WorldWideScience

Sample records for river valley region

  1. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  2. Geologic map of the upper Arkansas River valley region, north-central Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  3. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  4. Influence of Plastic Covering on the Microclimate in Vineyards in the São Francisco River Valley Region

    Directory of Open Access Journals (Sweden)

    Mário de Miranda Vilas Boas Ramos Leitão

    Full Text Available Abstract Data from field experiments conducted in table grape vineyards variety of Festival in Petrolina-PE in the period from September 19 to October 12, 2010 were used to evaluate the influence of plastic cover on microclimate conditions of vineyards in São Francisco River Valley region. Three treatments were studied: canopies without plastic cover (WC; with plastic cover positioned at 50 cm (PC50, and at 100 cm (PC100 above canopy. The results indicate that the plastic cover prevented the passage of about 40% of the global and net radiation, retained the relative humidity inside the canopy, generated an increase of air temperature and marked reduction in wind speed over the canopy of treatment PC50. However, treatment PC100 had a higher incidence of short wavelength and net radiation under canopy (on the berries than WC and PC50 treatments, resulting in more favorable weather conditions, providing about 40% greater productivity in this treatment. Therefore, the vineyard with plastic cover placed at 100 cm above canopy represents a more suitable alternative to the climatic conditions of the region of the São Francisco River Valley.

  5. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    Science.gov (United States)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  6. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  7. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2016-07-01

    Full Text Available In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions.

  8. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China.

    Science.gov (United States)

    Cui, Yinqiu; Li, Hongjie; Ning, Chao; Zhang, Ye; Chen, Lu; Zhao, Xin; Hagelberg, Erika; Zhou, Hui

    2013-09-30

    The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.

  9. The development and adaption of early agriculture in Huanghe River Valley, China

    Science.gov (United States)

    Li, X.

    2017-12-01

    The expanding and developing of agriculture are the basic of population growth, the expansions of material cultures and civilization. The Huanghe River valley, as the origin center of millet agriculture, lies between the heartlands of wheat and rice, which gestates the flourishing Neolithic culture based on agriculture. Recent work using botanical remains has greatly expanded the knowledge concerning early agriculture. Here, we report the new progress on the development and adaption of early agriculture in Huanghe River valley and the surrounding areas. Based on the analysis of phytolith from 13 sites in middle reaches of Huanghe River and the survey of crop seeds from 5 sites in Guanzhong Basin, the rice have been cultivated around 7600 cal BP in semi-humid regions dominated by rain-fed agriculture. The mixed agriculture of common millet, foxtail millet, and rice continued to exist between 7600-3500 BP. In semi-arid region of Huanghe River valley, the agriculture was dominated by the production of common and foxtail millet and 3 major changes have taken place around 6500 BP, 5500 BP, and 4000 BP during Neolithic. The cultivating ratio of common and foxtail millet was adjusted by farmer for adapting the climate changes during Holocene. Approximately 5000 yr BP, the rain-fed agriculture continues to break geographical boundaries to expand to west and southwest from Huanghe River valley. Millet agriculture appeared in southern Ganshu and north eastern Tibetan Plateau. The common and foxtail millet spread to the arid-area of Hexi corridor, a major crossroad of the famous Silk Road, around 4500 yr BP. Wheat was added as a new crop to the existing millet based agricultural systems around 4100-4000 cal yr BP in Hexi corridor. Between 3800 and 3400 cal yr BP, the proportion of wheat and barley in agriculture was up to 90%,which have replaced the local millet and become the main crops. And now, some new evidences of wheat agriculture from NW Xijiang have been obtained and

  10. 75 FR 48359 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Science.gov (United States)

    2010-08-10

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Blackstone River Valley National Heritage..., United States Code, that a meeting of the John H. Chafee Blackstone River Valley National Heritage..., Blackstone River Valley National Heritage Corridor Commission, One Depot Square, Woonsocket, RI 02895, Tel...

  11. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  12. 75 FR 17756 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Blackstone River Valley National Heritage..., United States Code, that a meeting of the John H. Chafee Blackstone River Valley National Heritage... the meeting to: Jan H. Reitsma, Executive Director, John H. Chafee, Blackstone River Valley National...

  13. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  14. Using hydraulic heads, geochemistry and 3H to understand river bank infiltration; an example from the Ovens Valley, southeast Australia

    Science.gov (United States)

    Yu, Matthew; Cartwright, Ian

    2014-05-01

    Defining the relationship between the river and its river bank is important in constraining baseflow to a river and enhancing our ability in protecting water resources and riparian ecology. Hydraulic heads, geochemistry and 3H were measured in river banks along the Ovens River, southeast Australia. The Ovens River is characterised by the transition from a single channel river residing within a mountain valley to a multi-channel meandering river on broad alluvial plains in the lower catchment. The 3H concentrations of most near-river groundwater (less than 10 m from river channel) and bank water (10 - 30 m from the river channel) in the valley range between 1.93 and 2.52 TU. They are similar to those of the river, which are between 2.37 and 2.24 TU. These groundwater also have a Na/Cl ratio of 2.7 - 4.7 and are close to the river Na/Cl ratios. These similarities suggest that most river banks in the valley are recharged by the river. The hydraulic heads and EC values indicate that some of these river banks are recharged throughout the year, while others are only recharged during high flow events. Some near-river groundwater and bank water in the valley have a much lower 3H concentration, ranging from 0.97 to 1.27 TU. They also have a lower Na/Cl ratio of 1.6 - 3.1. These differences imply that some of the river banks in the valley are rarely recharged by the river. The lack of infiltration is supported by the constant head gradient toward the river and the constant EC values in these river banks. The river banks with bank infiltration are located in the first few hundred kilometres in the valley and in the middle catchment where the valley is broaden. In the first few hundred kilometres in the valley, it has a relatively flat landscape and does not allow a high regional water table to form. The river thus is always above the water table and recharges the river banks and the valley aquifers. In the broader valley, the relatively low lateral hydraulic gradient is

  15. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    Science.gov (United States)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  16. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    Science.gov (United States)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river

  17. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  18. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    Science.gov (United States)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  19. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  20. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  1. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  2. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  3. Composition patterns of waterbirds from La Vieja River, Geographic Valley of Cauca River, Colombia

    International Nuclear Information System (INIS)

    Ramirez Urrea, Laura Milena; Arbelaez Cortes, Enrique; Marin Gomez, Oscar Humberto; Duque Montoya, Diego

    2014-01-01

    We compiled and analyzed data gathered from observations during the period 2001-2013 in three sectors along La Vieja River, located in the Cauca River Valley, Colombia. We describe spatial and temporal aspects of such dataset, focusing in indentify patterns of species' composition and abundance. We recorded 28 waterbird species in 33 transects, being 22 species observed in more than 50 % of these transects. The species richness among transects did not shows significant differences. However, two cluster analyses, considering both presence/absence and abundance data, showed that there is spatial structure in the species composition along the river. In contrast, although observations were conducted during more than ten years there is no evidence of temporal changes in species composition. Still, some species showed increase or decrease trends in their frequency. We present a new record for one species (Chloroceryle aenea) for the region. Despite that the landscape surrounding La Vieja River has faced a high anthropogenic impact; the river still presents a significant diversity of waterbirds, which could add value to the conservation plans in the zone.

  4. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  5. 76 FR 56471 - Meeting of the John H. Chafee Blackstone River Valley National Heritage Corridor Commission

    Science.gov (United States)

    2011-09-13

    ...] Meeting of the John H. Chafee Blackstone River Valley National Heritage Corridor Commission AGENCY: National Heritage Corridor Commission, John H. Chafee Blackstone River Valley, National Park Service... Advisory Committee Act, 5 U.S.C. Appendix, that the John H. Chafee Blackstone River Valley National...

  6. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  7. 75 FR 64741 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Science.gov (United States)

    2010-10-20

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Blackstone River Valley National Heritage..., United States Code, that a meeting of the John H. Chafee Blackstone River Valley National Heritage... should be made prior to the meeting to: Jan H. Reitsma, Executive Director, John H. Chafee, Blackstone...

  8. 75 FR 2885 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Blackstone River Valley National Heritage..., United States Code, that a meeting of the John H. Chafee Blackstone River Valley National Heritage... should be made prior to the meeting to: Jan H. Reitsma, Executive Director, John H. Chafee Blackstone...

  9. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  10. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  11. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    Science.gov (United States)

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  12. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  13. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  14. Food poisoning associated with ingestion of wild wasp broods in the upstream region of the Lancang river valley, Yunnan province, China.

    Science.gov (United States)

    Jiang, Li; Huang, Tian

    2018-04-01

    Food poisoning due to wild wasp broods ingestion has long been noted in the upstream region of the Lancang river valley, Yunnan province, China. This study describes the epidemiological and clinical features of the poisoning and possible causes. Surveillance data collected between 2008 and 2016 were analyzed to produce demographic data on patients, information on clinical presentations, wasp species identification, and estimations of possible risk factors for symptomatic cases. Eleven poisoning events were associated with the ingestion of wild wasp broods, including 46 exposed persons with 31 symptomatic living cases and 8 deceased cases that were reported in the Yunnan province between 2008 and 2016. Poisoning cases were only detected in the upstream region of the Lancang river valley in the autumn. The severity of the symptoms was correlated with an evident dose-effect relationship regarding the quantity ingested. The mean latent period from wild wasp broods ingestion to the onset of the symptoms was 10 h for symptomatic living cases and 7 h for deceased cases, respectively. Both gastrointestinal and neurological symptoms were commonly observed in the poisoning cases. The toxin source may be indirectly caused by the wasp broods due to the prevalence of local poisonous plants, such as Tripterygium wilfordii Hook F, Tripterygium hypoglaucum Hutch and Vaccinium bracteatum Thunb. Educational programs at the start of wasp harvest season in September in the high-risk area should be carried out to reduce the incidence of poisonings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Makran Mountain Range, Indus River Valley, Pakistan, India

    Science.gov (United States)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  16. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on

  17. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  18. Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley

    Science.gov (United States)

    Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.

    2012-01-01

    The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.

  19. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    Science.gov (United States)

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright

  20. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  2. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  3. Control of medfly by SIT in the Nereva river valley

    International Nuclear Information System (INIS)

    Bjelis, Mario; Ljubetic, Visnja; Novosel, Nevenka

    2006-01-01

    A feasibility study of medfly suppression by means of sterile males released program in the Neretva Vallley, Croatia, is presented. The increase of medfly infestation is considered, as almost all cultures of the region represent host plants for the insect. Environmental friendly methods such well developed SIT technique associated with other organic methods are mentioned as an option of no disruption of the present natural balance. Area study and strategy planning is briefly presented. Population dynamics of Ceratitis capitata in the different parts of the delta Neretva valley, during period 2002 - 2004 Year is reported. Medfly capture on selected locations with different host availability in Neretva river is studied. (MAC)

  4. Control of medfly by SIT in the Nereva river valley

    Energy Technology Data Exchange (ETDEWEB)

    Bjelis, Mario, E-mail: mario.bjelis@zzb.h [Institut for Plant Protection in Agriculture and Foresty of Republic of Croatia, Zagreb, Zvonimirova (Croatia); Ljubetic, Visnja [Ministry of Agriculture, Forestry and Watter Managment of Republic of Croatia, Zagreb (Croatia); Novosel, Nevenka [State Office for Nuclear Safety, Zagreb (Croatia)

    2006-07-01

    A feasibility study of medfly suppression by means of sterile males released program in the Neretva Vallley, Croatia, is presented. The increase of medfly infestation is considered, as almost all cultures of the region represent host plants for the insect. Environmental friendly methods such well developed SIT technique associated with other organic methods are mentioned as an option of no disruption of the present natural balance. Area study and strategy planning is briefly presented. Population dynamics of Ceratitis capitata in the different parts of the delta Neretva valley, during period 2002 - 2004 Year is reported. Medfly capture on selected locations with different host availability in Neretva river is studied. (MAC)

  5. Geomorphological evidences of Quaternary tectonic activities in the Santa Cruz river valley, Patagonia, Argentina

    International Nuclear Information System (INIS)

    Massabie, A.; Sanguinetti, A.; Nestiero, O.

    2007-01-01

    From Argentin lake, at west on Andean hills, to Puerto Santa Cruz on Atlantic coast, Santa Cruz river cross eastward Santa Cruz province over 250 km in Patagonia at southern Argentina. Present bed of the river has a meandering outline with first order meanders of great ratio bends and second order meanders of minor ratio bends. Principal wanderings are 45 to 55 km spaced from near Estancia La Julia or Rio Bote at west to Comandante Luis Piedrabuena at east. On river's bed middle sector these great curvatures are located at Estancia Condor Cliff and Estancia Rincon Grande. Regional and partial detailed studies allow to recognize structural control on river's bed sketch and valley s geomorphology that relates first order bends with reactivated principal faults. These faults fit well with parallel system of northwest strike of Austral Basin.On geological, geomorphologic and structural evidences recognized in Santa Cruz river, quaternary tectonic activity, related to Andean movements in southern Patagonian foreland, is postulated. (author)

  6. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  7. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991–2012

    International Nuclear Information System (INIS)

    Herrick, Robert L.; Buckholz, Jeanette; Biro, Frank M.; Calafat, Antonia M.; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M.

    2017-01-01

    Background: Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Objectives: Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. Methods: We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. Results: In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40–60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000–2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Conclusions: Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209–666 km upstream, is likely the primary exposure source. GAC treatment of drinking

  8. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  9. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  10. The River Valleys as Biodiversity Reservoirs for Land Snails in Highly Anthropic Areas – The Case of Cisnădie River (Romania

    Directory of Open Access Journals (Sweden)

    Gheoca Voichiţa

    2016-12-01

    Full Text Available This study focuses on the snail fauna of a river valley passing through two closely located settlements. Thirty six species of terrestrial gastropods were identified. Species such as Macrogastra borealis, Alinda fallax, Alinda viridana, Bulgarica vetusta, Monachoides vicinus, Drobacia banatica, are present along the river and abundant in the sampling stations downstream of Cisnădie town. The high specific diversity and the presence of typical forest species demonstrate the presence of fragments of habitat that can preserve populations of terrestrial gastropods, underlining the importance of river valleys in conservation and dispersion of these species.

  11. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  12. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  13. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  14. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    Science.gov (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  15. A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River Valley. Part 2: Model bias

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Wang, W.C.

    2000-01-01

    This is the second part of a study investigating the 1991 severe precipitation event over the Uangtze-Huai River valley (YHRV) in China using both observations and regional model simulations. While Part 1 reported on the Mei-yu front and its association with large-scale circulation, this study documents the biases associated with the treatment of the lateral boundary in the regional model. Two aspects of the biases were studied: the driving field, which provides large-scale boundary forcing, and the coupling scheme, which specified how the forcing is adopted by the model. The former bias is defined as model uncertainty because it is not related to the model itself, while the latter bias (as well as those biases attributed to other sources) is referred to as model error. These two aspects were examined by analyzing the regional model simulations of the 1991 summer severe precipitation event over YHRV using different driving fields (ECMWF-TOGA objective analysis, ECMWF reanalysis, and NCEP-NCAR reanalysis) and coupling scheme (distribution function of the nudging coefficient and width of the buffer zone). Spectral analysis was also used to study the frequency distribution of the bias.

  16. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    Science.gov (United States)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  17. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  18. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  19. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast. © 2016 by The Mycological

  20. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel; Bettis, E. Arthur; Skipp, Gary L.

    2018-01-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  1. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel R.; Bettis, E. Arthur; Skipp, Gary L.

    2018-05-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  2. GIS-based terrain analysis of linear infrastructure corridors in the Mackenzie River Valley, NWT

    International Nuclear Information System (INIS)

    Ednie, M.; Wright, J.F.; Duchesne, C.

    2007-01-01

    The impact of global warming on permafrost terrain was discussed with particular reference to the structural stability and performance reliability of the proposed pipelines and roads in the Mackenzie River Valley in the Northwest Territories. Engineers, regulators and decision makers responsible for the development of these networks must have access to information about current and future terrain conditions, both local and regional. The Geological Survey of Canada is developing an ArcGIS resident, multi-component terrain analysis methodology for evaluating permafrost terrain in terms of the probable geothermal and geomorphological responses to climate warming. A GIS-integrated finite-element transient ground thermal model (T-ONE) can predict local-regional permafrost conditions and future responses of permafrost to climate warming. The influences of surface and channel hydrology on local erosion potentials can be determined by analyzing the topographic and topologic characteristics of the terrain. A weights of evidence-based landscape-process model, currently under development, will consider multiple terrain factors for mapping terrain that is susceptible to slope failure, subsidence or erosion. This terrain analysis methodology is currently being applied to a 2 km buffer spanning the proposed Mackenzie Gas Pipeline right-of-way, and along winter and all-weather road networks in the Mackenzie River Valley. Initial ground thermal modeling has identified thermally sensitive terrain for which permafrost will either completely disappear or warm significantly to near isothermal conditions within the next 25 to 55 years

  3. Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

    Science.gov (United States)

    Mast, M. Alisa

    2017-07-13

    Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

  4. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  5. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  6. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  7. Tennessee Valley Region: a year 2000 profile

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references. (MCW)

  8. Tennessee Valley Region: a year 2000 profile

    International Nuclear Information System (INIS)

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references

  9. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  10. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  11. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  12. Don't Fence Me In: Free Meanders in a Confined River Valley

    Science.gov (United States)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  13. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    Science.gov (United States)

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  14. Historical trajectories and restoration strategies for the Mississippi River alluvial valley

    Science.gov (United States)

    Brice B. Hanberry; John M. Kabrick; Hong S. He; Brian J. Palik

    2012-01-01

    Unlike upland forests in the eastern United States, little research is available about the composition and structure of bottomland forests before Euro-American settlement. To provide a historical reference encompassing spatial variation for the Lower Mississippi River Alluvial Valley, we quantified forest types, species distributions, densities, and stocking of...

  15. Year 2000 estimated population dose for the Tennessee Valley region

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Strauch, S.; Siegel, G.R.; Witherspoon, J.P.

    1976-01-01

    A comprehensive study has recently been completed of the potential regional radiological dose in the Tennessee and Cumberland river basins in the year 2000, resulting from the operation of nuclear facilities. This study, sponsored jointly by the U.S. Energy Research and Development Administration and the Tennessee Valley Authority, was performed by the Hanford Engineering Development Laboratory (HEDL), the Oak Ridge National Laboratory (ORNL), and the Atmospheric Turbulence and Diffusion Laboratory (ATDL). This study considered the operation in the year 2000 of 33,000 MWe of nuclear capacity within the study area, and of 110,000 MWe in adjacent areas, together with supporting nuclear fuel fabrication and reprocessing facilities. Air and water transport models used and methods for calculating nuclide concentrations on the ground are discussed

  16. An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.

    Science.gov (United States)

    Bonnell, Jennifer

    2011-01-01

    Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.

  17. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    Science.gov (United States)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  18. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.90 Section 81.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.90 Androscoggin Valley Interstate Air Quality Control Region. The Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial...

  19. Sublacustrine river valley in the shelf zone of the Black Sea parallel to the Bulgarian coast

    Science.gov (United States)

    Preisinger, A.; Aslanian, S.; Beigelbeck, R.; Heinitz, W.-D.

    2009-04-01

    The considered sublacustrine river valley is situated in the shelf zone of the Black Sea. It runs in parallel to the Bulgarian coast, was formed in the time period of the Younger Dryas (Preisinger et al., 2005), and features an inclination of about 0.5 m/km. An about 200 km long sediment wall separates the approximately 10 km broad river valley from the outside shelf zone. This wall was generated during the Older Dryas until the beginning of the Younger Dryas. Its shape was formed by transportation of water and sediment from the Strait of Kerch by a circulating rim current in the Black Sea and water as well as sediment flow of the Danube in direction to the Bosporus. New investigations of the sediments of this river valley were performed by utilizing a Sediment Echo Sounder (SES 2000). This Echo Sounder is a parametric sub-bottom profiler enabling a high resolution sub-bottom analyses. It is capable of penetrating sea beds up to more than 50 m of water depth. The received echo data are real-time processed. The signal amplitudes are valuated in context to a logarithmic scale and graphically visualized by means of a colorized echogram utilizing false colours ranging from red for a high to blue representing a low signal (W.-D. Heinitz et al., 1998). The highest signal (red) is given by the acoustic impedance of the boundary between sea water and river sediment. The echograms of the river valley depict spatially isolated (red) high-signal peaks, which are periodically repeated in vertical direction between the sediment surface and the bottom of the valley. The number of these high-signal parts increase with an increasing valley depth. Studying of the distribution of these peaks allows to draw conclusions regarding the content and composition of the sediment. This prediction of the sediment composition obtained by means of the SES 2000 was successfully verified by analyzing a gravity core taken near Nos Maslen (at 44 m water depth) with a particular focus on the water

  20. Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Rudiney Ringenberg

    2014-06-01

    Full Text Available Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil. Pierce's disease of grapevines, caused by Xylella fastidiosa, is a serious problem in some regions of North America, not yet reported in Brazil. In this study, a survey of potential sharpshooter (Hemiptera, Cicadellidae, Cicadellinae and spittlebug (Hemiptera, Cercopidae vectors of X. fastidiosa was conducted in vineyards at the São Francisco River Valley, a major grape growing region in Brazil. Four vineyards of Vitis vinifera L. were sampled fortnightly from June/2005 to June/2007, using yellow sticky cards, each placed at two different heights (45 cm aboveground and 45 cm above the crop canopy in 10 sampling localities. A total of 4,095 specimens of sharpshooters were collected, nearly all from 3 Proconiini species, Homalodisca spottii Takiya, Cavichioli & McKamey, 2006 (96.8% of the specimens, Tapajosa fulvopunctata (Signoret, 1854 (3.1%, and Tretogonia cribrata Melichar, 1926 (1 specimen. Hortensia similis (Walker, 1851 (2 specimens was the only Cicadellini species. Only 1 cercopid specimen, belonging to Aeneolamia colon (Germar, 1821, was trapped. Even though they are not considered potential Xylella vectors, 2 Gyponini leafhoppers were collected: Curtara samera DeLong & Freytag, 1972 (11 specimens and Curtara inflata DeLong & Freytag, 1976 (1 specimen. Homalodisca spottii was observed feeding and mating on green branches of grapevines, in addition to egg masses. Because of its prevalence on the crop canopy, occurrence throughout the year (with peaks from February to August, and ability to colonize grapevines, H. spottii could be an important vector if a X. fastidiosa strain pathogenic to grapevines becomes introduced at the São Francisco River Valley.

  1. The Pleistocene rivers of the English Channel region

    Science.gov (United States)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  2. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.48 Section 81.48 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  3. Yampa River Valley sub-area contingency plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Yampa River Valley sub-area contingency plan (Contingency Plan) has been prepared for two counties in northwestern Colorado: Moffat County and Routt County. The Contingency Plan is provided in two parts, the Contingency Plan and the Emergency Response Action Plan (ERAP). The Contingency Plan provides information that should be helpful in planning to minimize the impact of an oil spill or hazardous material incident. It contains discussions of planning and response role, hazards identification, vulnerability analysis, risk analysis, cleanup, cost recovery, training, and health and safety. It includes information on the incident command system, notifications, response capabilities, emergency response organizations, evacuation and shelter-in-place, and immediate actions.

  4. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    Science.gov (United States)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  5. [Analysis of trend of Oncomelania snail status in Yangtze River valley of Anhui Province, 1998-2009].

    Science.gov (United States)

    He, Jia-Chang; Wang, Jia-Sheng; Lu, Jin-You; Li, Ting-Ting; Gao, Feng-Hu; Zhou, Ping; Zhu, Chuan-Ming; He, Long-Zhu; Yu, Bei-Bei; Zhang, Shi-Qing

    2011-04-01

    To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.

  6. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per

  7. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    Science.gov (United States)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  8. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  9. Geohydrology of the valley-fill aquifer in the Ramapo and Mahwah rivers area, Rockland County, New York

    Science.gov (United States)

    Moore, Richard Bridge; Cadwell, D.H.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the eighth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Rockland County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, water-table elevations, well yields, and land use. The valley-fill deposits consists of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the Ramapo River valley and much of the Mahwah River valley. Artesian conditions prevail in confined sand and gravel buried under silt and clay and till in parts of the Mahway valley. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural and residential, with lesser industrial uses. (USGS)

  10. Determination of trace uranium in atmospheric precipitation of the Xiangjiang river valley by fission track method

    International Nuclear Information System (INIS)

    Zhai Pengji; Kang Tiesheng

    1986-01-01

    In this work the uranium contents in atmospheric precipitations in the region of the Xiangjiang River valley have been measured by fission track method, which range from 0.008 to 1.5 ppb. The majority of them are below 0.1 ppb. The uranium contents in the samples form different geographical positions are obviously different. Sometimes the differences in uranium contents of the samples from the same area collected at different times are also great. A preliminary discussion is given on the sources of uranium in atmospheric precipitation and on the reason of the difference in contents

  11. Long term effects of climate on human adaptation in the middle Gila River Valley, Arizona, America

    NARCIS (Netherlands)

    Zhu, T.; Ertsen, M.W.; Van de Giesen, N.C.

    2015-01-01

    The Hohokam, an irrigation-based society in the American South West, used the river valleys of the Salt and Gila Rivers between 500 and 1500 AD to grow their crops. Such irrigated crops are linking human agency, water sources and the general natural environment. In order to grow crops, water

  12. Soil of the lower valley of the Dragonja river (Slovenia)

    OpenAIRE

    Tomaž PRUS; Nina ZUPANČIČ; Helena GRČMAN

    2015-01-01

    Soil of the lower valley of the river Dragonja developed under specific soil-forming factors. Soil development in the area was influenced by alluvial sediments originating from surrounding hills, mostly of flysch sequence rocks, as a parent material, Sub-Mediterranean climate and the vicinity of the sea. Different soil classification units (Gleysol and Fluvisol) were proposed for that soil in previous researches. The aim of our study was the evaluation of morphological, chemical and mineralog...

  13. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    Science.gov (United States)

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  14. Influence of natural and anthropogenic factors on the distribution of xerothermic plants in the lower San river valley (SE Poland

    Directory of Open Access Journals (Sweden)

    Rafał Krawczyk

    2012-12-01

    Full Text Available The aim of the present study was to describe the distribution of xerothermic species of vascular plants in the lower San River valley and the relationship between their density and the intensity of selected environmental (natural and anthropogenic factors. Xerothermic species occurred more frequently in the present valley floor compared to the glacial terrace. Within the present valley, the highest density was observed in the floodplain. The examined species also occurred more often on steep slopes of the valley, at the margins of the present valley terraces, and in the area of occurrence of aeolian sands. Moreover, a positive correlation has been found between the number of xerothermic species and the area of polyhemeroby ecosystems. The distribution of xero- and thermophilous species is determined by natural edaphic and geomorphological factors as well as anthropogenic ones (land use, lowering of the groundwater level as a result of river regulation.

  15. Ethno-botanical study of medicinal plants of Paddar Valley of ...

    African Journals Online (AJOL)

    The Paddar Valley, historically known as Sapphire Valley situated in Kishtwar district, is a prime landmark in the Jammu region of J&K state and is known for its rich cultural and plant diversity because of diverse habitats such as rivers, streams, meadows and steep mountain slopes. The area is located in the dry temperate ...

  16. 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS

    Directory of Open Access Journals (Sweden)

    P. Tymkow

    2016-06-01

    Full Text Available The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  17. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  18. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa

    Science.gov (United States)

    Bettis, E. Arthur; Baker, R.G.; Nations, B.K.; Benn, D.W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ?? 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan. ?? 1990.

  19. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  20. Temporal changes of meadow and peatbog vegetation in the landscape of a small-scale river valley in Central Roztocze

    Directory of Open Access Journals (Sweden)

    Bożenna Czarnecka

    2015-07-01

    Full Text Available The Szum is a right-side tributary of the Tanew River crossing the southern escarpment zone of the Central Roztocze region (SE Poland. Downstream of the strict river break in a section between the 10th and 12th km of the river course in the Szum valley, meadow and peatbog complexes have developed, associated with semi-hydrogenic and marshy soils. In an area of approx. 13 ha of the most valuable non-forest habitats, a variety of plant communities have been identified, including habitats of the Natura 2000 network and habitats that are protected under the Regulation of the Minister of the Environment (2001. These are, for instance, meadow associations Lysimachio vulgaris-Filipenduletum, Lythro-Filipenduletum, Filipendulo ulmariae-Menthetum longifoliae, Angelico-Cirsietum oleracei, and Cirsietum rivularis. The moss–sedge and sphagnum bog communities comprise noteworthy associations Caricetum limosae, Rhynchosporetum albae, Caricetum lasiocarpae, Caricetum paniceo-lepidocarpae, Caricetum davallianae, and Sphagnetum magellanici. These communities are composed of ca. 160 vascular plant species and 40 moss and liverwort species. In 1999–2014, the greatest changes occurred within macroforb meadows, i.e. small Angelico-Cirsietum oleracei and Cirsietum rivularis patches have been transformed into Lysimachio vulgaris-Filipenduletum, while some patches of the latter association have been transformed into a Caricetum acutiformis rush. Several patches of bog-spring associations Caricetum paniceo-lepidocarpae and Carici canescentis-Agrostietum caninae have been irretrievably destroyed. Sphagnetum magellanici appears to be the least stable community among the preserved peatbogs. The changes of meadow and peatbog vegetation observed for the last 15 years are a consequence of natural processes that take place in the river valley and to a large extent human activity connected with the so-called small-scale water retention as well as the presence of a beaver

  1. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    Science.gov (United States)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  2. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    Science.gov (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  3. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen

    2015-08-01

    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  4. Water mites (Acari, Hydrachnidia of riparian springs in a small lowland river valley: what are the key factors for species distribution?

    Directory of Open Access Journals (Sweden)

    Andrzej Zawal

    2018-05-01

    Full Text Available This paper examines the impact of disturbance factors—flooding and intermittency—on the distribution of water mites in the riparian springs situated in the valley of a small lowland river, the Krąpiel. The landscape factors and physicochemical parameters of the water were analysed in order to gain an understanding of the pattern of water mite assemblages in the riparian springs. Three limnological types of springs were examined (helocrenes, limnocrenes and rheocrenes along the whole course of the river and a total of 35 water mite species were found. Our study shows that flooding influences spring assemblages, causing a decrease in crenobiontic water mites in flooded springs. The impact of intermittency resulted in a high percentage of species typical of temporary water bodies. Surprisingly, the study revealed the positive impact of the anthropogenic transformation of the river valley: preventing the riparian springs from flooding enhances the diversity of crenobiontic species in non-flooded springs. In the conclusion, our study revealed that further conservation strategies for the protection of the riparian springs along large rivers would take into account ongoing climatic changes and possible the positive impact of the anthropogenic transformation of river valleys.

  5. A river to ruin : why are Americans fighting so hard to protect British Columbia's Flathead River from a strip mine?

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.

    2008-06-15

    The Cline Mining Corporation has proposed an open-pit mine to extract 2 million tonnes of coal annually in the Flathead Valley of British Columbia (BC). The Flathead Valley is known internationally for the richness of its flora and fauna. After the Flathead River crosses the border into Montana, it is managed under the most restrictive environmental protection laws available in the United States. The project is expected to be the first in a series of energy projects that will ravage the valley in the near future. Major energy companies are planning to open mines at sites within the Flathead River flood plain. The low quality coal obtained from the valley will be used to supply the unregulated economies of China, India, and Brazil. The valley is situated at the convergence of several biogeoclimatic zones and is home to a rich mix of plants and animals, including the highest concentration of grizzly bears in North America. The BC government's regulatory mechanism is not able to prevent exploitation of the region. Scientists from around the world have unanimously agreed that the mine should not be opened. Tailings from other mines currently draining into the Flathead River are now beginning to alter the river's chemistry. The federal government has been unsuccessful in its bid to create a national park in the region. It was concluded that unless land use regulations for the area are changed, the valley will inevitably be developed. 13 figs.

  6. Flood-inundation maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017

    Science.gov (United States)

    Dietsch, Benjamin J.; Sappington, Jacob N.

    2017-09-29

    Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, St. Louis Metropolitan Sewer District, Missouri Department of Transportation, Missouri American Water, and Federal Emergency Management Agency Region 7. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the cooperative USGS streamgages on the Meramec River at Valley Park, Mo., (USGS station number 07019130) and the Meramec River at Fenton, Mo. (USGS station number 07019210). Near-real-time stage data at these streamgages may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites (listed as NWS sites vllm7 and fnnm7, respectively).Flood profiles were computed for the stream reaches by means of a calibrated one-dimensional step-backwater hydraulic model. The model was calibrated using a stage-discharge relation at the Meramec River near Eureka streamgage (USGS station number 07019000) and documented high-water marks from the flood of December 2015 through January 2016.The calibrated hydraulic model was used to compute two sets of water-surface profiles: one set for the streamgage at Valley Park, Mo. (USGS station number 07019130), and one set for the USGS streamgage on the Meramec River at Fenton, Mo. (USGS station number 07019210). The water-surface profiles were produced for stages at 1-foot (ft) intervals referenced to the datum from each streamgage and

  7. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    Science.gov (United States)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  8. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    , not the quality of treated drinking water delivered to consumers. Relative-concentrations (sample concentration divided by health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California benchmarks. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic and special interest constituents, relative-concentrations were classified as high (greater than 1.0); moderate (greater than 0.1 and less than or equal to 1.0); and low (less than or equal to 0.1). For inorganic constituents, relative-concentrations were classified as high (greater than 1.0); moderate (greater than 0.5 and less than or equal to 1.0); and low (less than or equal to 0.5). Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the areal percentage of the primary aquifer system with relative-concentrations greater than 1.0. Moderate and low aquifer-scale proportions are defined as the areal percentage of the primary aquifer system with moderate and low relative-concentrations, respectively. Two statistical approaches, grid-based and spatially weighted, were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. Grid-based and spatially weighted estimates were comparable in the Santa Clara River Valley study unit (within 90 percent confidence intervals). The status assessment showed that inorganic constituents were more prevalent and relative-concentrations were higher than for organic constituents. For inorganic constituents with human-health benchmarks, relative-concentrations (of one or more constituents) were high in 21 percent of the primary aquifer system areally, moderate in 30 percent, and low or not detected in 49 percent. Inorganic constituents with human-health benchmarks with high aquifer

  9. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa*1

    Science.gov (United States)

    Bettis, E. Arthur; Baker, Richard G.; Nations, Brenda K.; Benn, David W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ± 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan.

  10. Anthropogenic changes in environmental conditions of phytocoenoses of medium sized-sized Ukrainian river valleys (based on the example of the River Tyasmyn – a tributary of the Dnieper

    Directory of Open Access Journals (Sweden)

    V. V. Lavrov

    2016-09-01

    Full Text Available The problem of anthropogenic degradation of rivers is usually marked by its multi-sectoral and often international character as well by the large number of sources of environmental threat. Therefore, its solution requires a systematic approach based on transparent and coordinated interagency and international cooperation. The River Dnieper inUkrainehas undergone a remarkable transformation as a result of the construction of a cascade of reservoirs. Anthropogenic damage to the plants and soil that cover its basin have caused damage to the functioning of ecological regimes of theDnieper’s tributaries. Small and medium-sized rivers are dying. In this article, attention is paid to a typical middle-sized (164 km river of theDnieperBasin, the Tyasmyn. Its middle and lower parts are located in the overtransformed Irdyn-Tyasmyn valley. During the last glaciation it formed the central part of the right arm of the ancientDnieper. Regulation of the Tyasmyn runoff, pollution, the creation of theKremenchugreservoir on theDnieper, grazing and recreational load have led to the threat of the river degrading. Therefore, the aim of this article is to characterize the structure of the herbaceous vegetation in the central and lower parts of the Tyasmyn valley and assess the level of its dependence on anthropogenic changes in the conditions of the ecotypes. The methods used are: retrospective and system analysis, comparative ecology (ecological profile or transect, botanic methods, phytoindication, the mapping method and mathematical statistics. The features of changes in environmental conditions of ecotypes of the river valley have been shown through systematic, biomorphological, ecomorphic structure of the herbaceous cover, the ratio of ecological groups and changes in types of ecological strategy of species, phytodiversity. We found 89 species of vascular plants. The most diverse families were Asteraceae, Poaceae and Lamiaceae. The biomorphological range of

  11. Watermills – a Forgotten River Valley Heritage – selected examples from the Silesian voivodeship, Poland

    Directory of Open Access Journals (Sweden)

    Fajer Maria

    2014-06-01

    Full Text Available This study is an attempt to describe the current condition of the watermills situated in the river valleys of the Silesian voivodeship. Changes in the number and distribution of mills from the late 18th century until the 20th century have been presented (as exemplified by the Liswarta River basin in the northern part of the voivodeship. Watermills have been discussed both as industrial monuments that document the history of the milling industry and as tourist attractions. Currently, working mills that serve the local population in rural areas are a rarity, and working watermills are unique sites that should be protected as industrial monuments that constitute an important part of our cultural heritage. They are among those industrial monuments that are particularly vulnerable to destruction. Such mills increasingly attract the interest of industrial tourism promoters. Activities aimed at promoting watermills as cultural heritage sites and leading to their protection and preservation as part of the river valley landscape have also been discussed. In the Silesian voivodeship, there are many watermills that deserve attention; some of these are listed in the register of monuments maintained by the National Heritage Board of Poland. Unfortunately, most disused mills are falling into disrepair and are slowly disappearing; only a few have been preserved in good condition. Many of these have long histories and they are also situated in areas attractive for tourists. There is no doubt that watermills should be preserved. Their inclusion in open-air museums is not the only solution – any form of protection in situ by putting them to different uses is also valuable. Changing the function of a mill to serve as a hotel, restaurant, cultural centre, etc. makes it possible to maintain these sites as parts of river valley landscapes.

  12. 76 FR 70866 - Expansions of the Russian River Valley and Northern Sonoma Viticultural Areas

    Science.gov (United States)

    2011-11-16

    .... ACTION: Final rule; Treasury decision. SUMMARY: This Treasury decision expands the Russian River Valley... describe the origin of their wines and to allow consumers to better identify wines they may purchase. DATES... consumers to identify wines they may purchase. Establishment of a viticultural area is neither an approval...

  13. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Science.gov (United States)

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  14. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    Science.gov (United States)

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    The surf icial sands in the Pomme de Terre and Chippewa River valleys in Grant, Pope, Stevens, and Swift Counties have been studied to determine the occurrence, availability, and quality of ground water in these aquifers.

  15. The environmental conditionings of the location of primeval settlements in the Wieprz River valley

    Science.gov (United States)

    Kozieł, Marcin; Kozieł, Wojciech

    2012-01-01

    The Wieprz River along the section currently occupied by the Nadwieprzański Landscape Park (NLP) constituted a convenient place of human settlement from the moment of retreat of the last ice sheet. Depending on the types of economy preferred by representatives of individual archaeological cultures, the river valley from Spiczyn to Dorohucza offered continuous access to water. This obviously gained additional importance from the moment of appearance of Neolithic cultures, particularly the Globular Amphora culture and Corded Ware culture with semi-nomadic style of life, dealing with breeding. Neolithic hunters-gatherers exploited the animal resources available in the river and its vicinity. The further role of fishing, i.e. providing a diet element or supplementation already in the conditions of agricultural-breeding economy, seems to be evidenced by findings of fishing hooks at Lusatian and Wielbark sites. Another factor affecting the location of settlements in NLP was also its close vicinity to the crops of the Rejowiec flint. According to archaeologists, this is particularly obvious in the case of the Late Palaeolithic and the turn of the Neolithic and Bronze Age. The communication function of the river could also be of importance: in the case of seasonal animal migrations of animals and hunters (Late Palaeolithic); livestock and shepherds (Globular Amphora culture and Corded Ware culture); or people alone (migration of the population of the Wielbark culture to the Red Sea). The fact that a commercial trail fragment was located along the Wieprz River is probably evidenced by the abundance of import from various parts of Europe at site 53 in Spiczyn. Fertile soils (black soils, silt-peat soils) prevailing in the valley also favoured the settlement of cultures with an agricultural-breeding model of economy, providing good conditions for horticulture. Meadows near the river could be used as pastures.

  16. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  17. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    Science.gov (United States)

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  18. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  19. Preliminary report on the geology of the Red River Valley drilling project, eastern North Dakota and northwestern Minnesota

    International Nuclear Information System (INIS)

    Moore, W.L.

    1979-01-01

    Thirty-two wells, 26 of which penetrated the Precambrian, were drilled along the eastern edge of the Williston Basin in the eastern tier of counties in North Dakota and in nearby counties in northwestern Minnesota. These tests, along the Red River Valley of the North, were drilled to study the stratigraphy and uranium potential of this area. The drilling program was unsuccessful in finding either significant amounts of uranium or apparently important shows of uranium. It did, however, demonstrate the occurrence of thick elastic sections in the Ordovician, Jurassic and Cretaceous Systems, within the Red River Valley, along the eastern margins of the Williston Basin which could serve as host rocks for uranium ore bodies

  20. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  1. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of

  2. Geomorphological characteristics of increased landslide activity in the Gudbrandsdalen valley, Norway

    Science.gov (United States)

    Heyerdahl, Håkon; Høydal, Øyvind

    2016-04-01

    The Gudbrandsdalen valley in Eastern Norway lies in a region where annual precipitation is generally low (down to 300 mm/year). The landslide activity has consequently historically been low, although the lower part of the valley sides generally is draped with thick layers of Quaternary deposits, primarily of glacial or glaciofluvial origin. The perception of natural hazards in the valley was previously primarily connected to flooding in the main river in the valley bottom during early summer, due to large discharges resulting from snowmelt in the mountainous regions west and east of the valley. However, several high-intensity events have changed the image of the region. Starting with a localized, but intense, landslide event in the Northern part of the valley in year 2008, two larger events covering almost the entire valley occurred in the years 2011 and 2013. A high number of landslides was triggered in all these events, including many flash floods and debris flows/debris slides in small and steep tributary rivers along the valley slopes. Landslide triggering covers different release mechanisms: In 2008, landslides were triggered without precipitation in not-frozen soil deposits without snow cover in the lower part of the valley. Groundwater flow through the permeable bedrock ("Otta schist") resulting from snow-melt in the elevated mountainous areas caused landslide triggering due to positive pore-water pressures forming at the bedrock surface below soil deposits, or at depressions in the terrain. Subsequent rainfall resulted in even more landslides being released. In later events (years 2011 and 2013) many landslides were caused by surface water taking new paths downslope, often due to man-made changes in existing waterways (typically poorly planned drainage solutions or new roads). Relatively small discharges in slopes with unconsolidated and easily erodible glacial deposits (typically lateral moraine) in many cases lead to small initial slides that down

  3. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS...

  4. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  5. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  6. Potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  7. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  8. Back to the Rio São Francisco valley

    Directory of Open Access Journals (Sweden)

    Hervé Théry

    2015-06-01

    Full Text Available On the occasion of the Fourth French-Brazilian itinerant seminar, “Cities and river in the history of Brazil: Rio São Francisco”, the text revisits articles published in 1978, 1980 and 1981, illustrated with 1977 photographs and new maps. Though often portrayed as one of the most promising regions in Brazil, and despite having been object, for the last seventy years, of various development projects, the São Francisco valley remains one of the most underdeveloped areas of the country. The history of its occupation partly accounts for this situation, as the São Francisco is the river of the sertão. The various attempts at reclaiming the region, since 1946, are due to various motives, some of them political, but they are also due to a mythical view of the São Francisco as being the “river of national unity”. From 1948 to 1967, the CVSF was rather unsuccessful, probably given too many tasks to carry out. Since 1967, the Suvale and then the Codevasf have focused their action on a few areas in which their main activity is irrigation, but the needs of hydroelectric-power threatens its development. The competition for water therefore makes it necessary to reappraise the future of the valley, gradually integrated into the economy of Brazil’s coastal regions.

  9. Migration of 137Cs artificial radionuclide in the valley of the Takhtakushuk river of the Degelen massif

    International Nuclear Information System (INIS)

    Panitskij, A.V.

    2005-01-01

    Study of horizontal and vertical radionuclide distribution in the valley of the Takhtakushuk River of the 'Degelen' Massif is carried out in the framework of ecological and biological investigations of soil and plant cover within radioactive contaminated areas, and radionuclide migration in biological chain 'soil - plant - animal'. For the first time, the pool-type method was used in the studies of soil of the valley that allows tracing solid and liquid substances migrating by means of surface and soil drainage from its head to final part. This paper presents some physical and chemical properties of the study landscape's soils, radionuclide content in soil genetic horizons of the valley. The study results showed that major mass of 137 Cs radionuclide is sorbed by soil humus and fine-dispersed clay particles of grass soils within the valley. (author)

  10. Hydrogeology of the Susquehanna River valley-fill aquifer system in the Endicott-Vestal area of southwestern Broome County, New York

    Science.gov (United States)

    Randall, Allan D.; Kappel, William M.

    2015-07-29

    The village of Endicott, New York, and the adjacent town of Vestal have historically used groundwater from the Susquehanna River valley-fill aquifer system for municipal water supply, but parts of some aquifers in this urban area suffer from legacy contamination from varied sources. Endicott would like to identify sites distant from known contamination where productive aquifers could supply municipal wells with water that would not require intensive treatment. The distribution or geometry of aquifers within the Susquehanna River valley fill in western Endicott and northwestern Vestal are delineated in this report largely on the basis of abundant borehole data that have been compiled in a table of well records.

  11. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzüberschreitender Flüsse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel beschäftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Förderung allgemeiner regionaler Kooperation im Festländischen Südostasien.

  12. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  13. Mobile equipment maintenance at Elk Valley Coal Corporation Fording River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Major loading and support equipment, haul trucks, and the number of staff and hourly tradesmen working in the maintenance manpower division at Elk Valley Coal are listed. Maintenance strategies are safety, high maintenance of equipment availabilities and reliability, cost reduction, and maximized productivity of assets. Maintenance assets comprise a large shop, shovel and drill crew, machine shop, light vehicle facility, line crew, radio technicians, and cranes. Most maintenance work is completed in- house. Fording River uses a Computerized Maintenance Management System (CMMS) that was developed in-house to match business needs. Several examples of the application of Reliability Centered Maintenance (RCM) are described. 12 figs., 2 tabs.

  14. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    Present day river valleys and rivers are not as dynamic and variable as they used to be. We will here describe the development and characteristics of rivers and their valleys and explain the background to the physical changes in river networks and channel forms from spring to the sea. We seek...... to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  15. 40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...

  16. Late Pleistocene and Holocene-Age Columbia River Sediments and Bedforms: Hanford Reach Area, Washington - Part 2

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Fecht, T.E. Marceau

    2006-03-28

    This report presents the results of a geologic study conducted on the lower slopes of the Columbia River Valley in south-central Washington. The study was designed to investigate glaciofluvial and fluvial sediments and bedforms that are present in the river valley and formed subsequent to Pleistocene large-scale cataclysmic flooding of the region.

  17. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  18. Using destination image to predict visitors' intention to revisit three Hudson River Valley, New York, communities

    Science.gov (United States)

    Rudy M. Schuster; Laura Sullivan; Duarte Morais; Diane Kuehn

    2009-01-01

    This analysis explores the differences in Affective and Cognitive Destination Image among three Hudson River Valley (New York) tourism communities. Multiple regressions were used with six dimensions of visitors' images to predict future intention to revisit. Two of the three regression models were significant. The only significantly contributing independent...

  19. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    Science.gov (United States)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  20. Determination of trace elements and heavy metals in agricultural products cultivated at the Rimac river valley in Lima city using nuclear and related analytical techniques

    OpenAIRE

    Bedregal, Patricia; Torres, Blanca; Olivera, Paula; Mendoza, Pablo; Ubillús, Marco; Creed-Kanashiro, H.; Penny, M.; Junco, J.; Ganoza, L.

    2004-01-01

    There are strong indications that the Rimac river valley is being contaminated with heavy metals and an excess of trace elements that come from some industrial and mining activities developed along the Rimac river valley. The agricultural products cultivated there in could be suffering the same effect. Nuclear and related analytical techniques will play an important role in the study of pollution by providing information concerning the degree of contamination in some agricultural products cul...

  1. Modelling the Effects of Sea-level, Climate Change, Geology, and Tectonism on the Morphology of the Amazon River Valley and its Floodplain

    Science.gov (United States)

    Aalto, R. E.; Cremon, E.; Dunne, T.

    2017-12-01

    How continental-scale rivers respond to climate, geology, and sea level change is not well represented in morphodynamic models. Large rivers respond to influences less apparent in the form and deposits of smaller streams, as the huge scales require long time periods for changes in form and behavior. Tectonic deformation and excavation of resistant deposits can affect low gradient continental-scale rivers, thereby changing flow pathways, channel slope and sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley topography. Nowhere are such scales of morphodynamic response grander than the Amazon River, as described in papers by L.A.K. Mertes. Field-based understanding has improved over the intervening decades, but mechanistic models are needed to simulate and synthesize key morphodynamic components relevant to the construction of large river valleys, with a focus on the Amazon. The Landscape-Linked Environmental Model (LLEM) utilizes novel massively parallel computer architectures to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per compute unit) lowland dispersal systems. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic deformation, and provides a 3D record of created stratigraphy and underlying bedrock. We used LLEM to simulate the development of the main valley of the Amazon over the last million years, exploring the propagation of incision waves and system dissection during glacial lowstands, followed by rapid valley filling and extreme lateral mobility of channels during interglacials. We present metrics, videos, and 3D fly-throughs characterizing how system development responds to key assumptions

  2. Mapping Ecosystem Services in the Jordan Valley, Jordan

    Science.gov (United States)

    Luz, Ana; Marques, Ana; Ribeiro, Inês; Alho, Maria; Catarina Afonso, Ana; Almeida, Erika; Branquinho, Cristina; Talozi, Samer; Pinho, Pedro

    2016-04-01

    In the last decade researchers started using ecosystem services as a new framework to understand the relationships between environment and society. Habitat quality and water quality are related with ecosystem services regulation and maintenance, or even provision. According to the Common International Classification of Ecosystem Services (CICES) both habitat quality and water quality are associated with lifecycle maintenance, habitat and gene pool protection, and water conditions, among others. As there is increased pressure on habitats and rivers especially for agricultural development, mapping and evaluating habitat and water quality has important implications for resource management and conservation, as well as for rural development. Here, we model and map habitat and water quality in the Jordan Valley, Jordan. In this study, we aim to identify and analyse ecosystem services both through 1) habitat quality and 2) water quality modelling using InVest, an integrated valuation of ecosystem services and tradeoffs. The data used in this study mainly includes the LULC, Jordan River watershed and main threats and pollutants in the study area, such as agriculture, industry, fish farms and urbanization. Results suggest a higher pressure on natural habitats in the Northern region of the Jordan Valley, where industry is dominant. Agriculture is present along the Jordan Valley and limits the few natural forested areas. Further, water pollution is mainly concentrated in disposal sites due to the low flow of the Jordan River. Our results can help to identify areas where natural resources and water resource management is most needed in the Jordan Valley. Acknowledgements: Transbasin FP7 project

  3. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    Science.gov (United States)

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  4. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  5. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    Science.gov (United States)

    The Lower Mississippi River Basin (LMRB) is a nationally- and internationally-important region of intensive agricultural production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for row crop irrigation. Extensive irrigation coupled with the region’s geology ...

  6. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  7. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    to fill the blocked valley. Variations in this primary process of incision through the lava dams could be influenced by additional independent factors such as regional uplift, drainage integration, or climate that affect the relative base level, discharge, and sediment yield within the watershed. By redirecting the river, tributaries, and subsequent lava flows to different parts of the canyon, lava dams create a distinct valley morphology of flat, broad basalt shelves capping steep cliffs of Tertiary sediment. This stratigraphy is conducive to landsliding and extends the effects of intracanyon lava flows on channel geomorphology beyond the lifetime of the dams.

  8. Heavy metals in the small rivers of Ternopil region under different types of anthropogenic pressure

    Directory of Open Access Journals (Sweden)

    O. Prokopchuk

    2016-03-01

    Full Text Available The dynamic of content and peculiarities of migration of heavy metals in small rivers of Ternopil region were analyzed (Zn, Mn, Fe, Co, Ni, Pb. It was determined that cobalt does not exceed maximum permissible levels, whereas the content of other metals exceed these levels at rates from 2 to 42 times the emission limit set by the fishing industry. The waters of Ternopil region are the richest in the compounds of iron and manganese by virtue of the lithological content of the researched water basins. The excess in Mn and Fe concentration in river water is caused by occurrence of these elements in abiotic components of river valleys, particularly in areas with iron and manganese, alluvial deposits, clay soils with ferrous metal compounds and leaching of elements from rock, soil and forest litter. As our research showed, increased metal content in water basins is caused by natural factors (river running through areas with ore and where leaching of ore occurs it, reaction of interstitial water, metals appearing in ground water run-off, anthropogenic (waste waters of industrial plants, agricultural outwash, fuel combustion and hydrochemical factors of the hydroecosystem itself (consumption and releasing of metals by hydrobionts, aquatic habitat pH, metals coming in from ground sediments, metals released from complexes with organic compounds, methylation of non-organic metal compounds. A comparative analysis of the pollution levels of Ternopil region water basins by heavy metals was completed. It was determined that the river most heavily contaminated by the content of nutrients and non-biogenic HM is the Zolota Lypa and the cleanest is the River Strypa, which allows us to recommend the use of water composition as a reference indicator in assessing the ecological state of the region’s surface waters.

  9. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  10. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  11. Forest types of the "Argentino River Valley" Natural Reserve

    Directory of Open Access Journals (Sweden)

    Bagnato S

    2008-09-01

    Full Text Available Forest classification is a fundamental target for understanding forest stand dynamics and for sustainable management strategy applications. In this paper the methodological approach of forest types, already used in other Italians region, was applied for the classification of the RNO "Argentino River Valley" (southern Apennine, Italy. This study has been organized in 4 steps: 1 bibliographic analysis and collection of the acquired knowledge; 2 preliminary verification of forest types in the field; 3 description of the different units; 4 final validation of typological units. Using this approach we have characterized 9 categories and 12 forest types units. The description of each units has been filed as cards, where information of different nature is summarized and related to the organization of the typological units, to its location, to the description of the qualitative indicators (disturbances, cohort, mortality, natural dynamic tendencies, SDT, CWD etc. and quantitative indicators (dbh, average height, current annual increment, etc., to the functioning and the current management. For a better understanding of types functioning, "sylvology models" based on the "Spatial Pattern of Relative Collective Interaction" (PSICR and on the principal characteristics influencing and characterizing forest stand dynamics (availability of resources, type and frequency of disturbances, stand development, etc. have been singled out and proposed. The "forest types map" and other maps useful for the management of forest resources have been obtained. Moreover, data collected did allow to formulate several hypotheses on sustainable management.

  12. Treponemal disease in the middle Archaic to early Woodland periods of the western Tennessee River Valley.

    Science.gov (United States)

    Smith, Maria Ostendorf

    2006-10-01

    The high frequency of late prehistoric New World treponemal disease is attributable to the demographic changes concomitant with the adoption of agriculture. However, these demographic changes in group mobility and site density episodically preceded intensive plant domestication, suggesting possible staggered temporal change in observed treponemal disease case frequency. Thirteen convincing and an additional two probable (N = 581) cases of treponemal disease were identified in an eight-site skeletal sample spanning the Middle (6,000-3,000 BCE) to Late (2,500-ca. 1,000 to 500 BCE) Archaic and Early Woodland (500 BCE-0 CE) periods from the western Tennessee River Valley. Treponemal disease cases are infrequent in both the Middle (3/115, 2.6%) and Late (2 to 4 cases, subsistence economy across the Archaic-Woodland temporal boundary in the western Tennessee River Valley remained, as elsewhere, based on intensive hunting and collecting, the demographic corollaries of treponemal disease would apparently not be met. However, the traditional horizon marker of the Woodland period is the adoption of pottery, an activity associated with sedentism.

  13. Analysis of the influence of tectonics on the evolution of valley networks based on SRTM DEM, Jemma River basin, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Kropáček, J.; Vilímek, V.; Schillaci, C.

    2016-01-01

    Roč. 39, č. 1 (2016), 37-50 ISSN 1724-4757 Institutional support: RVO:67985891 Keywords : valley network * tectonic lineaments * Jemma River basin * Ethiopian Highlands Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  14. Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer

    Science.gov (United States)

    Morrissey, Daniel J.

    1989-01-01

    The highly permeable, unconfined, glacial-drift aquifers that occupy most New England river valleys constitute the principal source of drinking water for many of the communities that obtain part or all of their public water supply from ground water. Recent events have shown that these aquifers are highly susceptible to contamination that results from a number of sources, such as seepage from wastewater lagoons, leaking petroleum-product storage tanks, and road salting. To protect the quality of water pumped from supply wells in these aquifers, it is necessary to ensure that potentially harmful contaminants do not enter the ground in the area that contributes water to the well. A high degree of protection can be achieved through the application of appropriate land-use controls within the contributing area. However, the contributing areas for most supply wells are not known. This report describes the factors that affect the size and shape of contributing areas to public supply wells and evaluates several methods that may be used to delineate contributing areas of wells in glacial-drift, river-valley aquifers. Analytical, two-dimensional numerical, and three-dimensional numerical models were used to delineate contributing areas. These methods of analysis were compared by applying them to a hypothetical aquifer having the dimensions and geometry of a typical glacial-drift, river-valley aquifer. In the model analyses, factors that control the size and shape of a contributing area were varied over ranges of values common to glacial-drift aquifers in New England. The controlling factors include the rate of well discharge, rate of recharge to the aquifer from precipitation and from adjacent till and bedrock uplands, distance of a pumping well from a stream or other potential source of induced recharge, degree of hydraulic connection of the aquifer with a stream, horizontal hydraulic conductivity of the aquifer, ratio of horizontal to vertical hydraulic conductivity, and

  15. What are the contemporary sources of sediment in the Mississippi River?

    Science.gov (United States)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  16. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  18. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  19. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  20. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  1. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    Science.gov (United States)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  2. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples; no known uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare.

  3. New simple mathematical model to help evaluating the extent of the late-Quaternary valley glacier in the Upper Soča Region (NW Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Bavec

    2002-06-01

    Full Text Available A simple mathematical model was developed that enables an evaluation of a valley glacier extent independently of any geological data. Based on glaciological criteria and on quantitative analysis of the glacier’s accumulation-, and ablation-areas the modeloffers an opportunity for an independent test of paleoenvironmental interpretations that are traditionally based on (often vague and difficult-to-interpret geomorphological and sedimentological information. The model is presented here through a case study from theUpper Soča River Region.

  4. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.

    2015-01-01

    A study to assess the potential of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas, as a viable source of public-supply water was conducted by the U.S. Geological Survey in cooperation with the Little Rock, District, U.S. Army Corps of Engineers. An important study component was to identify possible changes in hydrologic conditions following installation of James W. Trimble Lock and Dam 13 (December 1969) on the Arkansas River near the study area. Data were gathered for the study in regard to the lithology, hydrologic characteristics, and water quality of the aquifer. Lithologic information was obtained from drillers’ logs of wells drilled from 1957 through 1959. Water-quality samples were collected from 10 irrigation wells and analyzed for inorganic constituents and pesticides. To evaluate the potential viability of the alluvial aquifer in the Van Buren area, these data were compared to similar stratigraphic, lithologic, and groundwater-quality data from the Arkansas River Valley alluvial aquifer at Dardanelle, Ark., where the aquifer provides a proven, productive, sole-source of public-supply water.

  5. Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content

  6. ANALYSIS OF SPATIAL CHANGES IN GROUNDWATER RETENTION FOR THE ODER VALLEY IN THE MALCZYCE REGION

    Directory of Open Access Journals (Sweden)

    Edyta Nowicka

    2015-10-01

    Full Text Available The paper presents the analysis of spatial changes of groundwater retention for a part of the Oder valley situated below the barrage in Brzeg Dolny. For the analysis of selected monthly average elevations of the groundwater table of the selected measuring points (32 piezometers located in the area described, and 7 gauges on the Oder river, Średzka Woda, Jeziorka and Nowy Rów. The change of groundwater retention is presented in spatial terms for vegetation periods of years: 2010, 2011 and 2012. The database was made interpolating the groundwater table elevation for the area in question. On this basis, differences between ordinates the groundwater table were calculated. The next step was to obtain the spatial distribution of groundwater retention states and its analysis. The results show significant changes in the states of groundwater retention on the selected portion of the valley in the individual growing seasons. According to formation of changes in status of groundwater retention relative to the distance from the Odra river was analysed.

  7. [Growth analysis on modules of Cynodon dactylon clones in Yili River Valley Plain of Xinjiang].

    Science.gov (United States)

    Zhao, Yu; Janar; Li, Hai-Yan; Liu, Ying; Yang, Yun-Fei

    2009-04-01

    By the method of randomly digging up whole ramet tuft while maintaining natural integrity, large samples of Cynodon dactylon clones were collected from a grape orchard abandoned for 2 years without any management in the Yili River Valley Plain of Xinjiang, aimed to quantitatively analyze the growth patterns of their modules. The results showed that the average ramet number of test 30 clones reached 272.6 +/- 186. 6, among which, vegetative ramets occupied 82.3%, being 4.3 times higher than reproductive ones. The total biomass of the clones was 45.4 +/- 40.0 g, in which, rhizomes accounted for 54.4%, while the vegetative ramets, stolons, and reproductive ramets occupied 21.0%, 14.8%, and 9.4% of the total, respectively. The accumulative length of rhizomes and stolons reached 5.1 + 4.7 m and 3.3 +/- 3.4 m, while the bud number on stolons and rhizomes was 291.5 +/- 246.8 and 78.8 +/- 87.4, respectively. The bud number on stolons and rhizomes was positively correlated to the quantitative characters of vegetative ramets, reproductive ramets, stolons, and rhizomes (P < 0.01), indicating that in Yili River Valley Plain, C. dactylon clone could achieve and maintain its continuous renovation via rhizome buds.

  8. Hydraulic conductivity changes in river valley sediments caused by river bank filtration - an analysis of specific well capacity

    Science.gov (United States)

    Kaczmarek, Piotr M. J.

    2017-06-01

    Parameters from archive data of the Kalisz-Lis waterworks, located in the Prosna River valley south of Kalisz, have been analysed. Well barrier discharges groundwater from Quaternary sediments which is mixed with riverbank filtration water. The analysis focused on specific well capacity, a parameter that represents the technical and natural aspects of well life. To exclude any aging factor, an examination of specific well capacity acquired only in the first pumping tests of a new well was performed. The results show that wells drilled between 1961 and 2004 have similar values of specific well capacity and prove that > 40 years discharge has had little influence on hydrodynamic conditions of the aquifer, i.e., clogging has either not occurred or is of low intensity. This implies that, in the total water balance of the Kalisz- Lis well barrier, riverbank filtration water made little contribution. In comparison, a similar analysis of archive data on the Mosina-Krajkowo wells of two generations of well barriers located in the Warta flood plains was performed; this has revealed a different trend. There was a significant drop in specific well capacity from the first pumping test of substitute wells. Thus, long-term groundwater discharge in the Warta valley has had a great impact on the reduction of the hydraulic conductivity of sediments and has worsened hydrodynamic conditions due to clogging of river bed and aquifer, which implies a large contribution of riverbank filtration water in the total water well balance. For both well fields conclusions were corroborated by mathematical modeling; in Kalisz-Lis 16.2% of water comes from riverbank filtration, whereas the percentage for Mosina-Krajkowo is 78.9%.

  9. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  10. Late Mesolithic hunting of a small female aurochs in the valley of the River Tjonger (the Netherlands) in the light of Mesolithic aurochs hunting in NW Europe

    NARCIS (Netherlands)

    Prummel, W.; Niekus, M.J.L.Th.

    The valley of the River Tjonger, situated in the Province of Friesland (the Netherlands), is rich in prehistoric organic remains. The fill of the valley, consisting of waterlogged sediments (peat, gyttja and sands), presents favourable conditions for the preservation of bone, antler and botanical

  11. Human effects on the hydrologic system of the Verde Valley, central Arizona, 1910–2005 and 2005–2110, using a regional groundwater flow model

    Science.gov (United States)

    Garner, Bradley D.; Pool, D.R.; Tillman, Fred D.; Forbes, Brandon T.

    2013-01-01

    Water budgets were developed for the Verde Valley of central Arizona in order to evaluate the degree to which human stresses have affected the hydrologic system and might affect it in the future. The Verde Valley is a portion of central Arizona wherein concerns have been raised about water availability, particularly perennial base flow of the Verde River. The Northern Arizona Regional Groundwater Flow Model (NARGFM) was used to generate the water budgets and was run in several configurations for the 1910–2005 and 2005–2110 time periods. The resultant water budgets were subtracted from one another in order to quantify the relative changes that were attributable solely to human stresses; human stresses included groundwater withdrawals and incidental and artificial recharge but did not include, for example, human effects on the global climate. Three hypothetical and varied conditions of human stresses were developed and applied to the model for the 2005–2110 period. On the basis of this analysis, human stresses during 1910–2005 were found to have already affected the hydrologic system of the Verde Valley, and human stresses will continue to affect the hydrologic system during 2005–2110. Riparian evapotranspiration decreased and underflow into the Verde Valley increased because of human stresses, and net groundwater discharge to the Verde River in the Verde Valley decreased for the 1910–2005 model runs. The model also showed that base flow at the upstream end of the study area, as of 2005, was about 4,900 acre-feet per year less than it would have been in the absence of human stresses. At the downstream end of the Verde Valley, base flow had been reduced by about 10,000 acre-feet per year by the year 2005 because of human stresses. For the 2005–2110 period, the model showed that base flow at the downstream end of the Verde Valley may decrease by an additional 5,400 to 8,600 acre-feet per year because of past, ongoing, and hypothetical future human

  12. Environmental protection in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Riley, G.

    1989-01-01

    One of a series of articles on the work of the Office of the Supervising Scientist for the Alligator Rivers Region (OSS) and its Alligator Rivers Region Research Institute (ARRRI), this discusses the environmental protection function of the OSS and the role of the ARRRI in achieving this

  13. Riverine based eco-tourism: Trinity River non-market benefits estimates

    Science.gov (United States)

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  14. “Yonne River Corridor” Network of Yonne Cities: the River as Tourist Route

    Directory of Open Access Journals (Sweden)

    Christina Matika

    2014-12-01

    Full Text Available Long living space for many animal and plant species, the river system and its tributaries represent a principal wealth, always valid for human settlements in the Yonne valley, France. In my case study the major questions raised as starting points are: 1. How the infrastructure is related to the landscape of Yonne. 2. Which could be the possibilities and potentialities to treat this local resource. 3. How local authorities could start a project of exploitation and valorization of the water region. 4. Which interventions could enforce the dynamics of the region. 5. How to articulate cities in discontinuity around the Yonne river, taking into account the flood threat, but in a sustainable way. 6. And last but not least, how can we face the problem of rupture between the banks of the river and the urban space, regaining the docks.

  15. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  16. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  17. River terrace development in the NE Mediterranean region (Syria and Turkey): Patterns in relation to crustal type

    Science.gov (United States)

    Bridgland, David R.; Demir, Tuncer; Seyrek, Ali; Daoud, Mohamad; Abou Romieh, Mohammad; Westaway, Rob

    2017-06-01

    It is widely recognized that the optimal development of river terraces globally has been in the temperate latitudes, with NW and Central Europe being areas of particular importance for the preservation of such archives of Quaternary environmental change. There is also a growing consensus that the principal drivers of terrace formation have been climatic fluctuation against a background of progressive (but variable) uplift. Nonetheless river terraces are widely preserved in the Mediterranean region, where they have often been attributed to the effects of neotectonic activity, with a continuing debate about the relative significance of fluctuating temperature (glacials-interglacials) and precipitation (pluvials-interpluvials). Research in Syria and southern-central Turkey (specifically in the valleys of the Tigris and Ceyhan in Turkey, the Kebir in Syria and the trans-border rivers Orontes and Euphrates) has underlined the importance of uplift rates in dictating the preservation pattern of fluvial archives and has revealed different patterns that can be related to crustal type. The NE Mediterranean coastal region has experienced unusually rapid uplift in the Late Quaternary. The relation between the Kebir terraces and the staircase of interglacial raised beaches preserved along the Mediterranean coastline of NW Syria reinforces previous conclusions that the emplacement of the fluvial terrace deposits in the Mediterranean has occurred during colder climatic episodes.

  18. Structural and hydrological controls on the development of a river cave in marble (Tapagem Cave - SE Brazil

    Directory of Open Access Journals (Sweden)

    William Sallun Filho

    2015-01-01

    Full Text Available Tapagem Cave (or Devil’s Cave is a river cave developed in the dolomite marble karst of the Serra do André Lopes (State of São Paulo, southeastern Brazil. Although this region is a plateau with significant variation in elevation and a humid subtropical climate, the cave is an anomalous feature in the André Lopes karst because there are few other caves. The marble, which is in a synclinal structure with subjacent phyllites, is a karst aquifer perched above the regional base level (Ribeira River and has little allogenic recharge. The cave developed on a secondary anticline on the northwest flank of the marble synform forming a blind valley, the Tapagem River sink, that is an underground tributary of Ostras River. Development of the cave is due to the entrenchment of the Ostras through-valley and the large allogenic catchment area of the sink. In plan view, the morphology of the cave can be divided into three different sectors. The first sector, known as the Tourist Sector, has extensive collapse rooms, fossil passages and a variety of speleothems of notable dimensions. The second and most extensive sector is the river passage, which is a sinuous gallery controlled by marble banding with NE-SW cleavage and NW-SE fractures. In cross-section, the passages are vadose canyons up to 70 m in height, controlled by the marble banding. Four NW-SE diabase dykes in this passage do not affect its direction in plan view. The third sector is an extensive network of passages and collapse rooms, which are interlaced in plan view and on different levels, forming a maze pattern. Initially, the Tapagem and Ostras Rivers developed on a gentle surface and flowed into the Ribeira River. With the entrenchment of the Ostras through-valley, the Tapagem River partially infiltrated via a paleosink into the upper passage of the “Erectus Room," remaining a half-blind valley. Following a series of collapses and obstructions, the River next infiltrated via the current

  19. Site records of softshell turtles (Chelonia: Trionychidae from Barak Valley, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    K.C. Das

    2011-04-01

    Full Text Available We report for the first time the occurrence of four species of Trionychid turtles Nilssonia gangetica, N. hurum, Chitra indica and Lissemys punctata andersonii from 57 sites in the Barak Valley region of Assam, northeastern India. Sites of occurrence include rivers, small streams, floodplain lakes and ox-bows.

  20. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  1. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  2. Biodiversity of microcrustaceans (Cladocera, Copepoda in a lowland river ecosystem

    Directory of Open Access Journals (Sweden)

    Maciej Karpowicz

    2016-06-01

    Full Text Available This study presents comprehensive research on microcrustacean diversity in different types of aquatic environments in the Upper Narew Valley over five years. A total of 559 samples were analyzed, and 74 species of crustacean zooplankton were identified. Metacyclops planus (Gurney, 1909 is a new species for the fauna of Poland and was found in oxbow lakes and tributary streams. The results of the study suggest that oxbow lakes, with more than 80% of all recorded species, may significantly contribute to the regional biodiversity of floodplain rivers. The highest crustacean community diversity was observed in the semi-lotic oxbow lakes, which emphasizes the role of intermediate disturbance in enhancing biodiversity of water bodies in river valleys. Generally, more “heterogeneous” habitats, such as small oxbow lakes and tributary streams, had higher crustacean species richness. However, a sampling station that was quite “homogeneous”, the Narew River upstream the Siemianówka Reservoir, had high crustacean species richness. The species accumulation curves revealed that approximately 50 - 100 zooplankton samples taken from different environments of river valley are required to establish crustacean species richness. These data could be important for river catchment management and could act as pilot survey data for monitoring plans.

  3. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  4. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  5. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    Science.gov (United States)

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  6. Wells measured for water-levels, unconfined and confined aquifers, Wood River Valley aquifer system, south-central Idaho, October 2006 and October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  7. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  8. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  9. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  10. Ethno-botanical study of medicinal plants of Paddar Valley of Jammu and Kashmir, India.

    Science.gov (United States)

    Gupta, Sushil Kumar; Sharma, O M Prakash; Raina, Narinder Singh; Sehgal, Sandeep

    2013-01-01

    The Paddar Valley, historically known as Sapphire Valley situated in Kishtwar district, is a prime landmark in the Jammu region of J&K state and is known for its rich cultural and plant diversity because of diverse habitats such as rivers, streams, meadows and steep mountain slopes. The area is located in the dry temperate region comprising typical vegetation which disappears completely on the eastern slopes, dominated by a variety of economical species which play an important role in the rural life. The inhabitants are dependent on plant resources for food, fuel, timber, shelter, fodder/forage, household articles and traditional medicines in treating diseases like malaria, cancer, gastro-intestinal ailments, etc. This paper deals with the observations on traditional therapeutic application by the inhabitants of Paddar Valley. The ethno-botanical information on medicinal plants would not only be useful in conservation of traditional cultures and biodiversity but also community health care and drug development. Exploration survey in Paddar Valley has revealed that people collect and sell these medicinal species through local intermediaries / contractors to earn their livelihood. But the scientific cultivation and appropriate post-harvest management would improve employment opportunity and income of local farmers in the region.

  11. PEARLS OF THE PČINJA VALLEY – RURAL TOURISM ATTRACTIONS OF THIS AREA

    Directory of Open Access Journals (Sweden)

    Svetlana Trajković

    2013-10-01

    Full Text Available River Valley Pčinja, with its source part and tributaries that make up the Aegean Sea with its configuration, where the gorge turns between nearby mountains and flat areas, meadows, gardens and of our arable land, remains of old mills, houses and villages, which, still do not leave the inhabitants of this region, contains tourist potential. This valley is adorned with rich flora and fauna where one can see examples of the unique flora and fauna, with its diversity and natural material in the form of a "devil's stone" Witness antiquities and places of worship as well as a special value of the Monastery of St. Prohor of Pcinja. The pleasant climate and in some areas of the river gurgling disrupts primordial peace and makes the holiday for eyes, soul of every lover of nature.

  12. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  13. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

    Energy Technology Data Exchange (ETDEWEB)

    Jourdain, Nicolas C.; Gallee, Hubert [Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France)

    2011-03-15

    Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution. (orig.)

  14. Changes in the water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  15. Changes in the potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  16. In the San Joaquin Valley, hardly a sprinkle

    International Nuclear Information System (INIS)

    Holson, L.M.

    1993-01-01

    California has declared its six-year drought over, but in the San Joaquin Valley, center of the state's $18.5 billion agriculture industry, it lives on. The two weeks of strong rain this winter that swelled reservoirs and piled snow on the mountains is only trickling toward the region's nearly 20,000 farms. Federal water officials are under heavy pressure from the Environmental Protection Agency, which wants to improve water quality, and are worried about the plight of endangered fish in the Sacramento River. So, on March 12 they announced they will send farmers only 40% of the water allotments they got before the drought. The rest is being held against possible shortages. For the once-green valley, another year without water has brought many farmers perilously close to extinction

  17. Neutron activation analysis - NAA: studies of environmental pollution in Steel Valley region, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Veado, Maria Adelaide R.V.; Queiroz, Marluce A.T.; Costa, Alex A., E-mail: mariavasc@unilestemg.b, E-mail: marluce.queiroz@yahoo.com.b, E-mail: alexaderson@ig.com.b [Centro Universitario do Leste de Minas Gerais (UNILESTE-MG), Coronel Fabriciano, MG (Brazil). Curso de Mestrado em Engenharia Industrial; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Arno H. de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2009-07-01

    The Steel Valley region in Minas Gerais State, Brazil, receives intense waste from anthropogenic activities: industries (steel, cellulose, ore mining); untreated domestic; sewage and agricultural discharges. This work presents results obtained from analysis of air quality (Ipatinga, Santana do Paraiso, Coronel Fabriciano Timoteo and Marlieria cities) and by the Piracicaba River (surface water, border sediment, and fish muscle - Acara (Geophagus Brasiliensis). Concentrations of Al, Mn, V, As, Br, K, La, Na, Ce, Co, Cr, Cs, Fe, Hg, Rb, Sc, Sm, Th and Zn were determined for Neutron Activation Analysis, NAA. High concentrations were found in sediment and water (Cr, Fe, Co, Zn, As, Al, Mn, V) and in fish muscle (As, Cr, Hg). Results were compared to the maximum limits for metal set by 357/2005 of the National Environmental Council (CONAMA). Terrestrial epiphytic community samples have been used as biomonitor of air pollution. The samples were collected in trees Oiti (Licania tomentosa) and Angico (Piptadenia rigida), very common in studied region. The samples were collected in 17 points and two weather stations: January (rainy) and June (dried) of 2007. The results indicate high concentrations of the elements Al, Au, Co, Cr, Cu, Fe, Hg, Mn, Mg, Zn, V and Th when compared with the values cited in the literature. The biomonitor used in this work, terrestrial epiphytic community, showed an excellent capacity for metals retention by atmospheric contamination. (author)

  18. The Federal Government and the Alligator Rivers Region

    International Nuclear Information System (INIS)

    BURTON, A.

    1989-01-01

    The administrative framework put in place by the Commonwealth and Northern Territory governments to monitor mining activities in the Alligator Rivers Region is presented. The key institutional element is the Coordinating Committee for the Alligator Rivers Region chaired and serviced by the Supervising Scientist and established through legislation

  19. River restoration strategies in channelized, low-gradient landscapes of West Tennessee, USA

    Science.gov (United States)

    Smith, D.P.; Diehl, T.H.; Turrini-Smith, L. A.; Maas-Baldwin, J.; Croyle, Z.

    2009-01-01

    West Tennessee has a complex history of watershed disturbance, including agricultural erosion, channelization, accelerated valley sedimentation, and the removal and reestablishment of beaver. Watershed management has evolved from fl oodplain drainage via pervasive channelization to include local drainage canal maintenance and local river restoration. Many unmaintained canals are undergoing excessive aggradation and complex channel evolution driven by upland erosion and low valley gradient. The locus of aggradation in fully occluded canals (valley plugs) moves up-valley as sediment continues to accumulate in the backwater behind the plug. Valley plugs that cause canal avulsion can lead to redevelopment of meandering channels in less disturbed areas of the fl oodplain, in a process of passive self-restoration. Some valley plugs have brought restored fl oodplain function, reoccupation of extant historic river channels, and formation of a "sediment shadow" that protects downstream reaches from excess sedimentation. Despite the presence of numerous opportunities, there is presently no mechanism for including valley plugs in mitigation projects. In 1997 a survey of 14 reference reach cross sections documented relations between drainage area and bankfull geometry of relatively unmodified streams in West Tennessee. Reassessment of seven of those sites in 2007 showed that one had been dammed by beaver and that two sites could not be analyzed further because of signifi cant vertical or lateral instability. In contrast to other regions of North America, the results suggest that stream channels in this region fl ood more frequently than once each year, and can remain out of banks for several weeks each year. ?? 2009 Geological Society of America.

  20. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    Science.gov (United States)

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  1. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    Science.gov (United States)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  2. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    Science.gov (United States)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry

  3. Narrating Regional Identity in Tourism--Sketches from the Austrian Danube Valley

    Science.gov (United States)

    Ploner, Josef

    2009-01-01

    This article sketches the processes of regionalisation in the realm of present day tourism. By exploring issues of "regional culture" and "diversity" in Austria, and more particular, in the highly symbolic Danube valley "Wachau", the article shows how the imaginaries of contested cultural spaces--be they…

  4. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  5. The Contribution of the Future SWOT Mission to Improve Simulations of River Stages and Stream-Aquifer Interactions at Regional Scale

    Science.gov (United States)

    Saleh, Firas; Filipo, Nicolas; Biancamaria, Sylvain; Habets, Florence; Rodriguez, Enersto; Mognard, Nelly

    2013-09-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study extends the earlier work to improve the modeling of the Seine basin with a focus on simulating the hydrodynamics behavior of the Bassée alluvial wetland, a 120 km reach of the Seine River valley located south- east of Paris. The Bassée is of major importance for the drinking-water supply of Paris and surroundings, in addition to its particular hydrodynamic behavior due to the presence of a number of gravels. In this context, the understanding of stream-aquifer interactions is required for water quantity and quality preservation. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used. It aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using a conductance model. In this context, the future SWOT mission and its high-spatial resolution imagery can provide surface water level measurements at the regional scale that will permit to better characterize the Bassée complex hydro(geo)logical system and better assess soil water content. Moreover, the Bassée is considered as a potential target for the framework of the AirSWOT airborne campaign in France, 2013.

  6. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  7. The significance of the European beaver (Castor fibre activity for the process of renaturalization of river valleys in the era of increasing

    Directory of Open Access Journals (Sweden)

    Kusztal Piotr

    2017-03-01

    Full Text Available Changes in the environment that are caused by the activity of beavers bring numerous advantages. They affect the increase in biodiversity, contribute to improving the condition of cleanliness of watercourses, improve local water relations and restore the natural landscape of river valleys.

  8. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  9. Unraveling the Quaternary river incision in the Moselle valley (Rhenish Massif, Germany): new insights from cosmogenic nuclide dating (10Be/26Al) of the Main Terrace complex

    Science.gov (United States)

    Rixhon, Gilles; Cordier, Stéphane; Harmand, Dominique; May, Simon Matthias; Kelterbaum, Daniel; Dunai, Tibor; Binnie, Steven; Brückner, Helmut

    2014-05-01

    Throughout the whole river network of the Rhenish Massif, the terrace complex of the so-called Main Terrace forms the morphological transition between a wide upper palaeovalley (plateau valley) and a deeply incised lower valley. The youngest level of this Main Terrace complex (YMT), directly located at the edge of the incised valley, represents a dominant geomorphic feature in the terrace flight; it is often used as a reference level to identify the start of the main middle Pleistocene incision episode (Demoulin & Hallot, 2009). The latter probably reflects the major tectonic pulse that affected the whole Massif and was related to an acceleration of the uplift rates (Demoulin & Hallot, 2009). The Main terraces are particularly well preserved in the lower Moselle valley and are characterized by a constant absolute elevation of their base along a 150 km-long reach. Despite that various hypotheses have been proposed to explain this horizontality (updoming, faulting...), all studies assumed an age of ca. 800 ka for the YMT, mainly based on the questionable extrapolation of palaeomagnetic data obtained in the Rhine valley. Therefore, a reliable chronological framework is still required to unravel the spatio-temporal characteristics of the Pleistocene evolution of the Moselle valley. In this study, we apply cosmogenic nuclide dating (10Be/26Al) to fluvial sediments pertaining to the Main Terrace complex or to the upper Middle Terraces. Several sites along the lower Moselle were sampled following two distinct sampling strategies: (i) depth profiles where the original terrace (palaeo-)surface is well preserved and did not experience much postdepositional burial (e.g., loess cover); and (ii) the isochron technique where the sediment thickness exceeds 3 m. Cosmogenic nuclide ages recently obtained for three rivers in the Meuse catchment in the western Rhenish Massif demonstrated that the Main Terraces were younger than expected and their abandonment was diachronic along the

  10. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  11. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    Science.gov (United States)

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. THE ROLE OF SOCIAL NETWORKS IN THE REGIONAL DEVELOPMENT: THE CASE OF SILICON VALLEY

    Directory of Open Access Journals (Sweden)

    MURAT ÇETİN

    2013-06-01

    Full Text Available Social capital has commonly been discussed in recent years from the perspective of sociology, economics and political science. Social capital defines the structure of social relations among economic actors in a region. Regional development depends directly on the level of actors’ social capital. This study focuses on the importance of social networks, an important factor of social capital, in the economy of Silicon Valley. These networks improve many-sided and intensive social relations and collaborative activities within and among universities, research centers, venture capitalists, law firms, industrial firms and investment banks in the region. In Silicon Valley, social networks have special importance in the movement of labor, the gaining of influence and power, and the actual production of innovation. Thus, social networks can be evaluated as a driver of economic development.

  13. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  14. Neotectonics of the Roer Valley rift system; style and rate of crustal deformation inferred from syn-tectonic sedimentation

    NARCIS (Netherlands)

    Berg, van den M.W.

    1995-01-01

    River sediments of the Meuse, Rhine and local Belgian systems have been preserved in various parts of the Roer Valley rift. Age-altitude positions of Meuse terraces provide a detailed record of neotectonic regional uplift. It shows accelerations and decelerations superimposed on a long-term average

  15. Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).

    Science.gov (United States)

    Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam

    2014-09-01

    The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.

  16. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  17. The persistence of rift valley fever in the Jazan region of Saudi Arabia.

    Science.gov (United States)

    Elfadil, A A; Hasab-Allah, K A; Dafa-Allah, O M; Elmanea, A A

    2006-12-01

    A survey was conducted in the Jazan region of Saudi Arabia to investigate the presence of Rift Valley fever (RVF) in sheep and goats, by clinical identification of suspected herds and detection of immunoglobulin M (IgM) antibodies to RVF virus. The level of herd immunity was identified by detecting immunoglobulin G (IgG) antibodies. Rift Valley fever was diagnosed in six out of eight districts included in the survey. Twenty-two animals from 17 herds tested positive for the presence of IgM antibodies against RVF in these districts. The infection rate ranged from 0.12% in the Sabya district to 1.04% in the Jizan district. The level of herd immunity ranged from 22.2% in Jizan to 39.3% in the Alarda district. It can be concluded that the presence of IgM antibodies in clinically suspected herds suggests persistent RVF infection in the Jazan region. Thus, RVF control programmes should be continued to prevent the recurrence of outbreaks in the region and the possible further spread of infection to other regions of Saudi Arabia.

  18. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  19. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California

    Science.gov (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.

    2016-12-01

    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  20. LDL (Landscape Digital Library) a Digital Photographic Database of a Case Study Area in the River Po Valley, Northern Italy

    CERN Document Server

    Papotti, D

    2001-01-01

    Landscapes are both a synthesis and an expression of national, regional and local cultural heritages. It is therefore very important to develop techniques aimed at cataloguing and archiving their forms. This paper discusses the LDL (Landscape Digital Library) project, a Web accessible database that can present the landscapes of a territory with documentary evidence in a new format and from a new perspective. The method was tested in a case study area of the river Po valley (Northern Italy). The LDL is based on a collection of photographs taken following a systematic grid of survey points identified through topographic cartography; the camera level is that of the human eye. This methodology leads to an innovative landscape archive that differs from surveys carried out through aerial photographs or campaigns aimed at selecting "relevant" points of interest. Further developments and possible uses of the LDL are also discussed.

  1. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    Science.gov (United States)

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    Pleistocene terrace deposits in Memphis, Tennessee, were oxic, and the maximum nitrate concentration measured was 6.2 milligrams per liter. Additionally, soils overlying the Holocene alluvium and Pleistocene valley trains, generally in areas near the wells, had lower infiltration rates and higher percentages of clay than soils overlying the shallow Tertiary and Pleistocene terrace deposits wells. Differences in these soil properties were associated with differences in the occurrence of pesticides. Pesticides were most commonly detected in samples from wells in the Pleistocene terrace deposits, which generally had the highest infiltration rates and lowest clay content. Median dissolved phosphorus concentrations were 0.07, 0.11, and 0.65 milligram per liter in samples from the shallow Tertiary, Pleistocene valley trains, and Holocene alluvium, respectively. The widespread occurrence of dissolved phosphorus at concentrations greater than 0.02 milligram per liter suggests either a natural source in the soils or aquifer sediments, or nonpoint sources such as fertilizer and animal waste or a combination of natural and human sources. Although phosphorus concentrations in samples from the Holocene alluvium were weakly correlated to concentrations of several inorganic constituents, elevated concentrations of phosphorus could not be attributed to a specific source. Phosphorus concentrations generally were highest where samples indicated anoxic and reducing conditions in the aquifers. Elevated dissolved phosphorus concentrations in base-flow samples from two streams in the study area suggest that transport of phosphorus with groundwater is a potential source contributing to high yields of phosphorus in the lower Mississippi River basin. Water from 55 deep wells (greater than 200 feet deep) completed in regional aquifers of Tertiary age represent a sample of the principal aquifers used for drinking-water supply in the study area. The wells were screened in both confined and

  2. The impact of Mediterranean oscillations on periodicity and trend of temperature in the valley of the Nisava River: A fourier and wavelet approach

    Directory of Open Access Journals (Sweden)

    Martić-Bursać Nataša M.

    2017-01-01

    Full Text Available Periodicity of temperature on three stations in the Nisava River valley in period 1949-2014, has been analyzed by means of Fourier and wavelet transforms. Combined periodogram based on fast Fourier transform shows considerable similarity among individual series and identifies significant periods on 2.2, 2.7, 3.3, 5, 6-7, and 8.2 years in all datasets. Wavelet coherence analysis connects strongest 6-7 years spectral component to Mediterranean oscillation, starting in 1980s. Combined periodogram of Mediterranean oscillation index reveals 6-7 years spectral component as a dominant mode in period 1949-2014. Wavelet power spectra and partial combined periodograms show absence of 6-7 years component before 1975, after which this component becomes dominant in the spectrum. Consistency between alternation in temperature trend in the Nisava River valley and change in periodicity of Mediterranean oscillation was found. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176008

  3. Studies on pharmaceutical ethnobotany in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula).

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Angels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2007-09-05

    An ethnobotanical study has been carried out in the high river Ter valley (Catalonia, Iberian Peninsula) a small area located in the eastern Pyrenees, with 294 km(2) and 4526 inhabitants. Through 42 interviews with 60 informants of a mean age of 71.1, 220 species belonging to 71 botanical families were reported, 90.6% of which were used in human medicine and 7.8% in veterinary therapy. The present paper is focused on human medicinal plant uses. One fungal and four vascular plant species have not, or have very rarely been cited as medicinal, and for other taxa some very scarcely reported medicinal uses have been recorded (110 uses concerning 78 species).

  4. The People of Bear Hunter Speak: Oral Histories of the Cache Valley Shoshones Regarding the Bear River Massacre

    OpenAIRE

    Crawford, Aaron L.

    2007-01-01

    The Cache Valley Shoshone are the survivors of the Bear River Massacre, where a battle between a group of US. volunteer troops from California and a Shoshone village degenerated into the worst Indian massacre in US. history, resulting in the deaths of over 200 Shoshones. The massacre occurred due to increasing tensions over land use between the Shoshones and the Mormon settlers. Following the massacre, the Shoshones attempted settling in several different locations in Box Elder County, eventu...

  5. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    Science.gov (United States)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  6. Historical Population Structure of Central Valley Steelhead and Its Alteration by Dams

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2006-02-01

    Full Text Available Effective conservation and recovery planning for Central Valley steelhead requires an understanding of historical population structure. We describe the historical structure of the Central Valley steelhead evolutionarily significant unit using a multi-phase modeling approach. In the first phase, we identify stream reaches possibly suitable for steelhead spawning and rearing using a habitat model based on environmental envelopes (stream discharge, gradient, and temperature that takes a digital elevation model and climate data as inputs. We identified 151 patches of potentially suitable habitat with more than 10 km of stream habitat, with a total of 25,500 km of suitable habitat. We then measured the distances among habitat patches, and clustered together patches within 35 km of each other into 81 distinct habitat patches. Groups of fish using these 81 patches are hypothesized to be (or to have been independent populations for recovery planning purposes. Consideration of climate and elevation differences among the 81 habitat areas suggests that there are at least four major subdivisions within the Central Valley steelhead ESU that correspond to geographic regions defined by the Sacramento River basin, Suisun Bay area tributaries, San Joaquin tributaries draining the Sierra Nevada, and lower-elevation streams draining to the Buena Vista and Tulare basins, upstream of the San Joaquin River. Of these, it appears that the Sacramento River basin was the main source of steelhead production. Presently, impassable dams block access to 80% of historically available habitat, and block access to all historical spawning habitat for about 38% of the historical populations of steelhead.

  7. Middle Palaeolithic toolstone procurement behaviors at Lusakert Cave 1, Hrazdan valley, Armenia.

    Science.gov (United States)

    Frahm, Ellery; Feinberg, Joshua M; Schmidt-Magee, Beverly A; Wilkinson, Keith N; Gasparyan, Boris; Yeritsyan, Benik; Adler, Daniel S

    2016-02-01

    Strategies employed by Middle Palaeolithic hominins to acquire lithic raw materials often play key roles in assessing their movements through the landscape, relationships with neighboring groups, and cognitive abilities. It has been argued that a dependence on local resources is a widespread characteristic of the Middle Palaeolithic, but how such behaviors were manifested on the landscape remains unclear. Does an abundance of local toolstone reflect frequent encounters with different outcrops while foraging, or was a particular outcrop favored and preferentially quarried? This study examines such behaviors at a finer geospatial scale than is usually possible, allowing us to investigate hominin movements through the landscape surrounding Lusakert Cave 1 in Armenia. Using our newly developed approach to obsidian magnetic characterization, we test a series of hypotheses regarding the locations where hominins procured toolstone from a volcanic complex adjacent to the site. Our goal is to establish whether the cave's occupants procured local obsidian from preferred outcrops or quarries, secondary deposits of obsidian nodules along a river, or a variety of exposures as encountered while moving through the river valley or across the wider volcanic landscape during the course of foraging activities. As we demonstrate here, it is not the case that one particular outcrop or deposit attracted the cave occupants during the studied time intervals. Nor did they acquire obsidian at random across the landscape. Instead, our analyses support the hypothesis that these hominins collected obsidian from outcrops and exposures throughout the adjacent river valley, reflecting the spatial scale of their day-to-day foraging activities. The coincidence of such behaviors within the resource-rich river valley suggests efficient exploitation of a diverse biome during a time interval immediately preceding the Middle to Upper Palaeolithic "transition," the nature and timing of which has yet to

  8. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  9. Geostatistical estimates of future recharge for the Death Valley region

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.

    1998-01-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale

  10. Glacial Fluctuation in the Source Region of the Yangtze River

    International Nuclear Information System (INIS)

    Shengyi, Gao; Qingsong, Fan; Xi, Cao; Li, Ma

    2014-01-01

    Glaciers in the source region of the Yangtze River are not only water resources but also important energy and environmental resources. Glacial fluctuation is an important component of the study of changes in the natural environment, including climate change. We investigated the glaciers in the source region of the Yangtze River, and analyzed the fluctuations using multi-temporal remote sensing data. The trend in glacial fluctuation and the factors that influence it were determined. The results have implications for water resource management and environmental conservation in the Yangtze River region

  11. Distribution and habitat use of king rails in the Illinois and Upper Mississippi River valleys

    Science.gov (United States)

    Darrah, Abigail J.; Krementz, David G.

    2009-01-01

    The migratory population of the king rail (Rallus elegans) has declined dramatically during the past 40 years, emphasizing the need to identify habitat requirements of this species to help guide conservation efforts. To assess distribution and habitat use of king rails along the Illinois and Upper Mississippi valleys, USA, we conducted repeated call-broadcast surveys at 83 locations in 2006 and 114 locations in 2007 distributed among 21 study sites. We detected king rails at 12 survey locations in 2006 and 14 locations in 2007, illustrating the limited distribution of king rails in this region. We found king rails concentrated at Clarence Cannon National Wildlife Refuge, an adjacent private Wetlands Reserve program site, and B. K. Leach Conservation Area, which were located in the Mississippi River floodplain in northeast Missouri. Using Program PRESENCE, we estimated detection probabilities and built models to identify habitat covariates that were important in king rail site occupancy. Habitat covariates included percentage of cover by tall (> 1 m) and short (wetlands that were characterized by high water-vegetation interspersion and little or no cover by woody vegetation. Our results suggest that biologists can improve king rail habitat by implementing management techniques that reduce woody cover and increase vegetation-water interspersion in wetlands.

  12. New insight on the water management in Ica Valley-Peru

    Science.gov (United States)

    Guttman, Joseph; Berger, Diego

    2014-05-01

    The Andes divide Peru into three natural drainage basins: Pacific basin, Atlantic basin and Lake Titicaca basin. According to the National Water Authority (ANA), the Pacific basin is the driest basin. The bulk of water that feed the local aquifers in the coastal Pacific region is coming from rivers that flow west from the Andes. One of them is the Ica River- source of the Ica Aquifer and the Pampas de Villacuri Aquifer. The Ica River flows in a graben that was created by a series of faults. The graben is filled with sand and gravel with interbeded and lenses of clay. The aquifer thickness varies between 25 meters to more than 200 meters. The Ica Valley has an extension of 7700 km2 and belongs to the Province of Ica, the second larger economic center in Peru. The Valley is located in the hyperarid region of the Southern Coastal area of Peru with a few millimeters of precipitation per year. The direct recharge is almost zero. The recharge into the Ica Valley aquifer is comes indirectly by infiltration of storm water through the riverbed generates in the Andes, through irrigation canals and by irrigation return flow. In this hyperarid region, local aquifers like the Ica Valley are extremely valuable resources to local populations and are the key sources of groundwater for agriculture and population needs. Therefore, these aquifers play a crucial role in providing people with water and intense attention should be given to manage the water sector properly and to keep the aquifer sustainable for future generations. The total pumping (from rough estimations) is much greater than the direct and indirect recharge. The deficit in the water balance is reflected in large water level decline, out of operation of shallow wells and the ascending of saline water from deeper layers. The change from flood irrigation that contributes about 35-40% of the water to the aquifer, to drip irrigation dramatically reduces the amount of water that infiltrates into the sub-surface from the

  13. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  14. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    Science.gov (United States)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  15. Hydrology and model of North Fork Solomon River Valley, Kirwin Dam to Waconda Lake, north-central Kansas

    Science.gov (United States)

    Jorgensen, Donald G.; Stullken, Lloyd E.

    1981-01-01

    The alluvial valley of the North Fork Solomon River is an important agricultural area. Reservoir releases diverted below Kirwin Dam are the principal source of irrigation water. During the 1970'S, severe water shortages occurred in Kirwin Reservoir and other nearby reservoirs as a result of an extended drought. Some evidence indicates that surface-water shortages may have been the result of a change in the rainfall-runoff relationship. Examination of the rainfall-runoff relationship shows no apparent trend from 1951 to 1968, but annual records from 1969 to 1976 indicate that deficient rainfall occurred during 6 of the 8 years. Ground water from the alluvial aquifer underlying the river valley also is used extensively for irrigation. Utilization of ground water for irrigation greatly increased from about 200 acre-feet in 1955 to about 12,300 acre-feet in 1976. Part of the surface water diverted for irrigation has percolated downward into the aquifer raising the ground-water level. Ground-water storage in the aquifer increased from 230,000 acre-feet in 1946 to 275,000 acre-feet in 1976-77. A digital model was used to simulate the steady-state conditions in the aquifer prior to closure of Kirwin Dam. Model results indicated that precipitation was the major source of recharge to the aquifer. The effective recharge, or gain from precipitation minus evapotranspiration, was about 11,700 acre-feet per year. The major element of discharge from the aquifer was leakage to the river. The simulated net leakage (leakage to the river minus leakage from the river) was about 11,500 acre-feet per year. The simulated value is consistent with the estimated gain in base flow of the river within the area modeled. Measurements of seepage used to determine gain and loss to the stream were made twice during 1976. Based on these measurements and on base-flow periods identified from hydrographs, it was estimated that the ground-water discharge to the stream has increased about 4,000 acre

  16. Management of invasive plant species in the valley of the River Ślepiotka in Katowice – the example of the REURIS project

    Directory of Open Access Journals (Sweden)

    Frelich Małgorzata

    2014-06-01

    Full Text Available In recent years, programmes aimed at improving environmental conditions in river valleys within urban spaces have been initiated in many of the European Community countries. An example is the project “Revitalization of Urban River Spaces – REURIS” which was implemented in 2009-2012. Its main aim was to revitalize a part of the valley of the River Ślepiotka in Katowice. One of the tasks of the project was a comprehensive treatment to combat invasive plant species occurring in this area, carried out by using a combination of chemical and mechanical methods. Chemical treatment involved the application of herbicide mixtures, and mechanical treatment included, among others, mowing and/or removal of the undesirable plants. The work focused primarily on reducing the spread of two species of the Impatiens genus: I. glandulifera and I. parviflora, and the species Padus serotina, Reynoutria japonica and Solidago canadensis. Currently, the maintenance works on this section of the river are performed by the Urban Greenery Department in Katowice, which continues the elimination of invasive plants, according to the objectives of the REURIS program. In 2012 the Department of Botany and Nature Protection at the Faculty of Biology and Environmental Protection started to monitor the implementation and the effects of the implemented actions for elimination and participated in the action of removal of selected invasive plant species: Impatiens parviflora and Reynoutria japonica within specific areas. These actions led to a reduction in the area occupied by invasive plants and a weakening of their growth rate and ability to reproduce.

  17. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    Science.gov (United States)

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  18. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    Science.gov (United States)

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  19. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  20. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  1. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.

    Science.gov (United States)

    Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V

    2017-01-01

    The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Population structure of Phytophthora infestans in the Toluca Valley region of Central Mexico

    NARCIS (Netherlands)

    Grünwald, N.J.; Flier, W.G.; Sturbaum, A.K.; Garay-Serrano, E.; Bosch, van den G.B.M.; Smart, C.D.; Matuszak, J.M.; Turkensteen, L.J.; Fry, W.E.

    2001-01-01

    We tested the hypothesis that the population of Phytophthora infestans in the Toluca valley region is genetically differentiated according to habitat. Isolates were sampled in three habitats from (i) wild Solanum spp. (WILD), (ii) land-race varieties in low-input production systems (RURAL), and

  3. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    Science.gov (United States)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  4. Effects of past and future groundwater development on the hydrologic system of Verde Valley, Arizona

    Science.gov (United States)

    Garner, Bradley D.; Pool, D.R.

    2013-01-01

    Communities in central Arizona’s Verde Valley must manage limited water supplies in the face of rapidly growing populations. Developing groundwater resources to meet human needs has raised questions about the effects of groundwater withdrawals by pumping on the area’s rivers and streams, particularly the Verde River. U.S. Geological Survey hydrologists used a regional groundwater flow model to simulate the effects of groundwater pumping on streamflow in the Verde River. The study found that streamflow in the Verde River between 1910 and 2005 had been reduced as the result of streamflow depletion by groundwater pumping, also known as capture. Additionally, using three hypothetical scenarios for a period from 2005 to 2110, the study’s findings suggest that streamflow reductions will continue and may increase in the future.

  5. Cleanup and valuation of waters of the aquifer of M’zab Valley (Algeria

    Directory of Open Access Journals (Sweden)

    Ouled Belkhir Cheikh

    2016-06-01

    Full Text Available The M’zab valley is a hyper arid region of average rainfall not exceeding 100 mm per year. However, the rare floods that occur in M’zab River drain large volumes of surface water. Thanks to the genius of the local population, traditional dams were made for artificial recharge of groundwater. Grace of traditional wells drilled in the valley, farmers irrigate their palm groves and gardens. However, since more than half a century, the contribution of deep drilling for the exploitation of the aquifer of the Continental Intercalary posed environmental problems. On the basis of investigations and surveys of the local population during the years 2010, 2011, 2012 and 2013, it appears that these modern techniques in water catchment caused harmful consequences to the region like the rising of water consumption, pollution of groundwater and soil salinity. Solutions and recommendations are outlined in this article.

  6. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    International Nuclear Information System (INIS)

    Tiwari, S.; Kumar, R.; Tunved, P.; Singh, S.; Panicker, A.S.

    2016-01-01

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m"−"3 with an annual average of 7.17 ± 1.89 μg m"−"3_, while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m"−"3) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m"−"3 ppmv"−"1 (12.6 ± 2.2 μg m"−"3 ppmv"−"1) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm"−"2, however, the RF value at the surface (SFC) was − 21.1 Wm"−"2 which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm"−"2) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm"−"2 varying from + 23.1 to + 43.8 Wm"−"2. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K day"−"1 indicates the enhancement in radiation

  7. Geomorphology and geologic characteristics of the Savannah River floodplain in the vicinity of the Savannah River Site, South Carolina and Georgia

    International Nuclear Information System (INIS)

    Leeth, D.C.; Nagle, D.D.

    1994-01-01

    The potential for migration of contaminated ground water from the US Department of Energy Savannah River Site (SRS) beneath the Savannah River into Georgia (trans-river flow) is a subject of recent environmental concern. The degree of incision of the ancestral Savannah River into the local hydrogeologic framework is a significant consideration in the assessment of trans-river flow. The objective of this investigation is to identify the geologic formations which subcrop beneath the alluvium and the extent to which the river has incised regional confining beds. To meet this objective 18 boreholes were drilled to depths of 25 to 100 feet along three transects across the present floodplain. These borings provided data on the hydrogeologic character of the strata that fill the alluvial valley. The profiles from the borehole transects were compared with electrical conductivity (EM-34) data to ascertain the applicability of this geophysical technique to future investigations

  8. Landslide activity as a threat to infrastructure in river valleys - An example from outer Western Carpathians (Poland)

    Science.gov (United States)

    Łuszczyńska, Katarzyna; Wistuba, Małgorzata; Malik, Ireneusz

    2017-11-01

    Intensive development of the area of Polish Carpathians increases the scale of landslide risk. Thus detecting landslide hazards and risks became important issue for spatial planning in the area. We applied dendrochronological methods and GIS analysis for better understanding of landslide activity and related hazards in the test area (3,75 km2): Salomonka valley and nearby slopes in the Beskid Żywiecki Mts., Outer Western Carpathians, southern Poland. We applied eccentricity index of radial growth of trees to date past landslide events. Dendrochronological results allowed us to determine the mean frequency of landsliding at each sampling point which were next interpolated into a map of landslide hazard. In total we took samples at 46 points. In each point we sampled 3 coniferous trees. Landslide hazard map shows a medium (23 sampling points) and low (20 sampling points) level of landslide activity for most of the area. The highest level of activity was recorded for the largest landslide. Results of the dendrochronological study suggest that all landslides reaching downslope to Salomonka valley floor are active. LiDAR-based analysis of relief shows that there is an active coupling between those landslides and river channel. Thus channel damming and formation of an episodic lake are probable. The hazard of flooding valley floor upstream of active landslides should be included in the local spatial planning system and crisis management system.

  9. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    Science.gov (United States)

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  10. 27 CFR 9.66 - Russian River Valley.

    Science.gov (United States)

    2010-04-01

    ... Springs map. (22) Proceed 4.8 miles north-northwest along Mark West Springs Road, which becomes Porter Creek Road, to its intersection with Franz Valley Road, a light-duty road to the north of Porter Creek...

  11. An integrated approach to the Environmental Monitoring Plan of the Pertuso spring (Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2014-06-01

    Full Text Available Quantitative assessment of groundwater and surface water is an important tool for sustainable management and protection of these important resources. This paper deals with the design of a multi-disciplinary monitoring plan related to the catchment project of the Pertuso spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important water network in the South part of Roma district. According to the Legislative Decree 152/2006, as modified by DM 260/2010, any infrastructure design should take in consideration an Environmental Monitoring Plan for the hydrogeological settings of the study area. Thus, the hydrogeological characterization combined with an Environmental Monitoring Plan provides to evaluate the potential adverse environmental impacts due catchment works. For water resources assessment and management, the quantification of groundwater recharge is a preliminary step. As a matter of fact, it has been included the quantitative characterization of the Pertuso spring, in the aim of to protect catchment area, which is directly affect by the natural hydrogeological balance of this aquifer. Thus, a multi-disciplinary monitoring plan has been set up, including quantitative and hydrogeochemical measurements, both for groundwater and surface water of the Upper Valley of Aniene River. The target of this Environmental Monitoring Plan is to set up the background framework on the hydromorphological, physico-chemical and biological properties of water resources in the water basin influenced aim by any potential environmental impact due to the construction activities. The Environmental Monitoring Plan and main features of the monitoring network will be presented in this study.

  12. Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Drome River Valley Case Study

    International Nuclear Information System (INIS)

    Abrami, G.

    2004-11-01

    Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Dr me River Valley Case Study. In the context of Agent-Based Modelling for participative renewable resources management, this thesis is concerned with representing multiple tangled levels of organisation of a system. The Agent-Group-Role (AGR) formalism is borrowed from computer science research. It has been conceptually specified to handle levels of organisation, and behaviours within levels of organisation. A design methodology dedicated to AGR modelling has been developed, together with an implementation of the formalism over a multi-agent platform. AGR models of agricultural water management in the French Dr me River Valley have been built and tested. This experiment demonstrates the AGR formalism ability to (1) clarify usually implicit hypothesis on action modes, scales or viewpoints (2) facilitate the definition of scenarios with various collective rules, and various rules in enforcement behaviours (3) generate bricks for generic irrigated catchment models. (author)

  13. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  14. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River basin, China

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Zhou, Yali; Pang, Jiangli; Zha, Xiaochun; Fan, Longjiang; Mao, Peini

    2018-05-01

    Palaeoflood slackwater deposits (SWDs) along the river banks have important implications for the reconstruction of the past hydro-climatic events. Two palaeoflood SWD beds were identified in the Holocene loess-soil sequences on the cliff river banks along the Gold Gorge of the upper Hanjiang River by field investigation and laboratory analysis. They have recorded two palaeoflood events which were dated by optically stimulated luminescence to 3.2-2.8 ka and 2.1-1.8 ka, respectively. The reliability of the ages obtained for the two events are further confirmed by the presence of archaeological remains and good regional pedostratigraphic correlation. The peak discharges of two palaeoflood events at the studied sites were estimated to be 16,560-17,930 m3/s. A correlation with the palaeoflood events identified in the other reaches shows that great floods occurred frequently during the episodes of 3200-2800 and 2000-1700 a BP along the upper Hanjiang River valley during the last 4000 years. These phases of palaeoflood events in central China are well correlated with the climatic variability identified by δ18O record in the stalagmites from the middle Yangtze River Basin and show apparent global linkages. Palaeoflood studies in a watershed scale also imply that strengthened human activities during the Shang dynasty (BCE 1600-1100) and Han dynasty (BCE206-CE265) may have caused accelerated soil erosion along the upper Hanjiang River valley.

  15. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    Science.gov (United States)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [230Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground

  16. Paleodrainages of the Eastern Sahara - The radar rivers revisited (SIR-A/B implications for a mid-tertiary Trans-African drainage system)

    Science.gov (United States)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.; Mchugh, W. P.; Haynes, C. C.

    1986-01-01

    The images obtained by the Shuttle Imaging Radar (SIR)-A and -B systems over the southwestern Egypt and northwestern Sudan were coregistered with the Landsat images and the existing maps to aid in extrapolations of the buried paleodrainages ('radar rivers'), first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers, RR-1 (broad, aggraded valleys filled with alluvium), RR-2 (braided channels inset in the RR-1 valleys), and RR-3 (narrow, long, bedrock-incised channels). A generalized model of the radar rivers, based on field studies and regional geologic relations, shows inferred changes in river regimen since the large valleys were established during the later Paleogene-early Neogene. It is suggested that a former Trans-African master stream system may have flowed from headwaters in the Red Sea Hills southwestward across North Africa, discharging into the Atlantic at the Paleo-Niger delta, prior to the Neogene domal uplifts and building of volcanic edifices across the paths of these ancient watercourses.

  17. Philosophy of river problems: local to regional, static to mobile

    International Nuclear Information System (INIS)

    Jansky, L.

    1997-01-01

    According to the statistics, thirteen of the twenty-five major river basins in Europe are basins of transboundary rivers. The Danube river basin is largest transboundary river basin in Europe. Almost in each case the local and regional problems arise, like division of fishing rights (or rights on river beds), right to claim tolls on navigation, how to adjust boundaries if the channel moves, or rights to claim duty on crossing the river, or to build bridges, weirs, etc. All the above problems on a larger scale include also rights of non-contiguous lands (i.e. not fronting on the river) to use the river for navigation, for passage of migrating fish, to exploit river (e.g. bed sediments) without damage by one country or society to another below. Similarly, pollution and large-scale removal of water, are problems on regional or national levels. Disputes usually arise from the above, more or less exacerbated by their superimposition or other non-river problems, e.g. religion, politics, historical issues, recent aggression, relative prosperity, expanding economy vs. contrasting economy. May be cause or consequence of many of these. And somewhere here is likely the case of Gabcikovo on Danube between Slovakia and Hungary, as well. (author)

  18. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    Science.gov (United States)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  19. [Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method].

    Science.gov (United States)

    Xu, Nai Yin; Jin, Shi Qiao; Li, Jian

    2017-01-01

    The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing

  20. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  1. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK

    Science.gov (United States)

    Howard, A. J.; Coulthard, T. J.; Knight, D.

    2017-09-01

    The exploitation of river systems for power and navigation has commonly been achieved through the installation of a variety of in-channel obstacles of which weirs in Britain are amongst the most common. In the UK, the historic value of many of these features is recognised by planning designations and protection more commonly associated with historic buildings and other major monuments. Their construction, particularly in the north and west of Britain, has often been associated with industries such as textiles, chemicals, and mining, which have polluted waterways with heavy metals and other contaminants. The construction of weirs altered local channel gradients resulting in sedimentation upstream with the potential as well for elevated levels of contamination in sediments deposited there. For centuries these weirs have remained largely undisturbed, but as a result of the growth in hydropower and the drive to improve water quality under the European Union's Water Framework Directive, these structures are under increasing pressure to be modified or removed altogether. At present, weir modifications appear to be considered largely on an individual basis, with little focus on the wider impacts this might have on valley floor environments. Using a numerical modelling approach, this paper simulates the removal of major weirs along a 24-km stretch of the river Derwent, Derbyshire, UK, designated as a UNESCO World Heritage Site. The results suggest that although removal would not result in significant changes to the valley morphology, localised erosion would occur upstream of structures as the river readjusts its base level to new boundary conditions. Modelling indicates that sediment would also be evacuated away from the study area. In the context of the Derwent valley, this raises the potential for the remobilisation of contaminants (legacy sediments) within the wider floodplain system, which could have detrimental, long-term health and environmental implications for the

  2. Topoclimatic modeling for minimum temperature prediction at a regional scale in the Central Valley of Chile

    International Nuclear Information System (INIS)

    Santibáñez, F.; Morales, L.; Fuente, J. de la; Cellier, P.; Huete, A.

    1997-01-01

    Spring frost may strongly affect fruit production in the Central Valley of Chile. Minimum temperatures are spatially variable owing to topography and soil conditions. A methodology for forecasting minimum temperature at a regional scale in the Central Valley of Chile, integrating spatial variability of temperature under radiative frost conditions, has been developed. It uses simultaneously a model for forecasting minimum temperatures at a reference station using air temperature and humidity measured at 6 pm, and topoclimatic models, based on satellite infra-red imagery (NOAA/AVHRR) and a digital elevation model, to extend the prediction at a regional scale. The methodological developments were integrated in a geographic information system for geo referencing of a meteorological station with satellite imagery and modeled output. This approach proved to be a useful tool for short range (12 h) minimum temperature prediction by generating thermal images over the Central Valley of Chile. It may also be used as a tool for frost risk assessment, in order to adapt production to local climatological conditions. (author)

  3. Neogene palaeochannel deposits in Sudan - Remnants of a trans-Saharan river system?

    Science.gov (United States)

    Bussert, Robert; Eisawi, Ali A. M.; Hamed, Basher; Babikir, Ibrahim A. A.

    2018-05-01

    The start of Nile-type trans-Saharan drainage systems in NE Africa during the Cenozoic is disputed. Stratigraphical and sedimentological data in Egypt are partly in conflict with the uplift history of potential source areas of water and sediment in East Africa. Here, we investigate outcrops of the Wadi Awatib Conglomerate in Sudan that provide the first evidence of northerly flowing Neogene rivers in the region. Dimension and relief of basal erosion surfaces, overall geometry of deposits and palaeocurrent indicators demonstrate that the deposits represent the fill of northward-oriented incised valleys. The conglomerates were deposited in deep gravel-bed rivers, by hyperconcentrated flows, tractions carpets and gravel bars, primarily during heavily sediment-laden floods of probably monsoonal origin. Stratigraphical and geomorphological relationships show that the deposits are between Eocene and Pliocene in age. Considering the structural history of the region and periods in the Cenozoic with palaeoclimatic conditions suitable for the production and transport of gravels, we hypothesize that the dramatic base-level fall during the Late Miocene Messinian salinity crisis in combination with a favorable palaeoclimate caused the incision of valleys and their subsequent filling with conglomerates. Sea-level change in the Mediterranean Sea and headward erosion of streams that were connected to the Egyptian Nile might have been the primary cause of valley incision and deposition of conglomerates, despite a location far inland from the coastline. We suggest that the deposits document a relatively young Neogene (Messinian to early Pliocene) trans-Saharan river system unrelated to uplift of the Ethiopian Plateau.

  4. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  5. HLA haplotype map of river valley populations with hemochromatosis traced through five centuries in Central Sweden.

    Science.gov (United States)

    Olsson, K Sigvard; Ritter, Bernd; Hansson, Norbeth; Chowdhury, Ruma R

    2008-07-01

    The hemochromatosis mutation, C282Y of the HFE gene, seems to have originated from a single event which once occurred in a person living in the north west of Europe carrying human leukocyte antigen (HLA)-A3-B7. In descendants of this ancestor also other haplotypes appear probably caused by local recombinations and founder effects. The background of these associations is unknown. Isolated river valley populations may be fruitful for the mapping of genetic disorders such as hemochromatosis. In this study, we try to test this hypothesis in a study from central Sweden where the haplotyope A1-B8 was common. HLA haplotypes and HFE mutations were studied in hemochromatosis patients with present or past parental origin in a sparsely populated (1/km(2)) rural district (n = 8366 in the year of 2005), in central Sweden. Pedigrees were constructed from the Swedish church book registry. Extended haplotypes were studied to evaluate origin of recombinations. There were 87 original probands, 36 females and 51 males identified during 30 yr, of whom 86% carried C282Y/C282Y and 14% C282Y/H63D. Of 32 different HLA haplotypes A1-B8 was the most common (34%), followed by A3-B7 (16%), both in strong linkage disequilibrium with controls, (P females. River valley populations may contain HLA haplotypes reflecting their demographic history. This study has demonstrated that the resistance against recombinations between HLA-A and HFE make HLA haplotypes excellent markers for population movements. Founder effects and genetic drift from bottleneck populations (surviving the plague?) may explain the commonness of the mutation in central Scandinavia. The intergenerational time difference >30 yr was greater than expected and means that the age of the original mutation may be underestimated.

  6. Human biomonitoring for Cd, Hg and Pb in blood of inhabitants of the Sacco Valley (Italy

    Directory of Open Access Journals (Sweden)

    Sonia D'Ilio

    2013-03-01

    Full Text Available INTRODUCTION. The Sacco Valley (Lazio, Italy is characterized by high density population and several industrial chemical productions that during the time had led to a substantial amount of by-products. The result was a severe environmental pollution of the area and in particular of the river Sacco. In 1991, the analysis of water and soils samples of three industrial landfills revealed the presence of organochlorine compounds and heavy metals. A research project named "Health of residents living in Sacco Valley area", coordinated by the regional Department of Epidemiology, was undertaken and financed to evaluate the state of health of the population living near those polluted areas. MATERIALS AND METHODS. Cd, Hg and Pb were quantified in 246 blood samples of potentially exposed residents of the Sacco Valley by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS. RESULTS. Individuals who agreed to be sampled did not exhibit high levels of the elements. The distance from the river does not seem to be directly connected with the elements levels in blood. The contribution of these contaminants to the total intake due to ingestion of food was difficult to evaluate. The unclear trend of data would require a characterization of the polluted site with environmental sampling of different matrices.

  7. Some aspects of the distribution and dynamics of the benthic macroinvertebrate groups from Nimăieşti valley river

    Directory of Open Access Journals (Sweden)

    CUPŞA Diana

    2005-09-01

    Full Text Available In the Nimăieşti Valley river we found in a number of four sample sites a community of benthic macroinvertebrates represented by Oligochaeta, Ephemeroptera larva, Trichoptera larva, Chironomida larva and Hidracarina species. The communities structure vary depending on season and the sampling site acording to the water quality and trophic condition of the substrate. The greatest diversity was recorded during the summer months (may-august and comparing the sample sites, we found that the first three sampling sites are very similar from the point of view of the macroinvertebrate community, but the fourth sampling site the community is different because the river pases through the town of Beiuş and as a consequence the water quality is lower that at the other three sample sites.

  8. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  9. A maximum likelihood approach to generate hypotheses on the evolution and historical biogeography in the Lower Volga Valley regions (southwest Russia)

    Science.gov (United States)

    Mavrodiev, Evgeny V; Laktionov, Alexy P; Cellinese, Nico

    2012-01-01

    The evolution of the diverse flora in the Lower Volga Valley (LVV) (southwest Russia) is complex due to the composite geomorphology and tectonic history of the Caspian Sea and adjacent areas. In the absence of phylogenetic studies and temporal information, we implemented a maximum likelihood (ML) approach and stochastic character mapping reconstruction aiming at recovering historical signals from species occurrence data. A taxon-area matrix of 13 floristic areas and 1018 extant species was constructed and analyzed with RAxML and Mesquite. Additionally, we simulated scenarios with numbers of hypothetical extinct taxa from an unknown palaeoflora that occupied the areas before the dramatic transgression and regression events that have occurred from the Pleistocene to the present day. The flora occurring strictly along the river valley and delta appear to be younger than that of adjacent steppes and desert-like regions, regardless of the chronology of transgression and regression events that led to the geomorphological formation of the LVV. This result is also supported when hypothetical extinct taxa are included in the analyses. The history of each species was inferred by using a stochastic character mapping reconstruction method as implemented in Mesquite. Individual histories appear to be independent from one another and have been shaped by repeated dispersal and extinction events. These reconstructions provide testable hypotheses for more in-depth investigations of their population structure and dynamics. PMID:22957179

  10. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  11. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  12. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  13. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S., E-mail: smbtiwari@tropmet.res.in [Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060 (India); Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Kumar, R. [Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO (United States); Tunved, P. [Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Singh, S. [CSIR, Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand 826001 (India); Panicker, A.S. [Indian Institute of Tropical Meteorology, Pune 411008 (India)

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m{sup −3} with an annual average of 7.17 ± 1.89 μg m{sup −3}{sub ,} while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m{sup −3}) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m{sup −3} ppmv{sup −1} (12.6 ± 2.2 μg m{sup −3} ppmv{sup −1}) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm{sup −2}, however, the RF value at the surface (SFC) was − 21.1 Wm{sup −2} which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm{sup −2}) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm{sup −2} varying from + 23.1 to + 43.8 Wm{sup −2}. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K

  14. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  15. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  16. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  17. CHARACTERISTICS OF MEI-YU PRECIPITATION AND SVD ANALYSIS OF PRECIPITATION OVER THE YANGTZE-HUAIHE RIVERS VALLEYS AND THE SEA SURFACE TEMPERATURE IN THE NORTHERN PACIFIC OCEAN

    Institute of Scientific and Technical Information of China (English)

    MAO Wen-shu; WANG Qian-qian; PENG Jun; LI Yong-hua

    2008-01-01

    Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal function (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.

  18. Climate influences on upper Limpopo River flow

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Keywords: Limpopo Valley, hydro-meteorology, surface water deficit. * To whom all ... millenia and there is a history of drought impacts on vegetation. (Ekblom et ... water budget of the upper Limpopo River valley using direct.

  19. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Science.gov (United States)

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte. Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  20. Large mammals from the Upper Neopleistocene reference sections in the Tunka rift valley, southwestern Baikal Region

    Science.gov (United States)

    Shchetnikov, A. A.; Klementiev, A. M.; Filinov, I. A.; Semeney, E. Yu.

    2015-03-01

    This work presents the data on new finds of fossil macrotheriofauna in the reference sections of the Upper Neopleistocene sediments in the Tunka rift valley (southwestern Baikal Region). The osteological material of a number of Late Neopleistocene mammals including extinct species rare for the Baikal region such as Crocuta spelaea, Panthera spelaea, and Spirocerus kiakhtensis (?) was directly dated with a radiocarbon (AMS) method. The obtained 14C data (18000-35000 years) allow one to rejuvenate significantly the upper limit of the common age interval of habitat of these animals in southern part of Eastern Siberia. Cave hyena and spiral-horned antelope lived in the Tunka rift valley in the Baikal region in Late Kargino time (37-24 ka), and cave lion survived the maximum in the Sartan cryochron in the region (21-20 ka). The study of collected paleontological collections provides a basis for selection of independent Kargino (MIS 3) faunal assemblages to use them for regional biostratigraphic analysis of Pleistocene deposits. Radiocarbon age dating of samples allows one to attribute confidently all paleofaunal remains available to the second half of the Late Pleistocene.

  1. COHORT OF WOMEN LIVING IN OR NEAR A HIGHLY INDUSTRIALIZED AREA OF KANAWHA RIVER VALLEY IN WEST VIRGINIA: ENDOMETRIOSIS AND BLOOD LEVELS OF DIOXIN AND DIOXIN-LIKE CHEMICALS

    Science.gov (United States)

    Introduction Historical releases of dioxin and dioxin-like chemicals with subsequent impacts to environmental media in the Kanawha River Valley (KRV) of West Virginia have been well documented.' The bulk of dioxin found in this area appears to be derived from the production of 2,...

  2. Hydrogeomorphic and hydraulic habitats of the Niobrara River, Nebraska-with special emphasis on the Niobrara National Scenic River

    Science.gov (United States)

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathan J.

    2010-01-01

    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources' recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as ?fully appropriated? has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit

  3. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Anderson, John F.; Clark, Kerry L.; Durden, Lance A.

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year. PMID:28260991

  4. Physicochemical composition of water of Sirdariya River (within of Sogd region)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Khakimov, N.; Murtazaev, Kh.; Sufiev, A.

    2010-01-01

    Present article is devoted to physicochemical composition of water of Sirdariya River (within of Sogd region). During 12 months the physicochemical composition of above mentioned river was studied by means of water sampling from 10 points of river. The analysis was conducted and it was defined that the main contaminants of the river are the plant facilities, the deposits of radioactive ores and agricultural grounds.

  5. Factors controlling sedimentation in the Toruń-Eberswalde ice-marginal valley during the Pomeranian phase of the Weichselian glaciation: an overview

    Directory of Open Access Journals (Sweden)

    Pisarska-Jamroży Małgorzata

    2015-03-01

    Full Text Available During the Pleistocene the Scandinavian ice sheet drained huge quantities of sediment-laden meltwaters. These meltwaters supplied ice-marginal valleys that formed parallel to the front of the ice sheet. Not without significance was the supply of ice-marginal valleys from extraglacial rivers in the south. Moreover, periglacial conditions during and after sedimentation in ice-marginal valleys, the morphology of valley bedrocks, and erosion of older sediments played important roles in the depositional scenarios, and in the mineralogical composition of the sediments. The mechanisms that controlled the supply and deposition in ice-marginal valleys were analysed on the basis of a Pleistocene ice-marginal valley that was supplied by northern and southern source areas in the immediate vicinity. Investigations were conducted in one of the largest ice-marginal valleys of the Polish-German lowlands, i.e., the Toruń-Eberswalde ice-marginal valley, in sandurs (Drawa and Gwda supplied sediments and waters from the north into this valley, and on extraglacial river terraces (pre-Noteć and pre-Warta rivers, formed simultaneously with the sandurs and ice-marginal valley (Pomeranian phase of Weichselian glaciation supplied sediments and waters from the south into this valley. A much debated question is how similar, or different, depositional processes and sediments were that contributed to the formation of the Toruń-Eberswalde ice-marginal valley, and whether or not it is possible to differentiate mostly rapidly aggraded sandur sediments from ice-marginal valley sediments. Another question addresses the contribution of extraglacial feeding of the Toruń-Eberswalde ice-marginal valley. These matters were addressed by a wide range of analyses: sediment texture and structure, architectural elements of sediments, frequency of sedimentary successions, heavy-mineral analysis (both transparent and opaque heavy minerals, analysis of rounding and frosting of quartz

  6. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  7. New information on regional subsidence and soil fracturing in Mexico City Valley

    Directory of Open Access Journals (Sweden)

    G. Auvinet

    2015-11-01

    Full Text Available In this paper, updated information about regional subsidence in Mexico City downtown area is presented. Data obtained by R. Gayol in 1891, are compared with information obtained recently from surveys using the reference points of Sistema de Aguas de la Ciudad de México (2008 and on the elevation of a cloud of points on the ground surface determined using Light Detection and Ranging (LiDAR technology. In addition, this paper provides an overview of recent data obtained from systematic studies focused on understanding soil fracturing associated with regional land subsidence and mapping of areas susceptible to cracking in Mexico City Valley.

  8. Investigating the landscape of Arroyo Seco—Decoding the past—A teaching guide to climate-controlled landscape evolution in a tectonically active region

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.; Havens, Jeremy C.

    2017-05-19

    IntroductionArroyo Seco is a river that flows eastward out of the Santa Lucia Range in Monterey County, California. The Santa Lucia Range is considered part of the central California Coast Range. Arroyo Seco flows out of the Santa Lucia Range into the Salinas River valley, near the town of Greenfield, where it joins the Salinas River. The Salinas River flows north into Monterey Bay about 40 miles from where it merges with Arroyo Seco. In the mountain range, Arroyo Seco has cut or eroded a broad and deep valley. This valley preserves a geologic story in the landscape that is influenced by both fault-controlled mountain building (tectonics) and sea level fluctuations (regional climate).Broad flat surfaces called river terraces, once eroded by Arroyo Seco, can be observed along the modern drainage. In the valley, terraces are also preserved like climbing stairs up to 1,800 feet above Arroyo Seco today. These terraces mark where Arroyo Seco once flowed.The terraces were formed by the river because no matter how high they are, the terraces are covered by gravel deposits exactly like those that can be observed in the river today. The Santa Lucia Range, Arroyo Seco, and the Salinas River valley must have looked very different when the highest and oldest terraces were forming. The Santa Lucia Range may have been lower, the Arroyo Seco may have been steeper and wider, and the Salinas River valley may have been much smaller.Arroyo Seco, like all rivers, is always changing. Some-times rivers flow very straight, and sometimes they are curvy. Sometimes rivers are cutting down or eroding the landscape, and sometimes they are not eroding but depositing material. Sometimes rivers are neither eroding nor transporting material. The influences that change the behavior of Arroyo Seco are mountain uplift caused by fault moment and sea level changes driven by regional climate change. When a stream is affected by one or both of these influences, the stream accommodates the change by

  9. The Demographics of Travel in the Two Rivers-Ottauquechee Region

    Science.gov (United States)

    2009-02-19

    In March of 2008, the Two Rivers-Ottauquechee Regional Commission (TRORC) contracted with TranSystems, a consulting firm based in Montpelier, to conduct a regional transportation planning study for the region. Called the Demographics of Transportatio...

  10. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  11. Impacts of the 2016 outburst flood on the Bhote Koshi River valley, central Nepal

    Science.gov (United States)

    Cook, Kristen; Andermann, Christoff; Gimbert, Florent; Hovius, Niels; Adhikari, Basanta

    2017-04-01

    The central Nepal Himalaya is a region of rapid erosion where fluvial processes are largely driven by the annual Indian Summer Monsoon, which delivers up to several meters of precipitation each year. However, the rivers in this region are also subject to rare catastrophic floods caused by the sudden failure of landslide or moraine dams. Because these floods happen rarely, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan rivers is poorly constrained. On the 5th of July, 2016, the Bhote Koshi River in central Nepal was hit by a glacial lake outburst flood (GLOF). The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. Overall, our observatory data span two monsoon seasons, allowing us to evaluate the impacts of the outburst flood relative to the annual monsoon flood. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. We map changes in the channel and associated mass wasting using rapidEye imagery from Oct. 2015 and Oct. 2016. We also use repeat terrestrial lidar scans to quantify the magnitude of change in multiple locations along the river channel and to measure bank

  12. Causes of environmental change in the Alligator Rivers region

    International Nuclear Information System (INIS)

    Skidmore, J.

    1990-01-01

    Covering some 28,000 square kilometres of the Northern Territory, the Alligator Rivers Region (ARR) includes the catchments of the East, South and West Alligator Rivers, and many small abandoned uranium mines. To introduce the problems of human impact on the ARR, the toxicologically significant aspects of the local environment were first examined, then the possible effects on it of mining and other human activities. It was found that the most deleterious impact on the region is not caused by mining but by human settlement, introduction of animals (notably the buffalo) and plants, the use of fire and tourism

  13. Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho

    Science.gov (United States)

    Farrand, W. H.; Harsanyi, Joseph C.

    1995-01-01

    The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron

  14. Valley evolution of the Lower Rhine in LGM, Lateglacial and Early Holocene.

    NARCIS (Netherlands)

    Cohen, K.M.; Hoek, W.Z.; Stouthamer, E.; Geurts, A.H.; Janssens, M.; Kasse, C.; Busschers, F.S.; Hijma, M.P.; Erkens, G.

    2013-01-01

    The impact of transient climate change, for example at glacial-interglacial transitions, on the alluvial valley of the lower reaches of larger river systems has become a classic topic of fluvial geomorphology and quaternary geological study. The process of contraction of Holocene river activity into

  15. Regional economic impacts of Grand Canyon river runners.

    Science.gov (United States)

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  16. Inter-epidemic transmission of Rift Valley fever in livestock in the Kilombero River Valley, Tanzania: a cross-sectional survey.

    Directory of Open Access Journals (Sweden)

    Robert D Sumaye

    Full Text Available BACKGROUND: In recent years, evidence of Rift Valley fever (RVF transmission during inter-epidemic periods in parts of Africa has increasingly been reported. The inter-epidemic transmissions generally pass undetected where there is no surveillance in the livestock or human populations. We studied the presence of and the determinants for inter-epidemic RVF transmission in an area experiencing annual flooding in southern Tanzania. METHODOLOGY: A cross-sectional sero-survey was conducted in randomly selected cattle, sheep and goats in the Kilombero river valley from May to August 2011, approximately four years after the 2006/07 RVF outbreak in Tanzania. The exposure status to RVF virus (RVFV was determined using two commercial ELISA kits, detecting IgM and IgG antibodies in serum. Information about determinants was obtained through structured interviews with herd owners. FINDINGS: An overall seroprevalence of 11.3% (n = 1680 was recorded; 5.5% in animals born after the 2006/07 RVF outbreak and 22.7% in animals present during the outbreak. There was a linear increase in prevalence in the post-epidemic annual cohorts. Nine inhibition-ELISA positive samples were also positive for RVFV IgM antibodies indicating a recent infection. The spatial distribution of seroprevalence exhibited a few hotspots. The sex difference in seroprevalence in animals born after the previous epidemic was not significant (6.1% vs. 4.6% for females and males respectively, p = 0.158 whereas it was significant in animals present during the outbreak (26.0% vs. 7.8% for females and males respectively, p15 km from the flood plain were more likely to have antibodies than those living <5 km (OR 1.92; 95% CI 1.04-3.56. Species, breed, herd composition, grazing practices and altitude were not associated with seropositivity. CONCLUSION: These findings indicate post-epidemic transmission of RVFV in the study area. The linear increase in seroprevalence in the post-epidemic annual cohorts

  17. Multi-scale tectonic controls on fluvial terrace formation in a glacioeustatically-dominated river system: inference from the lower Min¿o terrace record

    NARCIS (Netherlands)

    Viveen, W.

    2013-01-01

    The general aim of this thesis is to untangle the interacting effects of climate, glacioeustacy, and regional, and local tectonics on fluvial terrace formation. The NW Iberian lower Miño River valley was chosen as a study site, because for this region, a very detailed, long-term,

  18. Classification of Tropical River Using Chemometrics Technique: Case Study in Pahang River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Nur Hishaam Sulaiman

    2015-01-01

    River classification is very important to know the river characteristic in study areas, where this database can help to understand the behaviour of the river. This article discusses about river classification using Chemometrics techniques in mainstream of Pahang River. Based on river survey, GIS and Remote Sensing database, the chemometric analysis techniques have been used to identify the cluster on the Pahang River using Hierarchical Agglomerative Cluster Analysis (HACA). Calibration and validation process using Discriminant Analysis (DA) has been used to confirm the HACA result. Principal Component Analysis (PCA) study to see the strong coefficient where the Pahang River has been classed. The results indicated the main of Pahang River has been classed to three main clusters as upstream, middle stream and downstream. Base on DA analysis, the calibration and validation model shows 100 % convinced. While the PCA indicates there are three variables that have a significant correlation, domination slope with R"2 0.796, L/D ratio with R"2 -0868 and sinuosity with R"2 0.557. Map of the river classification with moving class also was produced. Where the green colour considered in valley erosion zone, yellow in a low terrace of land near the channels and red colour class in flood plain and valley deposition zone. From this result, the basic information can be produced to understand the characteristics of the main Pahang River. This result is important to local authorities to make decisions according to the cluster or guidelines for future study in Pahang River, Malaysia specifically and for Tropical River generally. The research findings are important to local authorities by providing basic data as a guidelines to the integrated river management at Pahang River, and Tropical River in general. (author)

  19. Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri

    2013-06-01

    Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.

  20. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    a flow reduction in the order of 20 % in a natural spring, whereas no effect could be measured in neither short nor deep piezometers in the river valley 50 m from the spring. Problems of measuring effects of pumping are partly caused by disturbances from natural water level fluctuations. In this aspect...

  1. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).

    Science.gov (United States)

    Mooney, C; Farrier, D

    2002-01-01

    Kangaroo Valley is a drinking water supply catchment for Kangaroo Valley village, parts of the Southern Highlands and Sydney. It is also a popular recreation area both for swimming and canoeing. Land use has traditionally been dominated by dairy farming but there has been significant and continuing development of land for hobby farms and rural residential subdivision. Dairy industry restructuring has affected the viability of some farms in the Valley and created additional pressure for subdivision. River health is a function of flows, water quality, riparian vegetation, geomorphology and aquatic habitat and riverine biota. River flows in the Kangaroo River are affected by water extraction and storage for urban water supply and extraction by commercial irrigators and riparian land holders which have a significant impact at low flows. Current water quality often does not meet ANZECC Guidelines for primary contact and recreation and the river is a poor source of raw drinking water. Key sources of contaminants are wastewater runoff from agriculture, and poorly performing on-site sewage management systems. Riparian vegetation, which is critical to the maintenance of in-stream ecosystems suffers from uncontrolled stock access and weed infestation. The management of land use and resulting diffuse pollution sources is critical to the long term health of the river. The Healthy Rivers Commission of New South Wales Independent Inquiry into the Shoalhaven River System Final Report July, 1999 found that the longer term protection of the health of the Kangaroo River is contingent upon achievement of patterns of land use that have regard to land capability and also to the capability of the river to withstand the impacts of inappropriate or poorly managed land uses. This micro case study of Kangaroo Valley examines the complex legal and administrative arrangements with particular reference to the management of diffuse pollution for river health. In the past, diffuse pollution has

  2. Selenium investigations in the Elk Valley (British Columbia) and the Cheviot and Luscar coal mines (Alberta)

    International Nuclear Information System (INIS)

    Chapman, P.; Brinker, C.; Symbaluk, M.; Jones, R.

    2009-01-01

    This presentation reported on a study that examined the concentration of selenium (Se) in the waters of the Elk River to determine the risks to the aquatic environment. Se concentrations are increasing in water downstream of coal mines. Se concentrations in benthic invertebrates in the Elk River are high, but have not increased over the last few years. The viability and productivity of fish and water bird populations do not appear to be negatively affected. The potential Se effects to trout in Alberta are being examined further in an effort to establish a certain adverse effects threshold for trout in the Elk River Valley. Human health or terrestrial wildlife do not appear to be adversely affected. Monitoring and management is the main focus of the study. Management studies include predicting future Se releases under different mining scenarios; determining factors affecting the cycling and conversion of inorganic Se once it enters the aquatic environment; and integrating current and future information to effectively manage Se releases. Treatment alternatives such as passive bioreactor and in situ methods are also being examined. Mapping of lentic and lotic areas in the Elk River Valley will help in evaluating the regional significance of any localized aquatic impacts associated with elevated Se concentrations. New studies involving a Standard Operating Procedure for fish deformity analysis and predictive modeling of trout populations are among the recommendations that have been applied from a 2005 Selenium Science Panel.

  3. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Faunt, C.C.

    1997-01-01

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs

  4. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    Science.gov (United States)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  5. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  6. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  7. A unique mountainous vertical distribution patterns and related environmental interpretation-a case study on the northern slope of the ili river valley

    International Nuclear Information System (INIS)

    Tian, Z.P.; Wang, X.L.; Zhuang, L.

    2016-01-01

    Patterns of plant diversity and soil factors along the altitude gradient on the northern slope of Ili River Valley were examined. Plant and environment characteristics were surveyed from 1000-2200 m. There were a total of 155 vascular plant, 133 herbage, 18 shrub, and 7 tree species in 44 sampled plots. The plant richness of vegetation types generally showed a special pattern along altitude, with a bimodal change of plant species number at 100m intervals of altitude samples. The two belts of higher plant richness were in transient areas between vegetation types, the first in areas from low-mountain desert to forest, and the other from dry grass to coniferous forest. Matching the change of richness of plant species to environmental factors along altitude by GAM model and relation analysis revealed that the environmental factors controlling species richness and their patterns were the combined effects of soil salt and nutrition. Water was more important at lower altitude, and temperature at higher altitude, the role of the inversion layer at high altitude coniferous forest species diversity appearing to rise. Soil nutrition and salt also showed a similar distribution pattern of diversity. Especially, diversity index and soil salinity showed a strong correlation. This study provides insights into plant diversity conservation of ili River Valley in Tianshan Mountain. (author)

  8. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  9. Sustainability Assessment of Large Irrigation Dams in Senegal: A Cost-Benefit Analysis for the Senegal River Valley

    Directory of Open Access Journals (Sweden)

    Stanislaw eManikowski

    2016-03-01

    Full Text Available Starting in the 1970s, the Senegalese Government invested in the development of irrigated schemes in the Senegalese part of the Senegal River Valley (S-SRV. From that time to 2012, the irrigated schemes increased from 10,000 ha to more than 110,000 ha. In the meantime, the economic viability of these schemes started to be questioned. It also appeared that the environmental health and social costs might outweigh the benefits of irrigation. Using a life cycle assessment approach and project cost-benefits modelling, this study (i quantified the costs and benefits of the S-SRV irrigated rice production, (ii evaluated the costs and benefits of its externalities and (iii discussed the irrigated rice support policy. The net financial revenues from the irrigated schemes were positive, but their economic equivalences. The economic return rate (EER was below the expected 12% and the net present value (NPV over 20 years of the project represented a loss of about US$-19.6 million. However, if we also include the project’s negative externalities, such as the reduced productivity of the valley ecosystems, protection cost of human health, environmental degradation and social impacts, then the NPV would be much worse, approximately US$-572.1 million. Therefore, the results show that to stop the economic loss and alleviate the human suffering, the S-SRV development policy should be revised using an integrated approach and the exploitation technology should aim at environmental sustainability. This paper may offer useful insights for reviewing the current Senegalese policies for the valley, as well as for assessing other similar cases or future projects worldwide, particularly in critical zones of developing countries.

  10. Implications of using On-Farm Flood Flow Capture to recharge groundwater and mitigate flood risks along the Kings River, CA

    OpenAIRE

    Bachand, P.A.M.; Horwath, W.R.; Roy, S.; Choperena, J.; Cameron, D.

    2012-01-01

    Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high vari...

  11. Radio-iodine in thyroid glands of swans, farm animals and humans, also in algae and river water from the Thames Valley, England

    Energy Technology Data Exchange (ETDEWEB)

    Howe, J.R.; Lloyd, M.K.

    1986-01-01

    A highly sensitive counting system has been used to measure radio-iodine in environmental samples from the Thames Valley. Iodine-125 and occasionally iodine-131 have been found in the thyroid glands of most of the swans that have died on the River Thames, the River Wey and the Grand Union Canal, and in algae and water samples from the Thames and many of its tributaries. The presence of this activity is ascribed to the waste discarded into the drainage system by hospitals and research laboratories, reaching the rivers via the effluent from sewage treatment works. The Thames is used as a source of drinking water, particularly in London and its western approaches. Weed and water samples collected from river water abstraction points, reservoirs, tap water supplies, and animal water troughs fed from this supply all contained low levels of iodine-125. The drinking water route can account for the iodine-125 found in the thyroids of farm animals from west Surrey and in a few people living in London. The amounts found constitute a trivial radiation dose to man and animals as they are far below the acceptable limit of exposure for man.

  12. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  13. Assessment of fluvial geomorphological change in the confluence of Chindwin and Ayeyarwady Rivers in Myanmar using remote sensing

    Science.gov (United States)

    Piman, T.; Vasconcelos, V. V.; Apirumanekul, C.; Krittasudthacheewa, C.

    2017-12-01

    Bank erosion along the braided stretches of Ayeyarwady and Chindwin Rivers has been one of the main concerns at Sagaing region, in Myanmar, because it threatens villages, infrastructure and farmland, while the consequent sedimentation hampers boat transportation. This study assesses the changes on these two river channels and its sandbanks, in their confluence area. A special focus is given to infer the risk of villages to bank erosion. Landsat images from 1973, 1989, and annual series from 1998 to 2015 were used to evaluate frequency and rates of erosion, deposition and vegetation restabilization. Maps showed where the channels maintained stable and which areas faced bank erosion more frequently. From 1973 to 2015, 30% of the river valley in the studied area faced bank erosion. Although the summed area of the river channel remained relatively stable throughout the period, the rates of bank erosion vs. bank restabilization were higher after 2004. Most of the village area in the in the river valley within the bluffs (89% - 71km2) have not faced bank erosion since 1973, while 8.9% (7 km2) are in vulnerable areas that faced erosion before 2012, and bank erosion destroyed 1.3% (1 km2) of the villages from 2012 to 2015. The average rate of village land loss from bank erosion within the river valley from 1973 to 2012 was 0.18 km2/year, but increased to 0.33km2/year during 2012-2015. The villages located just downstream from the confluence of Chindwin and Ayeyarwady River faced higher problems with bank erosion. Approximately half of the village area (51.5% - 87km2) adjacent to the bluffs (outside the river valley) were facing stable land since 1973 (lowest risk), while 5.8% (10 km2) were facing stable river channel (low risk) and 42.7% (73 km2) were facing areas of unstable river channel (possible risk). As for the biggest urban sites, Monywa and Pakokku face areas of unstable river channel, while Sagaing and Myingyan are safer, facing areas of stable land. A detailed

  14. Towards automating measurements and predictions of Escherichia coli concentrations in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2012–14

    Science.gov (United States)

    Brady, Amie M. G.; Meg B. Plona,

    2015-07-30

    Nowcasts are systems that can provide estimates of the current bacterial water-quality conditions based on predictive models using easily-measured, explanatory variables; nowcasts can provide the public with the information to make informed decisions on the risk associated with recreational activities in natural water bodies. Previous studies on the Cuyahoga River within Cuyahoga Valley National Park (CVNP) have found that predictive models can be used to provide accurate assessments of the recreational water quality. However, in order to run the previously developed nowcasts for CVNP, manual collection and processing of samples is required on a daily basis to acquire the required explanatory variable data (laboratory-measured turbidity). The U.S. Geological Survey and the National Park Service collaborated to develop a more automated approach to provide more timely results to park visitors regarding the recreational water quality of the river.

  15. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    Science.gov (United States)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  16. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  17. Lead and other heavy metals in stream sediments in the area of Meža valley

    Directory of Open Access Journals (Sweden)

    Julija Fux

    2007-12-01

    Full Text Available In the Meža valley, lead – zinc ore has been exploited and processed for more than 300 years, which has strongly influenced the environment.Previous investigation shave shown increased concentrations of lead and some other metals. At the end of the 20th century, the Meža River was considered a stream with the highest concentrations of heavy metals in Slovenia.When the mine and processing plants ceased to operate, the direct transfer of heavy metals into the environment has strongly decreased. However, the deposits of poor ore and wastes from ore processing have remained as an indirect source of heavy metal pollution. From those places heavy metals have been washed out into the nearby streams, and carried into the Meža River and further into the Drava River. Chemical analysis of the Meža River and its tributaries has shown heavy pollution of the upper Meža River sediments with lead, zinc, molybdenum and cadmium, and partly with arsenic. In the lower Meža valley, those concentrations are mildly decreased. Concentrations of cobalt, chrome, copper and nickel are increased in the area around Ravne as a result of the ironworks industry. Mušenik and Jančarjev potok, both tributaries of the Meža River, contribute a high portion of heavy metal load to the Meža River. A specific case is Helenski potok,in which the concentrations of heavy metals strongly surpass the concentrations measured at all other locations. Although more than 10 years have passed since the mine and ore processing plant in the upper Meža valley were closed, the production has ceased and the rehabilitation measures have been taken, the environment in the upper Meža valley is still highly polluted.

  18. Assessing the Costs and Benefits of Resilience Investments: Tennessee Valley Authority Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Melissa R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilbanks, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Preston, Benjamin L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradbury, James [U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis (EPSA), Washington, DC (United States)

    2017-01-01

    This report describes a general approach for assessing climate change vulnerabilities of an electricity system and evaluating the costs and benefits of certain investments that would increase system resilience. It uses Tennessee Valley Authority (TVA) as a case study, concentrating on the Cumberland River basin area on the northern side of the TVA region. The study focuses in particular on evaluating risks associated with extreme heat wave and drought conditions that could be expected to affect the region by mid-century. Extreme climate event scenarios were developed using a combination of dynamically downscaled output from the Community Earth System Model and historical heat wave and drought conditions in 1993 and 2007, respectively.

  19. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China.

    Science.gov (United States)

    Pan, Chang-Gui; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Peng, Feng-Jiao; Huang, Guo-Yong

    2014-11-01

    A survey on contamination profiles of eighteen perfluoroalkyl substances (PFASs) was performed via high performance liquid chromatography-tandem mass spectrometry for surface water and sediments from five typical rivers of the Pearl River Delta region, South China in summer and winter in 2012. The total concentrations of the PFASs in the water phase of the five rivers ranged from 0.14 to 346.72 ng L(-1). The PFAS concentrations in the water phase were correlated positively to some selected water quality parameters such as chemical oxygen demand (COD) (0.7913) and conductivity (0.5642). The monitoring results for the water samples showed significant seasonal variations, while those for the sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctane sulfonic acid (PFOS) was the dominant PFAS compound both in water and sediment for two seasons with its maximum concentration of 320.5 ng L(-1) in water and 11.4 ng g(-1) dry weight (dw) in sediment, followed by perfluorooctanoic acid (PFOA) with its maximum concentration of 26.48 ng L(-1) in water and 0.99 ng g(-1) dw in sediment. PFOS and PFOA were found at relatively higher concentrations in the Shima River and Danshui River than in the other three rivers (Xizhijiang River, Dongjiang River and Shahe River). The principal component analysis for the PFASs concentrations in water and sediment separated the sampling sites into two groups: rural and agricultural area, and urban and industrial area, suggesting the PFASs in the riverine environment were mainly originated from industrial and urban activities in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Supervising Scientist for the Alligator Rivers Region Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    One of the most significant developments during the year was the submission by Energy Resources of Australia Ltd of its Environmental Impact Statement for Jabiluka. The proposal is significantly different in technical detail from the Ranger and Nabarlek mines owing to the proposal to mine underground. Evaluation of the Environmental Performance of the uranium mines of the Alligator Rivers Region continued, with twice-yearly Environmental Performance Reviews (EPR) of Ranger and Nabarlek, and results reported to the Alligator Rivers Region Advisory Committee (ARRAC). Ongoing technical consultations took place through meetings of the Ranger Minesite Technical Committee. Issues relating to water disposal were addressed through the Ranger Water Management Working Group. Submissions were made regarding the Jabiluka Environmental Impact Assessment process and technical advice was provided to the Environmental Assessment Branch of Environment Australia during the assessment. The organisation's research program has reflected strategic directions set last year by the Alligator Rivers Region Technical Committee (ARRTC) concerning environmental impacts of mining. Key projects assess radiation exposure by members of the public as a result of uranium mining, the effectiveness of artificial wetlands in the treatment of mine waters, and the development of methods to assess the effectiveness of options for rehabilitation. Development of the research program into wetlands protection and management continued, including establishment of a coordinated monitoring program to measure and assess coastal change as a benchmark for monitoring effects of climate change in the Alligator Rivers Region (a key part of a national network). Other research activities included water quality research for the National River Health Program and revision of the National Water Quality Management Strategy, Water Quality Guidelines for Fresh and Marine Waters and conclusion of research projects in the Mount

  1. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  2. Soil of the lower valley of the Dragonja river (Slovenia

    Directory of Open Access Journals (Sweden)

    Tomaž PRUS

    2015-11-01

    Full Text Available Soil of the lower valley of the river Dragonja developed under specific soil-forming factors. Soil development in the area was influenced by alluvial sediments originating from surrounding hills, mostly of flysch sequence rocks, as a parent material, Sub-Mediterranean climate and the vicinity of the sea. Different soil classification units (Gleysol and Fluvisol were proposed for that soil in previous researches. The aim of our study was the evaluation of morphological, chemical and mineralogical characteristics of soil, based on detailed soil description and analyses, and to define the appropriate soil classification units. Field examinations revealed that the soil had a stable blocky or subangular structure and did not express substantial hydromorphic forms. Soil pH value was ranging from 6.9 to 7.5. In most locations electroconductivity (ECe did not exceed 2 ds/m. Base saturation was high (up to 99 %, with a majority of Ca2+ ions. Exchangeable sodium percentage (ESP was ranging from 0.2 to 3.8 %, which is higher compared to other Slovenian soils but does not pose a risk to soil structure. Soil has silty clay loam texture with up to 66 % of silt. Prevailing minerals were quartz, calcite and muscovite/illite. No presence of swelling clay mineral montmorillonite was detected. According to Slovenian soil classification, we classified the examined soil as alluvial soil. According to WRB soil classification, the soil was classified as Cambisol.

  3. Local farmers' perceptions of climate change and local adaptive strategies: a case study from the Middle Yarlung Zangbo River Valley, Tibet, China.

    Science.gov (United States)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and

  4. Chemical composition of black-watered rivers in the Amazons Region (Brazil)

    International Nuclear Information System (INIS)

    Horbe, Adriana M.C.; Santos, Ana G. da Silva

    2009-01-01

    Most investigations addressing Amazonian water chemistry are focused on the Solimoes, Amazonas and Negro rivers. Knowledge of the chemical composition of their smaller tributaries is restricted to some few, punctual data. The smaller rivers, that only present inputs from their catchments, are very important to understand the overall mechanisms controlling the chemistry of larger rivers of the region. With this objective the chemical composition of the principal Solimoes river black-watered tributaries in the western Brazilian Amazon during the low water period were determined. The data reveal the black water chemical composition to be highly variable and strongly influenced by the local geological environment: the Badajos basin being chemically more diluted; the Coari basin presenting higher SiO 2 contents, as well as smaller lakes having higher pH, conductivity, Ca 2+ , Mg 2+ and Sr, yet not as much as those found in the Solimoes river. The chemical composition of these waters is compatible with the low physical erosion and the region's highly leached tropical environment from which most soluble elements were quickly removed. (author)

  5. Beaver Valley Power Station and Shippingport Atomic Power Station. 1977 annual environmental report: radiological. Volume 2

    International Nuclear Information System (INIS)

    1978-01-01

    The environmental monitoring conducted during 1977 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station is described. The environmental monitoring program consists of onsite sampling of water, gaseous, and air effluents, as well as offsite monitoring of water, air, river sediments, and radiation levels in the vicinity of the site. The report discusses releases of small quantities of radioactivity to the Ohio River from the Beaver Valley Power Station and Shippingport Atomic Power Station during 1977

  6. GLACIER DEGRADATION AND CATASTROPHIC MUDFLOWS ORIGIN FROM THE MODERN GLACIAL-MORAINE BODIES IN THE ELBRUS REGION

    Directory of Open Access Journals (Sweden)

    E. A. Zolotarev

    2012-01-01

    Full Text Available Mechanism of formation of the catastrophic mudflows in different glacial valleys of Elbrus region at the present stage of glacial degradation is described. The important role of the buried ice in the formation of catastrophic mudflows that affected Tyrnyauz in the XX century was revealed as a result of remote monitoring of changes in glacial-moraine complex of Kayarta river. The dynamics of glacial lakes in the Adyl-Su valley in the Bashkara Glacier region was described and probability of their breakthrough was estimated. The quantitative indicators of the dynamics of the landslide in the Kubasanty valley were obtained as a result of remote monitoring, and its influence on the formation of catastrophic mudflows is discovered. Various possible methods of catastrophic mudflows prevention not requiring expensive protective constructions are discussed.

  7. Transient river response, captured by channel steepness and its concavity

    Science.gov (United States)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  8. Development of Hydrological Model of Klang River Valley for flood forecasting

    Science.gov (United States)

    Mohammad, M.; Andras, B.

    2012-12-01

    This study is to review the impact of climate change and land used on flooding through the Klang River and to compare the changes in the existing river system in Klang River Basin with the Storm water Management and Road Tunnel (SMART) which is now already operating in the city centre of Kuala Lumpur. Klang River Basin is the most urbanized region in Malaysia. More than half of the basin has been urbanized on the land that is prone to flooding. Numerous flood mitigation projects and studies have been carried out to enhance the existing flood forecasting and mitigation project. The objective of this study is to develop a hydrological model for flood forecasting in Klang Basin Malaysia. Hydrological modelling generally requires large set of input data and this is more often a challenge for a developing country. Due to this limitation, the Tropical Rainfall Measuring Mission (TRMM) rainfall measurement, initiated by the US space agency NASA and Japanese space agency JAXA was used in this study. TRMM data was transformed and corrected by quantile to quantile transformation. However, transforming the data based on ground measurement doesn't make any significant improvement and the statistical comparison shows only 10% difference. The conceptual HYMOD model was used in this study and calibrated using ROPE algorithm. But, using the whole time series of the observation period in this area resulted in insufficient performance. The depth function which used in ROPE algorithm are then used to identified and calibrated using only unusual event to observed the improvement and efficiency of the model.

  9. 27 CFR 9.216 - Upper Mississippi River Valley.

    Science.gov (United States)

    2010-04-01

    ...), east of St. Paul at Oakbury in Washington County. From the beginning point, proceed east on Interstate... Winnebago County to U.S. Highway 20 at Cherry Valley; then (6) Proceed west on U.S. Highway 20 to Illinois...), south of St. Paul; then (15) Follow Interstate Highway 494 (beltway) northeast into Washington County...

  10. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  11. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  12. The upper Sava valley at the three border area of Austria, Italy ans Yugoslavia - a geographic perspective

    Directory of Open Access Journals (Sweden)

    Vladimir Klemenčič

    1990-12-01

    Full Text Available An analysis on the alpine spatial factors was carried out in the area of Kranjska gora and the Upper Sava valley, in the NW corner of Slovenia (Yugoslavia. As a part of a similar study Austrians and Italians, at their side of the border, ther research focused on future regional development. The so called "Three Border Area", in the above-mentioned countries, candidates for the winter olympics in 1998 and in general seek cross-border cooperation. The mountainous region of the Julian Alps here is separated from another mountainous and border strech of the Karawanks by the deep glacial river valley of the river Sava. The central place within the valley is Kranjska Gora — a famous winter šport center. World cup alpine skiing races and ski-jumping competitions (Planica take place here every year. The past post-war period were not very much in favour of developing tourism in general. That is why many inhabitants of the Upper Sava Valley decided to abandon agriculture and look for jobs in the governmentaly supported steel mills of the communal center of Jesenice. Daily migration accures today in both directions: man from the area migrate to the industry, woman from the above-mentioned town travel daily the same distance to work in hotels. Lately a couple of hundred inhabitants found jobs also in the nearby employment centers of Carinthia and Friuli-Venezia Giulia. Future complex regional development in the area of the bordering countries of Italy, Austria and Yugoslavia can be supported in the part of Slovenia with the tradition of mountaineering and ski jumping as well as vvith an international tradition in hosting guests from distantplaces and vvith the tradition of organizing sporting events. The relatively "underdeveloped alpine landscape" here. mostly within the borders of the Triglav National Park could attract visitors too. Among other developments Mountaineering — and Ski-jumping Schools and Courses of

  13. CO2 emissions from a temperate drowned river valley estuary adjacent to an emerging megacity (Sydney Harbour)

    Science.gov (United States)

    Tanner, E. L.; Mulhearn, P. J.; Eyre, B. D.

    2017-06-01

    The Sydney Harbour Estuary is a large drowned river valley adjacent to Sydney, a large urban metropolis on track to become a megacity; estimated to reach a population of 10 million by 2100. Monthly underway surveys of surface water pCO2 were undertaken along the main channel and tributaries, from January to December 2013. pCO2 showed substantial spatio-temporal variability in the narrow high residence time upper and mid sections of the estuary, with values reaching a maximum of 5650 μatm in the upper reaches and as low as 173 μatm in the mid estuary section, dominated by respiration and photosynthesis respectively. The large lower estuary displayed less variability in pCO2 with values ranging from 343 to 544 μatm controlled mainly by tidal pumping and temperature. Air-water CO2 emissions reached a maximum of 181 mmol C m-2 d-1 during spring in the eutrophic upper estuary. After a summer high rainfall event nutrient-stimulated biological pumping promoted a large uptake of CO2 transitioning the Sydney Harbour Estuary into a CO2 sink with a maximum uptake of rate of -10.6 mmol C m-2 d-1 in the mid-section of the estuary. Annually the Sydney Harbour Estuary was heterotrophic and a weak source of CO2 with an air-water emission rate of 1.2-5 mmol C m-2 d-1 (0.4-1.8 mol C m-2 y-1) resulting in a total carbon emission of around 930 tonnes per annum. CO2 emissions (weighted m3 s-1 of discharge per km2 of estuary surface area) from Sydney Harbour were an order of magnitude lower than other temperate large tectonic deltas, lagoons and engineered systems of China, India, Taiwan and Europe but were similar to other natural drowned river valley systems in the USA. Discharge per unit area appears to be a good predictor of CO2 emissions from estuaries of a similar climate and geomorphic class.

  14. Ecological Researches in the Yagnob Valley

    International Nuclear Information System (INIS)

    Razykov, Z.A.; Yunusov, M.M.; Bezzubov, N.I.; Murtazaev, Kh.; Fajzullaev, B.G.

    2002-01-01

    The article dwells on the resents of the estimation of the ecology surroundings of the Yagnob Valley. The researches included appraisal of radiation background, determination of the amount of heavy and radioactive elements in soil, bottom sedimentations, ashes in plants, water in rivers and wells. Designing on the premise of the researches implemented the ecology surrounding are estimated as propitious man's habitation. (Authors)

  15. The Aggradational Successions of the Aniene River Valley in Rome: Age Constraints to Early Neanderthal Presence in Europe

    Science.gov (United States)

    Ceruleo, Piero; Pandolfi, Luca; Petronio, Carmelo; Rolfo, Mario F.; Salari, Leonardo

    2017-01-01

    We revise the chronostratigraphy of several sedimentary successions cropping out along a 5 km-long tract of the Aniene River Valley in Rome (Italy), which yielded six hominin remains previously attributed to proto- or archaic Neanderthal individuals, as well as a large number of lithic artefacts showing intermediate characteristics somewhere between the local Acheulean and Mousterian cultures. Through a method of correlation of aggradational successions with post-glacial sea-level rises, relying on a large set of published 40Ar/39Ar ages of interbedded volcanic deposits, we demonstrate that deposition of the sediments hosting the human remains spans the interval 295–220 ka. This is consistent with other well constrained ages for lithic industries recovered in England, displaying transitional features from Lower to Middle Paleolithic, suggesting the appearance of Mode 3 during the MIS 9-MIS 8 transition. Moreover, the six human bone fragments recovered in the Aniene Valley should be regarded as the most precisely dated and oldest hominin remains ascribable to Neanderthal-type individuals in Europe, discovered to date. The chronostratigraphic study presented here constitutes the groundwork for addressing re-analysis of these remains and of their associated lithic industries, in the light of their well-constrained chronological picture. PMID:28125602

  16. Temperature and Discharge on a Highly Altered Stream in Utah's Cache Valley

    OpenAIRE

    Pappas, Andy

    2013-01-01

    To study the River Continuum Concept (RCC) and the Serial Discontinuity Hypothesis (SDH), I looked at temperature and discharge changes along 52 km of the Little Bear River in Cache Valley, Utah. The Little Bear River is a fourth order stream with one major reservoir, a number of irrigation diversions, and one major tributary, the East Fork of the Little Bear River. Discharge data was collected at six sites on 29 September 2012 and temperature data was collected hourly at eleven sites from 1 ...

  17. Colonial Education and Women of the Cross River Region of ...

    African Journals Online (AJOL)

    As a result, there is a gap to be filled in this respect, in the historiography of the Cross River region. This is the concern of this paper. The paper reveals that the women of present-day Cross River State contributed to the educational development of their communities in cash and kind. Even of greater importance is that a few ...

  18. Metal Transport, Heavy Metal Speciation and Microbial Fixation Through Fluvial Subenvironments, Lower Coeur D'Alene River Valley, Idaho

    Science.gov (United States)

    Hooper, R. L.; Mahoney, J. B.

    2001-12-01

    The lower Coeur d'Alene River Valley of northern Idaho is the site of extensive lead and zinc contamination resulting from both direct riverine tailings disposal and flood remobilization of contaminated sediments derived from the Coeur d'Alene mining district upstream. Variations in the hydrologic regime, redox conditions, porosity/permeability, organic content and microbial activity results in complicated metal transport pathways. Documentation of these pathways is a prerequisite to effective remediation, and requires accurate analysis of lateral and vertical variations. An analytical approach combining sequential extraction, electron microscopy, and microanalysis provides a comprehensive assessment of particulate speciation in this complex hydrologic system. Rigorously controlled sample preparation and a new sequential extraction protocol provide unprecedented insight into the role of metal sequestration in fluvial subenvironments. Four subenvironments were investigated: bedload, overbank (levee), marsh, and lacustrine. Periodic floods remobilize primary ore minerals and secondary minerals from upstream tailings (primarily oxyhydroxides, sulfides and carbonates). The bedload in the lower valley is a reducing environment and acts as a sink for detrital carbonates and sulfides moving downstream. In addition, authigenic/biogenic Fe, Pb and Zn sulfides and phosphates are common in bedload sediments near the sediment/water interface. Flood redistribution of oxide, sulfide and carbonate phases results in periodic contaminant recharge generating a complex system of metal dissolution, mobilization, migration and precipitation. In levee environments, authigenic sulfides from flood scouring are quickly oxidized resulting in development of oxide coated grain surfaces. Stability of detrital minerals on the levee is variable depending on sediment permeability, grain size and mineralogy resulting in a complex stratigraphy of oxide zones mottled with zones dominated by detrital

  19. Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2005-09-01

    Full Text Available The paper presents a comparative analysis of two different river mouths from two different geographical zones (subtropical and temperate climatic regions. One is the multi-branch and multi-spit mouth of the Red River on the Gulf of Tonkin (Vietnam, the other is the smaller delta of the river Vistula on a bay of the Baltic Sea (Poland. The analysis focuses on the similarities and differences in the hydrodynamics between these estuaries and the adjacent coastal zones, the features of sediment transport, and the long-term morphodynamics of the river outlets. Salinity and water level are also discussed, the latter also in the context of the anticipated global effect of accelerated sea level rise. The analysis shows that the climatic and environmental conditions associated with geographical zones give rise to fundamental differences in the generation and dynamic evolution of the river mouths.

  20. Quantifying flooding regime in floodplain forests to guide river restoration

    Science.gov (United States)

    Christian O. Marks; Keith H. Nislow; Francis J. Magilligan

    2014-01-01

    Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...

  1. Metal and trace element sediment assessment from Ribeira do Iguape river, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Francisco J.V. de; Quinaglia, Gilson A., E-mail: franciscovc@cetesbnet.sp.gov.br, E-mail: gilsonn@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELTA - Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Laboratorio de Analise por Ativacao Neutronica; Franklin, Robson L.; Ferreira, Francisco J., E-mail: robsonf@cetesbnet.sp.gov.br, E-mail: franciscoj@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELAI - Setor de Quimica Inorganica

    2011-07-01

    The watershed region of the Ribeira do Iguape River and the estuarine complex of the Paranagua-Iguape- Cananeia and the various river basins located between this region and the Atlantic Ocean, is known as the Ribeira Valley. The Ribeira do Iguape River runs a total length of approximately 470 km, being the main source of fresh water in the Estuarine Complex of the Iguape-Cananeia-Paranagua (Lagamar). The Ribeira do Iguape River is the last major river in the State of Sao Paulo that has not been altered by dams. During virtually the entire 20th century, the region of the Ribeira Valley was the scene of constant environmental degradation resulting from the intense exploration and refining of lead, zinc and silver ores that were processed in the mines of the region, in a rudimentary way and without any control over environmental impacts. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aims to investigate the presence and concentration levels of metals and semi-metals arsenic (As), cadmium (Cd) and lead (Pb) in the sediment and water of aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The determination of these elements was carried out by GF AAS technique for water samples and ICP OES for the sediment samples. This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, according to precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb were compared to the Canadian Environmental oriented values (TEL and PEL). The results obtained for multielemental analyses in the sediment samples were compared to UCC values (Upper Continental Crust). (author)

  2. Metal and trace element sediment assessment from Ribeira do Iguape river, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Castro, Francisco J.V. de; Quinaglia, Gilson A.; Favaro, Deborah I.T.; Franklin, Robson L.; Ferreira, Francisco J.

    2011-01-01

    The watershed region of the Ribeira do Iguape River and the estuarine complex of the Paranagua-Iguape- Cananeia and the various river basins located between this region and the Atlantic Ocean, is known as the Ribeira Valley. The Ribeira do Iguape River runs a total length of approximately 470 km, being the main source of fresh water in the Estuarine Complex of the Iguape-Cananeia-Paranagua (Lagamar). The Ribeira do Iguape River is the last major river in the State of Sao Paulo that has not been altered by dams. During virtually the entire 20th century, the region of the Ribeira Valley was the scene of constant environmental degradation resulting from the intense exploration and refining of lead, zinc and silver ores that were processed in the mines of the region, in a rudimentary way and without any control over environmental impacts. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aims to investigate the presence and concentration levels of metals and semi-metals arsenic (As), cadmium (Cd) and lead (Pb) in the sediment and water of aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The determination of these elements was carried out by GF AAS technique for water samples and ICP OES for the sediment samples. This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, according to precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb were compared to the Canadian Environmental oriented values (TEL and PEL). The results obtained for multielemental analyses in the sediment samples were compared to UCC values (Upper Continental Crust). (author)

  3. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  4. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    Science.gov (United States)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  5. Environment Protection (Alligator Rivers Region) Amendment Act 1987 - No 17 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act amends the Environment Protection (Alligator Rivers Region) Act 1978. The amendments mainly concern definition of general mining operations and specification of the functions of the Supervisory Scientist and the Research Institute in relation to general mining in an environment conservation zone (parts of the Alligator Rivers Region). The 1978 Act provided for the appointment of a Supervising Scientist responsible for supervising protection of the environment against the effects of uranium mining in the Region, and for the creation of a Research Institute under his management. (NEA) [fr

  6. Geochemistry of groundwater in the eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.

    2018-05-30

    Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) in eastern Idaho produced radiochemical and chemical wastes that were discharged to the subsurface, resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may pose risks to the water quality of the aquifer. In order to understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted a study of groundwater geochemistry to improve the understanding of hydrologic and chemical processes in the ESRP aquifer at and near the INL and to understand how these processes affect waste constituents in the aquifer.Geochemistry data were used to identify sources of recharge, mixing of water, and directions of groundwater flow in the ESRP aquifer at the INL. The geochemistry data were analyzed from 167 sample sites at and near the INL. The sites included 150 groundwater, 13 surface-water, and 4 geothermal-water sites. The data were collected between 1952 and 2012, although most data collected at the INL were collected from 1989 to 1996. Water samples were analyzed for all or most of the following: field parameters, dissolved gases, major ions, dissolved metals, isotope ratios, and environmental tracers.Sources of recharge identified at the INL were regional groundwater, groundwater from the Little Lost River (LLR) and Birch Creek (BC) valleys, groundwater from the Lost River Range, geothermal water, and surface water from the Big Lost River (BLR), LLR, and BC. Recharge from the BLR that may have occurred during the last glacial epoch, or paleorecharge, may be present at several wells in the southwestern part of the INL. Mixing of water at the INL primarily included mixing of surface water with groundwater from the tributary valleys and mixing of geothermal water with regional groundwater. Additionally, a zone of mixing between tributary valley water and

  7. Features of tularemia outbreaks in Vologda region

    Directory of Open Access Journals (Sweden)

    Filonenko Igor

    2015-06-01

    Full Text Available In Vologda region the foci of tularemia are manifested most actively in the meadow-field and floodplain wetland habitats. From 1958 to 2012, 434 cultures of tularemia have been revealed, and 379 human cases have been registered. Foci of tularemia appear irregularly, but in different species of small mammals epizootics proceed constantly. The sharp increase of the number of small mammals and the spread of tularemia bacteria by the watercourses contribute to the development of intense epizootics and to the increase of tularemia cultures isolated from environmental objects. The most active natural foci of tularemia are reported in Prisuhonskaya lowland, in the Uhtomka river valley and in the floodplain of the Little Northern Dvina river. In Vologda region the maximum risk of infecting with tularemia is associated with the landscapes of limnetic-glacial type.

  8. A geological reconnaissance study of the Dyfi Valley region, Gwynedd/Powys, Wales

    International Nuclear Information System (INIS)

    Martin, B.A.; Howells, M.F.; Reedman, A.J.

    1981-01-01

    A collation of existing maps and data backed up by localised checking, reinterpretation and modification, employing sampling, structural measurements and aerial photograph interpretation, have updated the geological information available on the Dyfi Valley region. The region comprises an argillaceous-dominated Ordovician and Silurian sedimentary pile of approximately 4 km thickness. Thick formations of mudstones and silty mudstones with thin intercalations of silty sandstone and fine-grained sandstone predominate and exhibit fewer variations in thickness and extent than the subordinate formations with a higher proportion of sand-grade material. Three periods of deformation (D 1 -D 3 ) are distinguished, with the D 1 phase dominating the structure of the region by forming upright, asymmetrical, large (km) scale folds (F 1 ) of a NNE-SSW to NE-SW trend and producing an almost ubiquitous slaty cleavage (S 1 ). The succeeding deformations produced localised crenulation cleavages, kink bands and box folds. Data on the faulting and jointing associated with this deformation history are also presented. (author)

  9. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    King, S.L.; Keeland, B.D.

    1999-01-01

    Only about 2.8 million ha of an estimated original 10 million ha of bottomland hardwood forests still exist in the Lower Mississippi River Alluvial Valley (LMAV) of the United States. The U.S. Fish and Wildlife Service, the U.S. Forest Service, and state agencies initiated reforestation efforts in the late 1980s to improve wildlife habitat. We surveyed restorationists responsible for reforestation in the LMAV to determine the magnitude of past and future efforts and to identify major limiting factors. Over the past 10 years, 77,698 ha have been reforested by the agencies represented in our survey and an additional 89,009 ha are targeted in the next 5 years. Oaks are the most commonly planted species and bare-root seedlings are the most commonly used planting stock. Problems with seedling availability may increase the diversity of plantings in the future. Reforestation in the LMAV is based upon principles of landscape ecology; however, local problems such as herbivory, drought, and flooding often limit success. Broad-scale hydrologic restoration is needed to fully restore the structural and functional attributes of these systems, but because of drastic and widespread hydrologic alterations and socioeconomic constraints, this goal is generally not realistic. Local hydrologic restoration and creation of specific habitat features needed by some wildlife and fish species warrant attention. More extensive analyses of plantings are needed to evaluate functional success. The Wetland Reserve Program is a positive development, but policies that provide additional financial incentives to landowners for reforestation efforts should be seriously considered.

  10. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    Science.gov (United States)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  11. Occurrence of Escherichia coli in the Cuyahoga River in the Cuyahoga Valley National Park, Ohio

    Science.gov (United States)

    Brady, Amie M.G.; Plona, Meg B.

    2010-01-01

    There are several measures of the 'cleanliness' of a natural body of water, including concentrations of indicator bacteria, anthropogenic chemicals (chemicals derived from human activities), and nutrients, such as nitrogen and phosphorous. Escherichia coli (E. coli) is a bacterium that lives in the intestinal tract of warm-blooded animals, such as humans, deer, cows, and dogs. Most strains of E. coli are not harmful and are in fact beneficial to humans by aiding in the digestive process. A few strains, such as the O157 strain, produce toxins that can cause gastrointestinal illness, but occurrence of toxic strains in the environment is not common. E. coli is considered a good indicator bacterium because its occurrence in the environment indicates the presence of fecal contamination and therefore the possible presence of pathogenic organisms associated with feces. The U.S. Environmental Protection Agency (USEPA) recommends using measurements of E. coli to monitor freshwaters and set criteria for the concentration of bacteria that can be present in the water with minimal adverse human-health effects. Typically, a State's waters are assigned a recreational-use designation, such as bathing, primary-contact, or secondary contact waters, which is used to set the State's water-quality standards based on the USEPA criteria. The Cuyahoga River in the Cuyahoga Valley National Park is designated for primary-contact recreation; therefore, when concentrations of E. coli exceed 298 CFU/100mL, the river would be considered potentially unsafe for recreation.

  12. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  13. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  14. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  15. Geologic features of the Connecticut Valley, Massachusetts, as related to recent floods

    Science.gov (United States)

    Jahns, Richard Henry

    1947-01-01

    This report gives the results of a geologic study of certain features that bear upon the recent flood behavior of rivers flowing in the Massachusetts part of the Connecticut Valley. It is in part an outline of the physiographic history of the Connecticut River, a 'history that is treated in progressively greater detail as it concerns events occurring from Mesozoic time to the present, and in part a discussion of erosional and depositional processes associated with the extraordinary floods of March 1936 and September 1938. The Connecticut River flows southward through Massachusetts in a broad lowland area of more than 400 square miles and is joined in this area by four large tributaries, the Deerfield and Westfield Rivers from the west and the Millers and Chicopee Rivers from the east. The lowland area, or :Connecticut Valley province, is flanked on the west by the Berkshire Hills, a, deeply incised uplifted plateau, and on the east by the central upland, or Worcester .County plateau, a lower upland marked by rolling topography. Most of the broad, relatively flat valley floor is underlain by Triassic sedimentary rocks. Rising above it, however, are the prominent Holyoke-Mount Tom and Deerfield Ranges, which consist in large part of dark-colored igneous rocks, also of Triassic age. There is evidence of several cycles of erosion in central western Massachusetts, the last two of which are of Tertiary age and appear to have reached nature and very youthful stages of topographic development, respectively. Immediately prior to the glacial epoch, therefore, the Connecticut River flowed in a fairly narrow, deep gorge, which it had incised in the rather flat 5ottom of the valley that it had formed at an earlier stage. A Pleistocene crustal subsidence probably of several hundred feet, for which there has been only partial compensation in postglacial time, was responsible for the present position of much of this gorge below sea level. That an estuary does not now occupy the

  16. Detection of neotectonic deformations along the Rio do Peixe Valley, Western São Paulo State, Brazil, based on the distribution of late Quaternary allounits

    Directory of Open Access Journals (Sweden)

    Mario Lincoln Etchebehere

    2005-11-01

    Full Text Available Terrace deposits (34 10 ka were mapped in the Rio do Peixe valley and submitted to an allostratigraphic analysis. Three allomembers (viz. “A”, “B”, and “C” were established in the medium to lower river valley and other three allounits (allomembers “ L”, “M” and “N” were defined in the upper valley. It is probable tha “B” and “M” allomembers represent the same stratigraphic level. The spatial distribution of these allomember shows the influence of the Recent base-level changes, due to neotectonics events. Longitudinal cross-section o the Rio do Peixe valley shows that it is possible to define some areas with differential tectonic movements, tha includes uplift blocks (prone to erosion and terrace deposit destruction, and other areas with relative subsidence, controlling both the Recent alluvial plains and the preservation of some ancient terrace deposits. This scenery is in accordance with regional tectonic studies.

  17. A limnological survey of the Alligator Rivers Region. 1. Diatoms (Bacillariophyceae) of the region

    International Nuclear Information System (INIS)

    Thomas, D.P.

    1983-08-01

    This study was undertaken as part of a study of the algae of the Alligator Rivers Region in general, and of the Magela Creek in particular, to support an investigation into the possible use of native algae as an indicator of any changes in water quality which might occur as a result of uranium mining and milling in the Region

  18. Mechanisms of carbon storage in mountainous headwater rivers

    Science.gov (United States)

    Ellen Wohl; Kathleen Dwire; Nicholas Sutfin; Lina Polvi; Roberto Bazan

    2012-01-01

    Published research emphasizes rapid downstream export of terrestrial carbon from mountainous headwater rivers, but little work focuses on mechanisms that create carbon storage along these rivers, or on the volume of carbon storage. Here we estimate organic carbon stored in diverse valley types of headwater rivers in Rocky Mountain National Park, CO, USA. We show that...

  19. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Directory of Open Access Journals (Sweden)

    S. Dhungel

    2018-01-01

    Full Text Available Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo–Gangetic plains (IGP from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC, ozone (O3, and associated meteorological conditions within the Kali Gandaki Valley (KGV, Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s−1 dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September. Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m−3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2–3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of

  20. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Science.gov (United States)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  1. Consideration upon the River system in the north of the Suceava tableland

    Directory of Open Access Journals (Sweden)

    Dinu OPREA-GANCEVICI

    2010-04-01

    Full Text Available The paleoevolution of the river system in the Moldavian Tableland has undergone at a theoretical level two successive hypothetical directions. The former direction, formulated in the first half of the XXth century, alleges the existence of a river system, with a transverse character, that prolonged to the east the Carpathian river systems. Specialists of this theory, Tufescu V. (1932, M. David (1933, quoted by V. Bacauanu - 1973 and Gheorghe Nastase (1946, quoted by V. Bacauanu - 1973 based their design on the presence of horizons of gravels with Carpathian elements on some interfluves to the east of the Siret valley, and the existence of some saddles, Loznica, Bucecea and Ruginoasa, located on the left side of the same river. The latter direction, diametrically opposite, supports the idea of evolution of the river system consecutively with the Sarmato-Pliocene Sea pulling back to the south. The hypothesis is supported and substantiated by I. Sîrcu (1955, C. Martiniuc and V. Bacauanu (1960, V. Bacauanu (1968, 1973. In this context it is considered that the Prut and Siret rivers carved the oldest valleys in the tableland. The authors explain the erosional genesis of the saddles arguing their inability to create transversal rivers on the basis of continuity upstream and downstream the saddles of terrace levels with relatively high altitudes, which proves the flow continuity on consequent valleys. The research carried out along the Suceava river valley and the immediate interstream area in order to create a scenario of the valley paleoevolution highlighted the presence of crystalline lithotopes in the petrographic structure of the accumulation deposits. The presence of such petrographic elements contradicts the present-day alluvia sources of the rivers that could have transported them:  Suceava or its tributaries Solonet, Ilisasca, Scheia. The rivers spring either from the Carpathian flysch or from the former area of platform sedimentation. We

  2. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Wilson, Tamara S.; Sorenson, Daniel G.

    2012-01-01

    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  3. Sorption and desorption of Sr-90 and Cs-137 by sediments of the Sozh-river valley and border water collections

    International Nuclear Information System (INIS)

    Onoshko, M.P.

    2001-01-01

    From the last literature analysis it follows, that to studying of sorption and desorption soil, some rocks and minerals properties concerning radioisotopes the steadfast attention of researchers is paid nowadays. The materials of heavy particles sorption kinetics, the action of adsorption molecules and ions from solutions on leaching products are examined. Sr-90, Cs-137, Pu-239,240 diffusion is estimated. It is found out, that sorbed and desorbed amount of radioisotopes is proportionally to their concentration in soil, and sorption (S) and distributions (Cd) factors do not depend on soil contamination density, and are determined by its physical and chemical properties, parity of firm and liquid phases. It is judged, that increase of soil absorbing properties by the increase of sorbent entering are unpromising, as sorption soil capacity is filled by Cs-137 only in thousand shares of per cent from the sorbent amount, which can be absorbed by soil. With the reference to the conditions of Belarus, experiments and natural supervision on Sr-90 and Cs-137 sorption by Fe, Mn, Si, Al, Ti hydroxides were executed. At experimental researches of electrolyte influence on radioisotope sorption by peat soils Cd amount lines were established. Sediments under certain conditions, due to desorption, become a source of the secondary contamination of natural waters up to ecologically dangerous concentration. Radioisotopes desorption ambiguity is connected to many parallel proceeding processes: exchange sorption on organic and mineral components, co-sedimentation with one-and-a-half Fe, Al and Mn hydroxides and also depends on solutions structure, cationic exchange rocks and soil capacities, concentration of competing ions. At low radioisotopes contents desorption is insignificant, at high - their extraction does not depend on reagent concentration. We carried out the experiment on studying Cs-137 and Sr-90 sorption-desorption from sediments Sozh-river valley and border water

  4. Prospective regional studies: The Rhine Meuse study and the Tennessee Valley study

    International Nuclear Information System (INIS)

    Bayer, A.

    1980-01-01

    Within the scope of this report two regional studies are presented: - the 'Rhein-Maas-Study' within which the expected radiological impact of the population in the Rhein and Maas basin - which is situated within Central Europe - is assessed on the basis of the planned and forecasted development of nuclear energy in the coming decades. - The 'Tennessee Valley Study' within which the expected radiological impact of the population in the Tennessee-Cumberland basis - which is situated within North America - is assessed likewise on the basis of the planned and forecasted development of nuclear energy in the coming decades. (orig./RW)

  5. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  6. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  7. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  8. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    Science.gov (United States)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Revised stratigraphic nomenclature and correlation of early proterozoic rocks of the Darwin - Katherine region, Northern Territory

    International Nuclear Information System (INIS)

    Needham, R.S.; Stuart-Smith, P.G.

    1984-01-01

    New stratigraphic names and correlations are given for parts of the Early Proterozoic Pine Creek Geosyncline metasedimentary sequence and overlying felsic volcanics of the Darwin-Katherine region. They have significant implications for the stratigraphic distribution of uranium mineralisation in the Rum Jungle, Alligator Rivers and South Alligator Valley uranium fields

  11. Geologic map of the west-central Buffalo National River region, northern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This map summarizes the geology of the west-central Buffalo National River region in the Ozark Plateaus region of northern Arkansas. Geologically, the region lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the map area spans the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone and the higher Boston Mountains to the south, held up by Pennsylvanian rocks. The Buffalo River flows eastward through the map area, enhancing bedrock erosion of an approximately 1,600-ft- (490-m-) thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Quaternary surficial units are present as alluvial deposits along major streams, including a series of terrace deposits from the Buffalo River, as well as colluvium and landslide deposits mantling bedrock on hillslopes.

  12. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  13. Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert

    2014-01-01

    In the alluvial valley of the lower Mississippi River, floodplain lakes form isolated aquatic fragments that retain differing degrees of connectivity to neighbouring rivers. Within these floodplain lakes it was hypothesized that fish species composition, relative abundance, and biodiversity metrics would be shaped largely by aquatic connectivity within a catchment.

  14. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    Science.gov (United States)

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    In order to better define the size of the thermal anomaly in the Raft River Valley, Idaho, the U.S. Geological Survey drilled a series of intermediate-depth (nominal 500-ft depth) wells in 1977 and 1978.  This report presents geologic, geophysical, and temperature data for these drill holes, along with data for five wells drilled by the Idaho National Engineering Laboratory with U.S. Department of Energy Funding.  Data previously reported for other drill holes are also included in order to make them available as digital files.

  15. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  16. Changes in active eolian sand at northern Coachella Valley, California

    Science.gov (United States)

    Katra, Itzhak; Scheidt, Stephen; Lancaster, Nicholas

    2009-04-01

    Climate variability and rapid urbanization have influenced the sand environments in the northern Coachella Valley throughout the late 20th century. This paper addresses changes in the spatial relationships among different sand deposits at northern Coachella Valley between two recent time periods by using satellite data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The approach employed here, involving multispectral thermal infrared (TIR) data and spectral mixture analysis, has shown that the major sand deposits can be spatially modeled at northern Coachella Valley. The "coarse-grained (quartz-rich) sand" deposit is associated with active eolian sand, and the "mixed sandy soil" and "fine-grained (quartz-rich) sand" deposits are associated with inactive eolian sand. The fractional abundance images showed a significant decrease between 2000 and 2006 in the percentage of active sand in the major depositional area for fluvial sediment, the Whitewater River, but also in two downwind areas: the Whitewater and Willow Hole Reserves. The pattern of the active sand appears to be related to variations in annual precipitation (wet and dry years) and river discharge in the northern Coachella Valley. We suggest here that recent human modifications to the major watercourses that supply sand affect the capability of fluvial deposition areas to restore sediments over time and consequently the responses of the sand transport system to climate change, becoming more sensitive to dry years where areas of active sand may shrink, degrade, and/or stabilize faster. The approach utilized in this study can be advantageous for future monitoring of sand in the northern Coachella Valley for management of these and similar environments.

  17. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  18. Common data about region of the former Semipalatinsk test site. Chapter 2

    International Nuclear Information System (INIS)

    1998-01-01

    Region of the Semipalatinsk test site is situated on left bank shore of the Irtysh river, on joining of three regions (East Kazakstan region, Pavlodar, Karaganda) and is extended from the river to south-western direction on 180 km. Total square of the site is amount 18.5 thousand sq.km. The territory is presented by flat landscape of dry steppe and semi-desert type passing in south-western direction into hill valley changing by small hill land. There are 5 test sites on territory of the region where places of nuclear explosions were carried out. For all territory is typically presence of river valleys and lake hollows (mainly salty). Today global background from cesium-137 and strontium-90 radionuclides near Semipalatinsk city amounts in average 0,11 Ci/sq.km. By the data of ground gamma-survey radiation background is oscillating within limits of 11-25 μR/h. In the same time on the site region there are local sections of radiation contamination with very high background, in particular, in epicenter of the 'Opytnoe Pole' area is up to 15000 μR/h, on disposal area of the Balapan lake is 11000 μR/h, near dam of the Shagan reservoir is up to 7000 μR/h, near portals of some galleries of the Degelen test site is up to 20000-250000 μR/h and others. Geobotanic status of the site territory is extremely heterogeneous and it is insufficiently studied because of inaccessibility of the region for researches during long time of its activity. The 302 types higher vascular plants were defined during last four seasons of field studies, as well as 800 descriptions of biocenoses are made, 1000 herbarium specimens are gathered

  19. Ecological studies on the freshwater fishes of the Alligator Rivers Region, Northern Territory

    International Nuclear Information System (INIS)

    Bishop, K.A.; Allen, S.A.; Pollard, D.A.; Cook, M.G.

    1986-01-01

    The tropical climate of the Alligator Rivers Region of the Northern Territory has a distinctive Wet-Dry cycle resulting in seasonal flows in the creeks and rivers of its catchments. The present study, begun during August 1978, aimed at developing an ecological monitoring system that would detect changes in freshwater fish communities brought about by recent uranium mining and processing in the lowlands of the region

  20. A regional soil and sediment geochemical study in northern California

    International Nuclear Information System (INIS)

    Goldhaber, Martin B.; Morrison, Jean M.; Holloway, JoAnn M.; Wanty, Richard B.; Helsel, Dennis R.; Smith, David B.

    2009-01-01

    Regional-scale variations in soil geochemistry were investigated in a 20,000-km 2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km 2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated

  1. A regional soil and sediment geochemical study in northern California

    Science.gov (United States)

    Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B.

    2009-01-01

    Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated

  2. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    of river valleys are the most «hot» points of the permafrost zone. A comprehensive study of them requires organization of several reference aufeis test areas located in different natural-climatic and geocryological zones. In addition to the natural-historical and methodological aspects, the future research program should include consideration of problems related to interaction between engineering structures and aufeis events and aufeis ice-ground complexes. 

  3. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia.

    Science.gov (United States)

    Plummer, Thomas W; Ferraro, Joseph V; Louys, Julien; Hertel, Fritz; Alemseged, Zeresenay; Bobe, René; Bishop, L C

    2015-11-01

    The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an important paleontological and archeological record from the Pliocene and Pleistocene of eastern Africa. Fossils are common throughout the sequence and provide evidence of paleoenvironments and environmental change through time. This study developed discriminant function ecomorphology models that linked astragalus morphology to broadly defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern bovids of known ecology. These models used seven variables suitable for use on fragmentary fossils and had overall classification success rates of >82%. Four hundred and one fossils were analyzed from Shungura Formation members B through G (3.4-1.9 million years ago). Analysis by member documented the full range of ecomorph categories, demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River. Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the most common in the fossil sample. The trend of increasing open cover habitats from Members C through F suggested by other paleoenvironmental proxies was documented by the increase in open habitat ecomorphs during this interval. However, finer grained analysis demonstrated considerable variability in ecomorph frequencies over time, suggesting that substantial short-term variability is masked when grouping samples by member. The hominin genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, indicating that all three genera were living in temporally variable and heterogeneous landscapes. Australopithecus finds were predominantly associated with lower frequencies of open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating a more woodland focus for this genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Iodine-125 and Iodine-131 in the Thames Valley and other areas

    International Nuclear Information System (INIS)

    Howe, J.R.; Lloyd, M.K.; Bowlt, C.

    1985-01-01

    Part of the Iodine-125 and Iodine-131 waste from hospitals and research centres is discarded down drains and passes through sewage and water reclamation works into the river system. Relatively high concentration of radioiodine occur in outfalls that discharge into the river Thames, lower levels are found in the mainstream river and less still in the reservoirs and tap water supplies abstracted from the river. The pathway from waste to drinking water could account for the low levels of Iodine-125 found in the thyroid glands of some farm animals and human beings in the Thames valley

  5. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  6. Plants of the Alligator Rivers Region, Northern Territory

    International Nuclear Information System (INIS)

    Cowie, I.D.; Finlayson, C.M.

    1986-01-01

    Published and unpublished lists of plants of the Alligator Rivers Region have been combined into a single, up-to-date check-list. The list has been designed to replace fragmented, regional listings with a single document suitable for use by both professional and amateur botanists. The list is ordered in the taxonomic sequence adopted for the Flora of Australia and includes 1346 species from 165 families. These are 1275 native and 71 alien species listed. Separate lists of rare species are given and discussed

  7. Plants of the Alligator Rivers Region, Northern Territory

    Energy Technology Data Exchange (ETDEWEB)

    Cowie, I D; Finlayson, C M

    1986-01-01

    Published and unpublished lists of plants of the Alligator Rivers Region have been combined into a single, up-to-date check-list. The list has been designed to replace fragmented, regional listings with a single document suitable for use by both professional and amateur botanists. The list is ordered in the taxonomic sequence adopted for the Flora of Australia and includes 1346 species from 165 families. These are 1275 native and 71 alien species listed. Separate lists of rare species are given and discussed.

  8. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  9. Estimation of the regional evapotranspiration through remote sensing

    International Nuclear Information System (INIS)

    Vives, L.; Rivas, R.; Wohl Coelho, O.; Schirmbeck, J.; Valor, E.

    2004-01-01

    This proposal deals with a new methodology capable of estimating variations in time and space of the evapotranspiration rate, which is one of the main processes controlling recharge to the Guarani Aquifer System (GAS). Such a methodology is being applied to the dos Sinos River Basin, Rio Grande do Sul, Brazil, which is in a region where groundwater from the GAS is heavily used for industrial and urban purposes. The investigations are being carried out by researchers of the Flat Plains Hydrology Institute (National University of the Center Buenos Aires Province, Azul, Argentina) and the Center of Exact and Technological Sciences (University of dos Simos River Valley, UNISINOS, Sao Leopoldo, Rio Grande do Sul, Brazil) [es

  10. Integral ordering of the River Vardar Valley

    International Nuclear Information System (INIS)

    Stavrov, Jordan

    2004-01-01

    From Skopje to Gevgelia, an annual quantity of 4,5 billions M 3 of water flows out of the territory through the Vardar River for only 60 hours. This poses two questions. The first is whether the flowing out of the water can be decelerated, i.e., whether the water can be kept for at least 60 days and the second question is how this can be realized. Construction of 12 hydroelectric power plants is envisaged along Vardar River, i.e., its section extending from Skopje to the border on Greece, which means within a length of 200 km. Two of these are classical hydroelectric power plants (HPP 'Veles' and HPP 'Gradec'), while the remaining 10 hydroelectric power plants are distributed in a cascade along the river course, with small water head of H = 8,20 - 8,50 m and are considered ecological hydroelectric power plants according to European criteria. For us, these represent a new technology of design and construction particularly considering the part referring to the equipment, while in Europe, there is assembly-line production of such equipment. Presented very briefly in the paper shall be the main technical information on these hydroelectric power plants, namely HPP Kukuricani, as a pilot project to be realized by AD ESM. (Author)

  11. River water quality in the northern sugarcane-producing regions of ...

    African Journals Online (AJOL)

    2011-02-16

    Feb 16, 2011 ... Sugarcane production in South Africa occurs exclusively in the eastern regions of ... transboundary rivers, making their management internation- ...... KOEGELENBERG FH (2004) Irrigation User's Manual – Chapter 5: Water.

  12. Radioecological monitoring of transboundary rivers of the Central Asian Region

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Salikhbaev, U.S.; Kist, A.A.; Radyuk, D.S.; Vdovina, E.D.; Zhuk, L.I.

    2005-01-01

    Results of radioecological investigation of Central Asian rivers are presented. Investigation was done as part of the Navruz Project, a cooperative, transboundary river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the United States. The study of waterborne radionuclides and metals concentrations in Central Asia is of particular interest because of the history of nuclear materials mining, fabrication, transport, and storage there, when it was part of the Soviet Union. This development left a legacy of radionuclides and metals contamination in some Central Asian regions, which poses a clear health hazard to populations who rely heavily upon surface water for agricultural irrigation and direct domestic consumption. (author)

  13. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    . Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies

  14. Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland

    DEFF Research Database (Denmark)

    Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine

    2017-01-01

    The Zackenberg River delta is located in northeast Greenland (74 degrees 30' N, 20 degrees 30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the depo......The Zackenberg River delta is located in northeast Greenland (74 degrees 30' N, 20 degrees 30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated...... the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers......, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together...

  15. Laser-controlled land grading for farmland drainage in the Red River Valley: an economic evaluation

    International Nuclear Information System (INIS)

    Edwardson, S.; Watt, D.; Disrud, L.

    1988-01-01

    A study was conducted in the Red River Valley to evaluate the benefits of laser land grading for drainage. Graded fields were compared with ungraded fields to measure changes in crop yields due to better drainage on the graded fields. Cut-and-fill areas were studied in graded fields to evaluate the effect of grading on nutrient levels and crop uniformity. Potential cut-and-fill areas on an ungraded field were also studied for yield uniformity and nutrient levels and compared with the graded field. Crop maturity and yield were more uniform on graded fields (0.05 level of significance) than on ungraded fields. Aerial photographs indicated graded fields had more uniform drainage and, consequently, more uniform crop maturity at harvest. A method is presented for determining the economic feasibility of land grading based upon the percentage of land lost to drown out, the value of the crop, and the cost of grading. The economic analysis indicates that land grading on the areas studied resulted in an 8-year payback and a positive investment return for a longer period of time. (author)

  16. POPULATION STRUCTURE AND PRODUCTION OF COPAIBA OLEORESIN BETWEEN VALLEYS AND HILLSIDES OF THE MINING AREA OFTROMBETAS RIVER - PARÁ1

    Directory of Open Access Journals (Sweden)

    Jonas Gebara

    2016-02-01

    Full Text Available ABSTRACT We aimed in this work to study natural populations of copaiba (Copaifera multijuga Hayne on the Monte Branco mountain at Porto Trombetas-PA, in order to support sustainable management and the exploitation of oleoresin from copaiba. We studied the population structure of copaiba on hillsides and valleys of the south face of Monte Branco, within Saracá Taquera National Forest, where bauxite ore was extracted in the biennium 2013-2014 by Mineração Rio do Norte (MRN. We produced a 100% forest inventory of the specie and of oleoresin extraction in order to quantify the potential production of the remaining area. The density of copaiba individuals with DBH > 30 cm was 0.33 individuals per hectare in the hillside and 0.25 individuals per hectare in the valley. Both environments presented a density of 0.28 individuals per hectare. The average copaiba oleoresin yield was 0.661±0.334 liters in the hillside and 0.765±0.280 liters in the valley. The average value of both environments together (hillside and valley was 0.714±0.218 liters. From all individuals with DBH over 30 cm, 38 (58% produced some amount of oleoresin, averaging 1.113±0.562 liters in the hillside, 1.329±0.448 liters in the valley and 1.190±0.355 liters in both environments together. The results show the need for planning the use of the surroundings of the study area in order to reach the required volume of copaiba to make feasible the sustainable management of oleoresin extraction in the region.

  17. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  18. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  19. Diet of the grass lizard Microlophus thoracicus icae in the Ica river valley, Peru

    Directory of Open Access Journals (Sweden)

    José Pérez Z.

    2015-10-01

    Full Text Available The diet of grass lizard, Microlophus thoracicus icae, was evaluated in three localities of the Ica River Valley, Peru. The dietary pattern was characterized by high consumption of vegetable material, mainly Prosopis spp. leaves, and invertebrates as ants and insect larvae. No significant relationships were found between body size, number of prey eaten or volume consumed. The juvenile, male and female M. t. icae not showed significant differences regarding number of ants or insect larvae consumed, neither on the proportion consumed of plant material. However, total volume of plant material was different between males and females, compared to juveniles. Multivariate analysis showed no evident difference in the diets of juveniles, males and females. Trophic niche amplitude for M. t. icae was Bij = 6.97. The consumption of plant material and invertebrates is important for both juvenile and adult iguanas, therefore; no clear age difference in diet was observed in the individuals studied. This species would present great diet plasticity (omnivory influenced by the local variation of food resources. Possible consequences of a varied diet may include particular characteristics of its parasites, foraging strategies and efficiency, thermoregulation, morphology, among others.

  20. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  1. Maps of the Bonsall area of the San Luis Rey River valley, San Diego County, California, showing geology, hydrology, and ground-water quality

    Science.gov (United States)

    Izbicki, John A.

    1985-01-01

    In November 1984, 84 wells and 1 spring in the Bonsall area of the San Luis Rey River valley were inventoried by U.S. Geological Survey personnel. Depth to water in 38 wells ranged from 1.3 to 38 ft and 23 wells had depths to water less than 10 feet. Dissolved solids concentration of water from 29 wells and 1 spring sampled in autumn 1983 and spring 1984 ranged from 574 to 2,370 mgs/L. Groundwater with a dissolved solids concentration less than 1,000 mgs/L was generally restricted to the eastern part of the aquifer. The total volume of alluvial fill in the Bonsall area is 113,000 acre-feet; the amount of groundwater storage available in the alluvial aquifer is 18,000 acre-feet. The alluvial aquifer is, in part, surrounded and underlain by colluvium and weathered crystalline rock that add some additional groundwater storage capacity to the system. Data in this report are presented on five maps showing well locations , thickness of alluvial fill, water level contours in November 1983 and hydrographs of selected wells, groundwater quality in spring 1960 and graphs showing changes in dissolved solids concentrations of water from selected wells with time, and groundwater quality in spring 1984. This report is part of a larger cooperative project between the Rainbow Municipal Irrigation District and the U.S. Geological Survey. The purpose of the larger project is to develop an appropriate groundwater management plan for the Bonsall area of the San Luis Rey River valley. (USGS)

  2. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    Science.gov (United States)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions

  3. Quantifying flooding regime in floodplain forests to guide river restoration

    Directory of Open Access Journals (Sweden)

    Christian O. Marks

    2014-09-01

    Full Text Available Abstract Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and channel morphology, and hydrologic regime to define conditions promoting distinct floodplain forest assemblages. Species assemblages were dominated by floodplain-associated trees on surfaces experiencing flood durations between 4.5 and 91 days/year, which were generally well below the stage of the two-year recurrence interval flood, a widely-used benchmark for floodplain restoration. These tree species rarely occurred on surfaces that flooded less than 1 day/year. By contrast abundance of most woody invasive species decreased with flooding. Such flood-prone surfaces were jointly determined by characteristics of the hydrograph (high discharges of long duration and topography (low gradient and reduced valley constraint, resulting in increased availability of floodplain habitat with increasing watershed area and/or decreasing stream gradient. Downstream mainstem reaches provided the most floodplain habitat, largely associated with low-energy features such as back swamps and point bars, and were dominated by silver maple (Acer saccharinum. However, we were able to identify a number of suitable sites in the upper part of the basin and in large tributaries, often associated with in-channel islands and bars and frequently dominated by sycamore (Platanus occidentalis and flood disturbance-dependent species. Our results imply that restoring flows by modifying dam operations to benefit floodplain forests on existing surfaces need not conflict with flood protection in some regional settings. These results underscore the need to understand how flow, geomorphology, and species traits

  4. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    Science.gov (United States)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  5. Fluvial Responses to Holocene sea Level Variations Along the Macdonald River, New South Wales, Australia

    Science.gov (United States)

    Rustomji, P.; Chappell, J.; Olley, J.

    2003-12-01

    The Macdonald River drains the rugged eastern flanks of Australia's Great Dividing Range. It has a catchment area of 2000km2, restricted alluvial lowlands confined by bedrock interfluves and flows into the Hawkesbury River, a larger estuarine valley. The Macdonald valley is presently tidal for 14km from the Hawkesbury. At about 8000 year before present (BP), rising sea level invaded the Macdonald Valley for at least 35km upstream of the Hawkesbury River. Rapid aggradation occurred between 8000 and 6000 years BP and a sand bed river was established in the Macdonald Valley, its mouth prograding rapidly towards the Hawkesbury. Little is known about the character of the sand bed river during the +2 meter sea level highstand occurring between 5000 and 4000 BP. However, from 3000 to 1500 BP when sea level was consistently at +1 to +1.5m, major floodplain and levee-like structures, now virtually inactive, were established. The bed is inferred to have been elevated above its present day level and consequently intersected mean sea level (MSL) downstream of its present location. This is consistent with reported sea levels at +1 to +2m above present levels for the New South Wales coast at this time. From 1500 years BP, local sea level fell rapidly to its present level. Aggradation of the levee crests ceased and sedimentation along the valley became restricted to aggradation of an inset floodplain, within the pre-1500 BP deposits. The channel contracted and the sandy river bed incised. An equivalent and synchronous change in sedimentation style is observed along the Tuross River 400km south of the Macdonald, lending support to sea level variations being the factor driving this change. By 1850 AD, the bed dipped below MSL about 10km upstream of its inferred position prior to 1500 years BP. A series of large floods between 1949 and 1955 eroded significant volumes of sandy sediment from the Holocene deposits. The channel bed widened from between 25 and 50m width to ˜100m along

  6. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  7. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year. To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for

  8. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Science.gov (United States)

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  9. Managing River Resources: A Case Study Of The Damodar River, India

    Science.gov (United States)

    Bhattacharyya, K.

    2008-12-01

    The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been

  10. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  11. Carbon Storage of bottomland hardwood afforestation in the Lower Mississippi Valley, U.S.A.

    Science.gov (United States)

    David T. Shoch; Gary Kaster; Aaron Hohl; Ray Souter

    2009-01-01

    The emerging carbon market is an increasingly important source of finance for bottomland hardwood afforestation in the Lower Mississippi River Valley (LMV). Notwithstanding, there is a scarcity of empirical...

  12. Inland valley research in sub-Saharan Africa; priorities for a regional consortium

    NARCIS (Netherlands)

    Jamin, J.Y.; Andriesse, W.; Thiombiano, L.; Windmeijer, P.N.

    1996-01-01

    These proceedings are an account of an international workshop in support of research strategy development for the Inland Valley Consortium in sub-Saharan Africa. This consortium aims at concerted research planning for rice-based cropping systems in the lower parts of inland valleys. The Consortium

  13. Alligator Rivers Regions Research Institute research report 1983-84

    International Nuclear Information System (INIS)

    1984-01-01

    The Institute undertakes and coordinates research required to ensure the protection of the environment in the Alligator Rivers Region from any consequences resulting from the mining and processing of uranium ore. Research projects outlined are in aquatic biology, terrestrial ecology, analytical chemistry, environmental radioactivity and geomorphology

  14. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  15. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  16. Dissolved nitrogen in rivers: comparing pristine and impacted regions of Brazil

    Directory of Open Access Journals (Sweden)

    LA Martinelli

    Full Text Available Riverine nitrogen distribution is increasingly controlled by anthropogenic activities in their watersheds, regardless of spatial scale, climate, and geographical zone. Consequently, modelling efforts to predict the export of nitrogen from rivers worldwide have used attributes such as population density, land use, urbanization and sanitation. These models have greatly enhanced our understanding of the sources and fate of nitrogen added to terrestrial systems and transported to rivers and streams, especially for developed countries of the North temperate zone. However, much of the world's population lives in developing countries of the tropics, where the effects of human activities on riverine N exports are still poorly understood. In an effort to close this gap, we compare riverine nitrogen data from 32 Brazilian rivers draining two contrasting regions in this tropical country in terms of economic development - the State of São Paulo and the Amazon. Our data include nitrogen in different dissolved forms, such as Dissolved Inorganic Nitrogen (DIN and Dissolved Organic Nitrogen (DON. The results show that nitrogen concentrations decreased as river runoff increased in both study areas, and that concentrations were significantly higher in rivers draining the most economically developed region. The relationships between nitrogen concentrations and fluxes with demographic parameters such as population density were also determined and compared to those in temperate systems. In contrast to temperate watersheds, we found that nitrogen fluxes increased only after population densities were higher than 10 individuals per km².

  17. Dating the Late Archaic occupation of the Norte Chico region in Peru.

    Science.gov (United States)

    Haas, Jonathan; Creamer, Winifred; Ruiz, Alvaro

    2004-12-23

    The Norte Chico region on the coast of Peru north of Lima consists of four adjacent river valleys--Huaura, Supe, Pativilca and Fortaleza--in which archaeologists have been aware of a number of apparently early sites for more than 40 years (refs 1- 3). To clarify the early chronology in this region, we undertook fieldwork in 2002 and 2003 to determine the dates of occupation of sites in the Fortaleza and Pativilca valleys. Here we present 95 new radiocarbon dates from a sample of 13 of more than 20 large, early sites. These sites share certain basic characteristics, including large-scale monumental architecture, extensive residential architecture and a lack of ceramics. The 95 new dates confirm the emergence and development of a major cultural complex in this region during the Late Archaic period between 3000 and 1800 calibrated calendar years bc. The results help to redefine a broader understanding of the respective roles of agricultural and fishing economies in the beginnings of civilization in South America.

  18. Size effects in many-valley fluctuations in semiconductors

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Kochelap, V.A.

    1995-08-01

    We present the results of theoretical investigations of nonhomogeneous fluctuations in submicron active regions of many-valley semiconductors with equivalent valleys(Ge, Si-type), where the dimension 2d of the region is comparable to or less than the intervalley diffusion relaxation length L iv . It is shown that for arbitrary orientations of the valley axes (the crystal axes) with respect to lateral sample surfaces, the fluctuation spectra depend on the bias voltage applied to the layer in the region of weak nonheating electric fields. The new physical phenomenon is reported: the fluctuation spectra depend on the sample thickness, with 2d iv the suppression of fluctuations arises for fluctuation frequencies ω -1 iv , τ -1 iv is the characteristic intervalley relaxation time. (author). 43 refs, 5 figs

  19. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    Science.gov (United States)

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  20. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  1. New foci of cutaneous leishmaniasis in central Kenya and the Rift Valley.

    Science.gov (United States)

    Sang, D K; Okelo, G B; Ndegwa, C W; Ashford, R W

    1993-01-01

    Active case detection and investigations of sandfly resting places in suspected transmission sites of cutaneous leishmaniasis in central Kenya and the Rift Valley resulted in the identification of several foci of the disease in Samburu, Isiolo, Laikipia, Nakuru and Nyandarua districts. The foci occurred in areas ranging from semi-arid lowlands at 400 m altitude to highland plateaux at 2500 m, including the floor of the Rift Valley, and were mostly inhabited by recently settled communities, nomads and migrant charcoal burners. Four species of Phlebotomus, 3 of the subgenus Larroussius (P. pedifer, P. aculeatus and P. guggisbergi) and one Paraphlebotomus (P. saevus) were collected from caves, rock crevices and tree hollows found in river valleys and in lava flows.

  2. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  3. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  4. Mountain rivers may need centuries to adjust to earthquake-triggered sediment pulses, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Korup, Oliver; Schwanghart, Wolfgang; Bernhardt, Anne; Adhikari, Basanta Raj; Andermann, Christoff; Wittmann, Hella; Merchel, Silke

    2017-04-01

    medieval valley fills. Pronounced knickpoints and epigenetic gorges at tributary junctions add to the picture of a drawn-out fluvial response, while the re-exhumed tree trunks indicate that some distal portions of the earthquake-derived sediment wedge have been incised to near their base. Our results challenge the notion that mountain rivers recover within years or even decades following earthquake disturbance. We caution against generalizing the spectrum of fluvial response in this context, as the valley fills around Pokhara document the possibility of a more protracted fluvial response that may have been ongoing for as long as 900 years despite the high and aggressive erosion that characterizes Himalayan rivers. Beyond the scientific community, our results may motivate some rethinking of post-seismic hazard appraisals and infrastructural planning during the rehabilitation phase in earthquake-struck regions.

  5. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang

    2015-03-01

    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  6. Investigations of some regional river systems by INAA and X-ray fluorescence

    International Nuclear Information System (INIS)

    Drazhkovich, R.J.; Kukoch, A.

    1985-01-01

    Distribution of Zn, Hg, Sb, Cr, Fe, Sc and Co has been investigated in materials dissolved and suspended in the rivers Ibar, Zapadna Morava and Kamenica by means of INAA and X-ray fluorescence. Irradiation was made in VKG-channels of RA-nuclear reactor Vincha. Distribution coefficients were calculated, as well as contamination factors for investigated river regional systems in comparison to the uncontaminated water system. Data obtained indicate the possibility of utilization of these two analytical methods for investigation and control of biogeochemical and contamination processes in small regional water systems, especially important for modern studies in life sciences

  7. Providing an Authentic Research Experience for University of the Fraser Valley Undergraduate Students by Investigating and Documenting Seasonal and Longterm Changes in Fraser Valley Stream Water Chemistry.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Groeneweg, A.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Undergraduate students in the Geography and Biology Departments at the University of the Fraser Valley (UFV) have been provided the opportunity to participate in the time series sampling of the Fraser River at Fort Langley and Fraser Valley tributaries as part of the Global Rivers Observatory (GRO, www.globalrivers.org) which is coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. Student research has focussed on Clayburn, Willband and Stoney Creeks that flow from Sumas Mountain northwards to the Fraser River. These watercourses are increasingly being impacted by anthropogenic activity including residential developments, industrial activity, and agricultural landuse. Students are instructed in field sampling protocols and the collection of water chemistry data and the care and maintenance of the field equipment. Students develop their own research projects and work in support of each other as teams in the field to collect the data and water samples. Students present their findings as research posters at local academic conferences and at UFV's Student Research Day. Through their involvement in our field research our students have become more aware of the state of our local streams, the methods used to monitor water chemistry and how water chemistry varies seasonally.

  8. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  9. Population structure and genetic diversity of Sinibrama macrops from Ou River and Ling River based on mtDNA D-loop region analysis, China.

    Science.gov (United States)

    Zhao, Liangjie; Chenoweth, Erica L; Liu, Qigen

    2018-03-01

    In order to understand the influence of human activities such as habitat fragmentation on freshwater fish population evolution, we investigated and compared the genetic diversity and phylogeography of Sinibrama macrops populations in the Oujiang River and Ling River. Mitochondrial control region sequences (D-loop region) of 131 specimens from six populations were obtained and analyzed. The diversity of main stream in the Ou River was lower than that in Ling River. Changtan population showed the lowest diversity (H = 0.646 ± 0.077; π = 0.00060 ± 0.00820). Pairwise F ST , gene flow (Nm), and genetic distance (Da) indicated that Longquan and Changtan significantly differentiate from other populations. Nested clade phylogeographical analysis (NCPA) showed some clades and total cladogram experienced isolation by distance. In conclusion, the populations from severely fragmented Ou River have the lower diversity and more intense differentiation than that from the mainstream of Ling River, Changtan population present the lowest diversity and were isolated by the dam construction.

  10. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  11. Post-glacial landform evolution in the middle Satluj River valley, India

    Indian Academy of Sciences (India)

    incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon. (ISM). ... middle Satluj valley extreme events shape the land- scape besides ...... District Disaster Management Authority (DDMA), Kinnaur,.

  12. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    Science.gov (United States)

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  13. Characterization And Classification Of The Inland Valley Soils Of ...

    African Journals Online (AJOL)

    Six profiles located in the inland valley soils of central Cross River State were studied. The surface horizon colour of the first four were either dark Grey or dark brown. The last two profiles were grey. All subsurface horizons were either greyish or brownish and highly mottled. The structure of all the profiles were either blocky ...

  14. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    International Nuclear Information System (INIS)

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  15. APPLICATION OF GIS TO ENVIRONMENTAL PROBLEMS IN THE HORNÁD VALLEY

    OpenAIRE

    Jablonská Jana; Dugáček Dušan; Orlitová Erika; Timčák Gejza M.

    1997-01-01

    The paper discusses some of the possibilities of managing environmental issues linked with industrial and communal activities, using the support of GIS. At the Dept. of Geology and Mineralogy (Numerical geolo-gy section) the first steps has been made to enable a participative monitoring of the state of the environment in the Hornád river valley through a number of projects. (RECENT, Hornád river watching). A number of speciali-zed application software was developed (for the MicroStation envir...

  16. Communal spaces: aggregation and integration in the Mogollon Region of the United States Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Nisengard, Jennifer E.

    2006-12-01

    Aggregation and integration are processes that occur in human societies throughout the globe. An informative example of population aggregation and social integration can be observed in the North American desert borderlands from A.D. 250 to 1450 in the area known as the Mogollon region. In fact, Mogollon communities oscillated from smaller social groups into larger ones and dispersed into smaller groups only to form larger ones again. For this reason, examining the groups of people living in the Mogollon region provides a magnified view of social change over a substantial period. Understanding patterns of aggregation and integration provides researchers with the promise for research into the nature of these phenomena. In general, the Mogollon region is characterized by limited water supplies and low average annual precipitation. However, pockets of the Mogollon area, including the Mimbres valley and the Gila River valley, represent oases, where permanent rivers and their associated tributaries allowed for the pursuit of agricultural endeavors and access to a wide variety of wild plant and animal resources. The areas with these kinds of potential became population centers for previously dispersed groups of people living in the region. These people exploited natural resources and practiced agriculture in areas surrounding their communities. Over time, more organized aggregated and socially integrated communities were established throughout the region. Using ancient Mogollon communal architecture, commonly called kivas, this study examines issues of, and evidence for, population aggregation and social integration.

  17. The cultural analysis in the environmental impact studies. Jepirachi wind pilot project and connecting road between the Aburra valley and Cauca River

    International Nuclear Information System (INIS)

    Ruiz, Aura Luz; Carmona, Sergio Ivan

    2006-01-01

    This article is synthesis of the investigation to choose I in environment title of Master and Development of the National University of Host Colombia Medellin, on the speech, the social images and representations that emerge in the Studies from environmental Impact -EIA- from the cultural systems from communities affected by the implantation and operation. From two macro projects, that are part of the Plans of national Development, regional and local in Colombia: one, the Project Pilot of Generation of Aeolian Energy Jepirachi, in Colombian the Guajira discharge that affects indigenous communities of several establishments Wayuu in the sector of Average Moon. The other, the project of Road Connection between Valleys of the Aburra River - and the Cauca River, which it affects communities that inhabit an axis of rural transition - urban, whose cultural composition is diverse in its origin, mobility and interactions. It was left from two hypotheses: one, is that the analysis made in the cultural dimension of the EIA, is insufficient lo identify, lo evaluate and to handle the impacts on the cultural systems; second, front lo the treatment of the cultural systems is the existence of fundamental differences. There is cultural systems in Colombia which status is recognized greater and category than to others. The analysis of the speech allowed to obtain a diagnosis on semantic the rhetorical structure and - formal and textual cohesion, coherence, correlations and associations in the EIA and to identify the social images and representations that emerge on the populations taken part by the projects. Finally conclusions. That consider they leave to the debate on the cultural analyses that have been made in the EIA ,their emptiness and limitations and the different courses open that can take futures works from investigation

  18. Anthropogenic Disturbances Create a New Vegetation Toposequence in the Gatineau River Valley, Quebec

    Directory of Open Access Journals (Sweden)

    Jason Laflamme

    2016-10-01

    Full Text Available This study measured changes in forest composition that have occurred since the preindustrial era along the toposequence of the Gatineau River Valley, Quebec, Canada (5650 km2, based on survey records prior to colonization (1804–1864 and recent forest inventories (1982–2006. Changes in forest cover composition over time were found to be specific to toposequence position. Maple and red oak are now more frequent on upper toposequence positions (+26%, +21%, respectively, whereas yellow birch, eastern hemlock, and American beech declined markedly (−34% to −17%. Poplar is more frequent throughout the landscape, but particularly on mid-toposequence positions (+40%. In contrast, white pine, frequent on all toposequence positions in the preindustrial forest, is now confined to shallow and coarse-textured soils (−20%. The preindustrial forest types of the study area were mostly dominated by maple, yellow birch, and beech, with strong components of white pine, hemlock, and eastern white cedar, either as dominant or codominant species. In a context of ongoing anthropogenic disturbances and environmental changes, it is probably not possible to restore many of these types, except where targeted silvicultural interventions could increase the presence of certain species. The new forest types observed should be managed to ensure continuity of vital ecosystem services and functions as disturbance regimes evolve.

  19. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  20. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Wang, Longsheng; Zhang, Yuzhu; Hu, Guiming

    2015-06-01

    Palaeoflood events recorded by slackwater deposits (SWDs) were investigated extensively by sedimentological criteria of palaeohydrology along the upper Hanjiang River valley. Modern flood SWDs were collected for comparison with palaeoflood SWD in the same reaches. Three typical palaeoflood SWDs were observed within Holocene loess-soil blanket on the first river terrace land. The grain size distributions of palaeoflood SWDs are similar to modern flood SWDs, whereas they are different from eolian loess and soil. Palaeoflood SWD lies in three major pedo-stratigraphic boundaries (TS/L0, L0/S0, and S0/Lt) in the Holocene loess-soil profiles. The chronology of three palaeoflood episodes was established by OSL dating and pedo-stratigraphic correlation with the well-dated Holocene loess-soil profiles in the upper Hanjiang River basin. Holocene palaeoflood events were dated to 9500-8500, 3200-2800, and 1800-1700 a B.P., respectively. Palaeoflood discharges were estimated by the palaeoflood model (i.e., slope-area method and step-backwater method). The highest discharges are 51,680-53,950 m3 s- 1 at the 11,500-time scale in the Xunyang reach of the upper Hanjiang River valley. Holocene extraordinary hydroclimatic events in the Hanjiang River often result from abnormal atmospheric circulations from Southwest monsoons in the Chinese monsoonal zone. These results provide a regional expression of extreme flood response to Holocene palaeoclimate to understand the effects of global climatic variations on the river system dynamics.

  1. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  2. Geologic Map of the Shenandoah National Park Region, Virginia

    Science.gov (United States)

    Southworth, Scott; Aleinikoff, John N.; Bailey, Christopher M.; Burton, William C.; Crider, E.A.; Hackley, Paul C.; Smoot, Joseph P.; Tollo, Richard P.

    2009-01-01

    The geology of the Shenandoah National Park region of Virginia was studied from 1995 to 2008. The focus of the study was the park and surrounding areas to provide the National Park Service with modern geologic data for resource management. Additional geologic data of the adjacent areas are included to provide regional context. The geologic map can be used to support activities such as ecosystem delineation, land-use planning, soil mapping, groundwater availability and quality studies, aggregate resources assessment, and engineering and environmental studies. The study area is centered on the Shenandoah National Park, which is mostly situated in the western part of the Blue Ridge province. The map covers the central section and western limb of the Blue Ridge-South Mountain anticlinorium. The Skyline Drive and Appalachian National Scenic Trail straddle the drainage divide of the Blue Ridge highlands. Water drains northwestward to the South Fork of the Shenandoah River and southeastward to the James and Rappahannock Rivers. East of the park, the Blue Ridge is an area of low relief similar to the physiography of the Piedmont province. The Great Valley section of the Valley and Ridge province is west of Blue Ridge and consists of Page Valley and Massanutten Mountain. The distribution and types of surficial deposits and landforms closely correspond to the different physiographic provinces and their respective bedrock. The Shenandoah National Park is underlain by three general groups of rock units: (1) Mesoproterozoic granitic gneisses and granitoids, (2) Neoproterozoic metasedimentary rocks of the Swift Run Formation and metabasalt of the Catoctin Formation, and (3) siliciclastic rocks of the Lower Cambrian Chilhowee Group. The gneisses and granitoids mostly underlie the lowlands east of Blue Ridge but also rugged peaks like Old Rag Mountain (996 meter). Metabasalt underlies much of the highlands, like Stony Man (1,200 meters). The siliciclastic rocks underlie linear

  3. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J., E-mail: shepherdtj@aol.com [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom); Chenery, Simon R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Pashley, Vanessa [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Lord, Richard A. [School of Science and Technology, University of Teesside, Middlesbrough, Tees Valley TS1 3BA (United Kingdom); Ander, Louise E.; Breward, Neil; Hobbs, Susan F. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Horstwood, Matthew [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Klinck, Benjamin A. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Worrall, Fred [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom)

    2009-08-15

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  4. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  5. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  6. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  7. THE REALIZATION OF THE AGRI-ENVIRONMENTAL MANAGEMENT SCHEME IN THE AREA OF NATURA 2000 IN THE VALLEY OF BIEBRZA RIVER

    Directory of Open Access Journals (Sweden)

    Wojciech Gotkiewicz

    2015-12-01

    Full Text Available The aim of the research was to analyse the functioning of agricultural farms located in the areas of Natura 2000 network. The research was conducted in 2015 among 70 farmers whose lands were located in the Valley of Biebrza River in Podlaskie Voivodeship. The main research method was a questionnaire. According to the results of the research, the agri-environmental scheme is a proper tool that combines the environmental protection and local producers’ interests; however, it requires the implementation of a supplement adjusted to the nature of the areas. It is also indicated that even though the economic part of the program does not raise any doubts, the natural eff ects are practically not recognized, which may lead to an incomplete protection of precious species and habitats.

  8. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  9. The effect of agricultural policy reforms on income inequality in Swiss agriculture - An analysis for valley, hill and mountain regions

    NARCIS (Netherlands)

    Benni, El N.; Finger, R.

    2013-01-01

    Using FADN data, we analyse the development of income inequality in Swiss agriculture for the valley, hill and mountain regions over the period 1990–2009. While household income inequality remained stable, farm income inequality increased during this period. Estimated Gini elasticities show that

  10. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    stream reaches, with 108 deliveries specified at 80 diversion locations. Monthly land use, agricultural crops, urban demand, precipitation, evapotranspiration, boundary stream flows and surface water diversions are specified, and the land-surface process calculates crop water demands and routes runoff to streams and deep percolation to the unsaturated zone. The stream process routes surface water flows, allocates available water to meet specified deliveries, and calculates stream-groundwater interactions. Groundwater pumping (which is not metered in California) can be specified or calculated by the model. Model calibration included automated selection of optimum hydraulic parameters using PEST, and manual selection of the areal and vertical distribution of groundwater pumping, to obtain the best match to historical groundwater heads and stream flows. The calibrated model is being used to calculate stream accretions and depletions for use in CALSIM-III, a reservoir-river simulation tool used for planning and management of the State Water Project and Central Valley Project, large surface water distribution networks in California's Central Valley.

  11. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    Science.gov (United States)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  12. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

    Science.gov (United States)

    Saikia, Sowrav; Chopra, Sumer; Baruah, Santanu; Singh, Upendra K.

    2017-01-01

    In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1-2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5-6.5 km thick across the valley, 0.5-1.0 km on Shillong plateau and 2.0-5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

  13. 27 CFR 9.214 - Haw River Valley.

    Science.gov (United States)

    2010-04-01

    ... significance. (b) Approved maps. The two United States Geological Survey 1:100,000-scale metric topographic...) Greensboro, North Carolina, 1984; and (2) Chapel Hill, North Carolina, 1984. (c) Boundary. The Haw River... line southeast 2 miles to the intersection of North Carolina State Highway 49 and an unnamed, light...

  14. Renewable energies and regional development. Photovoltaic energy, micro-grid systems in the Brazilian semi-arid

    Energy Technology Data Exchange (ETDEWEB)

    Arrais de Miranda Mousinho, Maria Candida

    2012-07-01

    This article tackles the issue of the development related to the insertion of new renewable energy technologies. It also presents the experience of the region of the Sao Francisco River Valley - named after the largest river genuinely Brazilian located in the semi-arid region -, focusing mainly on two municipalities: Xique-Xique and Barra. Its focus is the use of solar energy for rural communities. To present the results of that experience, the support of the Rio Sao Francisco Project: culture, identity and development, of the Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) and of Eurosolar was essential. The research on which this article is based was fruit of a volunteer research project linked to the Partners of the Americas Bahia-Pennsylvania Committee.

  15. Elk Valley Coal innovation paving the way

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Ednie, H.; Weldon, H.

    2006-09-15

    Elk Valley Coal maintains performance optimization across its six metallurgical coal operations. Performance, personnel issues, and training are discussed. Programmes at Fording River, Greenhills, and Coal Mountain are described. Fording River is implementing new computer systems and high-speed wireless networks. The pit control system and the equipment maintenance and remote maintenance programmes are being improved. The Glider Kit program to rebuild major equipment is described. Safety and productivity measures at Greenhills include testing and evaluation of innovations such as the Drilling and Blasting System (DABS), a payload monitor on a shovel, and two GPS-based systems. Blasting methods, a timing study that examines wall stability, fragmentation simulation, and the Six Mine structure at Coal Mountain are described. 5 photos.

  16. Residues of cypermethrin and endosulfan in soils of Swat valley

    Directory of Open Access Journals (Sweden)

    M. Nafees

    2009-05-01

    Full Text Available Swat Valley was studied for two widely used pesticides; cypermethrin and endosulfan. A total of 63 soil samples were collected from 27 villages selected for this purpose. The collected soil samples were extracted with n-hexane, pesticides were separated, identified and quantified by a GC-ECD system. Endosulfan was 0.24 - 1.51 mg kg-1 and 0.13 - 12.67 mg kg-1 in rainfed and irrigated areas, respectively. The residual level of cypermethrin was comparatively high with a level of0.14 to 27.62 mg kg-1 and 0.05 to 73.75 mg kg-1 in rainfed and irrigated areas, respectively. For assessing the possible causes of pesticide residues in soil, 360 farmers were interviewed. It was found that both, cypermethrin and endosulfan, apart from agriculture were also widely misused for fishing in the entire stretch of River Swat and its tributaries. River Swat is used for irrigation in Swat Valley and this wide misuse of pesticides can also contribute to pesticide residue in soil.

  17. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  18. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    Directory of Open Access Journals (Sweden)

    J.-F. Vinuesa

    2006-01-01

    Full Text Available The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE, the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average. New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100% using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted

  19. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya

    Science.gov (United States)

    Sharma, Shubhra; Hussain, Aadil; Mishra, Amit K.; Lone, Aasif; Solanki, Tarun; Khan, Mohammad Khatib

    2018-02-01

    The Suru, Doda and Zanskar river valleys in the semi-arid region of Southern Zanskar Ranges (SZR) preserve a rich repository of the glacial and fluvial landforms, alluvial fans, and lacustrine deposits. Based on detailed field observations, geomorphic mapping and limited optical ages, we suggest four glaciations of decreasing magnitude in the SZR. The oldest Southern Zanskar Glaciation Stage (SZS-4) is inferred from glacially polished bedrock and tillite pinnacles. The SZS-4 is ascribed to the Marine Isotopic Stage (MIS)-4/3. The subsequent SZS-3 is represented by obliterated and dissected moraines, and is assigned to MIS-2/Last Glacial Maximum. The multiple recessional moraines of SZS-2 glaciation are assigned the early to mid Holocene age whereas, the youngest SZS-1 moraines were deposited during the Little Ice Age. We suggest that during the SZS-2 glaciation, the Drang-Drung glacier shifted its course from Suru Valley (west) to the Doda Valley (east). The study area has preserved three generations of outwash gravel terraces, which broadly correlate with the phases of deglaciation associated with SZS-3, 2, and 1. The alluvial fan aggradation, lacustrine sedimentation, and loess deposition occurred during the mid-to-late Holocene. We suggest that glaciation was driven by a combination of the mid-latitude westerlies and the Indian Summer Monsoon during periods of cooler temperature, while phases of deglaciation occurred during enhanced temperature.

  20. Publications | Page 304 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 3031 - 3040 of 6341 ... Assessment of flood hazard in the Central Andes of Peru : HECRAS simulation conducted in Mantaro River valley (restricted access). The Mantaro River valley is located between the west and is a major agricultural region. The valley is constantly affected by floods which cause extensive crop ...

  1. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  2. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    Science.gov (United States)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  3. Evaluating the role of river-floodplain connectivity in providing beneficial hydrologic services in mountain landscapes

    Science.gov (United States)

    Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.

    2017-12-01

    River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous

  4. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Science.gov (United States)

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  5. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  6. PALEODRAINAGES OF THE EASTERN SAHARA - THE RADAR RIVERS REVISITED (SIR - A/B IMPLICATIONS FOR A MID - TERTIARY TRANS - AFRICAN DRAINAGE SYSTEM).

    Science.gov (United States)

    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali

    1986-01-01

    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  7. Tritium as a tracer for the movement of surface water and groundwater in the Glatt Valley, Switzerland

    International Nuclear Information System (INIS)

    Santschi, P.H.; Hoehn, E.; Lueck, A.; Farrenkothen, K.

    1987-01-01

    A pulse of tritiated water (∼ 500 Ci) accidentally discharged by an isotope processing plant in the Glatt River Valley, northern Switzerland, allowed us to observe the migration of a contaminant pulse through a sewage treatment plant, rivers, and various wells of infiltrated groundwater. The accident pointed to various memory effects of the tritium, which acted as a conservative tracer. Tritium concentrations in surface water and groundwater were used to test predictions for the transport of conservative anthropogenic trace contaminants accidentally discharged into the sewer system. Mass balance calculations indicate that about 2-10% of the tritium pulse infiltrated to the groundwater and about 0.5% of the total reached eight major drinking water wells of this densely populated area. In spite of the complex hydrogeology of the lower Glatt River Valley, tritium breakthrough curves could be effectively simulated with modeling approaches developed from an experimental well field

  8. A refined model of Quaternary valley downcutting emphasizing the interplay between tectonically triggered regressive erosion and climatic cyclicity

    Science.gov (United States)

    Demoulin, A.; Beckers, A.; Rixhon, G.; Braucher, R.; Bourlès, D.; Siame, L.

    2012-04-01

    While climatic models of valley downcutting discuss the origin of terrace staircases in valleys of middle Europe within the frame of alternating cold and temperate periods of the Quaternary, other models, starting from a base level fall imposed by an initial tectonic signal, describe the response of the drainage network mainly as the propagation of an erosion wave from the place of base level fall (the margin of the uplifted region) toward the headwaters, the two types of model being rarely confronted. In the Ardennes (West Europe), cosmogenic 10Be and 26Al ages have recently been calculated for the abandonment of the Younger Main Terrace (YMT) level (Rixhon et al., 2011), a prominent feature at mid-height of the valleysides marking the starting point of the mid-Pleistocene phase of deep river incision in the massif. These ages show that the terrace has been abandoned diachronically as the result of a migrating erosion wave that started at 0.73 Ma in the Meuse catchment just north of the massif, soon entered the latter, and is still visible in the current long profiles of the Ardennian Ourthe tributaries as knickpoints disturbing their upper reaches. At first glance, these new findings are incompatible with the common belief that the terraces of the Ardennian rivers were generated by a climatically triggered stepwise general incision of the river profiles. However, several details of the terrace staircases (larger than average vertical spacing between the YMT and the next younger terrace, varying number of post-YMT terraces in trunk stream, tributaries and subtributaries) show that a combination of the climatic and tectonic models of river incision is able to satisfactorily account for all available data. The cosmogenic ages of the YMT also point out a particular behaviour of the migrating knickpoints, which apparently propagated on average more slowly in the main rivers than in the tributaries, in contradiction with the relation that makes knickpoint celerity

  9. Hillslope failure and paraglacial reworking of sediments in response to glacier retreat, Fox Valley, New Zealand.

    Science.gov (United States)

    McColl, Samuel T.; Fuller, Ian C.; Anderson, Brian; Tate, Rosie

    2017-04-01

    Climate and glacier fluctuations influence sediment supply to glacier forelands, which in turn influences down-valley hazards to infrastructure and tourism within glacier forelands. At Fox Glacier, one of New Zealand's most iconic and popular glaciers, rapid retreat has initiated a range of hillslope and valley floor responses, that present a cascade of hazards and changes that need to be carefully managed. Fox Glacier has retreated many kilometres historically, with 2.6 km of retreat since the mid-20th century, and a phase of rapid retreat of 50-340 m per year since 2009. To study the system response to past and ongoing glacial retreat at the Fox valley, morphological changes are being observed using time-lapse photography and the annual collection of high-resolution digital elevation models (DEMs) and orthophoto mosaics. The DEMs are being produced using Structure from Motion photogrammetry from UAV/RPAS and helicopter platforms, and are being used, along with manual ground surveying, to produce ground surface change models (DoDs; DEMs of Difference) and sediment budgets for the valley. Results from time-lapse photography and DoDs show that glacial retreat has initiated destabilisation and (mostly chronic) mass movement of surficial glacial sediments on the valley slopes near the glacier terminus. Alluvial fans farther down valley are actively growing, reworking glacial and landslide sediments from tributary catchments. These paraglacial sediments being delivered to the proglacial river from the glacier terminus and alluvial fans are driving aggradation of the valley floor of decimetres to metres per year and maintaining a highly dynamic braid plain. Valley floor changes also include the melting of buried dead ice, which are causing localised subsidence at the carpark and one of the alluvial fans. The unstable slopes and active debris fans, aggrading and highly active river channel, ground subsidence, add to the spectacle but also the hazards of the Fox valley

  10. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  11. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  12. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  13. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System

    NARCIS (Netherlands)

    Balen, R.T. van; Houtgast, R.F.; Wateren, F.M. van der; Berghe, J. van den; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  14. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System.

    NARCIS (Netherlands)

    van Balen, R.T.; Houtgast, R.F.; van der Wateren, F.M.; Vandenberghe, J.; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  15. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    Science.gov (United States)

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and

  16. Transboundary water resources management and livelihoods: interactions in the Senegal river

    Science.gov (United States)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  17. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India.

    Science.gov (United States)

    Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod

    2016-06-01

    Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for

  18. Effect of slope failures on river-network pattern: A river piracy case study from the flysch belt of the Outer Western Carpathians

    Science.gov (United States)

    Baroň, Ivo; Bíl, Michal; Bábek, Ondřej; Smolková, Veronika; Pánek, Tomáš; Macur, Lukáš

    2014-06-01

    Landslides are important geomorphic agents in various mountainous settings. We document here a case of river piracy from the upper part of the Malá Brodská Valley in the Vsetínské Mts., Czech Republic (Rača Unit of the flysch Magura Group of Nappes, flysch belt of the Outer Western Carpathians) controlled by mass movement processes. Based on the field geological, geomorphological and geophysical data, we found out that the landslide accumulations pushed the more active river of out of two subparallel river channels with different erosion activity westwards and forced intensive lateral erosion towards the recently abandoned valley. Apart from the landslide processes, the presence of the N-striking fault, accentuated by higher flow rates of the eastern channel as a result of its larger catchment area, were the most critical factors of the river piracy. As a consequence of the river piracy, intensive retrograde erosion in the elbow of capture and also within the upper portion of the western catchment occurred. Deposits of two landslide dams document recent minimum erosion rates to be 18.8 mm.ky- 1 in the western (captured) catchment, and 3.6 mm.ky- 1 in the eastern catchment respectively. The maximum age of the river piracy is estimated to be of the late Glacial and/or the early Holocene.

  19. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  20. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  1. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    Science.gov (United States)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  2. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    , silts, and clays and generally are coarser closest to the Sierra Nevada and become finer towards the center of the basin. The structure and composition of the deposits in the Madera-Chowchilla study unit are different from those in other parts of the eastern San Joaquin Valley because the Fresno and Chowchilla Rivers primarily drain the Sierra Nevada foothills, whereas the larger rivers drain higher elevations with greater sediment supply. These differences in the sources of sediments are important because they may affect the groundwater chemistry and the physical structure of the sedimentary deposits. Some of the clay layers are lacustrine deposits, the most extensive of which, the Corcoran Clay, underlies the western part of the study unit and divides the primary aquifer system into an unconfined to semi-confined upper system and a largely confined lower system. Regional lateral flow of groundwater is southwest towards the valley trough. Irrigation return flows are the major source of groundwater recharge, and groundwater pumping is the major source of discharge. Groundwater on a lateral flow path may be repeatedly extracted by pumping wells and reapplied at the surface multiple times before reaching the valley trough, resulting in a substantial component of downward vertical flow (Burow and others, 2004; Phillips and others, 2007; Faunt, 2009). This flow pattern enhances movement of water from shallow depths to the primary aquifer system.

  3. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    Science.gov (United States)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  4. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  5. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    Directory of Open Access Journals (Sweden)

    Barbara P Nash

    Full Text Available Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG, and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.

  6. Arsenic distribution along different hydrogeomorphic zones in parts of the Brahmaputra River Valley, Assam (India)

    Science.gov (United States)

    Choudhury, Runti; Mahanta, Chandan; Verma, Swati; Mukherjee, Abhijit

    2017-06-01

    The spatial distribution of arsenic (As) concentrations along three classified hydrogeomorphological zones in the Brahmaputra River Valley in Assam (India) have been investigated: zone I, comprising the piedmont and alluvial fans; zone II, comprising the runoff areas; and zone III, comprising the discharge zones. Groundwater (150 samples) from shallow hand-pumped and public water supply wells (2-60 m in depth) was analysed for chemical composition to examine the geochemical processes controlling As mobilization. As concentrations up to 0.134 mg/L were recorded, with concentrations below the World Health Organization and the Bureau of Indian Standards drinking-water limits of 0.01 mg/L being found mainly in the proximal recharge areas. Eh and other redox indicators (i.e., dissolved oxygen, Fe, Mn and As) indicate that, except for samples taken in the recharge zone, groundwater is reducing and exhibits a systematic decrease in redox conditions along the runoff and discharge zones. Hydrogeochemical evaluation indicated that zone I, located along the proximal recharge areas, is characterized by low As concentration, while zones II and III are areas with high and moderate concentrations, respectively. Systematic changes in As concentrations along the three zones support the view that areas of active recharge with high hydraulic gradient are potential areas hosting low-As aquifers.

  7. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    Science.gov (United States)

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...sampling and in- situ density testing using the sand displacement 11 or large-scale water displacement method. Dozer trenches TT82-1 and TT82-6 were excavated...underlying the valley or may, due to its pervasiveness, represent an in situ weathering product of the buried bedrock. 4.18 Because of the magnitude

  8. Capacitively Coupled Resistivity Survey of Selected Irrigation Canals Within the North Platte River Valley, Western Nebraska and Eastern Wyoming, 2004 and 2007-2009

    Science.gov (United States)

    Burton, Bethany L.; Johnson, Michaela R.; Vrabel, Joseph; Imig, Brian H.; Payne, Jason; Tompkins, Ryan E.

    2009-01-01

    Due to water resources of portions of the North Platte River basin being designated as over-appropriated by the State of Nebraska Department of Natural Resources (DNR), the North Platte Natural Resources District (NPNRD), in cooperation with the DNR, is developing an Integrated Management Plan (IMP) for groundwater and surface water in the NPNRD. As part of the IMP, a three-dimensional numerical finite difference groundwater-flow model is being developed to evaluate the effectiveness of using leakage of water from selected irrigation canal systems to manage groundwater recharge. To determine the relative leakage potential of the upper 8 m of the selected irrigation canals within the North Platte River valley in western Nebraska and eastern Wyoming, the U.S. Geological Survey performed a land-based capacitively coupled (CC) resistivity survey along nearly 630 km of 13 canals and 2 laterals in 2004 and from 2007 to 2009. These 13 canals were selected from the 27 irrigation canals in the North Platte valley due to their location, size, irrigated area, and relation to the active North Platte valley flood plain and related paleochannels and terrace deposits where most of the saturated thickness in the alluvium exists. The resistivity data were then compared to continuous cores at 62 test holes down to a maximum depth of 8 m. Borehole electrical conductivity (EC) measurements at 36 of those test holes were done to correlate resistivity values with grain sizes in order to determine potential vertical leakage along the canals as recharge to the underlying alluvial aquifer. The data acquired in 2004, as well as the 25 test hole cores from 2004, are presented elsewhere. These data were reprocessed using the same updated processing and inversion algorithms used on the 2007 through 2009 datasets, providing a consistent and complete dataset for all collection periods. Thirty-seven test hole cores and borehole electrical conductivity measurements were acquired based on the 2008

  9. Analysis, design and interventions on valley floors at the city of Alfenas [MG

    Directory of Open Access Journals (Sweden)

    Francisco José Cardoso

    2009-04-01

    Full Text Available The floor of valleys are areas with important physical and environmental characteristics, interacting with diverse natural processes that occur in our planet. With the urbanization, degradation of such areas usually occurs, resulting in the physical, social and cultural withdrawing of the population from the urban river and stream lands. The purpose of this paper is to study the action of the public administration on valley floors and the management tools which may render feasable thee environmental preservation as well as environment and landscape renaturalization of such areas thus promoting echological and functional balance in the urban fluviatic lands. In order to prepare a proposal, several items were studied: the physical environmental characteristics of the valley floors, the transformations associated to urbanization. Based on this research, a plan was made for city of Alfenas [MG] as regards the management of the valley floor lands: a proposal of intervention in one of the hydrographic basins.

  10. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  11. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    Science.gov (United States)

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  12. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    Science.gov (United States)

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  13. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  14. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  15. APPLICATION OF GIS TO ENVIRONMENTAL PROBLEMS IN THE HORNÁD VALLEY

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    1997-10-01

    Full Text Available The paper discusses some of the possibilities of managing environmental issues linked with industrial and communal activities, using the support of GIS. At the Dept. of Geology and Mineralogy (Numerical geolo-gy section the first steps has been made to enable a participative monitoring of the state of the environment in the Hornád river valley through a number of projects. (RECENT, Hornád river watching. A number of speciali-zed application software was developed (for the MicroStation environment that enables the GIS type of data integration. The paper gives the most important results of the monitoring.

  16. People's perception on impacts of hydro-power projects in Bhagirathi river valley, India.

    Science.gov (United States)

    Negi, G C S; Punetha, Disha

    2017-04-01

    The people's perception on environmental and socio-economic impacts due to three hydro-electric projects (HEPs; commissioned and under construction) were studied in the north-west Indian Himalaya. Surveys among 140 project-affected people (PAPs) using a checklist of impacts indicate that among the negative impacts, decrease in flora/fauna, agriculture, flow of river, aesthetic beauty; and increase in water pollution, river bed quarrying for sand/stone, human settlement on river banks and social evils; and among the positive impacts, increase in standard of living, road connectivity, means of transport, public amenities, tourism and environmental awareness were related with HEPs. The PAPs tend to forget the negative impacts with the age of the HEPs after it becomes functional, and the positive impacts seem to outweigh the negative impacts. Study concludes that it is difficult to separate the compounding impacts due to HEP construction and other anthropogenic and natural factors, and in the absence of cause-and-effect analyses, it is hard to dispel the prevailing notion that HEPs are undesirable in the study area that led to agitations by the environmentalists and stopped construction of one of these HEPs. To overcome the situation, multi-disciplinary scientific studies involving the PAPs need to be carried out in planning and decision-making to make HEPs environment friendly and sustainable in this region. There is also a need to adopt low carbon electric power technologies and promote a decentralized energy strategy through joint ventures between public and private companies utilizing locally available renewable energy resources.

  17. Early mixed farming of millet and rice 7800 years ago in the Middle Yellow River region, China.

    Directory of Open Access Journals (Sweden)

    Jianping Zhang

    Full Text Available The Peiligang Culture (9000-7000 cal. yr BP in the Middle Yellow River region, North China, has long been considered representative of millet farming. It is still unclear, however, if broomcorn millet or foxtail millet was the first species domesticated during the Peiligang Culture. Furthermore, it is also unknown whether millet was cultivated singly or together with rice at the same period. In this study, phytolith analysis of samples from the Tanghu archaeological site reveals early crop information in the Middle Yellow River region, China. Our results show that broomcorn millet was the early dry farming species in the Peiligang Culture at 7800 cal. yr BP, while rice cultivation took place from 7800 to 4500 cal. yr BP. Our data provide new evidence of broomcorn millet and rice mixed farming at 7800 cal. yr BP in the Middle Yellow River region, which has implications for understanding the domestication process of the two crops, and the formation and continuance of the Ancient Yellow River Civilization.

  18. Assessment of Water Quality of Subarnarekha River in Balasore Region, Odisha, India

    OpenAIRE

    A. A Karim; R. B Panda

    2014-01-01

    The present study was carried out to determine the water quality status of Subarnarekha River at Balasore region during pre-project period as Kirtania Port is proposed in this area. River water samples were analysed for physico-chemical parameters by following standard methods (APHA 1985) and the results showed their variations as follows: pH 7.3-7.8,Temperature 26.7-28.20C, Electrical Conductivity 392-514 µ mho ,Total suspended solids 118-148 mg/l, Total dissolved solids 241-285 mg/l, Alkali...

  19. Climate change impact on the river runoff: regional study for the Central Asian Region

    International Nuclear Information System (INIS)

    Agaitseva, Natalya

    2004-01-01

    increase is expected in evaporation from water surfaces of 15-20%. The most severe and climate conditions in the watershed area were predicted under the CCCM model. According to this model, if CO 2 concentration in the atmosphere is doubled, then the runoffs of the Syrdarya and Amudarya rivers are expected to be reduced by 28 and 40%, respectively. According to GFDL and GISS scenarios, presented.(Author)e experiencethe catchment area would increase by 3-4 o C and average annual precipitation volume by 10-15%. Under these scenarios, one could expect that no significant reduction in the Amudarya and Syrdarya runoff would occur. An air temperature rise of 1-2 o C will intensify the process of ice degradation. In 1957-180 glaciers in the Aral Sea river basins lost 115.5 km 3 Of ice (approximately 104 km 3 of water), which constituted almost 20 per cent of the 1957 ice reserve. By 2000 another 14 per cent of the 1957 reserve were lost. By 2020 glaciers will lose at least another 10 per cent of their initial volume. Calculations of regional climatic scenarios by the year 2030 also indicate persistence of present runoff volumes accompanied by an increase in fluctuations from year. Longer-term assessments are more pessimistic, since, along with increasing evaporation, water resource inputs (snow and glaciers in the mountains) are continuously shrinking. (Author)

  20. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map