parameters DO, electrical conductivity (EC, ammoniacal nitrogen (N-NH3 and thermotolerant coliforms (TC were related to organic matter pollution, with the P5 sampling site being the most critical site. The ordination diagram of the sampling points as a function of the PCA indicated a reduction from 9 to 5 sampling points, indicating the potential for decreasing the costs associated with monitoring.

  9. Carmel River Lagoon Enhancement Project: Water Quality and Aquatic Wildlife Monitoring, 2006-7

    OpenAIRE

    Perry, William; Watson, Fred; Casagrande, Joel; Hanley, Charles

    2007-01-01

    This is a report to the California Department of Parks and Recreation. It describes water quality and aquatic invertebrate monitoring after the construction of the Carmel River Lagoon Enhancement Project. Included are data that have been collected for two years and preliminary assessment of the enhanced ecosystem. This report marks the completion of 3-years of monitoring water quality and aquatic habitat. The report adopts the same format and certain background text from previous ...

  10. Water-quality data for the Missouri River and Missouri River alluvium near Weldon Spring, St. Charles County, Missouri, 1991--92

    International Nuclear Information System (INIS)

    Kleeschulte, M.J.

    1993-01-01

    This report contains the water-quality data collected at two cross sections across the Missouri River and from monitoring wells in the Missouri River alluvium near Defiance, Missouri. The sampling results indicate the general water composition from the Missouri River changes with different flow conditions. During low-base flow conditions, the water generally contained about equal quantities of calcium and sodium plus potassium and similar quantities of bicarbonate and sulfate. During high-base flow conditions, water from the river predominantly was a calcium bicarbonate type. During runoff conditions, the water from the river was a calcium bicarbonate type, and sulfate concentrations were larger than during high-base flow conditions but smaller than during low-base flow conditions. The total and dissolved uranium concentrations at both the upstream and downstream cross sections, as well as from the different vertical samples across the river, were similar during each sampling event. However, sodium, sulfate, nitrate, and total and dissolved uranium concentrations varied with different flow conditions. Sodium and sulfate concentrations were larger during low-base flow conditions than during high-base flow or runoff conditions, while nitrate concentrations decreased during low-base flow conditions. Both total and dissolved uranium concentrations were slightly larger during runoff events than during low-base or high-base flow conditions

  11. Variations in abiotic conditions of water quality of River Osun, Osun ...

    African Journals Online (AJOL)

    Otoigiakih

    Full Length Research Paper. Variations in abiotic conditions of water quality of River. Osun, Osun State, Nigeria. Farombi, A. G.1*, Adebayo, O. R.2, Olagunju E. O.1 and Oyekanmi A. M.2. 1Science Laboratory Technology Department, Faculty of Science, Osun State Polytechnic, Iree, Osun State, Nigeria. 2Applied Science ...

  12. Variations in selected water quality variables and metal concentrations in the sediment of the lower Olifants and Selati rivers, South Africa

    Directory of Open Access Journals (Sweden)

    T. Seymore

    1994-08-01

    Full Text Available A survey of the water and sediment quality of the lower Olifants River and lower Selati River was carried out. Metal concentrations (Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn in the water and sediment, as well as the physical and chemical characteristics of the water were determined over a two-year period (April 1990 - February 1992. The water quality of the lower Selati River, which flows through the Phalaborwa area, was found to be influenced by the mining and industrial activities in the area. It was also the case with the lower Olifants River after the Selati-Olifants confluence, although the concentrations of most variables did decrease from the western side of the Kruger National Park to the eastern side due to dilution of the water by tributaries of the Olifants River. Variables of special concern were sodium, fluoride. chloride, sulphate, potassium, the total dissolved salts and the metal concentrations (except strontium. The water quality of the Selati River in the study area is a great cause of concern and a further degradation thereof cannot be afforded.

  13. Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece.

    Science.gov (United States)

    Samiotis, Georgios; Trikoilidou, Eleni; Tsikritzis, Lazaros; Amanatidou, Elisavet

    2018-03-20

    In this work, a comparative study on the water quality characteristics of two in-line water reservoirs (artificial lakes) in Aliakmon River (Western Macedonia, Greece) is performed. Polyfytos Reservoir and Ilarion Reservoir were created in 1975 and 2012 respectively, in order to serve the homonymous hydroelectric stations. In young artificial lakes, severe deterioration of water quality may occur; thus, the monitoring and assessment of their water quality characteristics and their statistical interpretation are of great importance. In order to evaluate any temporal or spatial variations and to characterize water quality of these two in-line water reservoirs, water quality data from measurements conducted from 2012 to 2015 were statistically processed and interpreted by using a modified National Sanitation Foundation water quality index (WQI). The water physicochemical characteristics of the two reservoirs were found to be generally within the legislation limits, with relatively small temporal and spatial variations. Although Polyfytos Reservoir showed no significant deviations of its water quality, Ilarion Reservoir exhibited deviations in total Kjeldahl nitrogen, nitrite nitrogen, total suspended solids, and turbidity due to the inundated vegetation decomposition. The conducted measurements and the use of the modified NSFWQI revealed that during the inundation period of Ilarion Reservoir, its water quality was "moderate" and that the deviations were softened through time, leading to "good" water quality during its maturation period. Three years since the creation of Ilarion Reservoir, water quality does not match that of Aliakmon River (feeding water) or that of the stabilized reservoir (Polyfytos Reservoir), whose quality is characterized as "high." The use of a WQI, such as the proposed modified NSFWQI, for evaluating water quality of each sampling site and of an entire water system proved to be a rapid and relatively accurate assessment tool.

  14. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    Science.gov (United States)

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    The U.S. Geological Survey-in cooperation with the U.S. Army Corps of Engineers, The Nature Conservancy, the Real Edwards Conservation and Reclamation District, and the Texas Parks and Wildlife Department-investigated streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, specifically in the watersheds of the West Nueces, Nueces, Dry Frio, Frio, and Sabinal Rivers upstream from the Edwards aquifer outcrop. Streamflow in these rivers is sustained by groundwater contributions (for example, from springs) and storm runoff from rainfall events. To date (2012), there are few data available that describe streamflow and water-quality conditions of the rivers within the upper Nueces River Basin. This report describes streamflow gain-loss characteristics from three reconnaissance-level synoptic measurement surveys (hereinafter referred to as "surveys") during 2008-10 in the upper Nueces River Basin. To help characterize the hydrology, groundwater-level measurements were made, and water-quality samples were collected from both surface-water and groundwater sites in the study area from two surveys during 2009-10. The hydrologic (streamflow, springflow, and groundwater) measurements were made during three reconnaissance-level synoptic measurement surveys occurring in July 21-23, 2008; August 8-18, 2009; and March 22-24, 2010. These survey periods were selected to represent different hydrologic conditions. Streamflow gains and losses were based on streamflow and springflow measurements made at 74 sites in the study area, although not all sites were measured during each survey. Possible water chemistry relations among sample types (streamflow, springflow, or groundwater), between surveys, and among watersheds were examined using water-quality samples collected from as many as 20 sites in the study area.

  15. Water Quality Degradation and Management Strategies for Swine and Rice Farming Wastewater in the Tha Chin River Basin

    Directory of Open Access Journals (Sweden)

    Abigail Henderson

    2017-11-01

    Full Text Available Water quality in the Tha Chin River regularly exceeds biological oxygen demand (BOD standards of Thailand’s Enhancement and Conservation of National Environmental Quality Act. This study quantified the BOD loading from rice cultivation and swine farming to the Tha Chin River using effluent data and procedures from the Pollution Control Department (PCD, geospatial land-use maps from the Land Development Department, and water quality data from the Ministry of Natural Resources and the Environment. It was determined that the BOD loading was 12 tons/day from swine farming in 2015 and 52 tons/day, on average, from rice farming between 2002 and 2011. Technology-specific, community-scale wastewater management strategies were recommended for both industries: feasibility studies revealed 66 potential sites for constructed wetland implementation and 7 subdistricts suitable for biogas network pipelines. It was determined that if these projects are implemented in conjunction, the BOD would be reduced by 6% (0.3 mg/L in the entire river or 11% (0.5 mg/L at the three water quality monitoring stations proximate to swine farms. These reductions would have a substantial effect on the water quality of the Tha Chin River, and governmental agencies such as the PCD should strongly consider subsidization and implementation of these projects.

  16. Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran.

    Science.gov (United States)

    Aminiyan, Milad Mirzaei; Aitkenhead-Peterson, Jacqueline; Aminiyan, Farzad Mirzaei

    2018-06-16

    The main purpose of this study was to evaluate the water quality of the Karoon river, which is a main river in Iran country. For this purpose, hydrochemical analyses of a database that maintained by the Water Resources Authority of Khuzestan Province, Iran's Ministry of Energy, were carried out. These data were compared with the maximum permissible limit values recommended by World Health Organization and Food and Agriculture Organization water standards for drinking and agricultural purposes, respectively. Also in this regard, multiple indices of water quality were utilized. However, not all indices gave similar rankings for water quality. According to the USSL diagram and Kelly ratio, Karoon's water quality is not suitable for irrigation purposes due to high salinity and moderate alkalinity. However, the results of the magnesium hazard analysis suggested that water quality for irrigation is acceptable. A Piper diagram illustrated that the most dominant water types during the 15 years of the study were Na-Cl and Na-SO 4 . The mineral saturation index also indicated that Na-Cl is the dominant water type. The water quality for drinking purpose was evaluated using a Schoeller diagram and water quality index (WQI). According to the computed WQI ranging from 111.9 to 194.0, the Karoon's water in the Khuzestan plain can be categorized as "poor water" for drinking purposes. Based on hydrochemical characteristics, years 2000-2007 and 2008-2014 were categorized into two clusters illustrating a decline in water quality between the two time periods.

  17. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  18. Sidestream Elevated Pool Aeration, a Technology for Improving Water Quality in Urban Rivers

    Science.gov (United States)

    Motta, D.; Garcia, T.; Abad, J. D.; Bombardelli, F. A.; Waratuke, A.; Garcia, M. H.

    2010-12-01

    Dissolved Oxygen (DO) levels are frequently depleted in rivers located in urban areas, as in the case of the Matanza-Riachuelo River in Buenos Aires, Argentina. This stream receives both domestic and industrial loads which have received minor or no treatment before being discharged into the water body. Major sources of pollution include, but are not limited, to leather and meat packing industries. Additionally, deep slow moving water in the river is associated with limited reaeration and facilitates deposition of organic-rich sediment, therefore exacerbating the DO consumption through sediment oxygen demand. In this study we assessed the efficiency of Sidestream Elevated Pool Aeration (SEPA) stations as a technology for alleviating conditions characterized by severely low DO levels. A SEPA station takes water from the stream at low DO concentrations, through a screw pump; then, water is transported to an elevated pool from where it flows over a series of weirs for water reaeration; finally, the aerated water is discharged back into the river sufficiently downstream from the intake point. This system mimics a phenomenon that occurs in mountain streams, where water is purified by bubbling over rocks. The impact of the use of SEPA stations on the DO concentrations in the Matanza-Riachuelo River was evaluated at both local and reach scales: this was done by deploying and monitoring an in situ pilot SEPA station, and by performing numerical modeling for the evaluation of the hydrodynamics in the SEPA station and the water quality in the reach where SEPA stations are planned to be implemented. An efficiency of aeration of 99% was estimated from DO measurements in the pilot SEPA, showing the potential of this technology for DO recovery in urban streams. Three-dimensional hydrodynamic modeling, besides assisting in the design of the pilot SEPA, has allowed for designing a prototype SEPA to be built soon. Finally, one-dimensional water quality modeling has provided the

  19. Water Quality Trends in the Entiat River Watershed: 2007–2010

    Science.gov (United States)

    Richard D. Woodsmith; Pamela K. Wilkins; Andy Bookter

    2013-01-01

    A large, multiagency effort is underway in the interior Columbia River basin (ICRB) to restore salmon, trout, and char listed as threatened or endangered under the 1973 federal Endangered Species Act. Water quantity and quality are widely recognized as important components of habitat for these depleted salmonid populations. There is also broad concern about...

  20. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  1. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC.

    Science.gov (United States)

    Lee, Jaewoong; Lee, Seunghyun; Yu, Soonju; Rhew, Doughee

    2016-04-01

    Biological oxygen demand (BOD5) or chemical oxygen demand (COD) analysis is widely used to evaluate organic pollutants in water systems as well as the efficiency of wastewater treatment plants. However, both analysis methods have restrictions such as being insensitive, imprecise, time-consuming, and the production of chemical waste. Therefore, total organic carbon (TOC) analysis for organic pollutants has been considered for an alternative analysis instead of BOD5 or COD. Several studies have investigated the replacement of BOD5 or COD with TOC in wastewater samples; however, few studies have investigated the relationships between water quality parameters in rivers and lakes. Therefore, this study evaluated the relationships between BOD5, COD, or NBOPs and TOC by the analysis of national water quality monitoring data of rivers and lakes for 5 years. High correlation coefficients (r) of 0.87 and 0.66 between BOD5 and TOC (p TOC (p TOC was 0.93 for rivers and 0.72 for lakes. The coefficients of determination (R 2) were 0.75 and 0.44 between BOD5 and TOC for rivers and lakes as well as were 0.87 and 0.57 between COD and TOC for rivers and lakes, respectively. The coefficient of determination (R 2) between NBOPs and TOC was 0.73 for rivers and 0.52 for lakes.

  2. Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station

    Directory of Open Access Journals (Sweden)

    Enrique Valero

    2012-10-01

    Full Text Available The renewable energy emerged as a solution to the environmental problems caused by the conventional sources of energy. Small hydropower (SHP is claimed to cause negligible effects on the ecosystem, although some environmental values are threatened and maintenance of an adequate water quality should be ensured. This work provides a characterization of the water quality status in a river stretch around a SHP plant on river Lérez, northwest Spain, for four years after its construction. The ecological and chemical status of the water as well as the ecological quality of the riparian habitat, were used as measures of quality. Data were compared with the water quality requirements. The variations in the quality parameters were analyzed over time and over the river sections with respect to the SHP plant elements. Two years after construction, the temperature and dissolved oxygen values achieved conditions for salmonid water and close to the reference condition, while pH values were low. The Iberian Biological Monitoring Working Party (IBMWP index showed a positive trend from two years after the construction and stabilized at “unpolluted or not considerably altered water”. Quality parameters did not present significant differences between sampling points. The SHP plant construction momentarily altered the quality characteristics of the water.

  3. Ground and river water quality monitoring using a smartphone-based pH sensor

    Directory of Open Access Journals (Sweden)

    Sibasish Dutta

    2015-05-01

    Full Text Available We report here the working of a compact and handheld smartphone-based pH sensor for monitoring of ground and river water quality. Using simple laboratory optical components and the camera of the smartphone, we develop a compact spectrophotometer which is operational in the wavelength range of 400-700 nm and having spectral resolution of 0.305 nm/pixel for our equipment. The sensor measures variations in optical absorption band of pH sensitive dye sample in different pH solutions. The transmission image spectra through a transmission grating gets captured by the smartphone, and subsequently converted into intensity vs. wavelengths. Using the designed sensor, we measure water quality of ground water and river water from different locations in Assam and the results are found to be reliable when compared with the standard spectrophotometer tool. The overall cost involved for development of the sensor is relatively low. We envision that the designed sensing technique could emerge as an inexpensive, compact and portable pH sensor that would be useful for in-field applications.

  4. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    Science.gov (United States)

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  5. Modeling discharge and water quality in a temporary river basin using SWAT model: A case-study on the Ardila river

    OpenAIRE

    Durão, Anabela; Serafim, António; Brito, David; Morais, Manuela

    2012-01-01

    Temporary rivers have a hydrologic variability, which are characterized by long drought periods and short floods events, that influences water quality. Analysis of river flow generated in the Ardila river basin (temporary regime) using precipitation data (from 1931 to 2003) from a weather station, located within the basin, at the Portuguese side (which represents only 22% of the study area) showed a discrepancy between the modeled and observed runoff since 1981. It was also revealed a satisfa...

  6. 78 FR 63972 - Notice of Proposed Methodology for the 2014 Delaware River and Bay Water Quality Assessment Report

    Science.gov (United States)

    2013-10-25

    ... Water Quality Assessment Report AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY: Notice....us , with ``Water Quality Assessment 2014'' as the subject line; via fax to 609-883-9522; via U.S. Mail to DRBC, Attn: Water Quality Assessment 2014, P.O. Box 7360, West Trenton, NJ 08628-0360; via...

  7. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants

    Science.gov (United States)

    Cheng, Peng; Li, Xuyong; Su, Jingjun; Hao, Shaonan

    2018-01-01

    Identification of the interactive responses of water quantity and quality to changes in nature and human stressors is important for the effective management of water resources. Many studies have been conducted to determine the influence of these stressors on river discharge and water quality. However, there is little information about whether sewage treatment plants can improve water quality in a region where river streamflow has decreased sharply. In this study, a seasonal trend decomposition method was used to analyze long-term (1996-2015) and seasonal trends in the streamflow and water quality of the Guanting Reservoir Basin, which is located in a semi-arid region of China. The results showed that the streamflow in the Guanting Reservoir Basin decreased sharply from 1996-2000 due to precipitation change and human activities (human use and reservoir regulation), while the streamflow decline over the longer period of time (1996-2015) could be attributed to human activities. During the same time, the river water quality improved significantly, having a positive relationship with the capacity of wastewater treatment facilities. The water quality in the Guanting Reservoir showed a deferred response to the reduced external loading, due to internal loading from sediments. These results implied that for rivers in which streamflow has declined sharply, the water quality could be improved significantly by actions to control water pollution control. This study not only provides useful information for water resource management in the Guanting Reservoir Basin, but also supports the implementation of water pollution control measures in other rivers with a sharp decline in streamflow.

  8. Charles River Water Quality Improvements Earns an A- for the Second Time in the Past Five Years

    Science.gov (United States)

    EPA has given the Charles River a grade of A- for bacterial water quality in the river during 2017. This is only the second time the river has earned a grade as high as an A-minus, and both have occurred within the past five years.

  9. Impact of city effluents on water quality of Indus River: assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan.

    Science.gov (United States)

    Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala

    2018-04-04

    The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.

  10. A Physico-Chemical water quality and Microbial content Analysis in Upstream of Langat River, Selangor

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Nazirah Zakaria; Roslan Umar; Roslan Umar; Ahmad Dasuki Mustafa

    2015-01-01

    Water quality study of the selected physico-chemical and microbial parameters of the Langat River were carried out to determine and classified their values. Sampling was carried out twice; first on 9 June 2011 and the second was on 22 February 2012. The sampling site consist of seven stations; five stations representing for Langat River branches while two stations are located in Langat River. The in-situ measurements are: dissolved oxygen, electrical conductivity, total dissolved solids, pH and temperature were performed using YSI 556 multiparameter, while the laboratory analysis were based on HACH and APHA methods. Result shows; temperature (23.4 - 27.7 degree Celsius), pH (5.07 to 6.15), EC (29.3 . 61.5 μS/ cm), TDS (19.7 - 47.0 mg/L), DO (3.68 - 5.72 mg/L), BOD (1.29 - 3.76 mg/L), COD (13.5 - 77.85 mg/L), TSS (9.5 - 86.5 mg/L), NH_3N (0.15 - 0.79 mg/L), NO_3 (0.8 - 4.9 mg/L), PO_4"3"- (0.15 - 0.7 mg/L), SO_4"2"- (0.5 - 12.5 mg/L) and biological parameters of faecal coliform (2.58 x 10"4 - 4.74 x 10"6 cfu/ 100 ml). Based on water quality index and the National Water Quality Standards classifications, they belong to the class I, II, III and V. One-way ANOVA for repeated measures and Pearson correlation test been used. The overall results showed the selected rivers in upstream of Langat River were classified as moderately polluted. (author)

  11. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  12. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots.

    Science.gov (United States)

    Rizo-Decelis, L D; Pardo-Igúzquiza, E; Andreo, B

    2017-12-15

    In order to treat and evaluate the available data of water quality and fully exploit monitoring results (e.g. characterize regional patterns, optimize monitoring networks, infer conditions at unmonitored locations, etc.), it is crucial to develop improved and efficient methodologies. Accordingly, estimation of water quality along fluvial ecosystems is a frequent task in environment studies. In this work, a particular case of this problem is examined, namely, the estimation of water quality along a main stem of a large basin (where most anthropic activity takes place), from observational data measured along this river channel. We adapted topological kriging to this case, where each watershed contains all the watersheds of the upstream observed data ("nested support effect"). Data analysis was additionally extended by taking into account the upstream distance to the closest contamination hotspot as an external drift. We propose choosing the best estimation method by cross-validation. The methodological approach in spatial variability modeling may be used for optimizing the water quality monitoring of a given watercourse. The methodology presented is applied to 28 water quality variables measured along the Santiago River in Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Research NoteEffect of drought and fires on the quality of water in Lithuanian rivers

    Directory of Open Access Journals (Sweden)

    G. Sakalauskiene

    2003-01-01

    Full Text Available In August and September 2002, concentrations of heavy metals (copper, lead, and zinc were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water. Keywords: heavy metals, river water quality, Lithuania

  14. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  15. A Preliminary Study of Water Quality Index in Terengganu River Basin, Malaysia

    International Nuclear Information System (INIS)

    Suratman, S.; Mohd, S.M.I.; Hee, Y.Y.; Bedurus, E.A.; Latif, M.T.

    2015-01-01

    The Malaysian Department of Environment-Water Quality Index (DOE-WQI) was determined for the Terengganu River basin which is located at the coastal water of the southern South China Sea between July and October 2008. Monthly samplings were carried out at ten sampling stations within the basin. Six parameters listed in DOE-WQI were measured based on standard methods: pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and ammonical nitrogen (AN). The results indicated the impact of various anthropogenic activities which contribute to high values of BOD, COD, TSS and AN at middle and downstream stations, as compared with the upstream of the basin. The reverses were true for the pH and DO values. The DOE-WQI ranged from 71.5-94.6 % (mean 86.9 %), which corresponded to a classification status range from slightly polluted to clean. With respect to the Malaysia National Water Quality Standards (NWQS), the level of most of the parameters measured remained at Class I which is suitable for the sustainable conservation of the natural environment, for water supply without treatment and as well as for very sensitive aquatic species. It is suggested that monitoring should be carried out continuously for proper management of this river basin. (author)

  16. Integrated modeling of water quantity and quality in the Araguari River basin, Brazil

    OpenAIRE

    Salla, Marcio Ricardo; Paredes-Arquiola, Javier; Solera, Abel; Álvarez, Joaquín Andreu; Pereira, Carlos Eugênio; Alamy Filho, José Eduardo; De Oliveira, André Luiz

    2014-01-01

    The Araguari River basin has a huge water resource potential. However, population and industrial growth have generated numerous private and collective conflicts of interest in the multiple uses of water, resulting in the need for integrated management of water quantity and quality at the basin scale. This study used the AQUATOOL Decision Support System. The water balance performed by the SIMGES module for the period of October 2006 to September 2011 provided a good representation of the reali...

  17. Long-Term Changes in the Water Quality and Macroinvertebrate Communities of a Subtropical River in South China

    Directory of Open Access Journals (Sweden)

    Kun Li

    2014-12-01

    Full Text Available Subtropical rivers support a highly diverse array of benthic macroinvertebrates. In this study, by combining historical data and new data, we identified specific changes in the Guanlan River, in South China, from 1981 to 2011, and evaluated the effectiveness of an ecological restoration project under highly polluted conditions. From 1981 to 2011, the water quality in the Guanlan River underwent three major stages. With the deterioration of water quality, there was an overall decrease in the species number of macroinvertebrates in the Guanlan River, an increase in macroinvertebrate density, and a reduction of the biodiversity, and a reduction of functional feeding groups. In 2011, after five years of comprehensive remediation, the Guanlan River was somewhat improved. Macroinvertebrate biodiversity in the middle reach of the Guanlan River, where a key ecological restoration engineering project was implemented, did not differ significantly from other sites. This finding indicates that the effectiveness of ecological restoration measures in highly polluted rivers, particularly at the reach-scale, is very limited and even ineffective.

  18. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  19. Environmental setting and natural factors and human influences affecting water quality in the White River Basin, Indiana

    Science.gov (United States)

    Schnoebelen, Douglas J.; Fenelon, Joseph M.; Baker, Nancy T.; Martin, Jeffrey D.; Bayless, E. Randall; Jacques, David V.; Crawford, Charles G.

    1999-01-01

    The White River Basin drains 11,349 square miles of central and southern Indiana and is one of 59 Study Units selected for water-quality assessment as part of the U.S. Geological Survey's National WaterQuality Assessment Program. Defining the environmental setting of the basin and identifying the natural factors and human influences that affect water quality are important parts of the assessment.

  20. Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh

    Science.gov (United States)

    Roy, Kushal; Karim, Md. Rezaul; Akter, Farjana; Islam, Md. Safiqul; Ahmed, Kousik; Rahman, Masudur; Datta, Dilip Kumar; Khan, M. Shah Alam

    2018-05-01

    Despite its complexity and importance in managing water resources in populous deltas, especially in tidal areas, literatures on tidal rivers and their land use linkage in connection to water quality and pollution are rare. Such information is of prior need for Integrated Water Resource Management in water scarce and climate change vulnerable regions, such as the southwestern coast of Bangladesh. Using water quality indices and multivariate analysis, we present here the land use signatures of a dying tidal river due to anthropogenic perturbation. Correlation matrix, hierarchical cluster analysis, factor analysis, and bio-geo-chemical fingerprints were used to quantify the hydro-chemical and anthropogenic processes and identify factors influencing the ionic concentrations. The results show remarkable spatial and temporal variations ( p quality parameters. The lowest solute concentrations are observed at the mid reach of the stream where the agricultural and urban wastewater mix. Agricultural sites show higher concentration of DO, Na+ and K+ reflecting the effects of tidal spill-over and shrimp wastewater effluents nearby. Higher level of Salinity, EC, Cl-, HCO3 -, NO3 -, PO4 3- and TSS characterize the urban sites indicating a signature of land use dominated by direct discharge of household organic waste into the waters. The spatial variation in overall water quality suggests a periodic enhancement of quality especially for irrigation and non-drinking purposes during monsoon and post-monsoon, indicating significant influence of amount of rainfall in the basin. We recommend that, given the recent trend of increasing precipitation and ground water table decrease, such dying tidal river basins may serve as excellent surface water reservoir to supplement quality water supply to the region.

  1. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  2. Spatial patterns of water quality in Xingu River Basin (Amazonia prior to the Belo Monte dam impoundment

    Directory of Open Access Journals (Sweden)

    JL. Rodrigues-Filho

    Full Text Available Abstract The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA, and principal component analysis (PCA. The results showed a high auto-correlation between variables (> 0.7. These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the

  3. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    Science.gov (United States)

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.

  4. Studying relations between radionuclide contents and water quality and quantity indices for Rivers Kura-Araks basin, Armenia

    International Nuclear Information System (INIS)

    Nalbandyan, A.G.; Saghatelyan, A.K.; Kyureghyan, A.A; Mikayelyan, M.G.

    2008-01-01

    We initiated a research in late 2005 as a constituent and logical expansion of an ongoing NATO Science for Peace/OSCE project 'South Caucasus River Monitoring' which has been performed since 2002 and was initially focused on indication of river water quality and quantity indices and determination of heavy metals. It should be stressed that this radioactivity research is the first ever attempt of this kind and that all the data obtained are unique. This paper is focused on a study of relations between radionuclide contents and water quality and quantity indices for Armenia's section of Rivers Kura-Araks basin and highlights data obtained for the studied period 2006-2007 (author)(tk)

  5. Studying relations between radionuclide contents and water quality and quantity indices for Rivers Kura-Araks basin, Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, A.G.; Saghatelyan, A.K.; Kyureghyan, A.A; Mikayelyan, M.G.

    2008-07-01

    We initiated a research in late 2005 as a constituent and logical expansion of an ongoing NATO Science for Peace/OSCE project 'South Caucasus River Monitoring' which has been performed since 2002 and was initially focused on indication of river water quality and quantity indices and determination of heavy metals. It should be stressed that this radioactivity research is the first ever attempt of this kind and that all the data obtained are unique. This paper is focused on a study of relations between radionuclide contents and water quality and quantity indices for Armenia's section of Rivers Kura-Araks basin and highlights data obtained for the studied period 2006-2007 (author)(tk)

  6. Preliminary results of water quality assessment using phytoplankton and physicochemical approaches in the Huai River Basin, China.

    Science.gov (United States)

    Chen, Hao; Zuo, Qi-Ting; Zhang, Yong-Yong

    2017-11-01

    Water pollution has been a significant issue in the Huai River Basin (HRB) of China since the late 1970s. In July and December 2013, two field investigations were carried out at 10 sites along the main streams of the basin. The monitoring indices contained both physicochemical variables and the structure and composition of phytoplankton communities. The correlations between communities and physicochemical variables were analyzed using cluster analysis and redundancy analysis. Moreover, water quality was evaluated using the comprehensive nutrition state index (TLI) and Shannon-Wiener diversity index (H). Results indicated that more phytoplankton species were present in December than in July, but total density was less in December. Phytoplankton communities in the midstream of the Shaying River were affected by the same physicochemical factors throughout the year, but ammonia nitrogen and total phosphorus had the greatest influence on these sites in July and December, respectively. The water pollution status of the sampling sites was much greater in the Shaying River midstream than at other sites. TLI was more suitable than H for assessing water quality in the study area. These results provide valuable information for policy makers and stakeholders in water quality assessment, water ecosystem restoration, and sustainable basin management in the HRB.

  7. Water quality of the river yamuna in the Delhi stretch: Key determinants and management issues

    Energy Technology Data Exchange (ETDEWEB)

    Trisal, Chaman; Tabassum, Tanveera; Kumar, Ritesh [Wetlands International - South Asia, New Delhi (India)

    2008-03-15

    The assessment of water quality of the River Yamuna in the Delhi stretch was carried out by determining changes in the concentration levels of 19 physico-chemical parameters. It was observed that vegetation plays an important role in acting as a biological sink for mineral nutrients, thereby restoring the water quality. It is proposed that restoration of the inundation pattern of floodplains would greatly help in re-aeration of the overlying water and re-absorption of pollutants through mud/water exchanges. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    Science.gov (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  9. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve.

    Science.gov (United States)

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2-35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km(2)) in the Lower Paraná River (Argentina) in nine surveys (October 2008-July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high

  10. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    Science.gov (United States)

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  11. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    Science.gov (United States)

    Barnes, Kimberlee K.

    2001-01-01

    The U.S. Geological Survey began data-collection activities in the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program in September 1995 with the purpose of determining the status and trends in water quality of water from the Wapsipinicon, Cedar, Iowa, and Skunk River basins. From March 1996 through September 1998, monthly surface-water samples were collected from 11 sites on the study's rivers and streams representing three distinct physiographic regions, the Des Moines Lobe, the Iowan Surface, the Southern Iowa Drift Plain, and one subregion, the Iowan Karst. These water samples were analyzed for basic water chemistry, including, but not limited to the following cations: sodium, potassium, magnesium, calcium, and silica; anions: chloride, fluoride, sulfate, and bicarbonate; and two metals - iron and maganese. Although none of the concentrations of the constituents exceeded health advisories or drinking-water regulations, extremely high or low concentrations could potentially affect aquatic life. Calcium, magnesium, and potassium are essential elements for both plant and animal life; manganese is an essential element in plant metabolism; and silica is important in the growth of diatom algae. Calcium had the largest median concentration of 61 milligrams per liter (mg/L) of the cations, and the largest maximum concentration of 100 mg/L. Bicarbonate had the largest median concentration of 210 mg/L of the anions, and the largest maximum concentration of 400 mg/L.

  12. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  13. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-09-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  14. Study of Water Quality Value in Sub of the Stream Area of Cisadane Rivers Upstream as Reference Area Based on Macro invertebrate Composition

    International Nuclear Information System (INIS)

    Sri-Unon-Purwati

    2001-01-01

    Specific structure of biota community condition can used as indicator for the ecosystem stability value or the waters pollution level where the aquatic biota exist. the macro invertebrates as bio indicator organism can used to assess the upper Cisadane Sub River Basin water quality. The grouping and calculation result from family number, Ept presences (sensitive macro invertebrate), Diversity index (H ' ), DO value and TOC value showed 5 criteria of water quality as reference site. This criteria is used to determine water quality level from ten branches of rivers in the upper Cisadane Sub River Basin, Cijeruk districts. The biotic index calculation for ASPT (Average Score Per Taxon) and T and T (index Trihadiningrum and Tjindronegoro) is used to asses water quality based on macro invertebrate composition indicator. Both biotic index system support and give the similar evaluation to water quality level from ten branches of river on the upper Cisadane Sub River Basin. The water quality level is described as fellows: station number 4 is assumed as the true reference site, station number 3, 5, 8 are the first alternative reference site, station number 2, 7, 9 are the second alternative reference site and station 1, 6, 10 are the sites which relatively good water quality, but it is not recommended as reference site. The grouping result bases on the cluster system with macro invertebrate similarity composition are described as fellows: 9=10>3=7>1=6>2=8>>5>>4. (author)

  15. Combined sewer overflows impact on water quality and environmental ecosystem in the Harlem River

    Science.gov (United States)

    Wang, J.

    2017-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during wet weather conditions, and it elevated nutrients and pathogen levels. It is not safe for swimming, fishing or boating especially in rainstorms. The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable

  16. Estimation of surface water quality in a Yazoo River tributary using the duration curve and recurrence interval approach

    Science.gov (United States)

    Ying Ouyang; Prem B. Parajuli; Daniel A. Marion

    2013-01-01

    Pollution of surface water with harmful chemicals and eutrophication of rivers and lakes with excess nutrients are serious environmental concerns. This study estimated surface water quality in a stream within the Yazoo River Basin (YRB), Mississippi, USA, using the duration curve and recurrence interval analysis techniques. Data from the US Geological Survey (USGS)...

  17. Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management

    Directory of Open Access Journals (Sweden)

    Christer Nilsson

    2008-12-01

    Full Text Available Water quality describes the physicochemical characteristics of the water body. These vary naturally with the weather and with the spatiotemporal variation of the water flow, i.e., the flow regime. Worldwide, biota have adapted to the variation in these variables. River channels and their riparian zones contain a rich selection of adapted species and have been able to offer goods and services for sustaining human civilizations. Many human impacts on natural riverine environments have been destructive and present opportunities for rehabilitation. It is a big challenge to satisfy the needs of both humans and nature, without sacrificing one or the other. New ways of thinking, new policies, and institutional commitment are needed to make improvements, both in the ways water flow is modified in rivers by dam operations and direct extractions, and in the ways runoff from adjacent land is affected by land-use practices. Originally, prescribed flows were relatively static, but precepts have been developed to encompass variation, specifically on how water could be shared over the year to become most useful to ecosystems and humans. A key aspect is how allocations of water interact with physicochemical variation of water. An important applied question is how waste releases and discharge can be managed to reduce ecological and sanitary problems that might arise from inappropriate combinations of flow variation and physicochemical characteristics of water. We review knowledge in this field, provide examples on how the flow regime and the water quality can impact ecosystem processes, and conclude that most problems are associated with low-flow conditions. Given that reduced flows represent an escalating problem in an increasing number of rivers worldwide, managers are facing enormous challenges.

  18. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  19. Fecal coliform management using a coupled hydrodynamics and water quality model for the river Ravi in Pakistan

    International Nuclear Information System (INIS)

    Haider, H.; Ali, W.

    2011-01-01

    A Fecal Coliform (FC) management framework is developed incorporating segmentation of river reaches, hydrodynamic and water quality models and FC management under critical winter low flow conditions for a highly polluted River Ravi. FC die-off rate in the river is determined from a field survey of a selected river reach. The travel time calculated with the help of a hydrodynamic model is 0.25 days in the selected reach. FC die-off rate (Kb) was found to be 1.2 day/sup -1/ at 20 degree C. Model calibration with monitoring data set reveals reasonable agreement of the simulation results with the measured field values under low flow conditions. Presently, the river is receiving raw wastewater and the simulation results shows very high fecal coliform levels up to 100 X 10/sup 6/ MPN/100mL in the river water. These levels are much higher than the required recreation and irrigation standards. Simulations are carried out to assess water quality for the future fecal pollution loads in year 2025 and the results reveal that up to 6 log reduction in FC is required at the wastewater out falls, whereas, 5 log reduction would be sufficient for surface drains to meet desired FC standards under low flow conditions. (author)

  20. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  1. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  2. Selected water-quality data from the Cedar River and Cedar Rapids well fields, Cedar Rapids, Iowa, 2006-10

    Science.gov (United States)

    Littin, Gregory R.

    2012-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer approximately 40 to 80 feet below land surface. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality of the aquifer since 1992. Cooperative reports between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, surface-water-groundwater interaction, and pesticides in groundwater and surface water. Water-quality analyses were conducted for major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. Physical characteristics (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were measured in the field and recorded for each water sample collected. This report presents the results of routine water-quality data-collection activities from January 2006 through December 2010. Methods of data collection, quality-assurance, and water-quality analyses are presented. Data include the results of water-quality analyses from quarterly sampling from monitoring wells, municipal wells, and the Cedar River.

  3. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    Science.gov (United States)

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  4. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India.

    Science.gov (United States)

    Jin, Li; Whitehead, Paul G; Rodda, Harvey; Macadam, Ian; Sarkar, Sananda

    2018-05-12

    Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology. Copyright © 2018

  5. Spatial-temporal water quality parameters evaluation of the Santa Rita river (BA with respect to the release of manipueira

    Directory of Open Access Journals (Sweden)

    Franklin Delano Porto Júnior

    2012-12-01

    Full Text Available The watershed of the river Santa Rita includes the towns of Simão and Campinhos, where exists about 150 flour houses. Campinhos is among the largest cassava processing facilities in the region, generating many direct and indirect jobs. Manipueira is a liquid residue originating from the cassava pressing and presents high pollutant potential due to its high amount of glucose and fructose, this potential is 25 times greater than the one from domestic sewer. This work had as objective the evaluation of possible impacts of manipueira release in the water quality of Santa Rita river. For this, the land use map was elaborated and the physiographic characterization developed, besides being performed six campaigns for water samples collection in four sampling points along the river. The obtained results indicated that the watershed is elongated, with low drainage efficiency and it is not prone to flooding. Estimated water quality parameters indicated that organic effluents from Campinhos and Simão impact the values of dissolved oxygen, electrical conductivity, salinity, ammonia, nitrite, nitrate and zinc, suggesting that the water quality of the river Santa Rita is affected by manipueira release. The concentrations of total phosphorus, iron and cooper were superior downstream of the Sewer Treatment Station. The river water was saline in the three sampling points most affected by the release of manipueira.

  6. Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Arunkumar Shetty

    2015-02-01

    Full Text Available The fish assemblage and diversity in relation to water quality of three coastal rivers Sita, Swarna and Varahi of Udupi district, Karnataka, India was studied. 71 species representing 7 orders, 20 families and 41 genera were recorded from 21 sites along the three rivers. Species composition varied longitudinally in relation to the environmental factors of the habitat. The downstream change in the three rivers indicates that fish assemblage changed with increasing loss of riparian canopy cover and increasing agricultural land-use. The richness and abundance of fishes were correlated with land-use type, canopy cover, pH and turbidity. Diversion of water, discharge of domestic sewage and agricultural runoff were prominent among the disturbances that alter the habitat quality.

  7. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China.

    Science.gov (United States)

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-04-08

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  8. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    Directory of Open Access Journals (Sweden)

    Gula Tang

    2016-04-01

    Full Text Available In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  9. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    Science.gov (United States)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  10. A water-quality study of the tidal Potomac River and Estuary: An overview

    Science.gov (United States)

    Callendar, Edward; Carter, Virginia; Hahl, D.C.; Hitt, Kerie; Schultz, Barbara I.

    1984-01-01

    The U.S. Geological Survey began a 5-year interdisciplinary study of the tidal Potomac River and Estuary in October of 1977. The objectives of the study are: (1) to provide a basic understanding of physical, chemical, and biological processes; (2) to develop flow and transport models to predict the movement and fate of nutrients and algaes and (3) to develop efficient techniques for the study of tidal rivers and estuaries. The ultimate goal is to aid water-quality decision-making for the tidal Potomac River and Estuary. The study is being conducted by scientists from many disciplines involved in 14 interrelated studies. These scientists are addressing five major problem areas: nutrient enrichment, algal blooms, dissolved oxygen, sedimentation, and effects of water quality on living resources. Preliminary results show that treatment of sewage has reduced the concentration load of organic carbon and phosphorus below that of the 1960's and 1970's, and changed the form of dissolved nitrogen in the tidal river. Concentrations of chlorophyll a during the study period were lower than those experienced during the massive algal blooms of the 1960's. Dissolved oxygen concentrations fluctuate in response to changes in algal populations, but remain above the Environmental Protection Agency limits during the summer low-flow period. Sedimentation rates have accelerated during the past 50-70 years due to urbanization and farming. Asian clams have recently invaded the tidal river; submersed aquatic vegetation has declined since the early 1900's, but conditions may now favor its return.

  11. Water quality and pollution status of Chambal river in National Chambal Sanctuary, Madhya Pradesh.

    Science.gov (United States)

    Saksena, D N; Garg, R K; Rao, R J

    2008-09-01

    The physico-chemical characteristics of Chambal river water in National Chambal sanctuary (Madhya Pradesh) have been studied. The stretch of Chambal river contained in the National Chambal sanctuary (located at 25 degrees 23'-26 degrees 52'N, 76 degrees 28'-79 degrees 15'E) is extending up to 600 km downstream from Kota (Rajasthan) to the confluence of the Chambal with Yamuna river (Etawah). The river flow in Madhya Pradesh spans up to approximately 400 km. Three sampling stations viz., Station A--near Palighat, district Sheopurkalan, Station B--near Rajghat, district Morena and Station C--near Baraighat, district Bhind were established for the collection of water samples during April, 2003 to March, 2004. The water quality parameters namely transparency (12.12-110 cm), colour (transparent-very turbid), turbidity (1-178 TNU), electrical conductivity (145.60-884 microS cm(-1)), total dissolved solids (260-500 mgl(-1)), pH (7.60-9.33), dissolved oxygen (4.86-14.59 mgl(-1)), free carbon dioxide (0-16.5 mgl(-1)), total alkalinity (70-290 mgl(-1)), total hardness (42-140 mgl(-1)), chloride (15.62-80.94 mgl(-1)), nitrate (0.008-0.025 mgl(-1)), nitrite (0.002-0.022 mgl(-1)), sulphate (3.50-45 mgl(-1)), phosphate (0.004-0.050 mgl(-1)), silicate (2.80-13.80 mgl(-1)), biochemical oxygen demand (0.60-5.67 mgl(-1)), chemical oxygen demand (2.40-26.80 mgl(-1)), ammonia (nil-0.56 mgl(-1)), sodium (14.30-54.40 mgl(-1)) and potassium (2.10 mgl(-1)-6.30 mgl(-1)) reflects on the pristine nature of the river in National Chambal sanctuary. On the basis of various parameters studied, Chambal river in this stretch can be placed under the category of oligosaprobic. The water quality analysis, indicated that the riverwater in the sanctuary area is pollution free and can serve as a good habitat for many aquatic animals including endangered species.

  12. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  13. Monitoring of the water quality of the Surata River in the mining area of Vetas and California

    International Nuclear Information System (INIS)

    Gomez, Vladimir Illich

    2004-01-01

    The regional autonomous corporation for the defense of the Bucaramanga plateau, environmental authority in the area of influence of the Mining District of Vetas and California, exercises among other activities, the pursuit and control to the auriferous exploitations. Two of the components of this pursuit are: the monitoring of the water quality of the Surata River, final receiver of the effusions coming from of the mineral benefit and the discharges control of cyanidation sand or cyanidation lines, by means of the monthly programming of daily discharges for mining company; in order to diminish the events of high cyanide concentrations in the hydraulic averages and to reduce the cyanide consumptions for the recovery of gold. The mining exploitations of the municipality pour their residuals to the Vetas River, while those of the Municipality of California, pour them to the gulch La Baja, flowing of the Vetas River who in turn is flowing of the Surata River, that supplies a part of the system of aqueduct of the Bucaramanga Municipality. The water quality of mining effusions is determined in three monitored points on the gulch La Baja, the Vetas River and the Surata River; additionally it is made a sampling and analysis of silts in four points on the same currents. The sampling frequency for the water quality is monthly, while for the silts analysis is biweekly. This monitoring is carried out from the year 1988, although it has suffered some interruptions in the time. The technique of water sampling is punctual, integrated to the wide of the bed and without seating capacity, the taking of silts is punctual and integrated to the wide of the bed and without seating capacity, these samples are preserved and transported to the laboratory of waters and soils of the CDMB, where the following parameters are analyzed: for the water sample, mercury, free cyanide and total cyanide, suspended solids, turbidity, pH and conductivity; for the sample of silts only mercury is analyzed

  14. MATHEMATICAL MODEL FOR THE SIMULATION OF WATER QUALITY IN RIVERS USING THE VENSIM PLE® SOFTWARE

    Directory of Open Access Journals (Sweden)

    Julio Cesar de S. I. Gonçalves

    2013-06-01

    Full Text Available Mathematical modeling of water quality in rivers is an important tool for the planning and management of water resources. Nevertheless, the available models frequently show structural and functional limitations. With the objective of reducing these drawbacks, a new model has been developed to simulate water quality in rivers under unsteady conditions; this model runs on the Vensim PLE® software and can also be operated for steady-state conditions. The following eighteen water quality variables can be simulated: DO, BODc, organic nitrogen (No, ammonia nitrogen (Na, nitrite (Ni, nitrate (Nn, organic and inorganic phosphorus (Fo and Fi, respectively, inorganic solids (Si, phytoplankton (F, zooplankton (Z, bottom algae (A, detritus (D, total coliforms (TC, alkalinity (Al., total inorganic carbon (TIC, pH, and temperature (T. Methane as well as nitrogen and phosphorus compounds that are present in the aerobic and anaerobic layers of the sediment can also be simulated. Several scenarios were generated for computational simulations produced using the new model by using the QUAL2K program, and, when possible, analytical solutions. The results obtained using the new model strongly supported the results from the QUAL family and analytical solutions.

  15. Influence of the water quality improvement on fish population in the Seine River (Paris, France) over the 1990-2013 period.

    Science.gov (United States)

    Azimi, Sam; Rocher, Vincent

    2016-01-15

    Over the past 20 years, rules concerning wastewater treatment and quality of water discharged into the environment have changed considerably. Huge investments have been made in Paris conurbation to improve waste water treatment processes in accordance with the European Water Framework Directive. The interdepartmental association for sewage disposal in Paris conurbation (SIAAP) carried out a monitoring of both fish assemblages and water quality in the Seine River around the Paris conurbation (France) since the early 90's. The main goal of this study was to estimate the influence of the water quality improvement on fish. On one hand, the study confirmed the improvement of the water quality (dissolved oxygen, ammonia nitrogen, organic matter) in the Seine River, mostly focused downstream of Paris conurbation. On the other hand, an increase of the number of species occurred from 1990 (14) to 2013 (21). Moreover, changes in the river Seine assemblages happened over that 23-year period with emergence of sensitive species (ruffe, scalpin and pike-perch). The improvement of the water quality was also reported with respect to the Index of Biotic Integrity (IBI). However, no variation of pollutant concentrations in roach, eel and chub muscles has been observed. An exceedance of the environmental quality standards have even been reported all over this period as regards mercury and organochlorine.

  16. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  17. Aquatic invertebrates of the Ribnica and Lepenica Rivers: Composition of the community and water quality

    Directory of Open Access Journals (Sweden)

    Jović Aleksandra

    2006-01-01

    Full Text Available Results of investigating the community of aquatic invertebrates in the Ribnica and Lepenica Rivers (Kolubara River drainage area are given in the present work. Forty-three taxa are recorded. In relation to other studied streams in Serbia, the investigated rivers are characterized by high diversity of macroinvertebrates. Cluster analysis indicates that the locality on the Lepenica stands apart from those on the Ribnica, which is a consequence of the difference of habitats found at them. Results of saprobiological analysis of the macrozoobenthos in the given rivers indicate that their waters belong to quality classes I and II.

  18. Developing a Comprehensive Spectral-Biogeochemical Database of Midwestern Rivers for Water Quality Retrieval Using Remote Sensing Data: A Case Study of the Wabash River and Its Tributary, Indiana

    Directory of Open Access Journals (Sweden)

    Jing Tan

    2016-06-01

    Full Text Available A comprehensive spectral-biogeochemical database was developed for the Wabash River and the Tippecanoe River in Indiana, United States. This database includes spectral measurements of river water, coincident in situ measurements of water quality parameters (chlorophyll (chl, non-algal particles (NAP, and colored dissolved organic matter (CDOM, nutrients (total nitrogen (TN, total phosphorus (TP, and dissolved organic carbon (DOC, water-column inherent optical properties (IOPs, water depths, substrate types, and bottom reflectance spectra collected in summer 2014. With this dataset, the temporal variability of water quality observations was first analyzed and studied. Second, radiative transfer models were inverted to retrieve water quality parameters using a look-up table (LUT based spectrum matching methodology. Results found that the temporal variability of water quality parameters and nutrients in the Wabash River was closely associated with hydrologic conditions. Meanwhile, there were no significant correlations found between these parameters and streamflow for the Tippecanoe River, due to the two upstream reservoirs, which increase the settling of sediment and uptake of nutrients. The poor relationship between CDOM and DOC indicates that most DOC in the rivers was from human sources such as wastewater. It was also found that the source of water (surface runoff or combined sewer overflow (CSO, water temperature, and nutrients were important factors controlling instream concentrations of phytoplankton. The LUT retrieved NAP concentrations were in good agreement with field measurements with slope close to 1.0 and the average estimation error was 4.1% of independently obtained lab measurements. The error for chl estimation was larger (37.7%, which is attributed to the fact that the specific absorption spectrum of chl was not well represented in this study. The LUT retrievals for CDOM experienced large variability, probably due to the small data

  19. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  20. Selected Water-Quality Data from the Cedar River and Cedar Rapids Well Fields, Cedar Rapids, Iowa, 1999-2005

    Science.gov (United States)

    Littin, Gregory R.; Schnoebelen, Douglas J.

    2010-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.

  1. Stream water quality in coal mined areas of the lower Cheat River Basin, West Virginia and Pennsylvania, during low-flow conditions, July 1997

    Science.gov (United States)

    Williams, Donald R.; Clark, Mary E.; Brown, Juliane B.

    1999-01-01

    IntroductionThe Cheat River Basin is in the Allegheny Plateau and Allegheny Mountain Sections of the Appalachian Plateau Physiographic Province (Fenneman, 1946) and is almost entirely within the state of West Virginia. The Cheat River drains an area of 1,422 square miles in Randolph, Tucker, Preston, and Monongalia Counties in West Virginia and Fayette County in Pennsylvania. From its headwaters in Randolph County, W.Va., the Cheat River flows 157 miles north to the Pennsylvania state line, where it enters the Monongahela River. The Cheat River drainage comprises approximately 19 percent of the total Monongahela River Basin. The Cheat River and streams within the Cheat River Basin are characterized by steep gradients, rock channels, and high flow velocities that have created a thriving white-water rafting industry for the area. The headwaters of the Cheat River contain some of the most pristine and aesthetic streams in West Virginia. The attraction to the area, particularly the lower part of the Cheat River Basin (the lower 412 square miles of the basin), has been suppressed because of poor water quality. The economy of the Lower Cheat River Basin has been dominated by coal mining over many decades. As a result, many abandoned deep and surface mines discharge untreated acid mine drainage (AMD), which degrades water quality, into the Cheat River and many of its tributary streams. Approximately 60 regulated mine-related discharges (West Virginia Department of Environmental Protection, 1996) and 185 abandoned mine sites (U.S. Office of Surface Mining, 1998) discharge treated and untreated AMD into the Cheat River and its tributaries.The West Virginia Department of Environmental Protection (WVDEP) Office of Abandoned Mine Lands and Reclamation (AML&R) has recently completed several AMD reclamation projects throughout the Cheat River Basin that have collectively improved the mainstem water quality. The AML&R office is currently involved in acquiring grant funds and

  2. A study on the applicability of the ecosystem model on water quality prediction in urban river outer moats of Yedo Castle, Nihonbashi River

    Science.gov (United States)

    Kakinuma, Daiki; Tsushima, Yuki; Ohdaira, Kazunori; Yamada, Tadashi

    2015-04-01

    The objective of the study is to elucidate the waterside environment in the outer moats of Yedo Castle and the downstream of Nihonbashi River in Tokyo. Scince integrated sewage system has been installed in the area around the outer moats of Yedo Castle and the Nihon River basin, when rainfall exceeds more than the sewage treatment capacity, overflowed untreated wastewater is released into the moats and the river. Because the moats is a closed water body, pollutants are deposited to the bottom without outflowing. While reeking offensive odors due to the decomposition, blue-green algae outbreaks affected by the residence time and eluted nutrient causes problems. Scince the Nihonbashi River is a typical tidal river in urban area, the water pollution problems in the river is complicated. This study clarified the characteristics of the water quality in terms of dissolved oxygen saturation through on-site observations. In particular, dissolved oxygen saturation in summer, it is clarified that variations from a supersaturated state due to the variations of horizontal insolation intensity and water temperature up to hypoxic water conditions in the moats. According to previous studies on the water quality of Nihonbashi River, it is clarified that there are three types of variations of dissolved oxygen which desided by rainfall scale. The mean value of dissolved oxygen saturation of all layers has decreased by about 20% at the spring tide after dredging, then it recoveres gradually and become the value before dredging during about a year. Further more, in places where sewage inflows, it is important to developed a ecosystem medel and the applicability of the model. 9 variables including cell quota (intracellular nutrients of phytoplankton) of phosphorus and nitrogen with considerring the nitrification of ammonia nitrogen are used in the model. This model can grasp the sections (such as oxygen production by photosynthesis of phytoplankton, oxygen consumption by respiration of

  3. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    Science.gov (United States)

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  4. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  5. Assessment of Surface Water Quality Using Multivariate Statistical Techniques in the Terengganu River Basin

    International Nuclear Information System (INIS)

    Aminu Ibrahim; Hafizan Juahir; Mohd Ekhwan Toriman; Mustapha, A.; Azman Azid; Isiyaka, H.A.

    2015-01-01

    Multivariate Statistical techniques including cluster analysis, discriminant analysis, and principal component analysis/factor analysis were applied to investigate the spatial variation and pollution sources in the Terengganu river basin during 5 years of monitoring 13 water quality parameters at thirteen different stations. Cluster analysis (CA) classified 13 stations into 2 clusters low polluted (LP) and moderate polluted (MP) based on similar water quality characteristics. Discriminant analysis (DA) rendered significant data reduction with 4 parameters (pH, NH 3 -NL, PO 4 and EC) and correct assignation of 95.80 %. The PCA/ FA applied to the data sets, yielded in five latent factors accounting 72.42 % of the total variance in the water quality data. The obtained varifactors indicate that parameters in charge for water quality variations are mainly related to domestic waste, industrial, runoff and agricultural (anthropogenic activities). Therefore, multivariate techniques are important in environmental management. (author)

  6. Water Quality Assessment Using Benthic Macroinvertebrates in Saigon River and Its Tributaries, Vietnam

    Directory of Open Access Journals (Sweden)

    Duc Pham Anh

    2016-06-01

    Full Text Available This study to enhance the discussion about the usefulness of benthic macroinvertebrates for water quality assessment in Saigon River and its tributaries. Data from 16 sites were used as a representative example for Saigon River and its tributaries in the area of basin over 4,500 km2, the length through provinces of Tay Ninh, Binh Phuoc, Binh Duong, and Ho Chi Minh City of about 280 km. The data covered the period of dry and rainy seasons in 2015, the survey sampled 16 sites (32 events of the Saigon River and its tributaries selected. To implement this evaluation, the analyses were based on MRC methods and classifications these improved by the scientific group.

  7. Environmental quality assessment of Upper Birim River (Ghana)

    International Nuclear Information System (INIS)

    Asmah, M. H.; Hodgson, I. O. A.; Cobbina, S. J.; Ablordey, A. A.

    2013-01-01

    The communities along the Upper Birim River use the water resource for domestic and agricultural purposes, and the environmental quality of the river was assessed to determine the level of pollution and associated health risk from consumption and direct contact with the water. The water quality was assessed by the physico-chemical and bacteriological quality parameters. In addition, the impacts of land use activities along the river were also evaluated. Water samples were collected from 6 locations from November 2010 to January 2011 (dry season), and March to May 2011 (wet season). While the mean values of the physico-chemical parameters were within the Ghana Standards Authority (GSA) safety limits for drinking water, the levels of Fe (33.56 ± 31.94 mg/L), As (0.052± 0.088 mg/L) and Mn (4.01± 4.42 mg/L) were higher than the recommended GSA limits. The faecal contaminations were high, as the mean total coliforms, mean faecal coliforms and the level of faecal streptococci were respectively 1925± 708 cfu/100 ml, 1073±900 cfu/100 mL and 16±9 cfu/100 ml. The water quality index (WQI) of 71.79 for the Birim River indicated that most uses of the water were protected, but a few might be threatened or impaired. Hazard quotients determined for Hg, As and Ag were less than 1 at all sampling stations, implying low health risk. Provision of adequate sanitary facilities, enforcement of environmental regulations and introduction of livelihood diversification programmes would safeguard the integrity of the River from adverse anthropogenic activities. (au)

  8. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  9. Bacteriological and Physicochemical Qualities of Ebutte River in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Ebutte River water quality studied based on the bacteriological and physicochemical parameters revealed that the human, animal and ... pollution and possible water quality deterioration in ... physicochemical analysis, 1litre new plastic bottles.

  10. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies.

    Science.gov (United States)

    Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar

    2018-08-01

    River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.

  11. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  12. Modeling Climate and Management Change Impacts on Water Quality and In-Stream Processes in the Elbe River Basin

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2016-01-01

    Full Text Available Eco-hydrological water quality modeling for integrated water resources management of river basins should include all necessary landscape and in-stream nutrient processes as well as possible changes in boundary conditions and driving forces for nutrient behavior in watersheds. The study aims to assess possible impacts of the changing climate (ENSEMBLES climate scenarios and/or land use conditions on resulting river water quantity and quality in the large-scale Elbe river basin by applying a semi-distributed watershed model of intermediate complexity (SWIM with implemented in-stream nutrient (N+P turnover and algal growth processes. The calibration and validation results revealed the ability of SWIM to satisfactorily simulate nutrient behavior at the watershed scale. Analysis of 19 climate scenarios for the whole Elbe river basin showed a projected increase in temperature (+3 °C and precipitation (+57 mm on average until the end of the century, causing diverse changes in river discharge (+20%, nutrient loads (NO3-N: −5%; NH4-N: −24%; PO4-P: +5%, phytoplankton biomass (−4% and dissolved oxygen concentration (−5% in the watershed. In addition, some changes in land use and nutrient management were tested in order to reduce nutrient emissions to the river network.

  13. Water quality and algal conditions in the North Umpqua River, Oregon, 1995-2007, and their response to Diamond Lake restoration

    Science.gov (United States)

    Carpenter, Kurt D.; Anderson, Chauncey W.; Jones, Mikeal E.

    2014-01-01

    The Wild and Scenic North Umpqua River is one of the highest-quality waters in the State of Oregon, supporting runs of wild salmon, steelhead, and trout. For many years, blooms of potentially toxic blue-green algae in Diamond and Lemolo Lakes have threatened water quality, fisheries, and public health. The blooms consist primarily of Anabaena, a nitrogen (N)-fixing planktonic alga that appears to have contributed to N enrichment, which could account for changes in communities and biomass of periphyton, or attached benthic algae, in the river. Periphyton can become a nuisance in summer by affecting riffle habitat and causing high pH that fails to meet State of Oregon water-quality standards. These symptoms of nutrient enrichment in the North Umpqua River were first documented in 1995, and the symptoms have continued since then. Restoring natural ecosystem processes that store nutrients rather than fueling algae might help improve pH and water-clarity conditions.

  14. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  15. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    Science.gov (United States)

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large

  16. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.

    Science.gov (United States)

    Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar

    2016-02-01

    The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders

  17. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  18. Impact of nuclear power plants of the PWR-type on river water quality (case-report of the river Meuse)

    International Nuclear Information System (INIS)

    Masschelein, W.J.; Genot, J.

    1982-01-01

    Five years' experience with data of the TAILFER plant located 48 km downstream of the nuclear power site of CHOOZ is reported so as to provide guidelines for the examination of future nuclear cases. The factors considered are: the reduction in water flow and thermal impacts, the discharge of nuclear active effluents and the physico-chemical impact of enrichment in salts and suspended matter. Primary importance must be given to the proportion of the discharges in terms of added (instantaneous) volume activities. In the case of inland rivers the most active effluents, including the particular isotope tritium, are contained in a reduced volume (1400 m 3 /1000 MWe), and are best evacuated to other sites. Guidelines to check the river water quality are based on the measurement of 3H, total γ, and specifically, Co 60 , Cs 137 , Mn 54 , Co 58 , and Cs 134 . Flow measurement and river transfer modelling must be part of the study of the impact as illustrated by this case-report. (author)

  19. Analysis of trends of water quality and streamflow in the Blackstone, Branch, Pawtuxet, and Pawcatuck Rivers, Massachusetts and Rhode Island, 1979 to 2015

    Science.gov (United States)

    Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.

    2017-02-21

    Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for

  20. Anthropogenic factor and water quality in the rivers of Prespa Lake catchment; Antropogeniot faktor i kvalitetot na vodata vo rekite na prespanskoto slivno podrachje

    Energy Technology Data Exchange (ETDEWEB)

    Jordanoski, Momchulo; Veljanoska-Serafiloska, Elizabeta [Hydrobiological Institute, Ohrid (Macedonia, The Former Yugoslav Republic of)

    2001-07-01

    From the Rivers, which are subject of our investigation, only River Brajcinska and River Kranska are mountain rivers, while River Golema is lowland river. This has influence on water quality, which is evidently from the dates we found for the investigated parameters. Water quality moves from distinctly clear oligo trophic water (winter period), to strongly eytrophic polluted water (summer, autumn,). Great organic loading of River Golema in the summer period is evidential. Although, there are small possibilities of many investigations on this part, our obligation is to find possibilities, even to reduce some of sampling points of this project, to define the real state in long time period, so we could find appropriate conclusions and suggestions to eliminate that situation. Fields watching of the river beds and results from the laboratory investigations, shows how big is mans negligence for this natural resources. Practically, this rivers are recipients of all wastes that man made, like solid waste, communal waste water, waste water from pig farms, etc. International character of Lake Prespa enforces need of much completely and sensible engagement for reclaiming the state of the rivers inflow, in aim to protect the Lake. (Original)

  1. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    Science.gov (United States)

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate

  2. An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation.

    Science.gov (United States)

    Fan, Chihhao; Ko, Chun-Han; Wang, Wei-Shen

    2009-04-01

    Water quality modeling has been shown to be a useful tool in strategic water quality management. The present study combines the Qual2K model with the HEC-RAS model to assess the water quality of a tidal river in northern Taiwan. The contaminant loadings of biochemical oxygen demand (BOD), ammonia nitrogen (NH(3)-N), total phosphorus (TP), and sediment oxygen demand (SOD) are utilized in the Qual2K simulation. The HEC-RAS model is used to: (i) estimate the hydraulic constants for atmospheric re-aeration constant calculation; and (ii) calculate the water level profile variation to account for concentration changes as a result of tidal effect. The results show that HEC-RAS-assisted Qual2K simulations taking tidal effect into consideration produce water quality indices that, in general, agree with the monitoring data of the river. Comparisons of simulations with different combinations of contaminant loadings demonstrate that BOD is the most import contaminant. Streeter-Phelps simulation (in combination with HEC-RAS) is also performed for comparison, and the results show excellent agreement with the observed data. This paper is the first report of the innovative use of a combination of the HEC-RAS model and the Qual2K model (or Streeter-Phelps equation) to simulate water quality in a tidal river. The combination is shown to provide an alternative for water quality simulation of a tidal river when available dynamic-monitoring data are insufficient to assess the tidal effect of the river.

  3. Simulation of streamflow and water quality in the Christina River subbasin and overview of simulations in other subbasins of the Christina River Basin, Pennsylvania, Maryland, and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Christina River subbasin (exclusive of the Brandywine, Red Clay, and White Clay Creek subbasins) drains an area of 76 mi2. Streams in the Christina River Basin are used for recreation, drinking water supply, and support of aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point- and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program–Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint- source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at two sites in the Christina River subbasin and nine sites elsewhere in the Christina River Basin.The HSPF model for the Christina River subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 3.8 to 21.9 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Christina

  4. Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta

    Science.gov (United States)

    Masamba, Wellington R. L.; Mazvimavi, Dominic

    Botswana is a semiarid country and yet has one of the world’s famous wetlands: the Okavango Delta. The Thamalakane-Boteti River is one of the Delta’s outlets. The water quality of the Thamalakane-Boteti River was determined and related to its utilisation. The major land uses along the Thamalakane River within Maun are residential areas, lodges, hotels, and grazing by cattle and donkeys. The water is used as a source of water for livestock, wildlife in a game park, horticulture and domestic applications including drinking. The river is also used for fishing. To check whether these activities negatively impact on the water quality, pH, electrical conductivity, dissolved oxygen, temperature, total dissolved nitrogen and phosphorus, Faecal coliforms and Faecal streptococci and selected metals were determined from July 2005 to January 2006. The pH was near neutral except for the southern most sampling sites where values of up to 10.3 were determined. Dissolved oxygen varied from 2 mg/l to 8 mg/l. Sodium (range 0.6-3.2 mg/l), K (0.3-3.6 mg/l), Fe (1.6-6.9 mg/l) conductivity (56-430 μS/cm) and Mg (0.2-6.7 mg/l) increased with increased distance from the Delta, whereas lead showed a slight decline. Total dissolved phosphorus was low (up to 0.02 mg/l) whereas total dissolved nitrogen was in the range 0.08-1.5 mg/l. Faecal coliform (range 0-48 CFU/100 ml) and Faecal streptococci (40-260 CFU/100 ml) were low for open waters with multiple uses. The results indicate that there is possibility of pollution with organic matter and nitrogen. It is recommended that more monitoring of water quality needs to be done and the sources of pollution identified.

  5. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  6. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  7. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    Science.gov (United States)

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily's largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  9. Application of Two Quality Indices as Monitoring and Management Tools of Rivers. Case Study: The Imera Meridionale River, Italy

    Science.gov (United States)

    Bonanno, Giuseppe; Giudice, Rosa Lo

    2010-04-01

    On the basis of the European Water Framework Directive (2000/60), the water resources of the member states of the European Community should reach good quality standards by 2015. Although such regulations illustrate the basic points for a comprehensive and effective policy of water monitoring and management, no practical tools are provided to face and solve the issues concerning freshwater ecosystems such as rivers. The Italian government has developed a set of regulations as adoption of the European Directive but failed to indicate feasible procedures for river monitoring and management. On a local scale, Sicilian authorities have implemented monitoring networks of watersheds, aiming at describing the general conditions of rivers. However, such monitoring programs have provided a relatively fragmentary picture of the ecological conditions of the rivers. In this study, the integrated use of environmental quality indices is proposed as a methodology able to provide a practical approach to river monitoring and management. As a case study, the Imera Meridionale River, Sicily’s largest river, was chosen. The water quality index developed by the U.S. National Sanitation Foundation and the floristic quality index based on the Wilhelm method were applied. The former enabled us to describe the water quality according to a spatial-temporal gradient, whereas the latter focused on the ecological quality of riparian vegetation. This study proposes a holistic view of river ecosystems by considering biotic and abiotic factors in agreement with the current European regulations. How the combined use of such indices can guide sustainable management efforts is also discussed.

  10. Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    T Benvenuti

    Full Text Available The Sinos River Basin (SRB is located in the northeastern region of the state of Rio Grande do Sul (29º20' to 30º10'S and 50º15' to 51º20'W, southern Brazil, and covers two geomorphologic provinces: the southern plateau and the central depression. It is part of the Guaíba basin, has an area of approximately 800 km2 and contains 32 counties. The basin provides drinking water for 1.6 million inhabitants in one of the most important industrial centres in Brazil. This study describes different water quality indices (WQI used for the sub-basins of three important streams in the SRB: Pampa, Estância Velha/Portão and Schmidt streams. Physical, chemical and microbiological parameters assessed bimonthly using samples collected at each stream source were used to calculate the Horton Index (HI, the Dinius Index (DI and the water quality index adopted by the US National Sanitation Foundation (NSF WQI in the additive and multiplicative forms. These indices describe mean water quality levels at the streams sources. The results obtained for these 3 indexes showed a worrying scenario in which water quality has already been negatively affected at the sites where three important sub-basins in the Sinos River Basin begin to form.

  11. Water-Quality Changes Caused by Riverbank Filtration Between the Missouri River and Three Pumping Wells of the Independence, Missouri, Well Field 2003-05

    Science.gov (United States)

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.

  12. Application of water quality biological indices using diatoms as bioindicators in the Gravataí river, RS, Brazil

    Directory of Open Access Journals (Sweden)

    SE. Salomoni

    Full Text Available The Gravataí river situated in the metropolitan region of Porto Alegre has an area of approximately 2.020 km² and provides public water supply to about 500,000 inhabitants in 5 municipalities (latitude 29° 45'-30° 12' S; longitude 50° 27'-51° 12' W. The river basin has two regions with distinctive characteristics of occupation: the upper course shows intensive farming and the lower course presents urban and industrial uses. In this context, the aim of this study was to evaluate the water quality in the Gravataí River (RS, Brazil by using physical, chemical and microbiological variables, and the water quality biological indices (WQBI formulated for southern Brazilian rivers based on epilithic diatom communities as indicators. For comparison purposes, a local WQBI, called the Gravataí WQBI, was also used where species were given new saprobic values (s and indicative values (vi according to their occurrence and abundance in the river, using multivariate analytical techniques. The biological samples were taken every three months at six stations along the Gravataí River between September 2000 and August 2002. The results of the physical and chemical analyses of the water indicated a pollution gradient down the river, from the headwaters to the mouth, detected mainly by considering a significant decrease in the concentration of dissolved oxygen and turbidity, as well as a significant increase in BOD5, total nitrogen, ortho-phosphate and thermotolerant coliforms. Comparing the results obtained, differences were found regarding the predominant pollution levels as higher in the Gravataí WQBI, although both corroborated a tendency for the contamination gradient to increase from the headwaters to the mouth. Given the local anthropic changes, it is of great importance to continue the study of diatom species tolerance to organic pollution and eutrophication in different lotic systems of the region.

  13. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  14. Water quality and non-point sources of risk: the Jiulong River Watershed, P. R. of China.

    Science.gov (United States)

    Zhang, Jingjing; Zhang, Luoping; Ricci, Paolo F

    2012-01-01

    Retrospective water quality assessment plays an essential role in identifying trends and causal associations between exposures and risks, thus it can be a guide for water resources management. We have developed empirical relationships between several time-varying social and economic factors of economic development, water quality variables such as nitrate-nitrogen, COD(Mn), BOD(5), and DO, in the Jiulong River Watershed and its main tributary, the West River. Our analyses used alternative statistical methods to reduce the dimensionality of the analysis first and then strengthen the study's causal associations. The statistical methods included: factor analysis (FA), trend analysis, Monte Carlo/bootstrap simulations, robust regressions and a coupled equations model, integrated into a framework that allows an investigation and resolution of the issues that may affect the estimated results. After resolving these, we found that the concentrations of nitrogen compounds increased over time in the West River region, and that fertilizer used in agricultural fruit crops was the main risk with regard to nitrogen pollution. The relationships we developed can identify hazards and explain the impact of sources of different types of pollution, such as urbanization, and agriculture.

  15. Assessment of water quality for the determination of extent of pollution in Malir river

    International Nuclear Information System (INIS)

    Bano, F.; Rizvi, S.N.; Farooq, S.

    2009-01-01

    Karachi is the most industrially developed and populous city of Pakistan. A big part of its basin is occupied by alluvial of Malir River which is basically a seasonal river but becomes perennial within the limits of Karachi due to the continuous flow of untreated sewage and industrial effluents through its basin into the Arabian Sea. The data obtained during this study shows that the most down stream parts of the river are grossly polluted due to the inclusion of sewage and industrial wastes. Present data shows that pollution has not only deteriorated the pristine conditions of this river but it is also causing pollution in Arabian Sea where river finally falls. The data shows increasing trend of nutrients concentration and turbidity from 1994 to 1996. This study provides the base line data and reflects the quality of water in Malir River in middle 1990's. This data can be used to study the extent of pollution in Malir river by comparing it to the recent data (if available) on Malir river. (author)

  16. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    declining water flows, making most rivers ephemeral or intermittent resulting into water reservoirs storing ... bearing system in the district (Malawi Government, 2006). .... Methodology (BBM) is used and in this methodology, assessments are based on videographic ...... Dams and Development, A New Framework for Decision.

  17. Identification of significant pressures and assessment of wastewater discharge on Krivaja River water quality

    Directory of Open Access Journals (Sweden)

    Pešić Vesna Z.

    2017-01-01

    Full Text Available One of the key stages of the process of preparing management plans for the river basin is the analysis of pressures and impacts, as well as the risk assessment of failing to achieve the environmental objectives. DPSIR framework (Driving Forces-Pressure-State-Impact-Response was developed by the European Agency for the environmental protection, and makes the conceptual basis for the pressures and impacts analysis, taking into account the complexity of the interactions in the environment and represents the tool for their analysis. Impact assessment of the water body requires some quantitative information to describe the condition of the water body and/or the pressures that act on it. The aim of the study was to determine the effect of wastewater discharge on Krivaja watercourse. Impact assessment is carried out based on data of polluters’ wastewater and monitoring information for water in Krivaja. For each site at which sampling was performed, the specific risk quotients for surface water were calculated, as the ratio of the each pollutant concentration in surface water at the sampling point and environmental quality standards for pollutants, as well as their sum that represents the risk index. In order to have the integrated perceive of processes in the Krivaja River, taking into account cumulative effects from point sources, the concept of total maximum daily load was applied, using which the pollution amount, that can be discharged daily in a water body without degrading his prescribed/required quality, was calculated. Comparison of emitted loads from pollution point sources with maximum allowable ones was performed. Wastewaters of different polluters located on Krivaja are, due to insufficient treatment, very loaded with organic matter and nutrients. Krivaja receives daily 1332 m3 of wastewater, 999 kg COD, 722 kg BOD, 144 kg of nitrogen, 4.3 kg of phosphorus and 627 kg of suspended solids. Of the total wastewater volume, the majority (69

  18. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    Science.gov (United States)

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent

  19. Investigating the Impacts of Landuse-landcover (LULC Change in the Pearl River Delta Region on Water Quality in the Pearl River Estuary and Hong Kong’s Coast

    Directory of Open Access Journals (Sweden)

    Hongyan Xi

    2009-11-01

    Full Text Available Water quality information in the coastal region of Hong Kong and the Pearl River Estuary (PRE is of great concern to the local community. Due to great landuse-landcover (LULC changes with rapid industrialization and urbanization in the Pearl River Delta (PRD region, water quality in the PRE has worsened during the last 20 years. Frequent red tide and harmful algal blooms have occurred in the estuary and its adjacent coastal waters since the 1980s and have caused important economic losses, also possibly threatening to the coastal environment, fishery, and public health in Hong Kong. In addition, recent literature shows that water nutrients in Victoria Harbor of Hong Kong have been proven to be strongly influenced by both the Pearl River and sewage effluent in the wet season (May to September, but it is still unclear how the PRE diluted water intrudes into Victoria Harbor. Due to the cloudy and rainy conditions in the wet season in Hong Kong, ASAR images will be used to monitor the PRE river plumes and track the intruding routes of PRE water nutrients. In this paper, we first review LULC change in the PRD and then show our preliminary results to analyze water quality spatial and temporal information from remote observations with different sensors in the coastal region and estuary. The study will also emphasizes on time series of analysis of LULC trends related to annual sediment yields and critical source areas of erosion for the PRD region since the 1980s.

  20. Option Price Estimates for Water Quality Improvements: A Contingent Valuation Study for the Monongahela River (1985)

    Science.gov (United States)

    This paper presents the findings from a contingent valuation survey designed to estimate the option price bids for the improved recreation resulting from enhanced water quality in the Pennsylvania portion of the Monongahela River.

  1. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  2. Putting people into water quality modelling.

    Science.gov (United States)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  3. Quality assurance and quality control procedures in river water radioecological monitoring

    International Nuclear Information System (INIS)

    Nalbandyan, A.; Stepanyan, A.

    2006-01-01

    For recent decades the issue of radioactive pollution of environmental components has acquired a global character as a result of nuclear weapon testing, accidents in NPPs, development of nuclear technologies and so on. A study object of this research is river water as it is known to be radionuclide transport and accumulation mediums and radioactive elements in river water are available as radioactive salts and mechanic and biological pollutants. Moreover, river water is widely used for various economic and commercial purposes and serves a drinking water supply source as well. The ongoing research is performed in the frame of a NATO/OSCE project 'South Caucasus River Monitoring'. The topicality of the problem dictates a necessity of getting credible and compatible results. For adequate radioactive pollution assessment, decisive are the application and keeping standard QA/QC procedures at all the stages of radioecological monitoring. In our research we apply the following ISO standard-based QA/QC procedures: sampling (emphasizing sample identification: sample collection site, date and method), sample transportation (keeping sample conservation and storing requirements), sample treatment and preparation in the lab, radiometric measurements of samples with regard for the time that past from sampling moment to analysis, control and calibration of analytic instruments, control analysis of samples. The obtained data are processed through standard statistic methods of QC to check measurement errors. Gamma-spectrometric measurements are maid using a Genie-2000 (Canberra) software that includes a separate program for measurement QC. The ultimate outcomes are arranged in special protocols (analysis and sampling tasks protocols, sampling task form, field measurement protocol, sample chain of custody form, sample analysis protocol) and compiled in appropriate databases

  4. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.

    2015-01-01

    A study to assess the potential of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas, as a viable source of public-supply water was conducted by the U.S. Geological Survey in cooperation with the Little Rock, District, U.S. Army Corps of Engineers. An important study component was to identify possible changes in hydrologic conditions following installation of James W. Trimble Lock and Dam 13 (December 1969) on the Arkansas River near the study area. Data were gathered for the study in regard to the lithology, hydrologic characteristics, and water quality of the aquifer. Lithologic information was obtained from drillers’ logs of wells drilled from 1957 through 1959. Water-quality samples were collected from 10 irrigation wells and analyzed for inorganic constituents and pesticides. To evaluate the potential viability of the alluvial aquifer in the Van Buren area, these data were compared to similar stratigraphic, lithologic, and groundwater-quality data from the Arkansas River Valley alluvial aquifer at Dardanelle, Ark., where the aquifer provides a proven, productive, sole-source of public-supply water.

  5. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    Science.gov (United States)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  6. Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma

    Science.gov (United States)

    Becker, C.J.

    1998-01-01

    A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

  7. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  8. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  9. The Nišava river water quality as the indicator of the sustainable development of the city of Niš

    Directory of Open Access Journals (Sweden)

    Branković Saša

    2007-01-01

    Full Text Available The Nišava river has a great importance for the sustainable development of the city of Niš. From the Mediana spring, which is on the bank of the Nišava, the city of Niš satisfies around 30% of its water demand. The aim of this paper is to, on the basis of the analysis of several tens of parameters of water quality; determine whether the Nišava river is a limiting factor to the sustainable development of the city of Niš. For this purpose the data of Public Utility Company Naissus have been used, as it collects daily samples of the Nišava river water. The number of conducted analyses, depending on the water quality parameters, varies from 1 to 1,240. The obtained results, which have been presented in detail in the paper, indicate that a great majority of analyses, of almost all the water quality parameters, is within predicted range. At the end of the paper, certain measures have been proposed, which should contribute to the sustainable development of Niš in this field. .

  10. PREDICTION OF WATER QUALITY INDEX USING BACK PROPAGATION NETWORK ALGORITHM. CASE STUDY: GOMBAK RIVER

    Directory of Open Access Journals (Sweden)

    FARIS GORASHI

    2012-08-01

    Full Text Available The aim of this study is to enable prediction of water quality parameters with conjunction to land use attributes and to find a low-end alternative for water quality monitoring techniques, which are typically expensive and tedious. It also aims to ensure sustainable development, which is essentially has effects on water quality. The research approach followed in this study is via using artificial neural networks, and geographical information system to provide a reliable prediction model. Back propagation network algorithm was used for the purpose of this study. The proposed approach minimized most of anomalies associated with prediction methods and provided water quality prediction with precision. The study used 5 hidden nodes in this network. The network was optimized to complete 23145 cycles before it reaches the best error of 0.65. Stations 18 had shown the greatest fluctuation among the three stations as it reflects an area of on-going rapid development of Gombak river watershed. The results had shown a very close prediction with best error of 0.67 in a sensitivity test that was carried afterwards.

  11. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe

    Science.gov (United States)

    Kibena, J.; Nhapi, I.; Gumindoga, W.

    For the past 30 years, the increases in population pressure and external influences, such as economic growth, have accelerated the demand for land within the Upper Manyame River catchment in Zimbabwe which has caused substantial changes in landuse. The general objective of this research was to assess the impacts of landuse activities on the water quality of the Upper Manyame River which drains the rural and urbanised part of the catchment up to flow gauging station C21. Landcover data for the month of April in years of 1984, 1995, 2003 and 2011 were acquired from available Landsat TM and ETM images and were classified through the maximum likelihood digital image classification using the supervised classification approach. The status of water quality of the Upper Manyame River was also assessed through analyses of historical concentrations and pollution loads for TP, DO, COD, NH3-N, SS, Pb, NO3, BOD5, EC, PO4-P and TN at the Environmental Management Agency (EMA) gauging station CR21 sampling point for 1996, 2000/1 and 2008/9. Water quality of 15 monitoring sites comprising 25 water quality parameters were monitored monthly from January to June 2012. These locations were selected to reflect a wide array of landuse for both the dry and wet seasons. The results indicated that there was an increase in pollution load from 1995 to 2012; for TP from 130 kg/day to 376 kg/d, and for TN from 290 kg/day to 494 kg/d. This indicates high pollution levels which have severe impacts on downstream users and also severe sewage contamination. Significant deviations occurred in DO (0.1-6.8) mg/L, COD (11-569) mg/L, BOD5 (5-341) mg/L, PO4-P (0.01-4.45) mg/L, NH3-N (0.001-6.800) mg/L and EC (38-642) μS/cm. Hydrologic Response Unit and buffer analysis were used to determine the dominant landuse which contributes to a certain water quality. Results of digital image classification indicate that woodland/forest, grassland and bareland decreased between years 1984 to 2011 by 24.0%, 22.6% and

  12. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  13. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  14. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    Science.gov (United States)

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  15. Biological and associated water-quality data for lower Olmos Creek and upper San Antonio River, San Antonio, Texas, March-October 1990

    Science.gov (United States)

    Taylor, R. Lynn

    1995-01-01

    Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during March-October 1990, the second year of a multiyear data-collection program. The data will be used to document water-quality conditions prior to implementation of a proposal to reuse treated wastewater to irrigate city properties in Olmos Basin and Brackenridge Parks and to augment flows in the Olmos Creek/San Antonio River system.

  16. Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River

    Science.gov (United States)

    Odume, O. N.; Muller, W. J.

    The Swartkops River is an important freshwater ecosystem in South Africa. But owing to its location, it suffers varying degrees of human induced impacts which include industrial and domestic effluent discharges, deforestation as well as agricultural land use which have negatively impacted on the water quality. Diversity and community composition of aquatic insects are frequently used to assess environmental water quality status. Chironomids occupy extremely varied biotopes. Their extraordinary ecological range and environmental sensitivity make them particularly useful for assessing and interpreting changes in water quality of aquatic ecosystems. The community structure of chironomid larvae was investigated at four sites in the Swartkops River and effects of different chemical and physical variables on their distribution were explored. Chironomid larvae were collected using the South African Scoring System version 5 (SASS5) protocol. A total of 26 taxa from four sampling sites in the Swartkops River were identified. Margalef’s species richness index, equitability, Shannon and Simpson diversity indices were highest at site 1 (reference site). The downstream sites contained 6-20 taxa compared to the 25 taxa at site 1. Site 1 was characterised by the subfamilies Orthocladiinae, Tanypodinae and the tribe Tanytarsini while the impacted sites were characterised by Orthocladiinae and Chironomini. Chironomus spp., Dirotendipes sp., Kiefferulus sp. and Tanypus sp. seemed to be tolerant to pollution, occurring in high abundance at sites 2, 3 and 4. In contrast, Polypedilum sp., Tanytarsus sp., Orthocladius sp., Cricotopus spp. and Ablabesmyia sp. appeared to be more sensitive taxa, being less common at the impacted sites (sites 2, 3 and 4). Five days biochemical oxygen demand, dissolved oxygen, electrical conductivity, orthophosphate-phosphorus and total inorganic nitrogen were among the important variables that determine the observed chironomid community structure

  17. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    Science.gov (United States)

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects

  18. Assessment of Wetland Water Quality and Avian Diversity of a Human-Modified Floodplain Wetland on River Yamuna

    Directory of Open Access Journals (Sweden)

    Upma MANRAL

    2013-02-01

    Full Text Available Okhla Bird Sanctuary (OBS is an Important Bird Area, which comes under the protected area network of Uttar Pradesh with one-third area lying in the state of Delhi (India. OBS has widest flood plains along the Delhi stretch of river Yamuna and is important in conserving the ecological wealth of floodplains of the river. Rapid urbanization and industrialization and discharge of untreated wastewater into the river have resulted in deteriorated water quality. The present study focused on assessment of water quality, aquatic flora and avifaunal diversity in the OBS. Water quality was analyzed following methods of APHA. For vegetation analysis, sub-merged and free-floating plants were scooped up from five randomly selected sites. Total bird counts were conducted for water birds and species richness, evenness and Shannon-Weaver species diversity indices were calculated. Results indicate that the organic load is very high in the wetland as evident from low levels of dissolved oxygen (2.26 ± 1.62 mg/l and high Biological and Chemical Oxygen Demands (15.20 ± 3.75 mg/l, 44.60 ± 12.07 mg/l. Nine species of free-floating and submerged plants were recorded; Hydrilla verticillata, Vallisneria spiralis, Azolla pinnata and Ceratophyllum demersum dominated both deep and shallow water areas. 52 species of waterbirds including four near-threatened species viz., Anhinga melanogaster, Mycteria leucocephala, Threskiornis melanocephalus and Aythya nyroca were recorded. OBS provides opportunities for conservation in a metropolitan area, thus, appropriate measures should be taken to maintain its ecological integrity.

  19. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    Science.gov (United States)

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  20. Assessment of water quality of a river-dominated estuary with hydrochemical parameters: A statistical approach.

    Digital Repository Service at National Institute of Oceanography (India)

    Padma, P.; Sheela, V.S.; Suryakumari, S.; Jayalakshmy, K.V.; Nair, S.M.; Kumar, N.C.

    stream_size 64084 stream_content_type text/plain stream_name Water_Qual_Expos_Health_5_197.pdf.txt stream_source_info Water_Qual_Expos_Health_5_197.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... Water Qual Expo Health DOI 10.1007/s12403-014-0115-9 ORIGINAL PAPER Assessment of Water Quality of a River-Dominated Estuary with Hydrochemical Parameters: A Statistical Approach P. Padma · V. S. Sheela · S. Suryakumari · K. V. Jayalakshmy · S. M. Nair...

  1. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  2. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-09-01

    Full Text Available poor to fair condition. Mining-related disturbances were seen as *Corresponding author. E-mail: wleroux@csir.co.za. Tel: (+27)12 841 2189. the main cause of impairment of river health in the upper parts of the catchment, with the exception... relationship, N50: median infectious dose, r: parameter characterised by dose-response relationship. Microbial monitoring Microbial water quality was monitored over a two year period. During the first year, faecal indicator counts (E. coli) levels...

  3. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    Science.gov (United States)

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination.  For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less

  4. MECHANISMS CONTROLLING SURFACE WATER QUALITY IN THE COBRAS RIVER SUB-BASIN, NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    ALEXANDRE DE OLIVEIRA LIMA

    2017-01-01

    Full Text Available Stream water quality is dependent on many factors, including the source and quantity of the streamflow and the types of geology and soil along the path of the stream. This study aims to evaluate the origin and the mechanisms controlling the input of ions that effect surface water quality in the sub-basin of the Rio das Cobras, Rio Grande do Norte state, Northeastern Brazil. Thirteen ponds were identified for study: three in the main river and ten in the tributaries between, thus covering the whole area and lithology of the sub-basin. The samples were collected at two different times (late dry and rainy periods in the hydrological years 2009 and 2010, equating to total of four collection times. We analyzed the spatial and seasonal behavior of water quality in the sub-basin, using Piper diagrams, and analyzed the source of the ions using Guibbs diagram and molar ratios. With respect to ions, we found that water predominate in 82% sodium and 76% bicarbonate water (cations and anions, respectively. The main salinity control mechanism was related to the interaction of the colloidal particles (minerals and organic sediment with the ions dissolved in water. Based on the analysis of nitrates and nitrites there was no evidence of contamination from anthropogenic sources.

  5. Influence of mining activities in the North of Potosi, Bolivia on the water quality of the Chayanta River, and its consequences.

    Science.gov (United States)

    Rojas, Jenny C; Vandecasteele, Carlo

    2007-09-01

    Mining activity in the North of Potosi (Siglo XX mine, Ingenio Catavi-Siglo XX, Pucro mine and Colquechaca mine) produces minewater containing high concentrations of heavy metals such as As (0.02-34 mg/l), Cd (45-11,600 microg/l), Cu (0.35-32 mg/l), Fe (42-1,010 mg/l), Pb(33-3,130 microg/l), Ni(20-4,320 microg/l), and Zn (1.1-485 mg/l), that exceed considerably the limit values. The rivers in the North of Potosi (Katiri and Pongoma) that do not receive minewater contain clear water with rather low heavy metal concentrations. These rivers and also other rivers contaminated with minewater, are tributaries of the Chayanta River that transports water with a high concentration of heavy metals such as As (6-24 microg/l), Cd (260-2,620 microg/l), Cu (205-812 microg/l), Pb(10-21 microg/l) and Ni(110-332 microg/l). These elements result from mining activity, as indicated by a comparison with rivers not contaminated by minewater discharges. Water of the Chayanta River, used all year long by the population of Quila Quila, (a village situated at about 75 km from the mining centers), for the irrigation of crops such as potato, maize and broad bean, contains heavy metal concentrations exceeding for several elements the guidelines for irrigation. As drinking water the population of Quila Quila consumes spring water with a generally acceptable heavy metal concentration, as well as infiltrated water of Chayanta River (which is also used in animal drinking troughs) with a high concentration of Cd (23-63 microg/l), exceeding the limit value for drinking water. The metal concentration is significantly lower in the infiltrated water than in the water of Chayanta River. Some technological solutions are suggested to improve the quality of the water used. Surveys carried out on inhabitants of the region, showed that many people present health problems, probably to be attributed to the bad quality of the water they consume and use for irrigation.

  6. Assessment of water quality of rivers that serve as water sources for drinking and domestic functions in rural and pre-urban communities in Edo North, Nigeria.

    Science.gov (United States)

    Beshiru, Abeni; Okareh, Oladapo T; Chigor, Vincent N; Igbinosa, Etinosa O

    2018-06-09

    Surface waters are important to humans because they are a significant water supply source. They are, however, under serious environmental stress and are being threatened as a consequence of developmental activities. The present study describes the physicochemical properties and water quality indices of five different rivers used for drinking and other domestic activities in rural and pre-urban communities in Edo North, Nigeria. The physicochemical variable ranges include pH [wet season (6.47 ± 0.30-6.89 ± 0.11), dry season (6.61 ± 0.14-7.84 ± 0.24)], electrical conductivity (EC) [wet season (3.33 ± 0.57-12.33 ± 2.51 μS/cm), dry season (5.33 ± 0.57-21.33 ± 2.08 μS/cm)], water temperature [wet season (24.23 ± 0.98-25.40 ± 1.15 °C), dry season (26.20 ± 0.55-27.10 ± 0.75 °C)], TDS [wet season (417.00 ± 15.87-433.33 ± 18.50 mg/L), dry season (319.33 ± 16.50-372.66 ± 22.30 mg/L)], turbidity [wet season (1.01 ± 0.11-2.08 ± 0.99 NTU), dry season (3.11 ± 0.01-5.41 ± 0.24 NTU)], and DO [wet season (2.65 ± 0.37-3.99 ± 0.01 mg/L), dry season (2.12 ± 0.11-2.44 ± 0.01 mg/L)]. For the wet and dry seasons, the water quality indices were 120.225 and 585.015 for River Osolo, 119.849 and 445.751 for River Foreign, 200.474 and 587.833 for Ijoh River, 105.261 and 512.498 for Ole River, and 150.114 and 489.992 for Ole Extension River, respectively. The pH was negatively correlated with DO (r = -0.648), and EC was negatively correlated with DO (r = -0.635). Most of the evaluated parameters were within recommended water safety guidelines. However, the water quality index shows that the water quality was very poor and/or unsuitable for drinking and other domestic uses, especially during the dry season. It is suggested that river water be treated prior to its use for drinking and other domestic purposes.

  7. Human factors and tidal influences on water quality of an urban river in Can Tho, a major city of the Mekong Delta, Vietnam.

    Science.gov (United States)

    Ozaki, Hirokazu; Co, Thi Kinh; Le, Anh Kha; Pham, Viet Nu; Nguyen, Van Be; Tarao, Mitsunori; Nguyen, Huu Chiem; Le, Viet Dung; Nguyen, Hieu Trung; Sagehashi, Masaki; Ninomiya-Lim, Sachi; Gomi, Takashi; Hosomi, Masaaki; Takada, Hideshige

    2014-02-01

    In this study, we focused on water quality in an urban canal and the Mekong River in the city of Can Tho, a central municipality of the Mekong Delta region, southern Vietnam. Water temperature, pH, electrical conductivity, BOD5, CODCr, Na(+), Cl(-), NH4 (+)-N, SO4 (2-)-S, NO3 (-)-N, and NO2 (-)-N for both canal and river, and tide level of the urban canal, were monitored once per month from May 2010 to April 2012. The urban canal is subject to severe anthropogenic contamination, owing to poor sewage treatment. In general, water quality in the canal exhibited strong tidal variation, poorer at lower tides and better at higher tides. Some anomalies were observed, with degraded water quality under some high-tide conditions. These were associated with flow from the upstream residential area. Therefore, it was concluded that water quality in the urban canal changed with a balance between dilution effects and extent of contaminant supply, both driven by tidal fluctuations in the Mekong River.

  8. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques--a case study

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita

    2005-01-01

    Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the data set on water quality of the Gomti river (India), generated during three years (1999-2001) monitoring at eight different sites for 34 parameters (9792 observations). This study presents usefulness of multivariate statistical techniques for evaluation and interpretation of large complex water quality data sets and apportionment of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Three significant groups, upper catchments (UC), middle catchments (MC) and lower catchments (LC) of sampling sites were obtained through CA on the basis of similarity between them. FA/PCA applied to the data sets pertaining to three catchments regions of the river resulted in seven, seven and six latent factors, respectively responsible for the data structure, explaining 74.3, 73.6 and 81.4% of the total variance of the respective data sets. These included the trace metals group (leaching from soil and industrial waste disposal sites), organic pollution group (municipal and industrial effluents), nutrients group (agricultural runoff), alkalinity, hardness, EC and solids (soil leaching and runoff process). DA showed the best results for data reduction and pattern recognition during both temporal and spatial analysis. It rendered five parameters (temperature, total alkalinity, Cl, Na and K) affording more than 94% right assignations in temporal analysis, while 10 parameters (river discharge, pH, BOD, Cl, F, PO 4 , NH 4 -N, NO 3 -N, TKN and Zn) to afford 97% right assignations in spatial analysis of three different regions in the basin. Thus, DA allowed reduction in dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Further

  9. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China

    Directory of Open Access Journals (Sweden)

    Jiao Ding

    2015-08-01

    Full Text Available Understanding the relationship between land use and surface water quality is necessary for effective water management. We estimated the impacts of catchment-wide land use on water quality during the dry and rainy seasons in the Dongjiang River basin, using remote sensing, geographic information systems and multivariate statistical techniques. The results showed that the 83 sites can be divided into three groups representing different land use types: forest, agriculture and urban. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of forested land was positively associated with dissolved oxygen concentration but negatively associated with water temperature, electrical conductivity, permanganate index, total phosphorus, total nitrogen, ammonia nitrogen, nitrate nitrogen and chlorophyll-a. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. Forested and urban land use had stronger impacts on water quality in the dry season than in the rainy season. However, agricultural land use did not have a significant impact on water quality. Our study indicates that urban land use was the key factor affecting water quality change, and limiting point-source waste discharge in urban areas during the dry season would be critical for improving water quality in the study area.

  10. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  11. Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece

    Directory of Open Access Journals (Sweden)

    V. Z. Antonopoulos

    2001-01-01

    Full Text Available Strymon is a transboundary river of Greece, Bulgaria and Former Yugoslav Republic of Macedonia (FYROM in southeastern Europe. Water quality parameters and the discharge have been monitored each month just 10 km downstream of the river’s entry into Greece. The data of nine water quality variables (T, ECw, DO, SO42-, Na++K+, Mg2+ , Ca2+, NO3‾, TP and the discharge for the period 1980-1997 were selected for this analysis. In this paper a the time series of monthly values of water quality parameters and the discharge were analysed using statistical methods, b the existence of trends and the evaluation of the best fitted models were performed and c the relationships between concentration and loads of constituents both with the discharge were also examined. Boxplots for summarising the distribution of a data set were used. The ◈-test and the Kolmogorov-Smirnov test were used to select the theoretical distribution which best fitted the data. Simple regression was used to examine the concentration-discharge and the load-discharge relationships. According to the correlation coefficient (r values the relation between concentrations and discharge is weak (r 0.902. Trends were detected using the nonparametric Spearman’s criterion upon the data for the variables: Q, ECw, DO, SO42-, Na++K+ and NO3‾ on which temporal trend analysis was performed. Keywords: Strymon river, water quality, discharge, concentration, load, statistics, trends

  12. River-floodplain Hydrologic Connectivity: Impact on Temporal and Spatial Floodplain Water Quality and Productivity Patterns

    Science.gov (United States)

    Gallo, E. L.; Ahearn, D.; Dahlgren, R. A.; Grosholz, E.

    2003-12-01

    Nutrient spiraling and cycling are critical processes for floodplain systems, but these have not been well studied in western North America. Floodplain production and function relies on the integrity of river-floodplain interactions, particularly during periods of hydrologic connectivity. The purpose of this study was to: (1) determine the importance of the timing and duration of river-floodplain hydrologic connectivity, (2) link flood event water quality to subsequent primary and secondary production, and (3) identify temporal and spatial patterns of floodplain production. The Cosumnes River watershed transports surface runoff and snowmelt from the Sierra Nevadas to the Sacramento-San Joaquin Delta. It is one of the few watersheds in California that has no major water diversions or impoundments; therefore the river responds to the natural watershed hydrology. The study site in southern Sacramento County is an unmanaged experimental floodplain, one of the few remaining floodplains in California. Weekly and flood-event water quality and macroinvertebrate sampling was conducted during the flood season from January through June in 2001 and 2002. Both water years were characterized by historically low river flows. On average, volatile suspended solids in the water column increased from 5 mg/l to 10 mg/l during early season periods of hydrologic connectivity (December - February), suggesting that during watershed flushing flood events, the river acts as a source of nutrients and organic matter to the floodplain. Following a flood event, invertebrate concentrations decreased on average from 26,000 individuals/m3 to 9,000 individuals/m3 for zooplankton and from 350 individuals/m2 to 65 individuals/m2 for benthic macro-invertebrate, suggesting a net dilution of invertebrates during flood events. Chlorophyll a (chl-a) levels were also diluted during flood events, on average from 25 ppb to 5 ppb. Zooplankton densities and chl-a levels quickly rose after flood events. On

  13. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    Science.gov (United States)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  14. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  15. Impacts of the Urbanization Process on Water Quality of Brazilian Savanna Rivers: The Case of Preto River in Formosa, Goiás State, Brazil

    Directory of Open Access Journals (Sweden)

    Nayara Luiz Pires

    2015-08-01

    Full Text Available The release of domestic sewage in water resources is a practical feature of the urbanization process, and this action causes changes that may impair the environmental balance and the water quality for several uses. The aim of this study was to evaluate the influence of urbanization on the surface water quality of the Preto River throughout the town of Formosa, Goiás, Brazil. Samples were collected at five points along the river, spatially distributed from one side to the other of the town of Formosa, from May to October of 2012. Data were subjected to descriptive statistics, as well as variance and cluster analysis. Point P2, the first point after the city, showed the worst water quality indicators, mainly with respect to the total and fecal coliform parameters, as well as nitrate concentrations. These results may be related to the fact that this point is located on the outskirts of the town, an area under urbanization and with problems of sanitation, including absence of sewage collection and treatment. The data observed in this monitoring present a public health concern because the water body is used for bathing, mainly in parts of Feia Lagoon. The excess of nutrients is a strong indicator of water eutrophication and should alert decision-makers to the need for preservation policies.

  16. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  17. St. Louis River water quality assessment 2012, 2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — St. Louis River Area of Concern surface water nutrient (TP, TN, NOx-N, NH4-N), dissolved oxygen, and particulate (TSS, chlorophyll a) concentration data from 2012...

  18. Modeling water quality in the middle segment of the Luyano River

    International Nuclear Information System (INIS)

    Valcarcel Rojas, Lino; Alberro Macias, Nancy; Rodriguez GonzalesZahilys; Herrero, Maydel; Borroto Portela, Jorge; Rodrigues Garcez, Anel; Dominguez Catases, Judith; Griffith Martinez, Jose; Derivet Zarzabal, Milagros; Flores Juan, Pedro; Cuesta Borges, Jaime

    2010-01-01

    The methodology for the modelling of three parameters that characterize the quality of water: Biochemical Oxygen Demand, Dissolved Oxygen and ammonium in a stretch of Luyano river using the software RIOSep v.2.0. The procedure combined the use of radiotracer techniques for estimating the hydrodynamic parameters of the current with physicochemical techniques for the determination of its basic parameters. The lifting of the hydrodynamic parameters in the current was conducted with the use of 99mTc as a radiotracer. Simultaneously with flow determination, water was sampled at five stations in the main channel and two tributaries, in order to determine the physicochemical parameters of interest. The result was a model that describes accurately the Biochemical Oxygen Demand and Dissolved Oxygen behaviour (more than 90%), and showed good result for ammonium, so it adequately characterizes the processes of purification and oxygen balance in the water. (Author)

  19. Water quality and the composition of fish and macroinvertebrate communities in the Devils and Pecos Rivers within and upstream from the Amistad National Recreation Area, Texas, 2005-7

    Science.gov (United States)

    Moring, J. Bruce

    2012-01-01

    To gain a better understanding of the water quality and status of fish and macroinvertebrate communities, the U.S. Geological Survey, in cooperation with the National Park Service and Amistad National Recreation Area, completed a reconnaissance-level survey of the water quality and fish and macroinvertebrate communities in the Devils and Pecos Rivers in and upstream from the Amistad National Recreation Area in southwest Texas during 2005–7. Water-quality conditions during the spring and summer months of 2005 in the Devils and Pecos Rivers were assessed at locations just upstream from the Amistad National Recreation Area, and the composition of fish and macroinvertebrate communities were assessed during 2006 and 2007 in and upstream from the Amistad National Recreation Area and Amistad Reservoir. Water-quality samples were collected at one site on both the Devils and Pecos Rivers. Fish and macroinvertebrates were collected at the water-quality sampling site on each river and at three additional sites on each river. The water-quality constituents of primary concern were total dissolved solids, chloride, sulfate, ammonia plus organic nitrogen, nitrate plus nitrite, orthophosphate, phosphorus, selenium, and selected pesticides. During the spring and summer of 2005, the concentrations of total dissolved solids ranged from 208 to 232 milligrams per liter (mg/L) in samples from the Devils River compared to 1,460 to 2,390 mg/L in samples from the Pecos River. Total dissolved solid concentrations measured in samples collected from the Devils River and Pecos River did not exceed the proposed State of Texas water-quality standard applicable for the segments of each river where samples were collected. During the spring and summer of 2005, chloride concentrations measured in samples collected in 2005 from the Devils River ranged from 11.6 to 12.9 mg/L, compared to chloride concentrations measured in samples collected from the Pecos River, which ranged from 519 to 879 mg

  20. Effect of Batik Waste Water on Kali Wangan Water Quality in Different Seasons

    Science.gov (United States)

    Lestari, S.; Sudarmadji; Tandjung, S. D.; Santoso, S. J.

    2018-02-01

    Sokaraja Batik Center is one of batik industrial centers in Banyumas Regency. The craftsmen in Sokaraja Batik Center dispose of their waste water directly to a river named Kali Wangan. This study aims at figuring out the quality of Kali Wangan in dry and rainy seasons. The research is conducted along the Wangan River in January - November 2015. The research method used is survey with Purposive Random Sampling. The Kali Wangan water is sampled in four observation stations. The obtained data are analyzed descriptively and compared against the environmental quality standards. The research results show that the quality of Kali River water is found contaminated by the batik waste water, all parameters are below the class III standards quality based on Government Regulation Number 82 Year 2001 during dry and rainy season

  1. How can water quality be improved when the urban waste water directive has been fulfilled? A case study of the Lot river (France).

    Science.gov (United States)

    Garnier, Josette; Ramarson, Antsiva; Thieu, Vincent; Némery, Julien; Théry, Sylvain; Billen, Gilles; Coynel, Alexandra

    2018-02-15

    The Lot river, a major tributary of the downstream Garonne river, the largest river on the Northern side of the Pyrenees Mountains, was intensively studied in the 1970s. A pioneering program called "Lot Rivière Claire" provided a diagnosis of water quality at the scale of the whole watershed and proposed an ambitious program to manage nutrient pollution and eutrophication largely caused by urban wastewater releases. Later on, the implementation of European directives from 1991 to 2000 resulted in the nearly complete treatment of point sources of pollution in spite of a doubling of the basin's population. At the outlet of the Lot river, ammonium and phosphate contamination which respectively peaked to 1 mg N-NH 4 L -1 and 0.3 mg P-PO 4 L -1 in the 1980s returned to much lower levels in recent years (0.06 mg N-NH 4 L -1 and 0.02 mg P-PO 4 L -1 ), a reduction by a factor 15. However, during this time, nitrate contamination has regularly increased since the 1980s, from 0.5 to 1.2 mg N-NO 3 L -1 in average, owing to the intensification of agriculture and livestock farming. Application of the Riverstrahler model allowed us to simulate the water quality of the Lot drainage network for the 2002-2014 period. We showed that, with respect to algal requirements, phosphorus and silica are well balanced, but nitrogen remains largely in excess over phosphorus and silica. This imbalance can be problematic for the ecological status of the water bodies. Using the model, for simulating various scenarios of watershed management, we showed that improvement of urban wastewater treatment would not result in any significant change in the river's water quality. Even though arable land occupies a rather limited fraction of the watershed area, only the adoption of better farming practices or more radical changes in the agro-food system could reverse the trend of increasing nitrate contamination.

  2. A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System

    Directory of Open Access Journals (Sweden)

    David J. Beale

    2017-03-01

    Full Text Available A multi-omics approach was applied to an urban river system (the Brisbane River (BR, Queensland, Australia in order to investigate surface water quality and characterize the bacterial population with respect to water contaminants. To do this, bacterial metagenomic amplicon-sequencing using Illumina next-generation sequencing (NGS of the V5–V6 hypervariable regions of the 16S rRNA gene and untargeted community metabolomics using gas chromatography coupled with mass spectrometry (GC-MS were utilized. The multi-omics data, in combination with fecal indicator bacteria (FIB counts, trace metal concentrations (by inductively coupled plasma mass spectrometry (ICP-MS and in-situ water quality measurements collected from various locations along the BR were then used to assess the health of the river ecosystem. Sites sampled represented the transition from less affected (upstream to polluted (downstream environments along the BR. Chemometric analysis of the combined datasets indicated a clear separation between the sampled environments. Burkholderiales and Cyanobacteria were common key factors for differentiation of pristine waters. Increased sugar alcohol and short-chain fatty acid production was observed by Actinomycetales and Rhodospirillaceae that are known to form biofilms in urban polluted and brackish waters. Results from this study indicate that a multi-omics approach enables a deep understanding of the health of an aquatic ecosystem, providing insight into the bacterial diversity present and the metabolic output of the population when exposed to environmental contaminants.

  3. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    Science.gov (United States)

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  4. The impact of the local dairy cattle farm toward the river water quality in Gunungpati Subdistrict Central Java

    Directory of Open Access Journals (Sweden)

    E. Widiastuti

    2014-12-01

    Full Text Available People’s awareness on the living environment nowadays is not yet comes up to the dairy-farmer community. In fact, the dairy-farm subsector contributes load pollution in the form of waste. The waste that is produced by a dairy-farm can be in the form of solid waste and liquid waste. There is still no cultivation effort toward the wastes in a traditional dairy-farmyet, thus most of the wastes are disposed to the closest river, so that in the surrounding dairy farm area is frequently found pollution toward the water quality. The aim of this study is to identify the effect of environment pollution that is caused by local dairy farm in Gunungpati Sub-district, especially toward the river water and residents’ well. The result of this study in Nangkasawit Village before and after the dairy farm was build was still under the quality standard for the third rate water quality. In Plalangan Village, the water quality was also under the quality standard, except for COD concentration. In the Sumurejo Village there was an upturn tendency on the observation value, but the water quality was under the quality standard, except for Fe concentration. Based on the Biodiversity Index before and after the dairy farm was established in Nangkasawit, Plalangan, and Sumurejo were 2.22, 1.49, 2.11, 1.90, 1.78, and 1.88, respectively. It means that Nangkasawit showed no pollution before the dairy farm was established, while there was a medium pollution after the dairy farm establishment.  In Plalangan, the water was clear, but it was light polluted after the dairy farm was established. In Sumurejo, before and after the dairy farm establishment the water was light category pollution.

  5. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    Science.gov (United States)

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  6. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    Science.gov (United States)

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  7. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  8. The water quality of the LOCAR Pang and Lambourn catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river. Keywords: water quality, nitrate, ammonium, phosphorus, pH, alkalinity, nutrients, major elements, trace elements, rainfall, river, Pang, Lambourn, LOCAR

  9. Grey fuzzy optimization model for water quality management of a river system

    Science.gov (United States)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  10. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    Science.gov (United States)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  11. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  12. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  13. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware... or ``Commission'') approved amendments to its Water Quality Regulations, Water Code and Comprehensive...

  14. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  15. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  16. Patterns of fish diversity and assemblage structure and water quality in the longest Asian tropical river (Mekong)

    Science.gov (United States)

    Chea, R.; Lek, S.; Grenouillet, G.

    2016-12-01

    Although the Mekong River is one of the world's 35 biodiversity hotspots, the large-scale patterns of fish diversity and assemblage structure remain poorly addressed. The present study aimed to investigate the spatial variability of water quality in the Lower Mekong Basin and the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH, and total phosphorus. Specifically, upstream assemblages were characterized by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch-like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR. Overall of the LMR water quality, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMR. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human

  17. Water quality and treatment of river bank filtrate

    NARCIS (Netherlands)

    De Vet, W.W.J.M.; Van Genuchten, C.C.A.; Van Loosdrecht, M.C.M.; Van Dijk, J.C.

    2010-01-01

    In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the

  18. Water quality and treatment of river bank filtrate

    NARCIS (Netherlands)

    De Vet, W.W.J.M.; Van Genuchten, C.C.A.; Van Loosdrecht, M.C.M.; Van Dijk, J.C.

    2009-01-01

    In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the

  19. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  20. Urban influence on the water quality of the Uberaba River basin: an ecotoxicological assessment

    Directory of Open Access Journals (Sweden)

    Ana Luisa Curado

    2018-03-01

    Full Text Available Ecotoxicological tests applied to Tradescantia pallida, Allium cepa and Lactuca sativa were used to assess the quality of the Uberaba River basin under urban area influence. Water samples were collected at eight different points during the dry season. The samples were assessed using the following toxicity indicators: micronuclei percentage in T. pallida pollen grains (TRAD-MN, seed germination, root growth, mitotic index (MI and micronuclei in A. cepa root-cells, and seed germination and root growth in L. sativa. Water physicochemical parameters such as temperature, dissolved oxygen (DO, pH and electric conductivity were assessed in situ. The three plant species were efficient bio-indicators, since they presented good cost-benefit and fast and easily interpreted results, thus completing the physicochemical parameters. There was strong correlation between seed germination and root growth among the ecotoxicological parameters assessed in L. sativa and A. cepa. The micronuclei percentage in T. pallida and the MI in A. cepa presented strong correlation with water electric conductivity and moderate and negative correlation with DO. Water electric conductivity ranged from 75 to 438 µS.cm-1; and the DO concentrations ranged from 0.5 to 6.9 mg.L-1. The importance of pollution control measures in the Uberaba River basin stands out. From the supply-water capture point, the basin is strongly affected by pollution, mainly in the tributaries that cross the city. It presents a short, or almost absent, riparian forest line, residues on the river banks, and it is impacted by discharges of untreated sewage, among other anthropic actions.

  1. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  2. Microbiological characteristics of waters in the major rivers in Kainji ...

    African Journals Online (AJOL)

    Administrator

    As a result water of the four rivers in the park is not potable during the ... drinking and domestic use. ... Water quality standards are usually expressed in term ... sence of pathogens and thus health hazard (Sandy and ... Table 2. Bacteriological examination of waters in the Rivers in Kainji Lake National Park during Wet ...

  3. Bank filtered water quality characteristics in Okgog-Ri area of Youngsan-River, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Youl; Kim, Hyoung-Soo [Korea Water Resources Corp., Taejeon(Korea)

    2001-02-28

    Preliminary artificial recharge groundwater intake method using bank filtering had been conducted in Okgog-Ri of Youngsan-River to evaluate the possibility of substitution of surface water intake method in the area. In order to investigate the characteristics of bank filtered groundwater, we examined the hydrogeological properties of alluvium and water quality of stream and groundwater. It is observed that nitrate in stream water from synthetic fertilizer and poultry manure is almost consumed during bank filtering in this area. This implies that denitrification of organic carbon and the oxidation of pyrite present in the alluvium aquifer. Groundwater samples from bank filtering show high Mn concentration. This high Mn concentration may be resulted from decreasing redox potential due to denitrification and increasing mobility due to redox reaction of Mn-oxide. In the study area, there is a typical tendency that Al concentrations of water samples decrease according to increasing pH. This tendency is interpreted as forming of amorphous Al(OH){sub 3} precipitates by reducing the Al{sup 3+} solubilities. It is revealed that the bank filtered groundwater in the area is not edible because color, turbidity, heterotrophic bacteria, coliform and Mn of the groundwater exceed the guideline of drinking water. Even though the bank filtered groundwater without treatment does not satisfy the guideline of drinking water, the groundwater shows a good water quality compared with stream water. So, the water treatment method using bank filtered groundwater can be more economical and efficient than the treatment using direct intake of stream water in the aspect of water quality. (author). 15 refs., 2 tabs., 7 figs.

  4. VICIOUS CIRCULATION OF WATER DEFICIENCY AND WATER POLLUTION – “CANCER” OF THE RIVERS IN THE NORTH OF CHINA.

    Directory of Open Access Journals (Sweden)

    Yang Liankang

    2005-05-01

    Full Text Available The North of China belongs to the basin of the Tarim River ,the Heihe River , the Yellow River , the Huaihe River ,the Haihe River ,the Liaohe River , the Heilongjiang River and other shorter rivers and other indraft areas. The total area of all river basin is about 3,200,000 sq. km., exceeds 3/5 of area of land of 13 provinces , municipalities and autonomous regions of the North of China (5, 220,000 sq. km. .Follow the growth of the economy and the population, lacking of water in the rivers of the northern China is serious,. Since the sixties and seventies of previous century, the blanking has taken place successively in numerous rivers, brought serious influence on the development of the economic, made the society to shake. Afterwards, through certain effort, although the blanking phenomenon is alleviated for the past several years, but the water quality of manyrivers has sharply worsened and was dropped to V, bad V grade in the numerous sections, fromthe situation that the water quality in a great part sections in the main stream was still rather good for past more than 20 years ago. It has become the first killer, influencing the life of river.Therefore, we must summarize the experiences on that the rivers of the northern China, especially the most influential Yellow River, have gone from blanking to resuming flow, we also must control the pollution and proportionate the development of the society and theeconomic, with the water yield and the water quality. These affair have already become task of top priority!

  5. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  6. Hydrology and Water Quality of the Rio Chama River, Northern New Mexico: Establishing a Base Line to Manage Flows

    Science.gov (United States)

    Salvato, L.; Crossey, L. J.

    2013-12-01

    The Rio Chama is the largest stream tributary to the Rio Grande in northern New Mexico. The river's geographic location in a semiarid region results in high rates of evapotranspiration and highly variable streamflow. The Rio Chama is part of the San Juan-Chama Drinking Water Project, in which water from the San Juan River, southern Colorado, is diverted across the continental divide to the Rio Chama. Surface water moves through Abiquiu, El Vado and Heron Reservoirs to the Rio Grande to supply Albuquerque with potable drinking water. The results of these anthropogenic influences are a modified flow regime, less variability, greater base-flows, and smaller peak flows. We examined selected locations throughout the Rio Chama system to provide base-line water quality data for ongoing studies. This information will contribute to the development of the best plan to optimize flow releases and maximize benefits of the stakeholders and especially the riparian and stream ecosystems. We report results of two sampling trips representing extremes of the hydrograph in summer 2012 and fall 2012. We collected field parameters, processed water samples, and analyzed them for major anions and cations. The geochemistry enables us to better understand the impact of monthly releases of San Juan river water. We captured two points of the river's streamflow range, 54 cubic feet per second in October 2012 and 1,000 cubic feet per second in August 2012 and looked for variability within the results. We found that the reservoirs exhibit varying anion concentrations from samples taken at different depths. We compared stream waters and selected well samples at a stream transect. These samples allowed us to compare shallow ground water with the stream, and they indicated that the changes in ground water are attributed to sulfate reduction. The anion and cation inputs were most likely derived from gypsum, calcite, and salts, as there are many creeks discharging into the Rio Chama whose drainage

  7. Epipelic Diatoms as Indicators of Water Quality in the Lower Part of River Melet (Ordu, Türkiye

    Directory of Open Access Journals (Sweden)

    Beyhan Taş

    2015-07-01

    Full Text Available Phytobenthos includes bioindicator species and is widely used in water ecology studies. Diatoms constitute one of the most important groups of phytobenthos in streams. In particular, these organisms are good indicators in investigations related with determining of water quality in medium and long time. In this study, the epipelic diatom flora of the lower part of River Melet were investigated, the most important source of drinking water in Ordu city. The examination was performed periodically in March-November 2012 and total of 56 taxa were identified. Cymbellales (14 taxa and Naviculales (16 taxa ordo constituted 54% of diatom diversity. These were followed by Fragilariales (16%, 9 taxa Bacillariales (14%, 8 taxa Surirellales (9%, 5 taxa Achnanthales (3%, 2 taxa Eunotiales (2%, 1 taxa and Melosirales (2%, 1 taxa, respectively. Diatome vulgaris, Melosira varians, Navicula gregaria, N. tripunctata and Nitzschia sigmoidea species were recorded as widespread and intense in the epipelic communities. These species are usually tolerant to organic pollution and are found in β-α- mesosaprobic conditions. According to the obtained results, the lower part of the Melet River has character from pollution towards moderate pollution. In other words, it has II-III. class water quality.

  8. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity. Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive shows chemistries similar to that for the Lambourn site, but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N. Keywords: water quality, nitrate, ammonium, phosphorus, ammonia, nitrogen dioxide, pH, alkalinity, nutrients, trace metals, rainfall, river, Pang, Lambourn, LOCAR

  9. Chemical composition of the mineral waters of the Congo River

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Lobo, K.K.; Tshisumpa, M.; Wembo, L.S.

    2003-01-01

    Atomic absorption spectrophotometry has been applied to river Congo waters for a global monitoring of trace element contents. 15 elements Ag, Au, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn have been determined in samples collected at 2 sites along the river Congo. Results are compared with those observed in other river waters collected in Kinshasa and elsewhere and for compliance with the international quality standards elaborated by the Who, USA and SSRU. The waters of river Congo have been found less mineralized than those of river Niger. They are of the same order of magnitude than those observed in some local rivers such as Ndjili, Lubudi, Funa, Tshangu and Tshenke.

  10. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    Directory of Open Access Journals (Sweden)

    P. Normatov

    2014-09-01

    Full Text Available The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  11. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  12. Water quality in the Tibetan Plateau: Metal contents of four selected rivers

    International Nuclear Information System (INIS)

    Huang Xiang; Sillanpaeae, Mika; Duo Bu; Gjessing, Egil T.

    2008-01-01

    The water used by 85% of the Asian population originates in Tibetan Plateau. During April and May of 2006, water samples were collected from four major Asian rivers in the Plateau (i.e. the Salween, Mekong, Yangtze River and Yarlung Tsangpo) and analyzed for Cu, Pb, Zn, Ag, Mo, Cd, Co, Cr, Ni, Li, Mn, Al, Fe, Mg and Hg. The results showed that elements such as Mg were rather high in Tibetan rivers, giving a mean electrical conductance of 36 mS/m. In a few locations, the results also showed relatively high concentrations of Al and Fe (>1 mg/L). However, the concentrations of Cu, Zn, Ag, Cd, and Cr were generally low. Contamination with Pb was identified at a few locations in the Salween and Ni at a few sites in the Yangtze River. - For the first time, total dissolved metal contents in source water of four major Asian rivers were evaluated at the same time

  13. Water quality index development using fuzzy logic: A case study of ...

    African Journals Online (AJOL)

    Water quality index development using fuzzy logic: A case study of the Karoon River of Iran. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Determination of the status of water quality of a river or any other water source is highly ...

  14. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware... hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality...

  15. Identifying Pollutants in the Siret River Basin by Applying New Assessment Tools on Monitoring Data: the Correlation of Land Use and Physicochemical Parameter of Water Quality Analysis

    Directory of Open Access Journals (Sweden)

    Mănescu Andreea

    2014-10-01

    Full Text Available The Siret River are used as raw water source for different municipal water supply systems, yet the Siret River are used as receiving bodies by some inhabitants and industry. In the study the quality of the Siret River water was determinate using a Water Quality Index (WQI. Results are presented from a field study performed on the Bistrita, Moldova, Suceava, Siret, Şomuzu Mare, Trotuş and Tributary River in the study area Siret Basin Romania. The main objective of this study was to determine is to find correlations land use to indicators physical-chemical of water quality, to investigate pollution source is more responsible for river water quality. This is of interest not only research context, but also for supporting and facilitating the application analysis postullend in the Water Framework Directive (WFD (2000/60/CE for the establishment of programmers of measures. For this purpose a slightly impact pollution source municipal wastewater treatment, land uses, urban, forest, agriculture and mining was selected and intensively monitored during six years January 2006 - December 2011, sampling was determined to meet the WFD standards for confidence in twenty two different control section of the Siret Basin. The main measures to reduce emissions to the Siret River were calcium, ammonium, sulfate, residue fixed (RF, sodium, chloride, free detergent and municipal wastewater treatment, concentrated on point emission. The main contributor to diffuse this parameters increased when more percentage of land was dedicated to industry and urban and less to forest and mining.

  16. Heavy Metal Analysis of Cauvery River Water Around Krs Dam, Karnataka, India

    Directory of Open Access Journals (Sweden)

    J. Mahadev

    2010-07-01

    Full Text Available Water quality is an index of health and is one of the areas of major concern to environmentalists, since Industrialization, urbanization and modern agriculture practices have a direct impact on the water resources. Hence, the study of the reservoirs and river water quality monitoring is most essential aspect of sustainable development and river conservation. The Upstream and KRS reservoir both are the important sources of potable water supply for the Mysore city. The study area were selected the Upstream and KRS reservoir of Mysore District of Karnataka, India. In this paper an attempt has been made to evaluate water quality parameter and heavy metal of upstream and KRS Dam during 2008. Ecological parameters like Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand and Chemical parameters like Total Hardness, Total Alkalinity, Chloride, Nitrate, Phosphate and physical parameters like Temperature, pH, Turbidity and heavy metals were analyzed and the results were compared with standard permissible limits, WHO and they were studied to ascertain the drinking water quality. Results revealed that in three rivers of upstream (Hemavathi, Cauvery and Laxmanatheertha carried high loads of Arsenic, Iron, Nickel in Upstream. In other word, Arsenic is a dominant risk to more than the maximum permissible standard of water quality and is a risk factor in this river

  17. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    Science.gov (United States)

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  18. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  19. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    spring and least in the autumn. About 61 percent of the basin's population use surface water from public supply for their domestic needs; about 30 percent use self-supplied ground water, and about nine percent use ground water from public supply. In 1995, total withdrawal of water in the basin was about 1,130 Mgal/d. Total consumptive use was about 118 Mgal/d. Surface water in the Blue Ridge Province is usually dilute (less than 100 mg/L dissolved solids) and well aerated. Dissolved- solids concentrations in streams of the Valley and Ridge Province at low flow are typically greater (150-180 mg/L) than those in the Blue Ridge Province. The Appalachian Plateaus Province contains streams with the most dilute (less than 30 mg/L dissolved solids) and least dilute (more than 500 mg/L dissolved solids) water in the basin. Coal mining has degraded more miles of streams in the basin than any other land use. Streams that receive coal-mine drainage may be affected by sedimentation, and typically contain high concentrations of sulfate, iron, and manganese. Other major water-quality issues include inadequate domestic sewage treatment, present and historic disposal of industrial wastes, and logging, which results in the addition of sediment, nutrients, and other constituents to the water. One hundred eighteen fish species are reported from the Kanawha River system downstream from Kanawha Falls. Of these, 15 are listed as possible, probable, or known introductions. None of these fish species is endemic to the Kanawha River Basin. The New River system has only 46 native fishes, the lowest ratio of native fishes to drainage area of any river system in the eastern United States, and the second-highest proportion of endemic fish species (eight of 46) of any river system in the eastern United States.

  20. Arsenic occurrence in water bodies in Kharaa river basin

    Directory of Open Access Journals (Sweden)

    Azzaya T

    2018-02-01

    Full Text Available Distribution of arsenic (As and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III and As(V, examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l, the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U at spring water nearby Gatsuurt-Boroo improved road.

  1. A space satellite perspective to monitor water quality using ...

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  2. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  3. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Baborowski, Martina [Department of River Ecology, UFZ-Helmholtz Centre for Environmental Research, Magdeburg (Germany); Simeonov, Vasil [Faculty of Chemistry, University of Sofia, Sofia (Bulgaria); Einax, Juergen W. [Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Jena (Germany)

    2012-04-15

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    International Nuclear Information System (INIS)

    Baborowski, Martina; Simeonov, Vasil; Einax, Juergen W.

    2012-01-01

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Human action impact on water quality of Juturnaiba Dam - Silva Jardim, RJ

    Directory of Open Access Journals (Sweden)

    Marla Regina Domingues de Morais

    2016-12-01

    Full Text Available The Juturnaiba Dam, located between the municipalities of Silva Jardim and Araruama, is the only fresh water source supplying the entire Lake District, State of Rio de Janeiro. The objective of this research was to evaluate the water quality of the Juturnaiba reservoir through physical, chemical and microbiological analyses conducted upstream and downstream in the rivers, comparing them in to identify its hydrodynamics. Six collections were made in six strategic points. The Capivari river was the tributary with greater restrictions on water quality. The river with better water quality was the São João River.

  6. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  7. River water quality model no. 1 (RWQM1): II. Biochemical process equations

    DEFF Research Database (Denmark)

    Reichert, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    In this paper, biochemical process equations are presented as a basis for water quality modelling in rivers under aerobic and anoxic conditions. These equations are not new, but they summarise parts of the development over the past 75 years. The primary goals of the presentation are to stimulate...... transformation processes. This paper is part of a series of three papers. In the first paper, the general modelling approach is described; in the present paper, the biochemical process equations of a complex model are presented; and in the third paper, recommendations are given for the selection of a reasonable...

  8. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  9. Forecasting Models for Some Water Quality Parameters of Shatt Al-Hilla River, Iraq

    Directory of Open Access Journals (Sweden)

    Rafa H. Al-Suhili

    2017-07-01

    Full Text Available This paper provides Artificial Neural Networks model versions for forecasting the monthly averages of some chemical water quality parameters of Shatt Al-Hilla River, which is located at Hilla City, south of Iraq. The water quality parameters investigated were Sulphate, Magnesium, Calcium, Alkalinity, and Total Hardness. Results indicate that for Sulphate and Calcium high correlation coefficients models were observed to be (0.9 and 0.88, while for Magnesium, Alkalinity and Hardness low correlation coefficients model were observed to be (0.48,0.58, and 0.51 respectively. Serial correlation behavior of these variables indicate at that high lag time correlations sequences are observed for the first two variables and low ones for the last three water quality parameters. A serial correlation coefficient analysis was done and indicates that as the variable exhibited weak lag correlation structure, then a successful ANN forecasting model could not be obtained even if many trials were done to enhance it's performance, such as increasing the number of nodes, the lagged input variables, and/or changing the learning rate and the momentum term values, or the use of different types of activation functions. On the other hand, those variables that have a strong lag correlation structure can easily fit successful ANN forecasting models

  10. A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system.

    Science.gov (United States)

    Whitehead, P G; Crossman, J; Balana, B B; Futter, M N; Comber, S; Jin, L; Skuras, D; Wade, A J; Bowes, M J; Read, D S

    2013-11-13

    The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

  11. Ecological quality assessment of rivers and integrated catchment management in England and Wales

    Directory of Open Access Journals (Sweden)

    Paul LOGAN

    2001-09-01

    Full Text Available This paper deals with the ecological assessment of river quality and its relationship to integrated catchment management. The concept of catchment or river basin management has been a basic management tool in England and Wales since 1990; it is now being enshrined in the Water Framework Directive. Historically the statutory and operational drivers in the UK have lead to the development of distinctly different approaches to the management of water quality, water resources (quantity and physical river structure. More recently a proactive approach to the sustainable use of water promulgated in the Local Environment Agency Plans has also dealt with the three management aspects in some isolation although greater effort has been made to present the issues in an integrated manner. The Water Framework Directive calls for further integration in river basin plans and associated programmes of measures. In the paper the three approaches are described and considered in light of the requirements of the Water Framework Directive. Water Quality classification and objective setting has been based on information from the survey of benthic macro-invertebrates. The Biological Monitoring Working Party Score and the predictive software River Invertebrate Prediction and Classification System (RIVPACS have been used to set site-specific targets for management purposes. RIVPACS includes a reference database of minimally impacted sites for comparison with the observed data. This approach is in line with the requirements of the directive. Physical river structure work has been based on monitoring of in-river and river corridor characteristics. The River Habitat System (RHS has also developed a reference database but is less well developed in terms of its predictive ability. The use of ecological information in Water Resource management has taken a different approach based on the concept of differential ecological sensitivity to the hydrological regime within the river. In

  12. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  13. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    Science.gov (United States)

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Working Group for Water Pollution Abatement in the Weser River. Weser water quality report 1998; Arbeitsgemeinschaft zur Reinhaltung der Weser. Weserguetebericht 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The ARGE Weser (Arbeitsgemeinschaft zur Reinhaltung der Weser), which comprises representatives of the German states of Bremen, Hessen,Niedersachsen, Nordrhein-Westfalen and Thueringen, publishes a yearly water quality report based on the measuring programmes for the Weser river and for the Werra/Ulster rivers (the latter is a joint project of the states of Hessen and Thrueringen). The Weser river today has a water quality of II-III after the successful implementation of the 1989 action programme. Chloride concentrations were reduced as well, but efforts will still be made by communal authorities, agriculture, industry and administrative bodies if the goals set for 2000 are to be reached.(orig/SR) [Deutsch] Die Arbeitsgemeinschaft zur Reinhaltung der Weser (ARGE Weser), der die Bundeslaender Bremen, Hessen, Niedersachsen, Nordrhein-Westfalen und Thueringen angehoeren, dokumentiert jaehrlich im Weserguetebericht die Ergebnisse des Weser- und des von Hessen und Thueringen gemeinsam gefuehrten Messprogrammes Werra/Ulster. Die Weser weist heute ueberwiegend die Gewaesserguete II-III auf. Dies ist ein Ergebnis des 1989 beschlossenen Aktionsprogrammes. Deutliche Erfolge konnten auch im Hinblick auf die Reduzierung der Chloridbelastung erzielt werden. Die volle Verwirklichung des Aktionsprogrammes Weser bis zum Jahr 2000 wird allerdings noch erhebliche Anstrengungen auf Seiten der Kommunen, der Landwirtschaft, der Industrie und der Verwaltungen erfordern. (orig./SR)

  15. Composite measures of watershed health from a water quality perspective.

    Science.gov (United States)

    Mallya, Ganeshchandra; Hantush, Mohamed; Govindaraju, Rao S

    2018-05-15

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-based watershed health. In this study, a modified methodology for computing R-R-V measures is presented, and a new composite watershed health index is proposed. Risk-based assessments for different water quality parameters are carried out using identified national sampling stations within the Upper Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk measures using stream order, specifically for the watershed health (WH) index, suggest that WH values increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use characteristics within the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A Sensitivity Analysis of Impacts of Conservation Practices on Water Quality in L’Anguille River Watershed, Arkansas

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh

    2018-04-01

    Full Text Available Assessing the performance of appropriate agricultural conservation practices (CPs frequently relies on the use of simulation models as a cost-effective tool instead of depending solely on the monitoring of water quality at individual field and watershed levels. This study evaluates the predicted impacts of several CPs on nutrient and sediment loss at the hydrological response unit scale in the L’Anguille River Watershed, which is a watershed identified as a “focus watershed” under the Mississippi River Basin healthy watershed Initiative (MRBI program. The Soil and Water Assessment Tool model was calibrated and validated between 1998–2005 and 2006–2012, respectively for flow, sediment, total phosphorus, and nitrate nitrogen. Out of the seven MRBI CPs modeled in this study, the highest reduction in sediment (80% and nutrient (58% for total phosphorus and 16% for total nitrogen was predicted for the critical area planting practice, followed by filter strip, irrigation land leveling, grade stabilization structure, irrigation pipeline, nutrient management, and irrigation water management. Some of the predicted impacts conflicted with expected CP performance. The study underscores the importance of the proper formulation of CP algorithms in using simulation models for predicting impacts on water quality.

  17. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    Directory of Open Access Journals (Sweden)

    J. Rozemeijer

    2012-08-01

    Full Text Available Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.

  18. Toxicity Identification Evaluation (TIE) of Belford Roxo industrial plant effluent and its contribution in water quality of downstream of Sarapui River, Iguacu River sub-basin, Baia da Guanabara Basin, RJ, Brazil

    International Nuclear Information System (INIS)

    Pires, Luiz Eduardo Botelho

    2006-01-01

    The quality of Belford Roxo Industrial Plant effluent and water from Sarapui River were evaluated with Daphnia similis, Ceriodaphnia dubia and Danio rerio acute and chronic toxicity tests. In association with the ecotoxicological monitoring, the Toxicity Identification Evaluation procedure were performed and the identification of the toxic compounds was possible. The Chloride ion was identified as the major toxic compound in the effluent with additional effects of Metals, Ammonium and Sulfide. For the Sarapui River, the compounds of Phosphorus and Nitrogen were identified as the major toxic compounds with addictive effects of Metals, Ammonium and Sulfide. Although the environmental impact estimation based on the effluent toxicity suggests a minor impact on the water quality of Sarapui River, this was already sufficiently contaminated to make impracticable the establishment of an aquatic community. The constant discharge of untreated sludge promotes the eutrophication of this water body and makes impossible the equilibrium of this ecosystem. (author)

  19. Mathematical models in the analysis of quality parameters to the Almendares river

    International Nuclear Information System (INIS)

    Dominguez, J.; Borroto, J.; Hernandez, A.; Santiago, J.F.; CU)

    2003-01-01

    The river Almendares, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the handling of the contamination. In the present work, the advective, steady- state Streeter and Phelps model was validated to simulate the effect of the multiple-point and distributed sources on the carbonaceous oxygen demand, NH4 and dissolved oxygen. For modeling purposes the section of the river located between the point where the waste water treatment station Maria del Carmen discharges to the river and the Bridge El Bosque, was divided in 11 segments. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes. The validated model allows to predict the effect of the sanitary strategies on the water quality of the river

  20. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  1. Water quality modeling for urban reach of Yamuna river, India (1999-2009), using QUAL2Kw

    Science.gov (United States)

    Sharma, Deepshikha; Kansal, Arun; Pelletier, Greg

    2017-06-01

    The study was to characterize and understand the water quality of the river Yamuna in Delhi (India) prior to an efficient restoration plan. A combination of collection of monitored data, mathematical modeling, sensitivity, and uncertainty analysis has been done using the QUAL2Kw, a river quality model. The model was applied to simulate DO, BOD, total coliform, and total nitrogen at four monitoring stations, namely Palla, Old Delhi Railway Bridge, Nizamuddin, and Okhla for 10 years (October 1999-June 2009) excluding the monsoon seasons (July-September). The study period was divided into two parts: monthly average data from October 1999-June 2004 (45 months) were used to calibrate the model and monthly average data from October 2005-June 2009 (45 months) were used to validate the model. The R2 for CBODf and TN lies within the range of 0.53-0.75 and 0.68-0.83, respectively. This shows that the model has given satisfactory results in terms of R2 for CBODf, TN, and TC. Sensitivity analysis showed that DO, CBODf, TN, and TC predictions are highly sensitive toward headwater flow and point source flow and quality. Uncertainty analysis using Monte Carlo showed that the input data have been simulated in accordance with the prevalent river conditions.

  2. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  3. [Dynamic coupling and spatial disparity of economic development and water environmental quality in Songhua River Basin of Jilin Province, Northeast China].

    Science.gov (United States)

    Yang, Li-Hua; Tong, Lian-Jun

    2013-02-01

    By using coupling model, this paper analyzed the relationships between the economic development and water environment quality in Songhua River Basin of Jilin Province from 1991 to 2010. During the study period, both the economic development index and the water environment index in the Basin showed an uptrend, basically in a coordination state. From the perspective of coupling coordination degree, the economic development and the water environment system were in interactive coupling, with the features of complexity, nonlinearity, and time-variation. As a whole, the coupling experienced three stages, i.e., low level stage, antagonistic stage, and breaking-in stage. As for the coupling degree, the coupling of the economic development and the water environment system was in the first quadrant, i.e., at a development stage of basic coordination. From the perspective of spatial disparity, the coupling degree of the economic development and the water environment system was higher in the upper reaches of the Songhua River Basin, including Changchun and Jilin, than in the lower reaches, including Songyuan and Baicheng. The coupling degree was not only significantly positively correlated with regional economic development, but also affected by the links between the regions as well as the industrial structure within the regions. The economic development of the cities in the upper reaches of the Songhua River Basin was obviously higher than that in the lower reaches, and, due to the adopting of more strict and effective measures for environmental protection and pollution emissions reduction, the water environment quality in the upper reaches of the Songhua River Basin was better.

  4. EVALUATION OF THE QUALITY AND SELF PURIFICATION POTENTIAL OF TAJAN RIVER USING QUAL2E MODEL

    Directory of Open Access Journals (Sweden)

    N. Mehrdadi, M. Ghobadi, T. Nasrabadi, H. Hoveidi

    2006-07-01

    Full Text Available Tajan River is among significant rivers of Caspian Sea water basin. Pollution sources that threaten the quality of water in Tajan River may be classified in to two categories namely point and non-point sources. Major pollutants of latter category are Mazandaran wood and pulp, Paksar dairy products and Sari Antibiotic production factories, as well as 600-dastgah residential area. On the other hand, non-point sources whose waste is considered as a distributed load consist of Sari municipal wastewater and agriculture-related pollutants that are drained towards the river. In order to model the quality of river flow, Qual2E model is taken in to consideration. Considering TDS, the river quality is completely acceptable in cold seasons. However, in spring and summer the value of this parameter is increased and this causes some restrictions in the use of this water for irrigation of specific sensitive crops. Agricultural activities and consequent irrigated waters are the major causes of higher reported TDS values in warm seasons. Current status of DO is completely acceptable and this is highly related to the relative high value of width on depth ratio along the river. BOD and COD locate in a fairly poor condition. Quality deterioration is more noticeable in cold seasons. Higher rate of precipitation and consequent greater runoff generation towards the river basin justify the relative increase of mentioned parameters in fall and winter. Generally, non-point pollution sources are more contributed in deterioration of Tajan River water quality.

  5. Water quality in North American river systems

    International Nuclear Information System (INIS)

    Becker, C.D.; Neitzel, D.A.

    1992-01-01

    This book is about water quality and other characteristics of selected ecosystems in North America. It is also about changes that have occurred in these ecosystems as a result of recent human activities-changes that result primarily from development and exploitation to sustain the needs of an ever-increasing population and the technical innovations that sustain it. Fish populations, hydrology, and water quality control efforts are discussed

  6. Temporal and spatial changes in water quality of the indus basin

    International Nuclear Information System (INIS)

    Bhutta, M.N.; Ahmad, N.; Khan, M.Z.

    2007-01-01

    Total useable water supply for agriculture is essentially fixed and is a limiting factor for increasing agriculture production. The objectives of this paper are to evaluate water quality of rivers, drains and groundwater. Suggestions are made for controlling pollution and for sustainable use of water. The scope of the paper is limited to the Indus Basin. The criteria based on TDS, SAR and RSC was used to categorize water as useable, marginal and hazardous quality for agricultural use. Data of different water quality surveys from 1959 to 2003 were used for the study. Spatial changes of groundwater quality indicate saline water intrusion towards fresh groundwater pockets. Temporal changes of groundwater quality also show deterioration of water quality over long periods. Canal supplies need to be increased to reduce reliance on groundwater which indirectly help sustainable use of groundwater. River water quality at Kotri, the lowest point in the Indus River system, is suitable for irrigation through out the year, However, pollution is a serious issue particularly during low flow periods. During the year 2004 about 40 persons died in Hyderabad due to pollution in drinking water the source of which was the River Indus. Municipal and Industrial effluents are being disposed into rivers, drains and canals without treatment which is not only detrimental to crops, human beings, livestock and marine life but also a potential threat to environment. Out of 143 outfall drains of the Indus Basin, the effluent quality of 53 drains is useable, 46 marginal and 44 hazardous. A large number of farmers are using drainage effluent for agriculture. There is no monitoring of land and water for such use. Provincial irrigation department and environment protection agencies should provide technical guidance and support to the farmers, using the drainage effluent. The Environment Act should be strictly implemented. Provincial Irrigation and Drainage Authorities (PIDA's) must work with

  7. Comparison of hyporheic flow and water quality in open and tree-covered banks downstream of Xin'an River dam, China

    Science.gov (United States)

    Liu, D.

    2017-12-01

    Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.

  8. Source Apportionment of Annual Water Pollution Loads in River Basins by Remote-Sensed Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-08-01

    Full Text Available In this study, in order to determine the efficiency of estimating annual water pollution loads from remote-sensed land cover classification and ground-observed hydrological data, an empirical model was investigated. Remote sensing data imagery from National Oceanic and Atmospheric Administration (NOAA Advanced Very High Resolution Radiometer were applied to an 11 year (1994–2004 water quality dataset for 30 different rivers in Japan. Six water quality indicators—total nitrogen (TN, total phosphorus (TP, biochemical oxygen demand (BOD, chemical oxygen demand (COD, and dissolved oxygen (DO—were examined by using the observed river water quality data and generated land cover map. The TN, TP, BOD, COD, and DO loads were estimated for the 30 river basins using the empirical model. Calibration (1994–1999 and validation (2000–2004 results showed that the proposed simulation technique was useful for predicting water pollution loads in the river basins. We found that vegetation land cover had a larger impact on TP export into all rivers. Urban areas had a very small impact on DO export into rivers, but a relatively large impact on BOD and TN export. The results indicate that the application of land cover data generated from the remote-sensed imagery could give a useful interpretation about the river water quality.

  9. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    Science.gov (United States)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  10. RESEARCH ON THE ENVIRONMENTAL QUALITY IN THE OLT RIVER, DRĂGĂŞANI CITY

    Directory of Open Access Journals (Sweden)

    Alina – Mihaela Truţă

    2014-11-01

    Full Text Available The Olt River is an important component of the Danube Hydrographic Basin, with a total area of 24 050 square kilometers. At EU level, concern for the quality of the aquatic environment has always been a very topical issue. Implementation of strategies and policies related to water management were materialized through the adoption of the Framework Directive "Water" 2000/60 / EC by the European Parliament. The aim of these strategies is the balanced management of water resources and the protection of aquatic ecosystems, with the main objective to achieve a "good condition" of surface and groundwater water. Following the objectives of the Directive 2000/60/EC, the present study aims at assessing the environmental quality in the Olt River, Drăgăşani city, thus highlighting the influence of the city's wastewater discharge on the river water quality.

  11. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    Science.gov (United States)

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  12. Influence of watershed topographic and socio-economic attributes on the climate sensitivity of global river water quality

    Science.gov (United States)

    Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi

    2017-10-01

    Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.

  13. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

  14. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    Science.gov (United States)

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  15. Impact of Gold mining activities on the water quality of the lower pra river

    International Nuclear Information System (INIS)

    Dwamena, Offei Samuel K.

    2013-07-01

    This study was conducted to assess the extent of Mercury (THg) contamination at four locations within the Shama-Mporhor Wassa catchment area of the Lower Pra River. Water, fish and sediment samples were taken twice with the longitudinal transect method at Daboase, Beposo, Bokorkope and Shama during the minor rainy season in October and at the apex of the dry season in March. Careful investigation of the Shama-Mporhor Wassa catchment area revealed that two of the locations Daboase and Beposo had been continuously impacted by the activities of Artisanal Gold miners (AGM). From the study, Total Mercury (THg) levels were found to have persisted in River water several kilometers downstream the second Artisanal Gold mining (AGM) location at Shama estuary for both seasons. Ten trace elements Mercury (Hg), Selenium (Se), Copper (Cu), Chromium (Cr), Lead (Pb), Iron (Fe), Manganese (Mn), Nickel (Ni), Zinc (Zn) and Cadmium (Cd) were determined in water, fish and sediment samples using the Atomic Absorption Spectroscopy (AAS) equipped with both Hydride Generation (HGAAS) for Selenium (Se) and Cold Vapour (CVAAS) for Total Mercury (THg). The levels of Total Mercury (THg) were largely above the WHO and USEPA guidelines for drinking water (1μg/L) and sediments (200 μg/Kg) respectively for the four locations investigated. Total Mercury (THg) exceeded the WHO, 2011 guideline value of 0.5 mg/Kg for fish species Clarias submarginatus but was below the guideline value for Xenomystus nigri. Mean concentration of Cd and Fe exceeded the WHO, 2011 guideline values for drinking water for the wet season. The other trace elements Zn, Ni, Cu, Cr, Se, Mn, and Pb had their mean concentration below the WHO, 2011 guideline values for drinking water. Apart from the mean concentration of Cd that exceeded the Canadian Interim Sediment Quality (ISQG) guideline value of 0.6 mg/Kg for the wet season, Cr, Cu, Zn, Ni and Pb were below their respective guideline values for both seasons. Statistical

  16. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  17. Concentrations and loads of cadmium, lead, and zinc measured near the peak of the 1999 snowmelt-runoff hydrographs for 42 water-quality stations, Coeur d'Alene River basin, Idaho

    Science.gov (United States)

    Woods, Paul F.

    2000-01-01

    The Remedial Investigation/Feasibility Study conducted by the U.S. Environmental Protection Agency within the Spokane River Basin of northern Idaho and eastern Washington included extensive data-collection activities to determine the nature and extent of trace-element contamination within the basin. The U.S. Geological Survey designed and implemented synoptic sampling of the 1999 snowmelt-runoff event at 42 water- quality stations during the 1999 water year. The distribution of the 42 stations was as follows: North Fork Coeur d’Alene River and tributaries, 4 stations; South Fork Coeur d’Alene River, 13 stations; Canyon, Ninemile, and Pine Creeks, 4 stations each; other tributaries to South Fork Coeur d’Alene River, 10 stations; and main stem Coeur d’Alene River, 3 stations. The objective was to synoptically collect discharge and water-quality data in order to significantly improve the estimation of trace-element loads from multiple contributing source areas during the snowmelt-runoff event. Discharge and water-quality data were collected near the peak discharge during late May 1999. Each station was sampled for whole-water recoverable and dissolved concentrations and loads of cadmium, lead, and zinc.

  18. Land use, climate parameters and water quality changes at surroundings of Code River, Indonesia

    Science.gov (United States)

    Muryanto; Suntoro; Gunawan, T.; Setyono, P.

    2018-03-01

    Regional development of an area has the potential of adverse impact on land use, vegetation, or green space. The reduction of green open space is known to contribute to global warming. According to the Intergovernmental Panel on Climate Change (IPCC), global warming has become a serious and significant phenomenon in human life. It affects not only ecological environment but also social and cultural environment. Global warming is a rise in global annual temperature due to, one of which, greenhouse gases. The purpose of this research is to determine the effects of land use change on water pollution and climate parameters at Code river. The results showed that Code River is experiencing land use conversion. Rice field was the most extensively reduced land use, by 467.496 ha. Meanwhile, the other land uses, namely plantation, grass, and forest, were reduced by 111.475 ha, 31.218 ha, and 1.307 ha, respectively. The least converted land use was bushed, whose decreased 0.403 ha. The land use conversion in the study area deteriorated the water quality of river, as proven by the increasing trend of COD and BOD from 2012 to 2016. The COD from 2012 to 2016 was 14, 16.6, 18.7, 22.5, and 22.8 ppm, respectively. Meanwhile, the BOD from the same observation years was 6, 7.2, 8.9, 9.3, and 10.3 ppm, respectively.

  19. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    Science.gov (United States)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  20. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    The water quality assessment conducted in the Densu, Birim and Ayensu Basins of Ghana in the Okyeman area ... All the mean nutrient values for Densu, Birim and Ayensu were not significantly .... variability in the composition of the river.

  1. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    Science.gov (United States)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  2. Assessment of surface water quality using hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Dheeraj Kumar Dabgerwal

    2016-02-01

    Full Text Available This study was carried out to assess the physicochemical quality river Varuna inVaranasi,India. Water samples were collected from 10 sites during January-June 2015. Pearson correlation analysis was used to assess the direction and strength of relationship between physicochemical parameters. Hierarchical Cluster analysis was also performed to determine the sources of pollution in the river Varuna. The result showed quite high value of DO, Nitrate, BOD, COD and Total Alkalinity, above the BIS permissible limit. The results of correlation analysis identified key water parameters as pH, electrical conductivity, total alkalinity and nitrate, which influence the concentration of other water parameters. Cluster analysis identified three major clusters of sampling sites out of total 10 sites, according to the similarity in water quality. This study illustrated the usefulness of correlation and cluster analysis for getting better information about the river water quality.International Journal of Environment Vol. 5 (1 2016,  pp: 32-44

  3. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    Science.gov (United States)

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    This report describes the results of a synoptic water-quality and algal investigation during July 1995 at 36 stream sites in a 1,350 square-mile area of the North Umpqua River Basin, Oregon. The study area includes a headwaters hydroelectric project area, a Wild and Scenic reach in the main stem immediately downstream, and the watersheds of several major tributaries. Additional data from previous investigations are reviewed, and impacts on water quality in the Wild and Scenic reach from resource management, including forestry and reservoir operations, are inferred where sufficient data exist.

  4. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  5. Summary of biological investigations relating to surface-water quality in the Kentucky River Basin, Kentucky

    International Nuclear Information System (INIS)

    Bradfield, A.D.; Porter, S.D.

    1990-01-01

    The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and south Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. 205 refs., 7 figs., 1 tab

  6. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    Directory of Open Access Journals (Sweden)

    J. I. Awu

    2015-06-01

    Full Text Available The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM, Gravimetric method, Titrimetric method, Spectrophotometric method, Atomic Absorption Spectrophotometric method, and Total Viable count for physiochemical and microbiological analysis. The generated data was further subjected to statistical analysis using one way analysis of variance (ANOVA on difference between means of parameters and graphical method to determine the spatial variation of the water quality characteristics. The time variations of the water quality characteristics as compared with the spatial variations showed that for some variables, there was statistical difference between the means of parameters with respect to time and space at various levels of significance. These include Phosphorus (5%, Copper (1%, Iron (5%, Nickel (5%, Cadmium (1%, Salinity (1%, Bacteria (1% for time variation; and Sulphate (1%, Chemical Oxygen (5%,Nickel (1%, Arsenic (1%, Zinc (1%, Cadmium (1%, Bacteria (1% for spatial variations during dry season and Chemical Oxygen (5%, Nickel (1%, for spatial variation during rainy season. Based on the World Health Organization and Standard Organization of Nigeria guidelines for drinking water, the results of microbial analysis also indicated that the selected river waters were polluted with disease causing microorganisms, such as E.Coliform, Salmonella, Bacillus Subtilis. Therefore, the river waters are not good for drinking. The consumers of water obtained from the three rivers are likely to suffer the following: typhoid, fever, intestinal problem, diarrhea, skin rash, cholera. Necessary recommendations such as treating the water with bio-sand filter before use, amongst others, were made.

  7. Instruments for integrated water resources management : water quality modeling for sustainable wastewater management

    NARCIS (Netherlands)

    Barjoveanu, George; Teodosiu, Carmen; Cojocariu, Claudia; Augustijn, Dionysius C.M.; Craciun, Ioan

    2013-01-01

    This study presents the development and use of a hydraulic-coupled water quality model for the simulation of Biochemical Oxygen Demand (BOD) concentrations in the Bahlui River, a small river located in northeastern Romania. This river experiences the typical pollution problems for many Romanian

  8. Modeling of the quality of water of River Tula, state of Hidalgo, Mexico

    International Nuclear Information System (INIS)

    Montelongo Casanova, Rosalba; Gordillo Martinez, Alberto Jose; Otazo Sanchez, Elena Maria; Villagomez Ibarra, Jose Roberto; Acevedo Sandoval, Otilio Arturo; Prieto Garcia, Francisco

    2008-01-01

    The central objective of this work is to model the quality of the water of Tula River, from the central emitter to their confluence with the Endho Dam. It was evaluated during two years, considering a length of 50 km in 4 zones and 35 sites of sampling. The central emitter contributes to the greater amount of organic matter, water without treatment of the city of Mexico and co urbane zone. The values of DBO varied from 1.16 up to 486.81 mg O 2 /L; the oxygen dissolved between 1.52 and 5.82 mg/L. This implies affectation for the development of the aquatic life. The alkalinity exceeded the ecological criteria of quality as a source of potable water with value of 458.01 mg. the fats displayed variations from 0.9 mg/l up to 18.1 mg/l and ammoniacal nitrogen outside the limits established for protection of the aquatic life with values from 0.09 a 64 mg/L; nitrates (6.24 mg/L) and nitrites (0.5-1.304 mg/L) exceed the ecological criteria. The metals cadmium, lead, iron, manganese and zinc are in concentrations over the permissible rank and in some sections mercury presence was reported. The fecal coliforms were detected in values from 2.1x10 4 up to 2.40x10 1 1 NMP/100 milliliters. In general, the toxicity in the residual water unloading demonstrated that all appears of moderate to high. Only there were three monitored stations (19%) with excellent quality, 3 smaller or equal DBOs to mg/L, which is considered like water no contaminated by biodegradable organic matter

  9. HYDROCHEMICAL CONDITIONS OF THE ŁOSOSINA RIVER WATER MANAGEMENT IN THE AREA OF TYMBARK

    Directory of Open Access Journals (Sweden)

    Agnieszka Policht-Latawiec

    2015-11-01

    Full Text Available Sustainable use of waters requires not only determining the amount, but primarily the quality of the available water resources and developing a long-term programme of their protection. The analysis of the Łososina river water in the area of Tymbark city was presented in the paper. The water was tested in a view of the requirements as the natural fish habitat and its potential use for people supply in potable water. The river water samples were taken in 2014 at randomly selected dates, once a month in 5 measurement points. 21 physicochemical indices were assessed in the samples. The assessment of the Łososina river water quality was made on the basis of the results of both: on site and laboratory testing, which were compared with the Regulation of the Minister of Environment of 23 October 2014. The utility values were assessed on the basis of the Regulations of the Minister of Environment of 27 November and 04 October 2014. The analysis of the results demonstrated that the Łososina river water met the requirements of quality class I water in points 1, 2 and 3. Below Tymbark the Łososina river water was polluted, so due to high BOD5 in points 4 and 5, and phosphate concentrations in point 4, it was classified as class II, i.e. good state. Pollution coefficients computed according to Burchard and Dubaniewicz classify the Łososina river water as clean along the whole investigated stretch. Below Tymbark city (points 4 and 5 the Łososina river water cannot be used for drinking water supply because of high BOD5 and iron concentrations. In the other points it could be used for water supply following appropriate physical and chemical treatment. The water does not meet the requirements for salmonid or cyprinid fish along the whole stretch because of high nitrite concentrations, except point 3, where the Łososina river water provided a proper natural habitat for carp.

  10. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Science.gov (United States)

    2010-04-01

    ... Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of... CODE AND ADMINISTRATIVE MANUAL-PART III WATER QUALITY REGULATIONS § 410.1 Basin regulations—Water Code and Administrative Manual—Part III Water Quality Regulations. (a) The Water Code of the Delaware River...

  11. River water quality in the northern sugarcane-producing regions of ...

    African Journals Online (AJOL)

    2011-02-16

    Feb 16, 2011 ... Sugarcane production in South Africa occurs exclusively in the eastern regions of ... transboundary rivers, making their management internation- ...... KOEGELENBERG FH (2004) Irrigation User's Manual – Chapter 5: Water.

  12. Diverse Land Use and the Impact on (Irrigation Water Quality and Need for Measures — A Case Study of a Norwegian River

    Directory of Open Access Journals (Sweden)

    Gro S. Johannessen

    2015-06-01

    Full Text Available Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation.

  13. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  14. Adaptive capacity and water governance in the Keiskamma River ...

    African Journals Online (AJOL)

    South Africa, being a semi-arid country, faces water resource constraints. The projected impacts of climate change in the Keiskamma River Catchment, Eastern Cape Province, are, for example, changes in rainfall with effects on streamflow, salt water intrusion, decreasing water quality due to runoff and erosion, and droughts ...

  15. Proposing buffer zones and simple technical solutions for safeguarding river water quality and public health

    Science.gov (United States)

    Podimata, M. V.; Bekri, E. S.; Yannopoulos, P. C.

    2012-04-01

    Framework Directive (WFD) 2000/60, but a practical necessity for the safeguarding of public health and ecosystem health, in general. The present study aims at developing a simple methodology for assessing spatial distribution characteristics of pollution in Erymanthos catchment. Pollution loads at various sites in Erymanthos watershed were illustrated with Geographical Information System (GIS). Flow rates of Erymanthos River were also taken into consideration. Based on previous studies, in situ river discharges have been compared to simulated discharges in order to calibrate the rainfall-runoff model ENNS which can then predict future scenarios regarding the river flow rates with consideration of climate change effects. The goal of this study is to detect the pertinent points and suggest a) suitable buffer zones in areas with high pollution risk and b) simple technical works in order to prevent the main channel of Erymanthos River from direct polluting discharges. The above systems could also act supportively in groundwater enrichment, forest protection and soil erosion prevention. Authors believe that the results of the study could assist authorities and engineers to design and develop strategies of improving river water quality and safeguarding public health. The proposed measures may be applicable to other catchments as well.

  16. A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon

    Science.gov (United States)

    Bezerra Nóbrega, Rodolfo Luiz; Lamparter, Gabriele; Hughes, Harold; Chenjerayi Guzha, Alphonce; Santos Silva Amorim, Ricardo; Gerold, Gerhard

    2018-04-01

    We analyzed changes in water quantity and quality at different spatial scales within the Tapajós River basin (Amazon) based on experimental fieldwork, hydrological modelling, and statistical time-trend analysis. At a small scale, we compared the river discharge (Q) and suspended-sediment concentrations (SSC) of two adjacent micro-catchments ( < 1 km2) with similar characteristics but contrasting land uses (forest vs. pasture) using empirical data from field measurements. At an intermediary scale, we simulated the hydrological responses of a sub-basin of the Tapajós (Jamanxim River basin, 37 400 km2), using a hydrological model (SWAT) and land-use change scenario in order to quantify the changes in the water balance components due to deforestation. At the Tapajós' River basin scale, we investigated trends in Q, sediments, hydrochemistry, and geochemistry in the river using available data from the HYBAM Observation Service. The results in the micro-catchments showed a higher runoff coefficient in the pasture (0.67) than in the forest catchment (0.28). At this scale, the SSC were also significantly greater during stormflows in the pasture than in the forest catchment. At the Jamanxim watershed scale, the hydrological modelling results showed a 2 % increase in Q and a 5 % reduction of baseflow contribution to total Q after a conversion of 22 % of forest to pasture. In the Tapajós River, however, trend analysis did not show any significant trend in discharge and sediment concentration. However, we found upward trends in dissolved organic carbon and NO3- over the last 20 years. Although the magnitude of anthropogenic impact has shown be scale-dependent, we were able to find changes in the Tapajós River basin in streamflow, sediment concentration, and water quality across all studied scales.

  17. The Benthonic Macroinvertebrates of Pozo Azul (Gaira River Basin, Colombia and their Relationship with Water Quality

    Directory of Open Access Journals (Sweden)

    Francisco Guerrero-Bolaño

    2003-07-01

    Full Text Available On July 2002, a study of some physicochemical parameters and their relationship with the benthonic macroinvertebrates community structure on four coriotypes: stone, trash, silt and macrophytes, was carried out in Pozo Azul (Gaira River basin, Magdalena, Colombia. The physicochemical parameters were determined, to a considerable extent, by the geographic characteristics of the system. The water was found to be oxygen saturated, and intermediate compounds of the organic matter stabilization, such as nitrites and ammonium, there were found 588 individuals distributed in 11 orders and 38 families. The most representative orders were Trichoptera, Coleoptera, Diptera and Ephemeroptera. The most representative families were Baetidae, Simullidae, Perlidae, Chironomidae, and Hydropsychidae, in this rank of abundance. The BMWP index for the relationship between the community structure and the water quality (adapted by Universidad del Valle, Cali, Colombia was calculated. According to this index the water quality was optimum. Also, given the general characteristics of the site studied, the water mass quality was classified as good and oligosaprobit, based on the saprobit ecology. It is possible that this state was reached due to stabilization after a small perturbation induced by coffee cultivation in the zone.

  18. Effects of land use change on streamflow and stream water quality of ...

    African Journals Online (AJOL)

    This study aimed to link land cover/use change to water quality in an important water supply coastal catchment. The approach followed a spatial and temporal analysis of historical catchment land use change to assess how changes influenced water quality and river flow in the Touws and Duiwe Rivers, southwestern Cape, ...

  19. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  20. ARGE Weser (Working Group for Water Pollution Abatement in the Weser River). Weser water quality report 1996; Arbeitsgemeinschaft zur Reinhaltung der Weser. Weserguetebericht 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The ARGE Weser (Arbeitsgemeinschaft zur Reinhaltung der Weser), which comprises representatives of the German states of Bremen, Hessen, Niedersachsen, Nordrhein-Westfalen and Thueringen, publishes a yearly water quality report based on the measuring programmes for the Weser river and for the Werra/Ulster rivers (the latter is a joint project of the states of Hessen and Thrueringen). The Weser river today has a water quality of II-III after the successful implementation of the 1989 action programme. Chloride concentrations were reduced as well, but efforts will still be made by communal authorities, agriculture, industry and administrative bodies if the goals set for 2000 are to be reached. (orig/AJ) [Deutsch] Die Arbeitsgemeinschaft zur Reinhaltung der Weser (ARGE Weser), der die Bundeslaender Bremen, Hessen, Niedersachsen, Nordrhein-Westfalen und Thueringen angehoeren, dokumentiert jaehrlich im Weserguetebericht die Ergebnisse des Weser- und des von Hessen und Thueringen gemeinsam gefuehrten Messprogrammes Werra/Ulster. Die Weser weist heute ueberwiegend die Gewaesserguete II-III auf. Dies ist ein Ergebnis des 1989 beschlossenen Aktionsprogrammes. Deutliche Erfolge konnten auch im Hinblick auf die Reduzierung der Chloridbelastung erzielt werden. Die volle Verwirklichung des Aktionsprogrammes Weser bis zum Jahr 2000 wird allerdings noch erhebliche Anstrengungen auf Seiten der Kommunen, der Landwirtschaft, der Industrie und der Verwaltungen erfordern. (orig./AJ)

  1. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    water sources (31.96 - 47.31) falls within the classification “Bad” despite the slight increase during the dry season. The quality of water in the study area is poor and portends health risk; ... tributary that originates from the New Calabar River.

  2. Water-quality trends in the nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results

    Science.gov (United States)

    Oelsner, Gretchen P.; Sprague, Lori A.; Murphy, Jennifer C.; Zuellig, Robert E.; Johnson, Henry M.; Ryberg, Karen R.; Falcone, James A.; Stets, Edward G.; Vecchia, Aldo V.; Riskin, Melissa L.; De Cicco, Laura A.; Mills, Taylor J.; Farmer, William H.

    2017-04-04

    Since passage of the Clean Water Act in 1972, Federal, State, and local governments have invested billions of dollars to reduce pollution entering rivers and streams. To understand the return on these investments and to effectively manage and protect the Nation’s water resources in the future, we need to know how and why water quality has been changing over time. As part of the National Water-Quality Assessment Project, of the U.S. Geological Survey’s National Water-Quality Program, data from the U.S. Geological Survey, along with multiple other Federal, State, Tribal, regional, and local agencies, have been used to support the most comprehensive assessment conducted to date of surface-water-quality trends in the United States. This report documents the methods used to determine trends in water quality and ecology because these methods are vital to ensuring the quality of the results. Specific objectives are to document (1) the data compilation and processing steps used to identify river and stream sites throughout the Nation suitable for water-quality, pesticide, and ecology trend analysis, (2) the statistical methods used to determine trends in target parameters, (3) considerations for water-quality, pesticide, and ecology data and streamflow data when modeling trends, (4) sensitivity analyses for selecting data and interpreting trend results with the Weighted Regressions on Time, Discharge, and Season method, and (5) the final trend results at each site. The scope of this study includes trends in water-quality concentrations and loads (nutrient, sediment, major ion, salinity, and carbon), pesticide concentrations and loads, and metrics for aquatic ecology (fish, invertebrates, and algae) for four time periods: (1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. In total, nearly 12,000 trends in concentration, load, and ecology metrics were evaluated in this study; there were 11,893 combinations of sites, parameters, and trend periods. The

  3. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    Science.gov (United States)

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  4. A space satellite perspective to monitor water quality using your mobile phone

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment r...

  5. Saprobiological analysis of water of the river Krivaja

    Directory of Open Access Journals (Sweden)

    M. Cikotić

    2005-08-01

    Full Text Available During one-year research of zoobenthos macroinvertebrates of the river Krivaja 133 taxons were found with total number of 12,766 entities. Sampling was conducted using kick sampling method that corresponded to the type of running waters such as the river Krivaja. For the purpose of water quality evaluation biotic and saprobity indexes were applied in accordance with taxon of collected organisms. The measured values of saprobity index indicated mild to medium water pollution, i.e. oligo-beta mezosaprobity water. The measured values of Shannon-Weaver diversity index indicated high diversity of organisms, thus good conditions of life in water of the Krivaja and its clean water flow.Applied saprobity and biotic indexes in this research should be aguideline for a future research of our water flows in standardization of waterbio-monitoring legislation in Bosnia and Herzegovina.

  6. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; results of investigations, 1987-90

    Science.gov (United States)

    Helgesen, J.O.

    1995-01-01

    Surface-water-quality conditions and trends were assessed in the lower Kansas River Basin, which drains about 15,300 square miles of mainly agricultural land in southeast Nebraska and northeast Kansas. On the basis of established water-quality criteria, most streams in the basin were suitable for uses such as public-water supply, irrigation, and maintenance of aquatic life. However, most concerns identified from a previous analysis of available data through 1986 are substantiated by analysis of data for May 1987 through April 1990. Less-than-normal precipitation and runoff during 1987-90 affected surface-water quality and are important factors in the interpretation of results.Dissolved-solids concentrations in the main stem Kansas River during May 1987 through April 1990 commonly exceeded 500 milligrams per liter, which may be of concern for public-water supplies and for the irrigation of sensitive crops. Large concentrations of chloride in the Kansas River are derived from ground water discharging in the Smoky Hill River Basin west of the study unit. Trends of increasing concentrations of some dissolved major ions were statistically significant in the northwestern part of the study unit, which could reflect substantial increases in irrigated acreage.The largest concentrations of suspended sediment in streams during May 1987 through April 1990 were associated with high-density cropland in areas of little local relief and medium-density irrigated cropland in more dissected areas. The smallest concentrations were measured downstream from large reservoirs and in streams draining areas having little or no row-crop cultivation. Mean annual suspended-sediment transport rates in the main stem Kansas River increased substantially in the downstream direction. No conclusions could be reached concerning the relations of suspended-sediment transport, yields, or trends to natural and human factors.The largest sources of nitrogen and phosphorus in the study unit were fertilizer

  7. Links between river water acidity, land use and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.; Celebi, A.; Kloeve, B. [Oulu Univ. (Finland). Water Resources and Environmental Eng. Lab.], Email: tuomas.saarinen@oulu.fi

    2013-11-01

    In western Finland, acid leaching to watercourses is mainly due to drainage of acid sulphate (As) soils. This study examined how different land-use and land-cover types affect water acidity in the northwestern coastal region of Finland, which has abundant drained AS soils and peatlands. Sampling conducted in different hydrological conditions in studied river basins revealed two different catchment types: catchments dominated by drained forested peatlands and catchments used by agriculture. Low pH and high electric conductivity (EC) were typical in rivers affected by agriculture. In rivers dominated by forested peatlands and wetlands, EC was considerably lower. During spring and autumn high runoff events, water quality was poor and showed large spatial variation. Thus it is important to ensure that in river basin status assessment, sampling is carried out in different hydrological situations and in also water from some tributaries is sampled. (orig.)

  8. Water pollution of Sabarmati River--a harbinger to potential disaster.

    Science.gov (United States)

    Haldar, Soumya; Mandal, Subir Kumar; Thorat, R B; Goel, Sangita; Baxi, Krushnakant D; Parmer, Navalsang P; Patel, Vipul; Basha, S; Mody, K H

    2014-04-01

    River Sabarmati is one of the biggest and major river of Gujarat that runs through two major cities of Gujarat, Gandhinagar and Ahmedabad and finally meets the Gulf of Khambhat (GoK) in the Arabian Sea. A study was conducted to evaluate the water quality of this river, as it could possibly be one of the major sources for filling up Kalpasar, the proposed man-made freshwater reservoir supposed to be the biggest one in the world. A total of nine sampling stations were established covering 163 km stretch of the river from upstream of Gandhinagar city to Vataman near Sabarmati estuary. Physicochemical (temprature, pH, salinity, chloride, total dissolved solids, turbidity, dissolved oxygen, biochemical oxygen demand, phenol, and petroleum hydrocarbons), biological (phytoplankton), and microbiological (total and selective bacterial count) analyses indicated that the river stretch from Ahmedabad-Vasana barriage to Vataman was highly polluted due to perennial waste discharges mainly from municipal drainage and industries. An implementation of sustainable management plan with proper treatment of both municipal and industrial effluents is essential to prevent further deterioration of the water quality of this river.

  9. A stochastic dynamic programming model for stream water quality ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    constraints of the water quality management problem; (ii) a water quality simulation model ... of acceptance and limited implementation of optimisation techniques. .... The response of river system to these sources of pollution can be integrated ...

  10. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  11. Study of relationship between radioactivity distribution, contamination burden and quality standard, accommodate energy of code river Yogyakarta

    International Nuclear Information System (INIS)

    Agus Taftazani and Muzakky

    2009-01-01

    Study of relationship between distribution, contamination burden of gross β radioactivity and natural radionuclide in water and sediment sample from 11 observation station Code river to quality standard and maximum capacity of Code river have been done. Natural radio nuclides identification and gross β radioactivity measurement of condensed water, dry and homogeneous sediment powder (past through 100 mesh sieve) samples have been done by using spectrometer and GM counter. Radioactivity data was analyzed descriptive with histogram to show the spreading pattern of data. Contamination burden data, quality standard and maximum capacity of river Code was to descriptive analyzed by line diagram to knowing relationship between contamination burden, quality standard, and maximum capacity of Code river. The observation of water and sediment at 11 observation station show that the emitter natural radionuclides: 210 Pb, 212 Pb, 214 Pb, 226 Ra, 208 Tl, 214 Bi, 228 Ac and 40 K were detected. The analytical result conclusion was that the pattern spread of average activity gross β and were increase from upstream to downstream of the Code river samples. Contamination burden, quality standard and maximum capacity of radionuclide activity of 210 Pb, 212 Pb, 226 Ra and 228 Ac were more smaller than quality standard of river water according to regulation of Nuclear Energy Regulatory Agency 02/Ka-BAPETEN/V-99 concerning quality standard of radioactivity. It’s mean that Code river still in good contamination burden for the four radionuclides. (author)

  12. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    upper Lake Quinsigamond, upper West River, and Stone Brook aquifers are capable of sustaining withdrawals of at least 1 million gallons per day more than their rates in the mid-1980s. The upper Mill River and Auburn aquifers are not capable of sustaining additional withdrawals of 0.25 million gallons per day. Ground-water quality in the Auburn aquifer has been degraded by activities and contaminants associated with urbanization.A nearly continuous deposit of stratified drift almost 30 miles long and from 400 feet to more than 1 mile wide occupies lowland areas along the southeastern part of the Blackstone River. These deposits were divided into four aquifers ranging in areal extent from 1.8 to 3.5 square miles. These aquifers have maximum saturated thicknesses ranging from 54 to 170 feet and maximum transmissivities ranging from less than 1,500 to more than 20,000 feet squared per day. The Blackstone River receives substantial amounts of treated municipal wastewater. Infiltration of poor-quality surface water has significantly increased the specific conductance and the concentrations of all major ions, ammonia, iron, and manganese in the water pumped from at least two wells near the river. These wells derive about 41 and 48 percent of their yield from infiltrated surface water. At both sites, aquifer heterogeneity controlled the movement of infiltrated water to the wells. At one of these sites, where the flow of infiltrated water was tracked (by use of a digital model) in three dimensions, infiltrated water moved to the well through gravel layers that did not constitute the entire thickness of the aquifer. Changes in stream discharge that resulted in changes in surface-water quality also affected the quality of ground water at that site. The western part of the Blackstone River Basin contains the smallest aquifers evaluated in the study area. Six aquifers, ranging in areal extent from 0.05 to 1.3 square miles, were identified. The hydraulic properties of most of these

  13. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L. M.; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  14. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries.

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L M; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  15. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, Jimena, E-mail: jcazenave@inali.unl.edu.a [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A. [Laboratorio de Ictiologia, Instituto Nacional de Limnologia (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe (Argentina); Wunderlin, Daniel A. [Dto. Bioquimica Clinica-CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre esq Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-15

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  16. Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina)

    International Nuclear Information System (INIS)

    Cazenave, Jimena; Bacchetta, Carla; Parma, Maria J.; Scarabotti, Pablo A.; Wunderlin, Daniel A.

    2009-01-01

    This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems. - A battery of biomarkers was successfully applied to assess the health of the fish Prochilodus lineatus from Salado River basin.

  17. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Dailey, Kelsey R.; Welch, Kathleen A.; Lyons, W. Berry

    2014-01-01

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl − and Na + data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl − and Na + showed increased concentration and flux downstream near urban areas. • Cl − /Br − mass ratios in waters suggest the origin of Cl − is in part from road salt. • 36 Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl − ) and sodium (Na + ), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl − and Na + concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl − /Br − ) ratios and nitrate (N-NO 3 − ) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl − and Na + concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na + were slightly lower than respective Cl − concentrations (in equivalents). High Cl − /Br − mass ratios in the Ohio surface waters indicated the source of Cl − was likely halite, or road salt. In addition, analysis of 36 Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl − into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl − and Na + concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in

  18. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  19. Water quality monitoring of river Ravi from Mehmood buti bund road to downstream Sanda main outfall, Lahore

    International Nuclear Information System (INIS)

    Tahir, S.; Ayub, M.; Tabinda, A.B.

    2005-01-01

    Water quality of River Ravi was monitored at six different sites on a stretch from Mehmood Buti Bund Road to Sanda Main Outfall Lahore for different physico-chemical parameters and heavy metals. Different water quality parameters at different sites ranged as under. Temperature ranged between 19.5 to 22.3 deg. C. pH was between 7.8 to 8.1, and maximum at Mehmood Buti Bund. Dissolved oxygen ranged between 1.71 and 9.52 mg/L, minimum at main out fall and total dissolved solids were between 40 and 213 mg/L, conductivity was between 298 to 1146 Mmhos/Cm, total alkalinity was between 111 and 463 mg/L, minimum at Mehmood Buti Bund and maximum at main out fall, total hardness was between 116 and 287 mg/L minimum at Mehmood Buti Bund and maximum at old bridge, chloride values were between 51.5 to 174 mg/L minimum near Baradari and maximum at Mehmood Buti Bund. Concentrations of Chromium, Cadmium, Nickel and Zinc ranged between 0.01 and 2.78 mg/L, 0.4 and 1.72 mg/L, 0.97 and 1.38 mg/L, 0.09 and 2.89 mg/L respectively. Minimum metal concentrations were at Mehmood Buti Bund while maximum values were at down stream of main out fall indicating more deterioration of water quality of River Ravi down streams main out fall by addition of different types of untreated industrial effluents and domestic wastewater from different operations by inhabitants of Lahore City. (author)

  20. Metal concentrations of river water and sediments in West Java, Indonesia.

    Science.gov (United States)

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.